JP2004270109A - 超多孔性合成繊維を用いた繊維製品 - Google Patents

超多孔性合成繊維を用いた繊維製品 Download PDF

Info

Publication number
JP2004270109A
JP2004270109A JP2003066147A JP2003066147A JP2004270109A JP 2004270109 A JP2004270109 A JP 2004270109A JP 2003066147 A JP2003066147 A JP 2003066147A JP 2003066147 A JP2003066147 A JP 2003066147A JP 2004270109 A JP2004270109 A JP 2004270109A
Authority
JP
Japan
Prior art keywords
fiber
yarn
polymer
polymer alloy
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003066147A
Other languages
English (en)
Inventor
Shuichi Nonaka
修一 野中
Takashi Ochi
隆志 越智
Akira Kidai
明 木代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003066147A priority Critical patent/JP2004270109A/ja
Publication of JP2004270109A publication Critical patent/JP2004270109A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Knitting Of Fabric (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

【課題】本発明は、吸着性、吸収性、嵩高性に優れ、天然繊維ような快適で自然感のある風合いの繊維製品を提供するものである。
【解決手段】繊維横断面において、直径200nmを超える細孔の断面積の総和が繊維断面積の1.5%以下である、直径100nm以下の細孔を有する超多孔性合成繊維を少なくとも一部に用いる嵩高度が20cm/g以上の繊維製品。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明は、吸着性、吸収性、嵩高性が求められる繊維製品に関するものである。
【0002】
【従来の技術】
合成繊維は優れた耐熱性や強度、寸法安定性をもつため加工が容易で、しかも製品のイージーケア性が優れているため、衣料用、産業用に幅広く利用されている。しかし、衣料用やインテリア用に用いるときには、綿、絹、ウールといった天然繊維に比べ、快適性や自然感、高級感に劣るため、これまで様々なアプローチが検討されてきた。
【0003】
例えば、ウールのもつソフトでボリューム感のある風合いに近づけるため、仮撚加工のような捲縮加工が開発され、さらにフクラミ、反発感を表現するため複合仮撚や強撚技術が開発され、形態面からはある程度ウールに近いものが得られてきた。
【0004】
しかしながら、天然繊維の大きな特徴である吸水性、吸湿性については、合成繊維そのものの親水性が低いため、これを達成することは困難であった。
【0005】
吸水性については最近、異型断面繊維の隙間による毛細管現象を利用することにより部分的には綿に近づきつつある(特許文献1)。しかし、吸湿性については満足いくものが得られていなかった。
【0006】
このため、吸湿ポリマーを芯部に複合した芯鞘複合糸が提案されていた(特許文献2)が、これは仮撚加工や強撚の様な大きなねじり変形が加えられたり、ポリエステルの場合アルカリ減量時に鞘割れし易く、吸湿ポリマーが流出したり、布帛品位が著しく悪化するという問題があった。
【0007】
吸湿性微粒子を繊維表面に練り込む方法も開示されている(特許文献3)が、微粒子が数μmと大きいため、紡糸性が悪化したり、仮撚加工を施すとディスクやガイド摩耗が著しいという問題があった。なお繊維への添加時の微粒子径をサブミクロンまで微細化しても凝集により、結局粗大粒子が生成し、やはり種々の問題を引き起こしていた。
【0008】
さらに、吸湿剤を繊維表面にコーティングする方法も提案されているが、風合いが硬くなったり、黄変したり、加水分解で吸湿剤が脱落したりするなどの問題があった。
【0009】
【特許文献1】
特開平7−268777号公報(1〜5頁)
【0010】
【特許文献2】
特開平8−81831号公報(1〜5頁)
【0011】
【特許文献3】
特開2000−204230号公報(1〜9頁)
【0012】
【発明が解決しようとする課題】
本発明は、吸湿性、吸水性、嵩高性に優れ、天然繊維のような快適で自然感のある風合いの繊維製品を提供するものである。
【0013】
【課題を解決するための手段】
本発明の繊維製品は、上記課題を解決するため、以下の構成を有する。すなわち、繊維横断面において、直径200nmを超える細孔の断面積の総和が繊維断面積の1.5%以下である、直径200nm以下の細孔を有する超多孔性合成繊維を少なくとも一部に用いる嵩高度が20cm/g以上の繊維製品である。
【0014】
【発明の実施の形態】
本発明での超多孔性合成繊維で用いられるポリマーは特に限定されるものではないが、成形性や熱セット性の良い熱可塑性ポリマーであることが好ましい。熱可塑性ポリマーとしては、ポリアミドやポリエステル、ポリオレフィンなどを挙げることができ、中でもポリアミド、ポリエステルに代表される重縮合系ポリマーは融点が高いものが多く耐熱性が良好であり、より好ましい。また該ポリマーには粒子、難燃剤、帯電防止剤等の添加物を含有させていても良く、また該ポリマーの性質を損なわない範囲で他の成分が共重合されていても良いが、ポリマー本来の耐熱性や力学特性を保持するためには共重合率は5mol%あるいは5重量%以下であることが好ましい。特に衣料、インテリア、車両内装等に用いる場合には、ポリエステルやポリアミドが融点、力学特性、風合いの点から好ましく、共重合率が5mol%または5重量%以下の相対粘度2以上のナイロン6、ナイロン66、極限粘度0.50以上のPET、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、数平均分子量5万以上のPLAが特に好ましい。また、これらのポリマーは超多孔性合成繊維の80重量%以上を構成することが好ましい。
【0015】
本発明でいう細孔とは、繊維軸に対し垂直に切った繊維横断面の内部に存在する孔のうち、孔を円換算した直径が1μm以下のものを言うものである。そして、該直径を細孔の直径(以下、細孔径)という。また超多孔性合成繊維とは該細孔を繊維横断面において1個/μm以上含有する合成繊維をいう。
【0016】
本発明においては、200nmより大きい直径をもつ細孔の断面積の総和が、繊維断面積の1.5%以下であることが重要であり、好ましくは0.01%以下である。ここで、繊維断面積とはポリマー部分と細孔部分を足し合わせた面積のことを言うものである。すなわち、本発明に用いられる超多孔性合成繊維の細孔径は、大部分または全てが200nm以下であり、細孔径が200nmより大きい細孔はほとんどないことを意味する。さらに好ましくは50nmより大きい直径を持つ細孔の断面積の総和が繊維断面積の1.5%以下、最も好ましくは0.01%以下である。また、細孔径の平均値は好ましくは100nm以下、より好ましくは50nm以下、さらに好ましくは30nm以下である。通常、繊維中に大きな細孔(可視光の波長レベル)があると、可視光が散乱され発色性が著しく低下するのであるが、本発明では細孔径をナノレベルとすることにより発色性の低下を抑制しているのである。また、従来の多孔繊維では予想できなかった優れた吸湿性や吸着性が発現するという大きな利点がある。また、これほどの微細孔が多数あると水以外にも有機溶媒等の種々の液体を吸収する能力が飛躍的に向上するのである。
【0017】
細孔径は、繊維軸に対し垂直に切った繊維横断面を透過型電子顕微鏡(TEM)などで観察した画像をコンピューターなどにより画像処理して細孔を円換算し、その直径を算出することで評価できる。
【0018】
また、本発明で用いる超多孔性合成繊維中の細孔は、繊維長手方向に筋状に伸びていても良いが、粒状になっていると可視光の散乱がより抑制され発色性向上の観点から好ましい。また、これらの細孔は互いに連結された連通孔でもほとんど連結されていない独立孔でも良い。これらの細孔は後述するように細孔内に様々な分子を取り込むことが可能であるが、これの洗濯耐久性や徐放性を考慮すると、取り込んだ分子をある程度カプセル化できる独立孔の方が好ましい。
【0019】
以上のように超多孔性合成繊維は多数のナノレベルの細孔を有しているため、比表面積が増大し、優れた吸湿・吸着性を示すというメリットがある。また、超多孔性合成繊維は水蒸気だけでなく種々の物質の吸着特性にも優れ、消臭繊維としても有用である。さらに、綿並の吸水性を発揮する場合もあり、合成繊維でありながら天然繊維の機能を発現することも可能である。
【0020】
また、ナノレベルの細孔には種々の機能物質を取り込み易いため、従来の繊維に比べ機能加工し易い繊維である。例えば、通常のポリエステル繊維からなる布帛に吸湿性を付与する目的で、分子量1000以上のポリエチレングリコール(PEG)系の吸湿剤を付与してもほとんど吸尽する事はできない。しかし、本発明のPET超多孔性合成繊維からなる布帛に同じ吸湿剤を付与すると多量に吸尽することができるのである。また、吸尽させる機能性薬剤は吸湿剤だけでなく、難燃剤、撥水剤、保湿剤、保冷剤、保温剤、平滑剤、微粒子も用いることができ、また、ポリフェノールやアミノ酸、タンパク質、カプサイシン、ビタミン類等の健康・美容促進のための薬剤や、水虫等の皮膚疾患の治療薬や消毒剤、抗炎症剤、鎮痛剤等の医薬品、ポリアミンや光触媒ナノ粒子といった有害物質の吸着・分解するための薬剤も用いることができる。さらに、有機あるいは無機ポリマー形成能を有するモノマーを吸尽させた後、それらを重合させハイブリッド材料を作ることも可能である。また、広い比表面積を活かして細孔壁面を化学加工により活性化させ、選択吸着や触媒能を持たせることももちろん可能である。
【0021】
特に衣料やインテリア、車両内装用途などの繊維製品では合成繊維の吸湿性・吸水性を向上させ、化繊・天然繊維同等以上の快適性が得られるというメリットがある。ここで快適性の指標として、標準状態(20℃、相対湿度65%)から軽運動状態(30℃、相対湿度90%)にどれだけ吸湿できるかという値(ΔMR)を用いると、本発明の繊維製品はΔMRが4%以上であることが好ましい。ここでΔMRとは以下のようにして定義されるものである。すなわち、繊維を秤量瓶に1〜2g程度はかり取り、110℃に2時間保ち乾燥させ重量を測定し(W0(g))、次に対象物質を20℃、相対湿度65%に24時間保持した後重量を測定する(W65(g))。そして、これを30℃、相対湿度90%に24時間保持した後重量を測定する(W90(g))。そして、以下の式にしたがい計算を行う。
【0022】
MR65(%)=[(W65−W0)/W0]×100
MR90(%)=[(W90−W0)/W0]×100
ΔMR(%)=MR90−MR65
例えば、合成繊維として多く用いられているポリアミド繊維の代表である通常ナイロン6繊維ではΔMR=2%程度であり、天然のセルロース繊維である綿はΔMR=4%程度である。ここでいう通常ナイロン6繊維とは本発明でいう細孔をもたないものである。本発明の繊維製品に用いる超多孔性合成繊維ではナイロン6単独からなる繊維であってもΔMR≧4%の優れた吸湿性が得られる。
【0023】
本発明の繊維製品に用いる超多孔性合成繊維の強度は1.5cN/dtex以上であれば、繊維製品の引き裂き強力や耐久性を向上できるため好ましい。強度はより好ましくは2cN/dtex以上、さらに好ましくは2.5cN/dtex以上である。また、伸度は20%以上であると繊維製品の耐久性を向上でき好ましい。
【0024】
また本発明において、繊維製品の嵩高度は20cm/g以上であることが重要である。ここで嵩高度とは織物、編物などの布帛の嵩高感を以下のようにして定義したものである。すなわち、布帛の上から6.86×10Pa(7gf/cm)の圧力をかけ、10秒後の厚みを測定し(t(cm))、これとは別に布帛の目付(単位面積あたりの質量)を測定する(w(g/cm))。そして、以下の式にしたがい計算を行う。
【0025】
嵩高度(cm/g)=t/w
上記にしたがってもとめた嵩高度が20cm/g以上の繊維製品は、ウールや綿などの天然繊維のようなボリューム感を表現でき、形態面から天然繊維調の風合いを得ることができる。嵩高度は好ましくは40cm/g以上、さらに好ましくは60cm/g以上である。
【0026】
また、上記嵩高度を得るためには、例えば捲縮加工等の糸を改質する方法や多くの空隙を持つ組織の織編物にする等の布帛設計による方法が挙げられるが、ウールや綿などの天然繊維調の風合いを得るためには超多孔性合成繊維を捲縮糸とすることが好ましい。超多孔性合成繊維が捲縮糸であれば、これを製織、製編などして得られた繊維製品は嵩高なものとなるからである。捲縮糸には、仮撚り加工糸や機械捲縮加工糸、エアジェット加工糸等様々なものあるが、伸縮復元率や捲縮特性の良好な仮撚加工糸が好適である。
【0027】
本発明では、超多孔性合成繊維において直径200nmを超える粗大な細孔がほとんど無いことと、繊維製品の嵩高度が20cm/g以上であることを同時に満すため、特定の超多孔性合成繊維捲縮糸を少なくとも一部に用いた繊維製品であることが好ましい。このことにより、優れた嵩高性と吸湿性、吸水性を同時に達成することができ、本発明の目的であるウールや綿などの天然繊維調の風合いを得ることができる。
【0028】
本発明の繊維製品に用いる超多孔性合成繊維の製造方法は何ら制限されるものではないが、たとえば以下のような方法を採用することができる。すなわち、難溶解性ポリマーと易溶解性ポリマーを押し出し混練機や静止混練器により溶融混合し、難溶解性ポリマーおよび/または易溶解性ポリマーが微分散化した難溶解性ポリマー/易溶解性ポリマーからなるポリマーアロイを得る。そして、これを溶融紡糸することにより難溶解性ポリマー/易溶解性ポリマーからなるポリマーアロイ原糸を得て、さらに捲縮加工を施す。このとき、ポリマーアロイ捲縮糸中の易溶解性ポリマーの分散径が200nm以下になっていることが重要である。このようなポリマーアロイ捲縮糸とすることで、該ポリマーアロイ捲縮糸から易溶解性ポリマーを溶出除去することにより、無数のナノ細孔を有する超多孔性合成繊維が得られるのである。
【0029】
ここで、繊維製品に充分な嵩高度を付与するためには、該ポリマーアロイ捲縮糸の捲縮特性が重要となる。捲縮特性の指標の一つにCR値があるが、本発明ではポリマーアロイ捲縮糸のCR値が20%以上であることが好ましい。ここでCR値とは以下のようにして定義されるものである。すなわち、繊維糸条を50cm程度の10回巻きカセにし、一昼夜放置後、無荷重下にて難溶解性ポリマーがナイロンの場合は60℃、ポリエステルの場合は90℃の水で20分間処理し、その後、一昼夜風乾させたものを準備する。次に水中で0.0018cN/dtex(2mg/デニール)の初荷重と0.090cN/dtex(0.1g/デニール)の伸長荷重を掛け2分後のカセ長を測定し(l(mm))、その後伸長荷重を除重し、2分後のカセ長を測定する(l(mm))。そして、以下の式にしたがい計算を行う。
【0030】
CR値(%)=[(l−l)/l]×100
本発明に用いるポリマーアロイ捲縮糸のCR値が20%以上であれば該ポリマーアロイ捲縮糸を製織、製編などして布帛化し易溶解性ポリマーを除去した繊維製品は本発明の目的である嵩高性を得ることができ、ウールや綿などの天然繊維調の風合いを得ることができる。
【0031】
捲縮加工工程での加工条件は、特に限定されるものではなく、捲縮付与の方法としては仮撚法、擦過法、ケンネル法、スタッファ法、エアジェット法、賦型法など種々の方法を採用でき、中でも捲縮特性、糸掛け操作性、加工安定性の良好な仮撚法が好ましい。仮撚回転装置としては、スピンドル式、摩擦式、エアジェット式などが挙げられるが、糸掛け操作性、加工安定性の面から3軸外接型摩擦仮撚装置やベルトニップ仮撚装置が特に好ましい。仮撚のヒーター温度は仮撚するポリマーアロイ原糸のポリマー組成によって異なるが、強伸度の低下や単糸間の融着によるくびれや未解撚などの捲縮異常を起こさない最も高い温度に設定することが好ましい。これにより、熱セット性がよく、捲縮の強固なポリマーアロイ捲縮糸を得ることができる。例えば、難溶解性ポリマーとしてナイロン、易溶解性ポリマーとしてポリエチレンテレフタレート(以下PET)を用いたポリマーアロイ糸を仮撚加工原糸として用いた場合は、仮撚工程のヒーター温度範囲は130〜200℃が好適である。130℃より低い場合には、捲縮耐久性が悪く、捲縮も小さくなり、200℃より高い場合には、ポリマーアロイ捲縮糸の強伸度劣化を引き起こしたり、融着によるくびれや未解撚によるタイトスポットが発生したり、仮撚残存トルクが増大し取り扱い難い糸となったりする場合がある。また必要に応じて、仮撚加工工程後さらに熱セットすることにより、残存トルク軽減や熱寸法安定性向上を図ったり、交絡処理を施したり、追撚したりしてもよい。
【0032】
上記のようにして得られたポリマー分散径が200nm以下で、捲縮特性が良好なポリマーアロイ捲縮糸を用いて製織、製編などを行い繊維製品を作製した後、易溶解性ポリマーを溶出することにより超多孔性捲縮糸からなる繊維製品を得ることができる。ここで、溶出処理に用いる溶媒としては、有機溶媒系のものではなく水溶液系のものを用いることで防爆設備が不要となり好ましい。この観点から易溶出ポリマーとしてはアルカリ溶解性のあるポリエステルやポリカーボネート、熱水可溶性のあるアルキレンオキサイド変性物等が好ましい。
【0033】
また、前記したポリマーアロイ繊維から易溶解性ポリマーを除去すると、易溶解性ポリマーが抜けた跡が繊維横断面方向に収縮することにより潰れ、さらに、ポリマーアロイ捲縮糸の繊維縦断面では易溶解性ポリマーが繊維長手方向に筋状に伸びていたものが、易溶解性ポリマーが抜けた超多孔性捲縮糸では筋の所々が潰れ、粒状構造となり、ポリマーアロイ繊維段階での易溶解性ポリマーの分散サイズよりも細孔サイズを小さくすることができる場合がある。したがって前記した方法は、本発明の繊維製品を得るのに非常に適した方法である。なお、易溶解性ポリマーの除去に伴い細孔だけでなく繊維径自体も収縮をする場合がある。
【0034】
前記した製造方法では、ポリマーアロイのポリマーの組み合わせが重要であり、両者の親和性を上げることで超微分散ポリマーアロイ原糸を得やすくなる。例えば、難溶解性ポリマーとしてナイロン、易溶解性ポリマーとしてPETを用いる場合には、ホモポリマー同士では親和性が無いため超微分散ポリマーアロイ繊維としにくく、紡糸性も劣悪である。そこで、例えばPETに親水性成分である5−ナトリウムスルホイソフタル酸(以下SSIA)を共重合した親水化PETを用いると、ナイロンとの親和性が向上し、下記するように十分混練する事でナイロン中での親水化PETの分散径を100nm以下とすることもできる。PETへのSSIA共重合量は4mol%以上であるとナイロンとの親和性を向上させる観点から好ましい。特にSSIA共重合量が10mol%を超えたり、100万分割以上の静止混練器を用いた場合には、通常の海島型のブレンド状態ではなく、直径30nm以下の親水化PETドメインが数珠状や線状に集合した変形海島構造や異種ポリマーが層状に入り組んだ相溶性のより高いアロイ構造を採る場合もある。
【0035】
また、異種ポリマー同士を超微分散させるためには混練方法も重要である。押し出し混練機や静止混練器により溶融混合したポリマーアロイはポリマーが超微分散しているため、溶融紡糸すると紡糸性が改善され、糸の太さ斑の少ないポリマーアロイ原糸が得られ易い。押し出し混練機を用いる場合は二軸押し出し混練機を静止混練器を用いる場合は分割数100万以上のものを用いることが好ましい。そして、易溶解ポリマーは該ポリマーアロイ原糸中で繊維軸方向および繊維半径方向でのブレンド斑が小さく、かつナノレベルで微分散しているため、仮撚加工工程で安定して加撚を施すことができる。仮撚り加工においては一般に高温ヒーターで熱セットを施すため、特に易溶解性ポリマーとして低融点や低軟化点ポリマーを用いた場合には融着や毛羽、糸切れ、未解撚、熱セット不良、低捲縮といったトラブルが必ず発生していたのであるが、本発明で採用するナノレベルで易溶解性ポリマーが分散したポリマーアロイ繊維を用いるとこれらを同時に解決できるのである。また、易溶解性ポリマーの摩擦特性が難溶解性ポリマーのものと異なっていた場合には、仮撚回転装置と糸との摩擦が異なってくるため、施撚不良や毛羽、糸切れといったトラブルが発生していたが、前記ポリマーアロイ繊維を用いることにより解決できるのである。以上のような製造方法により、得られる仮撚加工糸の捲縮特性を容易に向上でき、しかも未解撚等の欠点も抑制することができるため、嵩高性と品位に優れた繊維製品を得ることができるのである。
【0036】
一方、単純なチップブレンドしただけで溶融紡糸した場合、ブレンドチップの段階でブレンド斑が生じ易く、また混練不十分のためポリマー分散径が200nm以上となるブレンドが粗い部分が生じたり、ブレンド斑によりポリマーアロイの粘弾性バランスが崩れ、紡糸吐出斑による糸の太さ斑が生じる問題が発生してしまう。ブレンドポリマーの分散径が大きかったり、斑の大きなポリマーアロイ原糸を仮撚加工すると、単糸間や長手方向での張力変動が大きく安定して加撚を施すことができず、安定加工ができなかったり、得られた加工糸も捲縮が小さくなったり、未解撚糸となったりする。また、このような糸を用いた繊維製品は嵩高感がなく、品位が悪いものとなってしまう。さらに、単純なチップブレンドでは、ポリマー形状や帯電性の違いによりホッパー内や配管中での転がり特性が異なるため、脱混和が起こるだけでなく、経時的にブレンド比が変化してしまい、結果的に得られる繊維製品の品質が安定しない問題があった。
【0037】
また、このような超微分散化ポリマーアロイを紡糸する際は、粘弾性バランスが崩れ吐出が不安定となりやすく、曳糸性や糸斑が悪化する場合がある。このため、紡糸にあたっては口金面の温度設定や口金孔径の選定が重要であり、口金面温度はポリマーアロイの多量成分の融点+20℃以上であることが好ましく、口金孔径は0.3mm以上のものを使用することが好ましい。
【0038】
また、前記したように捲縮加工安定性や製品の品質を向上させる観点から、捲縮加工を施す前のポリマーアロイ原糸の太さ斑も重要である。糸の太さ斑の指標にU%があるが、該ポリマーアロイ原糸のU%は3%以下であることが好ましく、より好ましくは2%以下である。
【0039】
本発明で用いる超多孔性合成繊維は、三葉断面、十字断面、中空断面等様々な繊維断面形状を採用することができる。また、繊維横断面の全面に細孔を含んでいても細孔が繊維表層側あるいは中心部、また偏芯等に偏った部分に局在化していても良い。ただし、超多孔性合成繊維の優れた性能を十分発揮するためには超多孔化された領域は繊維横断面全体に対し面積比で30%以上とすることが好ましい。また、本発明の超多孔性合成繊維は単独で用いることもできるが、混繊、混紡、交織、交編等により通常の合成繊維や化繊、天然繊維と混用することにより、布帛の寸法安定性を向上させたり風合いのさらなる向上をはかることももちろん可能である。また、長繊維、短繊維、不織布、熱成形体等様々な繊維製品形態を採ることができる。
【0040】
以上のように本発明の超多孔性合成繊維からなる繊維製品は、従来の多孔性繊維からなる繊維製品に比べ嵩高度が高く、また発色性に優れ、さらに吸湿性や吸着性にも優れる高品質の繊維製品を提供することができる。このため、パンスト、タイツ、インナー、シャツ、ブルゾン、パンツ、コートといった快適衣料用途のみならず、カップやパッド等の衣料資材用途、カーテンやカーペット、マット、家具等のインテリア用途、車両内装用途等に好適に用いることができる。さらに超多孔性の機能を活かし、フィルター等の産業資材用途、機能性分子の吸着により健康・美容関連品や医薬品基布、燃料電池の電極といった環境、メディカルIT関係のような最先端材料としても利用することができる。
【0041】
【実施例】
以下、本発明を実施例を用いて詳細に説明する。なお、実施例中の測定方法は以下の方法を用いた。
【0042】
A.ポリマーの溶融粘度
東洋精機キャピログラフ1Bによりポリマーの溶融粘度を測定した。なお、サンプル投入から測定開始までのポリマーの貯留時間は10分とした。
【0043】
B.ナイロンの相対粘度
0.01g/mlの98%硫酸溶液を調製し、25℃で測定した。
【0044】
C.ポリエステルの極限粘度[η]
オルソクロロフェノール中25℃で測定した。
【0045】
D.ポリマーの融点
Perkin Elmaer DSC−7を用いて2nd runでポリマーの融解を示すピークトップ温度をポリマーの融点とした。この時の昇温速度は16℃/分、サンプル量は10mgとした。
【0046】
E.ポリマーアロイ原糸のU%
ツェルベガーウスター株式会社製USTER TESTER 4を用いて給糸速度200m/分でノーマルモードで測定を行った。
【0047】
F.ポリマーアロイ捲縮糸のCR値
繊維糸条を50cm程度の10回巻きカセにし、一昼夜放置後、無荷重下にて難溶解性ポリマーがナイロンの場合は60℃、ポリエステルの場合は90℃の水で20分間処理し、その後、一昼夜風乾させたものを準備した。次に水中で0.0018cN/dtex(2mg/デニール)の初荷重と0.090cN/dtex(0.1g/デニール)の伸長荷重を掛け2分後のカセ長を測定し(l(mm))、その後伸長荷重を除重し、2分後のカセ長を測定した(l(mm))。そして、以下の式にしたがい計算を行った。
【0048】
CR値(%)=[(l−l)/l]×100
G.繊維製品の嵩高度
織物、編物などの繊維製品の上から6.86×10Pa(7gf/cm)の圧力をかけ、10秒後の厚みを測定し(t(cm))、これとは別に布帛の単位面積あたりの質量を測定した(w(g/cm))。そして、以下の式にしたがい計算を行った。
【0049】
嵩高度(cm/g)=t/w
H.TEM観察および細孔径評価
繊維の横断面方向および縦断面方向に超薄切片を切り出し、必要に応じて金属染色した後、透過型電子顕微鏡(TEM)で繊維横断面および繊維縦断面を観察した。ここで得られた繊維横断面の画像を画像処理ソフト(WINROOF)を用いて画像処理し細孔断面の円相当直径を細孔径とした。また、微細すぎたり形状が複雑でWINROOFでの解析が難しい場合は、目視と手作業により解析を行った。細孔の平均直径は、それらの単純な数平均値を求めた。この時、平均に用いる細孔は同一横断面内で無作為抽出した300以上の細孔を用いた。ただし、TEM観察用のサンプルは超薄切片とするため、サンプルに破れや穴あきが発生しやすい。このため、直径解析時にはサンプルの状況と照らし合わせながら慎重に行った。島ポリマー直径は細孔直径解析に準じた。なお、艶消しや発色性向上のために含有させた無機微粒子やこれの周りのホイドは、細孔には含めなかった。
【0050】
TEM装置 : 日立社製H−7100FA型
I.吸湿性(ΔMR)
繊維を秤量瓶に1〜2g程度はかり取り、110℃に2時間保ち乾燥させ重量を測定し(W0(g))、次に対象物質を20℃、相対湿度65%に24時間保持した後重量を測定した(W65(g))。そして、これを30℃、相対湿度90%に24時間保持した後重量を測定した(W90(g))。そして、以下の式にしたがい計算を行った。
【0051】
MR65(%)=[(W65−W0)/W0]×100
MR90(%)=[(W90−W0)/W0]×100
ΔMR(%)=MR90−MR65
J.発色性
繊維製品を以下の条件で染色し発色性を判定した。表面品位、発色性が良いものを5級、悪いものを1級とし、目視判定して合格を3級以上とした。
【0052】
超多孔性合成繊維がナイロンの場合は、染料にクラリアントジャパン株式会社製“Nylosan Blue N−GFL”を用い、この染料を繊維製品の0.8重量%、pHを5に調整した染色液で浴比100倍、90℃×40分処理した。
【0053】
超多孔性合成繊維がポリエステルの場合、染料にクラリアントジャパン株式会社製“Foron Navy S−2GL”を用い、この染料を繊維製品の0.8重量%、pHを5に調整した染色液で浴比1:100、130℃(ポリ乳酸は110℃)で40分処理した。
【0054】
K.力学特性
室温(25℃)で、引っ張り速度=100%/分とし、JIS L1013に示される条件で荷重−伸長曲線を求めた。次に破断時の荷重値を初期の繊度で割り、それを強度とし、破断時の伸びを初期試料長で割り伸度として強伸度曲線を求めた。
【0055】
実施例1
相対粘度2.15、溶融粘度274poise(280℃、剪断速度2432sec−1)、融点220℃のホモナイロン6と、SSIAを5mol%共重合し酸化チタンを0.05重量%含む極限粘度0.60、溶融粘度1840poise(280℃、剪断速度1216sec−1)、融点250℃の共重合PETをL/Dが40の2軸押し出し混練機で260℃、吐出量10kg/時間で混練し、ポリマーアロイを得た。この時、N6のブレンド率を80重量%とした。このポリマーアロイを290℃で溶融し、紡糸温度280℃で、孔径0.3mmの丸孔口金(口金面温度267℃)から吐出して溶融紡糸を行った。この時、口金と冷却開始位置までの距離は9cmであった。これを給油した後、3800m/分で巻き取りポリマーアロイ原糸を得た。この時の紡糸性は良好であり、口金直下で吐出ポリマーが膨れるバラス現象や、曳糸性不足による断糸等は発生しなかった。さらに、通常ナイロン糸で見られる未延伸糸の経時的な膨潤によるパッケージ不良は見られなかった。また、このポリマーアロイ原糸のU%は1.5%であった。
【0056】
そして、これを延伸倍率1.50倍、ヒーター温度165℃、仮撚回転子に3軸外接型摩擦仮撚装置を用い、ディスク速度/加工糸速度の比(以下D/Y比)が1.648で延伸仮撚加工した。これにより、87dtex、24フィラメント、CR値37%、仮撚方向SおよびZのポリマーアロイ仮撚糸を得た。加工性良好であり、断糸やローラーへの糸の巻き付きは見られなかった。なお、該ポリマーアロイ仮撚糸に未解撚はなく、捲縮の品位も良好であった。
【0057】
得られたポリマーアロイ捲縮糸の横断面をTEMで観察したところ、N6が海(濃い部分)、共重合PETが島(薄い部分)の海島構造を示し(図2)、島の平均直径は25nmであり、共重合PETが超微分散化したポリマーアロイ繊維が得られた。直径が200nm以上の島の島全体に対する面積比は0.1%以下、直径100nm以上の面積比も0.9%であった。ここで、島全体に対する面積比とは島成分の面積の総和に対する比率のことを言い、粗大な凝集ポリマーの目安となるものである。また、繊維縦断面TEM観察から島は筋状構造を形成していることが分かった。
【0058】
そして、仮撚方向SおよびZのポリマーアロイ仮撚糸を引き揃え、これを20Gの丸編みに製編し、6重量%の水酸化ナトリウム水溶液(95℃、浴比1:100)で1時間処理することにより、ポリマーアロイ仮撚糸から共重合PETの99%以上を溶解除去し、ホモナイロン6で構成された超多孔性繊維からなる嵩高度63cm/gの繊維製品を得た。
【0059】
共重合PETを溶解除去後の超多孔性ナイロン6捲縮糸の繊維横断面をTEM観察した(図1)ところ、直径20〜30nm程度の細孔の存在が確認できた。この細孔の平均値は25nmであり、細孔径が200nmより大きい細孔はなく、50nmより大きい細孔の断面積の総和が、繊維断面積の0.01%以下であった。また、図1から明らかなように、これは独立孔を有するものであった。さらに、これの力学特性を測定したところ、強度2.6cN/dtex、伸度30%であり、充分な力学特性を示した。
【0060】
また、この丸編みのΔMRは5.6%と十分な吸湿性を示し、快適で嵩高感のある天然繊維調の繊維製品が得られた。この丸編みを染色したところ発色性は良好で、発色性判定は5級であった。
【0061】
実施例2
実施例1で用いたナイロン6と共重合PETの混合比をナイロン6:共重合PET=50重量%:50重量%とし、実施例1と同様にしてポリマーアロイを得て、溶融紡糸を行った。これを給油した後、3800m/分でポリマーアロイ原糸を巻き取った。得られたポリマーアロイ原糸のU%は1.7%であった。このポリマーアロイ原糸を実施例1と同様にして延伸仮撚を行い、CR値33%で未解撚がなく、捲縮特性の良好なポリマーアロイ仮撚糸を得た。これの繊維横断面をTEMで観察したところ、共重合PETは短軸10nm以下、長軸50〜80nm程度の層状の島として存在しており、粗大な凝集ポリマー粒子を含まず、直径が200nm以上の島の島全体に対する面積比は0.1%以下、直径100nm以上の面積比も0.1%以下であった。これを用い実施例1と同様に丸編みを作製し、共重合PETを溶出して、ホモナイロン6糸のみで構成された超多孔性繊維をもつ嵩高度60cm/gの繊維製品を得た。
【0062】
共重合PETを溶解除去後の超多孔性ナイロン6捲縮糸の繊維横断面を実施例1と同様にTEM観察したところ、直径20nm程度の淡部が見られ、細孔径の平均値は20nmであり、また細孔径が50nmより大きい細孔は確認されなかった。また、細孔は独立細孔であった。また、これの強度は2.1cN/dtex、伸度30%であった。
【0063】
また、この丸編みのΔMRは5.0%と十分な吸湿性を示し、快適で嵩高感のある天然繊維調の繊維製品が得られた。この丸編みを染色したところ発色性は良好で、発色性判定は5級であった。

【0064】
実施例3
実施例1で用いたナイロン6と共重合PETをそれぞれ265℃、290℃で溶融した後、ポリマー融液を静止混練器(東レエンジニアリング社製“ハイミキサー”エレメント10個)を用いて2種のポリマーを104万分割に混合した。この時のポリマーのブレンド比はナイロン6が80重量%、共重合PETが20重量%で紡糸温度280℃で、孔径0.3mmの丸孔口金(口金面温度267℃)から吐出し、溶融紡糸を行った。この時、口金と冷却開始位置までの距離は9cmであった。これを給油した後、3800m/分で巻き取りポリマーアロイ原糸を得た。この時の紡糸性は良好であり、口金直下で吐出ポリマーが膨れるバラス現象や、曳糸性不足による断糸等は発生しなかった。さらに、通常ナイロン糸で見られる未延伸糸の経時的な膨潤によるパッケージ不良は見られなかった。また、このポリマーアロイ原糸のU%は1.1%であった。
【0065】
そして、これを延伸倍率1.50倍、ヒーター温度165℃、仮撚回転子に3軸外接型摩擦仮撚装置を用い、ディスク速度/加工糸速度の比(以下D/Y比)が1.648で延伸仮撚加工した。これにより、87dtex、24フィラメント、CR値38%、仮撚方向SおよびZのポリマーアロイ仮撚糸を得た。加工性良好であり、断糸やローラーへの糸の巻き付きは見られなかった。なお、該ポリマーアロイ仮撚糸に未解撚はなく、捲縮の品位も良好であった。
【0066】
得られたポリマーアロイ仮撚糸繊維横断面をTEMで観察したところ、金属染色により濃く染まったN6部分と淡いPET部分が互いに入り組み合った特殊な層構造を形成しており、PET層部分の厚みは概ね20nm程度であった(図4)。また、このポリマーアロイ繊維の縦断面をTEMで観察したところ層が筋状になっていた(図6)。
そして、実施例1と同様に丸編みを作製し、共重合PETを溶出して、ホモナイロン6糸のみで構成された超多孔性繊維をもつ嵩高度64cm/gの繊維製品を得た。
【0067】
共重合PETを溶解除去後の超多孔性ナイロン6捲縮糸の繊維横断面を実施例1と同様にTEM観察したところ、図3に示すように金属染色による濃淡斑が元のポリマーアロイ捲縮糸(図4)よりも微細になっていた。ここで、濃い部分はナイロン6高密度部分、淡い部分はナイロン6低密度部分である。また、ポリマーアロイ捲縮糸の縦断面を観察したところ、元のポリマーアロイ原糸ではPETが筋状に伸びていた(図6)のに対し、超多孔性ナイロン捲縮糸では粒状の淡い部分が観察され(図5)、細孔が潰れていることが示唆された。また、繊維径自体も易溶解性ポリマー除去により収縮していた。このため、直径が50nm以上の大きな細孔は皆無であり、細孔径の平均値は20nm以下であった。また、これの強度は2.2cN/dtex、伸度40%であった。
【0068】
また、この丸編みのΔMRは5.2%と十分な吸湿性を示し、快適で嵩高感のある天然繊維調の繊維製品が得られた。この丸編みを染色したところ発色性は良好で、発色性判定は5級であった。
【0069】
実施例4
実施例3で用いたナイロン6と共重合PETの混合比をナイロン6:共重合PET=50重量%:50重量%とし、実施例4と同様にして溶融紡糸を行い、U%が1.2%のポリマーアロイ原糸を得た。このポリマーアロイ原糸を実施例1と同様にして延伸仮撚を行い、CR値35%で未解撚がなく、捲縮特性の良好なポリマーアロイ仮撚糸を得た。得られたポリマーアロイ仮撚糸のポリマーブレンドの状態をTEMにより観察したところ、直径10〜20nm程度の共重合PETドメインが集合して数珠状や線状となって、超微分散化した変形海島構造をとっていた。そして、実施例1と同様に丸編みを作製し、共重合PETを溶出して、ホモナイロン6糸のみで構成された超多孔性繊維をもつ嵩高度60cm/gの繊維製品を得た。
【0070】
共重合PETを溶解除去後の超多孔性ナイロン6捲縮糸の繊維横断面を実施例1と同様にTEM観察したところ、金属染色による濃淡斑が元のポリマーアロイ捲縮糸よりも微細になっていた。ここで、濃い部分はナイロン6高密度部分、淡い部分はナイロン6低密度部分である。また、繊維縦断面を観察したところ、元のポリマーアロイ捲縮糸ではPETが筋状に伸びていたのに対し、超多孔性ナイロン捲縮糸では粒状の淡い部分が観察され、細孔が潰れていることが示唆された。このため、直径が50nm以上の大きな細孔は皆無であった。また、これの強度は2.1cN/dtex、伸度41%であった。
【0071】
また、この丸編みのΔMRは5.1%と十分な吸湿性を示し、快適で嵩高感のある天然繊維調の繊維製品が得られた。この丸編みを染色したところ発色性は良好で、発色性判定は5級であった。
【0072】
【表1】
Figure 2004270109
【0073】
比較例1
実施例1で用いたナイロン6を実施例1と同様にして溶融紡糸しU%が1.0%のナイロン6原糸を得た。その後、実施例1と同様に延伸仮撚し、CR値38%のナイロン6仮撚糸を得た。これを用い実施例1と同様に丸編みを作製し、ナイロン6糸のみで構成された嵩高度65cm/gの繊維製品を得た。
【0074】
このナイロン6捲縮糸の繊維側面を実施例1と同様にTEMにより繊維横断面を観察したところ、図7に示すように細孔は全く確認されなかった。
【0075】
また、この丸編みのΔMRは2.0%で、嵩高感はあるものの吸湿性に乏しく、本発明の目的である天然繊維調で自然観がある風合いを得られなかった。
【0076】
比較例2
実施例1で用いたナイロン6を鞘成分(80重量%)、共重合PET(20重量%)を芯成分として芯鞘複合紡糸した。得られた芯鞘複合糸のU%は1.0%であった。その後、実施例1と同様に延伸仮撚を行い、CR値35%のナイロン/共重合PET芯鞘複合捲縮糸を得た。これを用い実施例1と同様に丸編みを作製し、共重合PETを溶出して、ホモナイロン6糸のみで構成された嵩高度63cm/gの繊維製品を得た。
【0077】
共重合PETを溶解除去後のナイロン6捲縮糸の繊維横断面を実施例1と同様にTEM観察したところ、細孔は全く確認されなかったが、繊維横断面の18%を占める中空部分があった。
【0078】
また、この丸編みのΔMRは2.1%で、嵩高感はあるものの吸湿性に乏しく、本発明の目的である天然繊維調の自然観がある風合いを得られなかった。
【0079】
比較例3
実施例1で用いたナイロン6(80重量%)と共重合PET(20重量%)をチップブレンドし、そのブレンドチップを用いて実施例1と同様に溶融紡糸を行った。すると、紡糸吐出斑による糸の太さ斑が生じる問題があり、得られた糸のU%が14.2%であった。その後、実施例1と同様に延伸仮撚しようとしたが、張力変動が大きく、断糸やローラーへの糸の巻き付きが多発し、安定加工できなかった。得られたポリマーアロイ仮撚糸には未解撚が認められ、その部分がタイトスポットとなっていたり、捲縮の小さい部分が所々にあり、糸長手方向に捲縮の斑も認められた。なお、該ポリマーアロイ仮撚糸のCR値は10%であった。そして、実施例1と同様に丸編みを作製し、共重合PETを溶出して、ホモナイロン6糸のみで構成された嵩高度18cm/gの繊維製品を得た。
【0080】
共重合PETを溶解除去後のナイロン6捲縮糸の繊維横断面を実施例1と同様にTEM観察したところ、細孔径が200nmより大きな細孔の断面積の総和が、繊維断面積の2.0%を占めており、TEM観察から評価した細孔径の平均は550nmであった。
【0081】
また、この丸編みは嵩高感がないものであった。この丸編みを染色したところ、未解撚によるタイトスポットで布帛表面に穴が空いたように見え品位が悪く、発色性も悪く、発色性判定は1級であった。
【0082】
比較例4
実施例1で用いたナイロン6と共重合PETの混合比をナイロン6:共重合ポリエステル=50重量%:50重量%とし、比較例3と同様にチップブレンドして実施例1と同様に溶融紡糸を行ったが、紡糸吐出変動が大きく断糸が多発し、巻き取り不能であった。
【0083】
【表2】
Figure 2004270109
【0084】
比較例5
相対粘度2.61のホモナイロン6を77重量%、極限粘度0.65のホモPETを20重量%、相溶化剤としてブロックポリエーテルポリアミド(ポリエチレングリコール部分45重量%+ポリ−ε−カプロラクタム部分55重量%)を3重量%を単純にチップブレンドして、実施例1と同様に溶融紡糸を行い、ポリマーアロイ原糸を得たが、チップブレンドのためブレンド斑も大きく、ポリマーの吐出が安定せず、紡糸中に糸切れが頻発した。そして、実施例1と同様に延伸仮撚しようとしたが、張力変動が大きく、断糸やローラーへの糸の巻き付きが多発し、安定加工できなかった。得られたポリマーアロイ仮撚糸には単糸同士の融着による未解撚が認められ、その部分がタイトスポットとなっていたり、捲縮の小さい部分が所々にあり、糸長手方向に捲縮の斑も認められ、また残存トルクも大きかった。なお、該ポリマーアロイ仮撚糸のCR値は8%であった。そして、実施例1と同様に丸編みを作製したが、ポリマーアロイ捲縮糸の捲縮斑や未解撚、残存トルクにより製編性が悪く、糸切れした部分が多数発生していた。これを実施例1と同様に共重合PETを溶出して、ホモナイロン6糸のみで構成された嵩高度13cm/gの繊維製品を得た。
【0085】
この丸編みを染色したところ、未解撚によるタイトスポットや糸切れにより布帛表面に穴が空いたように見え品位が悪く、また発色性も悪く、発色性判定は1級であった。
【0086】
比較例6
比較例5で用いたナイロン6(70重量%)と、SSIAを4.5mol%、分子量4000のポリエチレングリコールを8.5重量%共重合した極限粘度0.60の共重合PET(30重量%)を単純にチップブレンドして280℃で溶融し、孔径0.6mmの丸孔口金から吐出し、実施例1と同様に溶融紡糸を行い、ポリマーアロイ原糸を得た。そして、実施例1と同様に延伸仮撚しようとしたが、張力変動が大きく、断糸やローラーへの糸の巻き付きが多発し、安定加工できなかった。得られたポリマーアロイ仮撚糸には未解撚が認められ、その部分がタイトスポットとなっていたり、捲縮の小さい部分が所々にあり、糸長手方向に捲縮の斑も認められた。なお、該ポリマーアロイ仮撚糸のCR値は10%であった。そして、実施例1と同様に丸編みを作製し、共重合PETを溶出して、ホモナイロン6糸のみで構成された嵩高度17cm/gの繊維製品を得た。
【0087】
この丸編みを染色したところ、未解撚によるタイトスポットにより布帛表面に穴が空いたように見え品位が悪く、また発色性も悪く、発色性判定は1級であった。
【0088】
比較例7
比較例5で用いたナイロン6(50重量%)と、SSIAを2.5mol%、ビスフェノールAエチレンオキサイド付加物を3.5mol%共重合した極限粘度0.60の共重合PET(50重量%)を単純にチップブレンドした後、290℃で溶融し、孔径0.6mmの丸孔口金から吐出し、実施例1と同様に溶融紡糸を行った。そして、実施例1と同様に延伸仮撚しようとしたが、張力変動が大きく、断糸やローラーへの糸の巻き付きが多発し、安定加工できなかった。得られたポリマーアロイ仮撚糸には未解撚が認められ、その部分がタイトスポットとなっていたり、捲縮の小さい部分が所々にあり、糸長手方向に捲縮の斑も認められた。なお、該ポリマーアロイ仮撚糸のCR値は9%であった。そして、実施例1と同様に丸編みを作製し、共重合PETを溶出して、ホモナイロン6糸のみで構成された嵩高度15cm/gの繊維製品を得た。
【0089】
この丸編みを染色したところ、未解撚によるタイトスポットにより布帛表面に穴が空いたように見え品位が悪く、また発色性も悪く、発色性判定は1級であった。
【0090】
【表3】
Figure 2004270109
【0091】
実施例5
実施例1で用いた共重合PETをイソフタル酸を8mol%、ビスフェノールAを4mol%共重合した溶融粘度1390poise(280℃、剪断速度1216sec−1)、融点225℃の共重合PETにし、実施例3と同様にしてポリマーアロイを得て、溶融紡糸を行い、U%が2.1%のポリマーアロイ原糸を得た。このポリマーアロイ原糸を実施例1と同様にして延伸仮撚を行い、CR値34%で未解撚がなく、捲縮特性の良好なポリマーアロイ仮撚糸を得た。得られたポリマーアロイ仮撚糸のポリマーブレンドの状態をTEMにより観察した結果島の平均直径が195nmと大きく、直径が200nm以上の島の島全体に対する面積比は65%であった。また、繊維縦断面TEM観察から島は筋状構造をしていることがわかった。その後、実施例1と同様に丸編みを作製し、共重合PETを溶出して、ホモナイロン6糸のみで構成された超多孔性繊維をもつ嵩高度62cm/gの繊維製品を得た。
【0092】
共重合PETを溶解除去後の超多孔性ナイロン6捲縮糸の繊維横断面を実施例1と同様にTEM観察したところ、この時は細孔内に金属染料がトラップされ黒く見えた。また、島ポリマーが抜けた跡が潰れ、直径100nm程度の細孔となっていたが、直径が200nm以上かなりの大きな細孔も散見された。細孔径が200nmより大きい細孔の断面積の総和が、繊維断面積の0.9%であった。なお、細孔は独立孔であった。また、これの強度は2.3cN/dtex、伸度45%であった。
【0093】
また、この丸編みのΔMRは4.5%と十分な吸湿性を示し、快適で嵩高感のある天然繊維調の繊維製品が得られた。この丸編みを染色したところ発色性は良好で、発色性判定は3級であった。
【0094】
実施例6
実施例5で用いたナイロン6と共重合PETの混合比をナイロン6:共重合PET=50重量%:50重量%とし、実施例1と同様にしてポリマーアロイを得て、溶融紡糸を行い、U%が2.5%のポリマーアロイ原糸を得た。このポリマーアロイ原糸を実施例1と同様にして延伸仮撚を行い、CR値32%で未解撚がなく、捲縮特性の良好なポリマーアロイ仮撚糸を得た。得られたポリマーアロイ仮撚糸のポリマーブレンドの状態をTEMにより観察したところ、島の平均直径が143nmと大きく、直径が200nm以上の島の島全体に対する面積比は5%であった。また、繊維縦断面TEM観察から島は筋状構造をしていることがわかった。その後、実施例1と同様に丸編みを作製し、共重合PETを溶出して、ホモナイロン6糸のみで構成された超多孔性繊維をもつ嵩高度58cm/gの繊維製品を得た。
【0095】
共重合PETを溶解除去後の超多孔性ナイロン6捲縮糸の繊維横断面を実施例1と同様にTEM観察したところ、図8に示すように細孔内に金属染料がトラップされ黒く見えて、独立孔であることがわかった。また、ポリマーが抜けた跡が潰れ幅10〜30nm、長さ100nm程度の細孔となっており、直径が50〜100nmの大きな細孔も散見された。しかし、直径200nm以上の粗大細孔の面積比は0.1%であった。また、これの強度は2.1cN/dtex、伸度45%であった。
【0096】
また、この丸編みのΔMRは5.0%と十分な吸湿性を示し、快適で嵩高感のある天然繊維調の繊維製品が得られた。この丸編みを染色したところ発色性は良好で、発色性判定は4級であった。
【0097】
【表4】
Figure 2004270109
【0098】
実施例7
実施例3で用いたナイロン6を溶融粘度1000poise(280℃、121.6sec−1)、融点250℃のホモナイロン66、溶融温度を285℃、紡糸温度を290℃、口金面温度を275℃とし、実施例3と同様にして溶融紡糸を行い、U%が1.5%のポリマーアロイ原糸を得た。このポリマーアロイ原糸をヒーター温度180℃として実施例1と同様にして延伸仮撚を行い、CR値35%で未解撚がなく、捲縮特性の良好なポリマーアロイ仮撚糸を得た。これを用い実施例1と同様に丸編みを作製し、共重合PETを溶出して、ホモナイロン66糸のみで構成された超多孔性繊維をもつ嵩高度63cm/gの繊維製品を得た。
【0099】
共重合PETを溶解除去後の超多孔性ナイロン66捲縮糸の繊維横断面を実施例1と同様にTEM観察したところ、金属染色による濃淡斑が元のポリマーアロイ捲縮糸よりも微細になっていた。ここで、濃い部分はナイロン66高密度部分、淡い部分はナイロン66低密度部分である。また、繊維縦断面を観察したところ、元のポリマーアロイ捲縮糸ではPETが筋状に伸びていたのに対し、超多孔性ナイロン捲縮糸では粒状の淡い部分が観察され、独立した微細孔が確認された。これの強度は2.3cN/dtex、伸度32%であった。
【0100】
また、この丸編みのΔMRは4.8%と十分な吸湿性を示し、快適で嵩高感のある天然繊維調の繊維製品が得られた。この丸編みを染色したところ発色性は良好で、発色性判定は5級であった。
【0101】
【表5】
Figure 2004270109
【0102】
実施例8
溶融粘度900poise(280℃、剪断速度1216sec−1)、融点255℃のPETと、熱水可溶性ポリマーである第一工業製薬株式会社製“パオゲンPP−15”(以下PAO)(溶融粘度1840poise、262℃、1216sec−1、融点55℃)をそれぞれ280℃、230℃で溶融した後、実施例3と同様にして溶融紡糸を行い、U%が1.4%のポリマーアロイ原糸を得た。このポリマーアロイ原糸をヒーター温度を25℃(室温)、D/Y比が1.851で実施例1と同様にして延伸仮撚を行い、CR値20%で未解撚がなく、捲縮特性の良好なポリマーアロイ仮撚糸を得た。得られたポリマーアロイ仮撚糸のポリマーブレンドの状態をTEMにより観察したところ、図10に示すようにマトリックスのPET(濃い部分)とドメインのPAO(淡い部分)が20〜100nm程度のオーダーで微分散していた。この後、実施例1と同様に丸編みを作製し、130℃の熱水(加圧下)で2時間処理しPAOを溶出して、PETのみで構成された超多孔性繊維をもつ嵩高度23cm/gの繊維製品を得た。
【0103】
PAOを溶解除去後の超多孔性PET捲縮糸の繊維横断面を実施例1と同様にTEM観察したところ、図9に示すように独立した細孔の存在が確認できた。細孔径が200nmより大きい細孔はなく、50nmより大きい細孔の断面積の総和が、繊維断面積の0.01%以下で、TEM観察から評価した細孔径の平均は20nmであった。これの強度は2.2cN/dtex、伸度34%であった。
【0104】
この丸編みを染色したところ発色性は良好で、発色性判定は4級であった。
【0105】
実施例9
実施例8で用いたPETと、SSIAを12mol%、イソフタル酸を26mol%共重合した溶融粘度3040poise(250℃、剪断速度1216sec−1)の熱水可溶性共重合PETをそれぞれ280℃、240℃で溶解した後、実施例8と同様にして溶融紡糸を行い、U%が1.3%のポリマーアロイ原糸を得た。このポリマーアロイ原糸をヒーター温度170で実施例8と同様にして延伸仮撚を行い、CR値35%で未解撚がなく、捲縮特性の良好なポリマーアロイ仮撚糸を得た。得られたポリマーアロイ仮撚糸のポリマーブレンドの状態をTEMにより観察したところ、マトリックスのPETとドメインの熱水可溶性PETが数十nmのオーダーで微分散していた。これを用い実施例1と同様に丸編みを作製し、実施例8と同様にして熱水可溶性共重合PETを溶出して、PETのみで構成された超多孔性繊維をもつ嵩高度63cm/gの繊維製品を得た。
【0106】
熱水可溶性共重合PETを溶解除去後の超多孔性PET捲縮糸の繊維横断面を実施例1と同様にTEM観察したところ、30nm程度の細孔の存在が確認できた。細孔径が200nmより大きい細孔はなく、50nmより大きい細孔の断面積の総和が、繊維断面積の0.01%以下で、TEM観察から評価した細孔径の平均は20nmであった。これの強度は2.2cN/dtex、伸度31%であった。
【0107】
この丸編みを染色したところ発色性は良好で、発色性判定は4級であった。
【0108】
実施例10
実施例8のPETをポリエチレングリコールを8重量%、イソフタル酸を7mol%共重合した溶融粘度1800poise(262℃、剪断速度1216sec−1)、融点235℃の共重合PETにし、実施例8と同様にして溶融紡糸を行い、U%が1.5%のポリマーアロイ原糸を得た。このポリマーアロイ原糸を実施例8と同様にして延伸仮撚を行い、CR値23%で未解撚がなく、捲縮特性の良好なポリマーアロイ仮撚糸を得た。これを用い実施例1と同様に丸編みを作製し、実施例8と同様にしてPAOを溶出して、PETのみで構成された超多孔性繊維をもつ嵩高度26cm/gの繊維製品を得た。
【0109】
PAOを溶解除去後の超多孔性共重合PET捲縮糸の繊維横断面を実施例1と同様にTEM観察したところ、独立した細孔の存在が確認できた。細孔径が200nmより大きい細孔はなく、50nmより大きい細孔の断面積の総和が、繊維断面積の0.01%以下で、TEM観察から評価した細孔径の平均は20nmであった。これの強度は2.1cN/dtex、伸度30%であった。
【0110】
この丸編みを染色したところ発色性は良好で、発色性判定は4級であった。
【0111】
実施例11
実施例8のPETを溶融粘度1510poise(240℃、剪断速度1216sec−1)、融点220℃のポリブチレンテレフタレート(以下PBT)にし、実施例8と同様にして溶融紡糸を行い、U%が1.4%のポリマーアロイ原糸を得た。このポリマーアロイ原糸を実施例8と同様にして延伸仮撚を行い、CR値29%で未解撚がなく、捲縮特性の良好なポリマーアロイ仮撚糸を得た。これを用い実施例1と同様に丸編みを作製し、実施例8と同様にしてPAOを溶出して、PETのみで構成された超多孔性繊維をもつ嵩高度30cm/gの繊維製品を得た。
【0112】
PAOを溶解除去後の超多孔性共重合PBT捲縮糸の繊維横断面を実施例1と同様にTEM観察したところ、30nm程度の細孔の存在が確認できた。細孔径が200nmより大きい細孔はなく、50nmより大きい細孔の断面積の総和が、繊維断面積の0.01%で、TEM観察から評価した細孔径の平均は20nmであった。これの強度は2.0cN/dtex、伸度32%であった。
【0113】
この丸編みを染色したところ発色性は良好で、発色性判定は4級であった。
【0114】
実施例12
光学純度99.5%のL乳酸から製造したラクチドを、ビス(2−エチルヘキサノエート)スズ触媒(ラクチド対触媒モル比=10000:1)を存在させて窒素雰囲気下180℃で140分間重合を行いポリ乳酸(数平均分子量=80000)を得た。得られたポリ乳酸(79重量%)と、エチレンビスステアリン酸アミド(以下EBA)(1重量%)と、実施例8で用いたPAO(20重量%)を、L/Dが40の2軸押し出し混練機で220℃、吐出量10kg/時間で混練し、ポリマーアロイを得た。これを溶融温度220℃、紡糸温度220℃、口金面温度210℃、巻き取り速度5000m/分で実施例1と同様に溶融紡糸し、U%が1.2%のポリマーアロイ原糸を得てた。このポリマーアロイ原子を延伸倍率1.4倍、ヒーター温度130℃、D/Y比1.534で実施例1と同様にして延伸仮撚を行い、CR値20%で未解撚がなく、捲縮特性の良好なポリマーアロイ仮撚糸を得た。これを用い実施例1と同様に丸編みを作製し、90℃の熱水で6時間処理しPAOを溶出して、EBAを含有したポリ乳酸で構成された超多孔性繊維をもつ嵩高度26cm/gの繊維製品を得た。
【0115】
PAOを溶解除去後の超多孔性共重合ポリ乳酸捲縮糸の繊維横断面を実施例1と同様にTEM観察したところ、30nm程度の細孔の存在が確認できた。細孔径が200nmより大きい細孔はなく、50nmより大きい細孔の断面積の総和が、繊維断面積の0.01%以下で、TEM観察から評価した細孔径の平均は20nm以下であった。これの強度は2.0cN/dtex、伸度30%であった。
【0116】
この丸編みを染色したところ発色性は良好で、発色性判定は4級であった。
【0117】
【表6】
Figure 2004270109
【0118】
【発明の効果】
本発明は、吸湿性、吸水性、嵩高性に優れ、天然繊維のような快適で自然感のある風合いの繊維製品を提供するものである。
【図面の簡単な説明】
【図1】実施例1の超多孔性ナイロン捲縮糸の繊維横断面の状態を示すTEM写真である。
【図2】実施例1のポリマーアロイ捲縮糸のポリマーブレンド状態を示す繊維横断面のTEM写真である。
【図3】実施例3の超多孔性ナイロン捲縮糸の繊維横断面の状態を示すTEM写真である。
【図4】実施例3のポリマーアロイ捲縮糸のポリマーブレンド状態を示す繊維横断面のTEM写真である。
【図5】実施例3の超多孔性ナイロン捲縮糸の繊維縦断面の状態を示すTEM写真である。
【図6】実施例3のポリマーアロイ捲縮糸のポリマーブレンド状態を示す繊維縦断面のTEM写真である。
【図7】比較例1のナイロン糸の繊維横断面のTEM写真である。
【図8】実施例6の超多孔性ナイロン捲縮糸の繊維横断面の状態を示すTEM写真である。
【図9】実施例8の超多孔性PET捲縮糸の繊維横断面の状態を示すTEM写真である。
【図10】実施例8のポリマーアロイ捲縮糸のポリマーブレンド状態を示す繊維横断面のTEM写真である。

Claims (3)

  1. 繊維横断面において、直径200nmを超える細孔の断面積の総和が繊維断面積の1.5%以下である、直径200nm以下の細孔を有する超多孔性合成繊維を少なくとも一部に用いる嵩高度が20cm/g以上の繊維製品。
  2. 直径50nmを超える細孔の断面積の総和が繊維断面積の1.5%以下である請求項1記載の繊維製品。
  3. 超多孔性合成繊維が捲縮糸であることを特徴とする請求項1または2に記載の繊維製品。
JP2003066147A 2003-03-12 2003-03-12 超多孔性合成繊維を用いた繊維製品 Pending JP2004270109A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066147A JP2004270109A (ja) 2003-03-12 2003-03-12 超多孔性合成繊維を用いた繊維製品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066147A JP2004270109A (ja) 2003-03-12 2003-03-12 超多孔性合成繊維を用いた繊維製品

Publications (1)

Publication Number Publication Date
JP2004270109A true JP2004270109A (ja) 2004-09-30

Family

ID=33126946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066147A Pending JP2004270109A (ja) 2003-03-12 2003-03-12 超多孔性合成繊維を用いた繊維製品

Country Status (1)

Country Link
JP (1) JP2004270109A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312795A (ja) * 2005-05-09 2006-11-16 Toray Ind Inc ポリ乳酸繊維編織物とその製造方法
EP2554721A1 (en) * 2010-03-31 2013-02-06 Toray Industries, Inc. Hygroscopic fibre, and manufacturing method for same
JP2013163882A (ja) * 2012-02-13 2013-08-22 Yotsugi Co Ltd 手袋

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312795A (ja) * 2005-05-09 2006-11-16 Toray Ind Inc ポリ乳酸繊維編織物とその製造方法
JP4708851B2 (ja) * 2005-05-09 2011-06-22 東レ株式会社 ポリ乳酸繊維編織物とその製造方法
EP2554721A1 (en) * 2010-03-31 2013-02-06 Toray Industries, Inc. Hygroscopic fibre, and manufacturing method for same
EP2554721A4 (en) * 2010-03-31 2013-12-25 Toray Industries HYGROSCOPIC FIBER AND METHOD FOR THE PRODUCTION THEREOF
JP2013163882A (ja) * 2012-02-13 2013-08-22 Yotsugi Co Ltd 手袋

Similar Documents

Publication Publication Date Title
KR101029515B1 (ko) 다공섬유
KR101061028B1 (ko) 고분자 혼성체 섬유, 섬유구조체, 고분자 혼성체 펠릿 및 그들의 제조방법
JP2004162244A (ja) ナノファイバー
JP4100327B2 (ja) 複合繊維
CN100363541C (zh) 纳米纤维集合体、聚合物合金纤维、混合纤维、纤维结构体以及它们的制造方法
JP4229115B2 (ja) ナノファイバー集合体
JP5040270B2 (ja) 複合加工糸
JP4315009B2 (ja) 混繊糸およびそれからなる繊維製品
JP4238929B2 (ja) ポリマーアロイ繊維およびその製造方法、並びにそれを用いた繊維製品
JP2005133250A (ja) 芯鞘複合繊維
JP3770254B2 (ja) ナノポーラスファイバー
JP2004270109A (ja) 超多孔性合成繊維を用いた繊維製品
JP4325616B2 (ja) ナノポーラスファイバー
JP4292893B2 (ja) ポリマーアロイ捲縮糸
JP2004270110A (ja) ポリマーアロイ繊維
JP4321283B2 (ja) ナノポーラスファイバーを用いた機能性繊維構造物
JP4270202B2 (ja) ナノファイバー集合体
JP2005015969A (ja) ナノポーラスファイバー複合織編物
JP4100180B2 (ja) ポリマーアロイ繊維
JP4269804B2 (ja) 特殊繊維
JP2005015705A (ja) ペレットおよびその製造方法
JP5260192B2 (ja) 繊維構造体および繊維製品
JP2005015961A (ja) ナノポーラスポリアミド繊維を用いてなる衣料品

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051020

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A131 Notification of reasons for refusal

Effective date: 20080826

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A131 Notification of reasons for refusal

Effective date: 20091027

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

A02 Decision of refusal

Effective date: 20100119

Free format text: JAPANESE INTERMEDIATE CODE: A02