JP2004263542A - Device for injecting grout into cable sheath of pc structure and grout injection method - Google Patents
Device for injecting grout into cable sheath of pc structure and grout injection method Download PDFInfo
- Publication number
- JP2004263542A JP2004263542A JP2003369703A JP2003369703A JP2004263542A JP 2004263542 A JP2004263542 A JP 2004263542A JP 2003369703 A JP2003369703 A JP 2003369703A JP 2003369703 A JP2003369703 A JP 2003369703A JP 2004263542 A JP2004263542 A JP 2004263542A
- Authority
- JP
- Japan
- Prior art keywords
- grout
- cable sheath
- injection
- pressure
- pressure sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011440 grout Substances 0.000 title claims abstract description 252
- 238000002347 injection Methods 0.000 title claims abstract description 176
- 239000007924 injection Substances 0.000 title claims abstract description 176
- 238000005259 measurement Methods 0.000 claims abstract description 50
- 239000004568 cement Substances 0.000 claims abstract description 40
- 238000005086 pumping Methods 0.000 claims description 19
- 238000010276 construction Methods 0.000 claims description 8
- 230000002123 temporal effect Effects 0.000 claims description 7
- 238000007639 printing Methods 0.000 claims description 4
- 238000000275 quality assurance Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 28
- 238000000034 method Methods 0.000 abstract description 5
- 239000000243 solution Substances 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 16
- 229910000831 Steel Inorganic materials 0.000 description 13
- 239000010959 steel Substances 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 6
- 239000004567 concrete Substances 0.000 description 6
- 230000029058 respiratory gaseous exchange Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000007689 inspection Methods 0.000 description 5
- 230000001186 cumulative Effects 0.000 description 4
- 239000011513 prestressed concrete Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 210000001736 Capillaries Anatomy 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 206010018987 Haemorrhage Diseases 0.000 description 1
- 210000002435 Tendons Anatomy 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000740 bleeding Effects 0.000 description 1
- 231100000319 bleeding Toxicity 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001066 destructive Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000003638 reducing agent Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Abstract
Description
本発明は、ポストテンション方式PC構造物のケーブルシース内にグラウトを注入する際、前記ケーブルシースのグラウト注入側に圧送ポンプを、排出側に真空ポンプを接続し、前記真空ポンプにより前記ケーブルシース内の気圧を減圧した後、該真空ポンプを稼働させたまま前記圧送ポンプを運転して前記ケーブルシース内にグラウトを充填する真空引き工程を含むグラウトの注入装置及びグラウト注入工法に関し、圧送ポンプとケーブルシースのグラウト注入口との間に配設された圧力センサ、流量計、及び積算流量計によってグラウトの注入圧力、注入グラウトの単位時間当たりの注入量とその時間経過に伴う積算注入量を、また真空ポンプと可視ろ過器との間に配設された負圧センサによってケーブルシース内の真空度を測定し、前記圧力センサ、負圧センサ、流量計及び積算流量計から時々刻々出力される測定データを収集・記録・保存するとともにディスプレイに実時間でグラフ表示し、また注入されるグラウトの水セメント比、使用されるPCケーブルの空隙率({ケーブルシースの内側断面積−PC鋼材の断面積}/ケーブルシースの内側断面積)と長さ、圧送ポンプのグラウト吐出量、真空ポンプの吸引負圧などグラウト注入作業にかかわる諸条件に基づいて算出されるグラウトの積算注入量の時間的推移のグラフ等をディスプレイに表示し、この作業条件に基づくグラフと前記積算流量計の測定データのグラフ等とを前記ディスプレイの画面上で比較することにより、グラウト注入作業の進捗状況や異常の有無を実時間で監視、把握可能とし、さらにまた、注入作業終了後、記録・保存された測定データをプリンタを用いて所定の用紙に印字又はグラフ表示できるPC構造物のケーブルシース内へのグラウト注入装置及びグラウト注入工法、並びに水セメント比の小さい高密度のグラウトを確実・容易に注入・充填できるグラウト注入工法に関する。 The present invention provides a method for injecting grout into a cable sheath of a post-tension type PC structure, wherein a pressure pump is connected to a grout injection side of the cable sheath, and a vacuum pump is connected to a discharge side of the cable sheath. After reducing the atmospheric pressure, the grout injection device and grout injection method including a vacuuming step of operating the pressure pump while filling the grout into the cable sheath while operating the vacuum pump. A pressure sensor, a flow meter, and an integrated flow meter disposed between the grout injection port of the sheath and the grout injection pressure, the injection pressure of the grout, the injection amount per unit time of the injection grout, and the integrated injection amount with the passage of time, The degree of vacuum in the cable sheath is measured by a negative pressure sensor placed between the vacuum pump and the visible filter. Collects, records, and saves the measurement data output from the pressure sensor, negative pressure sensor, flow meter, and integrating flow meter every moment, displays the data on a display in real time as a graph, and uses the water-cement ratio of the grout injected. Grouting work such as the porosity of the PC cable ({internal cross-sectional area of the cable sheath-cross-sectional area of the PC steel} / internal cross-sectional area of the cable sheath), length, grout discharge amount of the pressure pump, suction negative pressure of the vacuum pump, etc. A graph or the like of a time transition of the integrated injection amount of grout calculated based on various conditions related to the display conditions and the like, and a graph based on the working conditions and a graph and the like of the measurement data of the integrated flow meter are displayed on the display. By comparing on the screen, the progress of grouting work and the presence or absence of abnormalities can be monitored and grasped in real time. After the work is completed, the grout injection device and grout injection method into the cable sheath of the PC structure capable of printing or graphically displaying the recorded and stored measurement data on predetermined paper using a printer, and a high density with a low water-cement ratio And a grouting method capable of reliably and easily injecting and filling grout.
近年、橋梁、高架橋、建築物等のPC構造物、特に内ケーブル方式のPC構造物において、ケーブルシース内へのグラウトの充填不良に起因する緊張材の腐食・破断事故が散見されるようになった。
その原因として次のようなことが考えられる。
ポストテンション方式PC構造物において、PC鋼材を緊張・定着後にケーブルシースの内壁とPC鋼材の間に注入・充填されるグラウトは、セメントと水と混和剤との混合物であり、注入・充填が効果的に行われるためには、流動性がよく、かつ注入から硬化するまでの間にそれぞれの材料が分離しないという性質を持つグラウトが求められる。しかし、セメントと水との間に存在する比重差によって、ケーブルシース内でグラウトが硬化する間にセメントが下側に沈降分離して上側に水分が残り(ブリージング水)、その水が蒸発して空隙部(空気溜まり)を生じることがあり、この空隙部に長年月の間に外部水が侵入して、PC鋼材を腐食させ、その結果PC鋼材が破断する危険が生じる。
In recent years, in PC structures such as bridges, viaducts, buildings, etc., particularly in PC structures of the inner cable system, corrosion and breakage accidents of tendon due to poor filling of grout into the cable sheath have become scattered. Was.
The following can be considered as the cause.
In the post-tension type PC structure, the grout injected and filled between the inner wall of the cable sheath and the PC steel after tensioning and fixing the PC steel is a mixture of cement, water and an admixture, and the injection and filling is effective. In order to perform the process, grout is required, which has good fluidity and does not separate each material from injection to curing. However, due to the specific gravity difference existing between the cement and the water, while the grout hardens in the cable sheath, the cement sinks and separates downward, leaving moisture on the upper side (breathing water), and the water evaporates. In some cases, voids (air pockets) may form, and external water may penetrate into the voids over many months, corroding the PC steel and causing a risk of breakage of the PC steel.
そこで、流動性が良好でブリージングの少ないグラウト材が開発されたが、実際の施工では、依然としてセメントが水和反応する以上の水量を含む水セメント比(W/C=0.4〜0.45)が多用されている。これは土木学会の「プレストレストコンクリート工法設計施工共通指針」に基づく試験結果を根拠としているが、グラウトの注入が圧送ポンプによる圧送で行われることから、グラウト材料の混練時と圧送時に空気が巻き込まれたり、圧力によってブリージングが生じるという問題は残る。
またケーブル材により線のPC鋼材を用いる例がほとんどであるため、より線を構成する複数の素線間にふるい作用又は毛細管現象が生じて、セメントと水の分離作用を引き起こすことも認められている。
Therefore, a grout material having good fluidity and less bleeding was developed. However, in actual construction, a water-cement ratio (W / C = 0.4 to 0.45) including an amount of water that causes the cement to still undergo a hydration reaction still remains. ) Is frequently used. This is based on test results based on the Japan Society of Civil Engineers' Guidelines for Design and Construction of Prestressed Concrete Method.However, since grout is injected by pumping, air is trapped during mixing and pumping of grout material. And the problem that breathing occurs due to pressure remains.
In addition, since most cases use a PC steel material for the wire as the cable material, it has been recognized that a sieving action or a capillary phenomenon occurs between a plurality of strands constituting the stranded wire, thereby causing a separation action of cement and water. I have.
また、特開2002−309777号公報では、グラウト排出側に真空ポンプを接続してケーブルシース内の気圧を減じ、グラウト注入側に接続したグラウト圧送ポンプの注入・充填効率を高めようという発明がなされている。この発明では、ケーブルシース内グラウトの充填が不完全になりやすいケーブルの曲がり部分や高位置部分に、先端の閉じた透明な素材で構成された真空パイプをその先端がコンクリート構造物の外部に突出するよう装着し、真空ポンプの運転により低下した該真空パイプ内の気圧に対応して上昇してくるグラウトを目視することでその部分でのグラウトの充填が確認できる構造をとっている。
しかし、この発明では、水セメント比(W/C)が本発明のように非常に低く設定されていないために、グラウト材料が充填中に分離する余地をかなり残している。また、そのためにケーブルシース内の負圧が大きくなり過ぎてグラウト先端部が乱され分離しやすくなるのを防ぐことから、真空ポンプによるケーブルシース内の負圧がある一定値を超えないように常時制御する必要がある。したがって、ケーブルシース内にグラウトの未充填箇所のない、完全に充填されたPC構造物を確実・容易に提供することは困難な実状にあった。
Further, Japanese Patent Application Laid-Open No. 2002-309777 discloses an invention in which a vacuum pump is connected to the grout discharge side to reduce the air pressure in the cable sheath, and the injection / filling efficiency of the grout pressure pump connected to the grout injection side is increased. ing. According to the present invention, a vacuum pipe made of a transparent material with a closed end is protruded outside a concrete structure at a bent portion or a high position portion of the cable where the grout in the cable sheath is likely to be incompletely filled. The grout is mounted so that the grout that rises in response to the atmospheric pressure in the vacuum pipe that has been reduced by the operation of the vacuum pump can be checked by visual observation.
However, in this invention, the water-cement ratio (W / C) is not set very low as in the present invention, leaving considerable room for the grout material to separate during filling. Also, to prevent the negative pressure in the cable sheath from becoming too large and disturbing the grout tip due to excessive negative pressure in the cable sheath, the vacuum pump always keeps the negative pressure in the cable sheath from exceeding a certain value. You need to control. Therefore, it has been difficult to surely and easily provide a completely filled PC structure having no unfilled grout in the cable sheath.
さらに、PC構造物のケーブルは、その全体がコンクリート内部に埋め込まれているため、ケーブルシース内のグラウトの充填状況や、その後のケーブルの状況を完全に点検・確認するのは困難である。
現状ではX線検査・超音波検査・衝撃反射波検査等の非破壊検査方法によりグラウト充填状況の確認作業が行われてはいるが、完全に内部の状況を把握できるまでには至っておらず、PC鋼材の腐食・破断の恐れが皆無とはなっていない。また、これらの検査はいずれも充填完了後に行われるものであって、グラウト注入時における注入状況や異常発生の有無の監視、把握は、前記圧送ポンプや真空ポンプの運転状況、圧力計の計測値の監視などで行われており、グラウト注入時の作業管理や作業データの保存、解析が十分なされている状況にはない。
At present, grout filling status is checked by non-destructive inspection methods such as X-ray inspection, ultrasonic inspection, shock reflection inspection, etc., but it has not yet been possible to completely grasp the internal state, The risk of corrosion and breakage of PC steel has not been ruled out. In addition, all of these inspections are performed after the completion of filling, and the monitoring and grasping of the injection state and the presence or absence of an abnormality at the time of grout injection are performed based on the operation states of the pressure feed pump and the vacuum pump, and the measured values of the pressure gauge. The work management at the time of grout injection and the storage and analysis of the work data are not sufficient.
本発明の課題は、上記背景技術に鑑み、ポストテンション方式PC構造物のケーブルシースのグラウト注入側に圧送ポンプを、グラウト排出側に真空ポンプを接続し、前記真空ポンプによりケーブルシース内の気圧を十分減圧させた後に圧送ポンプを運転してグラウトを注入する真空引き工程を含む注入方法において、グラウトの注入圧力、、グラウトの単位時間当たりの注入量及びその時間経過に伴う積算注入量、並びにケーブルシース内の真空度を時々刻々収集・記録・保存するとともに注入作業の進捗状況や異常発生の有無を実時間で監視、把握が可能で、また、注入作業終了後記録・保存した測定データを所定用紙に印字またはグラフ表示できるPC構造物のケーブルシース内へのグラウト注入装置及びグラウト注入工法を提供するとともに、より水セメント比の小さい高密度のグラウトを確実・容易に注入・充填できるグラウト注入工法を提供することにある。 In view of the above background art, an object of the present invention is to connect a pressure feed pump to a grout injection side and a vacuum pump to a grout discharge side of a cable sheath of a post-tension type PC structure, and use the vacuum pump to reduce the pressure in the cable sheath. In an injection method including a vacuuming step of injecting grout by operating a pump after sufficiently reducing the pressure, grout injection pressure, grout injection amount per unit time and cumulative injection amount over time, and cable The degree of vacuum in the sheath is collected, recorded, and saved from time to time, and the progress of the injection operation and the presence or absence of abnormalities can be monitored and grasped in real time. Provided is a grout injection device and a grout injection method into a cable sheath of a PC structure that can be printed or graphically displayed on paper. Both to provide a grouting method which can reliably, readily injected and filled with the smaller density of grout with water cement ratio.
上記本課題の解決は、下記の手段による。
(1)ポストテンション方式PC構造物のケーブルシース内にグラウトを注入する際、ケーブルシースのグラウト注入側に圧送ポンプを、排出側に真空ポンプを接続し、前記真空ポンプによりケーブルシース内の気圧を十分減圧させた後に該真空ポンプを稼働させたまま前記圧送ポンプを運転して前記ケーブルシース内にグラウトを充填する真空引き工程を含むPC構造物のケーブルシース内へのグラウト注入装置において、
前記圧送ポンプと前記ケーブルシースのグラウト注入口との間に配設されたグラウト注入圧力測定用の圧力センサと、注入グラウトの単位時間当たりの流量を測定する流量計及びその時間経過に伴う積算注入量を測定する積算流量計と、
前記真空ポンプとケーブルシースのグラウト排出口との間に配設されケーブルシース内の真空度を測定する負圧センサと、
そして前記圧力センサ、負圧センサ、流量計及び積算流量計から時々刻々出力される測定データを収集・記録・保存する情報管理装置とを備えてなることを特徴とするPC構造物のケーブルシース内へのグラウト注入装置。
The above-mentioned problem is solved by the following means.
(1) When grout is injected into the cable sheath of the post-tension type PC structure, a pressure feed pump is connected to the grout injection side of the cable sheath, and a vacuum pump is connected to the discharge side of the cable sheath. A grout injection device into the cable sheath of the PC structure including a vacuuming step of operating the pressure pump while operating the vacuum pump after sufficiently reducing the pressure to fill the cable sheath with grout,
A pressure sensor for measuring grout injection pressure disposed between the pumping pump and the grout injection port of the cable sheath, a flow meter for measuring a flow rate per unit time of the injection grout, and an integrated injection over time An integrating flow meter for measuring the amount,
A negative pressure sensor disposed between the vacuum pump and the grout outlet of the cable sheath to measure the degree of vacuum in the cable sheath;
And an information management device for collecting, recording, and storing measurement data output from the pressure sensor, the negative pressure sensor, the flow meter, and the integrating flow meter every moment. Grouting machine to the grout.
(2)ポストテンション方式PC構造物のケーブルシース内にグラウトを注入する際、ケーブルシースのグラウト注入側に圧送ポンプを、排出側に真空ポンプを接続し、前記真空ポンプによりケーブルシース内の気圧を十分減圧させた後に該真空ポンプを稼働させたまま前記圧送ポンプを運転して前記ケーブルシース内にグラウトを充填する真空引き工程を含むPC構造物のケーブルシース内へのグラウト注入装置において、
前記圧送ポンプと前記ケーブルシースのグラウト注入口との間に配設されたグラウト注入圧力測定用の圧力センサと、注入グラウトの単位時間当たりの流量を測定する流量計及びその時間経過に伴う積算注入量を測定する積算流量計と、
前記真空ポンプとケーブルシースのグラウト排出口との間に配設されケーブルシース内の真空度を測定する負圧センサと、
そして前記圧力センサ、負圧センサ、流量計及び積算流量計から時々刻々出力される測定データを収集・記録・保存する情報管理装置と、
前記情報管理装置に収集・記録される前記測定データの時間的推移を実時間でグラフ表示する手段を備えたディスプレイとを備えてなることを特徴とするPC構造物のケーブルシース内へのグラウト注入装置。
(2) When grout is injected into the cable sheath of the post-tension type PC structure, a pressure pump is connected to the grout injection side of the cable sheath, and a vacuum pump is connected to the discharge side, and the pressure inside the cable sheath is reduced by the vacuum pump. A grout injection device into the cable sheath of the PC structure including a vacuuming step of operating the pressure pump while operating the vacuum pump after sufficiently reducing the pressure to fill the cable sheath with grout,
A pressure sensor for measuring grout injection pressure disposed between the pumping pump and the grout injection port of the cable sheath, a flow meter for measuring a flow rate per unit time of the injection grout, and an integrated injection over time An integrating flow meter for measuring the amount,
A negative pressure sensor disposed between the vacuum pump and the grout outlet of the cable sheath to measure the degree of vacuum in the cable sheath;
And an information management device that collects, records, and saves measurement data output from time to time from the pressure sensor, the negative pressure sensor, the flow meter, and the integrating flow meter;
Grouting into the cable sheath of the PC structure, characterized by comprising: a display having means for graphically displaying, in real time, a temporal transition of the measurement data collected and recorded in the information management device. apparatus.
(3)前記情報管理装置に、注入されるグラウトの水セメント比、使用されるPCケーブルの空隙率と長さ、圧送ポンプのグラウト吐出量、真空ポンプの吸引負圧などグラウト注入作業にかかわる条件を予め入力する手段と、該作業条件に基づいて算出されるグラウト積算注入量の時間的推移のグラフ、及び注入圧力と真空度の設定値を前記ディスプレイに表示する手段とを備え、これら注入作業の設定条件に基づくグラフと前記圧力センサ、負圧センサ、及び積算流量計の測定データの時間的推移のグラフとを前記ディスプレイの画面上で比較することによって、グラウトの注入状況や異常の有無を実時間で監視、把握可能にしてなることを特徴とする前項(2)に記載のPC構造物のケーブルシース内へのグラウト注入装置。 (3) Conditions related to grout injection work, such as the water-cement ratio of the grout injected into the information management device, the porosity and length of the PC cable used, the amount of grout discharged by the pressure pump, and the negative suction pressure of the vacuum pump. And a means for displaying on a display a graph of a time transition of the grout integrated injection amount calculated based on the operation condition, and a set value of the injection pressure and the degree of vacuum on the display. By comparing the graph based on the setting conditions and the graph of the time transition of the measurement data of the pressure sensor, the negative pressure sensor, and the integrating flow meter on the screen of the display, the grout injection state and the presence or absence of abnormality are determined. The grout injection device into the cable sheath of the PC structure according to the above item (2), which can be monitored and grasped in real time.
(4)前記情報管理装置に記録・保存される測定データを所定の用紙に印字又はグラフ表示する手段を備えたプリンタを備えてなることを特徴とする前項(1)〜(3)のいずれか1項に記載のPC構造物のケーブルシース内へのグラウト注入装置。
(5)前記情報管理装置に記録・保存された測定データの前記プリンタへの入力手段として、データカード又はオンラインが用いられることを特徴とする前項(4)に記載のPC構造物のケーブルシース内へのグラウト注入装置。
(4) The printer according to any one of (1) to (3) above, further including a printer having means for printing or graphically displaying the measurement data recorded and stored in the information management device on a predetermined sheet. The grout injection device according to claim 1, wherein the grout is injected into a cable sheath of the PC structure.
(5) As a means for inputting the measurement data recorded / stored in the information management device to the printer, a data card or an online is used, in the cable sheath of the PC structure according to (4) above. Grouting machine to the grout.
(6)ポストテンション方式PC構造物のケーブルシース内にグラウトを注入する際、ケーブルシースのグラウト注入側に圧送ポンプを、排出側に真空ポンプを接続し、前記真空ポンプによりケーブルシース内の気圧を十分減圧させた後に該真空ポンプを稼働させたまま前記圧送ポンプを運転して前記ケーブルシース内にグラウトを充填する真空引き工程を含むPC構造物のケーブルシース内へのグラウト注入工法において、
前記圧送ポンプと前記ケーブルシースのグラウト注入口との間にグラウト注入圧力測定用の圧力センサと、注入グラウトの単位時間当たりの流量を測定する流量計及びその時間経過に伴う積算注入量を測定する積算流量計とを配設して、グラウトの注入圧力、注入グラウトの単位時間当たりの流量を測定し、またその時間経過に伴う積算注入量を測定し、
さらに、前記真空ポンプとケーブルシースのグラウト排出口との間にケーブルシース内の真空度を測定する負圧センサを配設して、ケーブルシース内の真空度を測定し、
そして前記圧力センサ、負圧センサ、流量計及び積算流量計から時々刻々出力される測定データを情報管理装置に収集・記録・保存することを特徴とするPC構造物のケーブルシース内へのグラウト注入工法。
(6) When grout is injected into the cable sheath of the post-tension type PC structure, a pressure pump is connected to the grout injection side of the cable sheath, and a vacuum pump is connected to the discharge side, and the air pressure in the cable sheath is reduced by the vacuum pump. In the method of grout injection into the cable sheath of the PC structure including a vacuuming step of operating the pumping pump while operating the vacuum pump after sufficiently reducing the pressure and filling the cable sheath with grout,
A pressure sensor for measuring grout injection pressure between the pumping pump and the grout inlet of the cable sheath, a flow meter for measuring a flow rate per unit time of the injection grout, and measuring an integrated injection amount with the passage of time. By installing an integrating flow meter, measuring the grout injection pressure, the flow rate of the grout per unit time, and measuring the integrated injection amount with the passage of time,
Further, a negative pressure sensor for measuring the degree of vacuum in the cable sheath is provided between the vacuum pump and the grout outlet of the cable sheath, and the degree of vacuum in the cable sheath is measured.
Grouting into the cable sheath of the PC structure characterized by collecting, recording and storing measurement data outputted from the pressure sensor, the negative pressure sensor, the flow meter and the integrating flow meter every moment in the information management device. Construction method.
(7)ポストテンション方式PC構造物のケーブルシース内にグラウトを注入する際、ケーブルシースのグラウト注入側に圧送ポンプを、排出側に真空ポンプを接続し、前記真空ポンプによりケーブルシース内の気圧を十分減圧させた後に該真空ポンプを稼働させたまま前記圧送ポンプを運転して前記ケーブルシース内にグラウトを充填する真空引き工程を含むPC構造物のケーブルシース内へのグラウト注入工法において、
前記圧送ポンプと前記ケーブルシースのグラウト注入口との間にグラウト注入圧力測定用の圧力センサと、注入グラウトの単位時間当たりの流量を測定する流量計及びその時間経過に伴う積算注入量を測定する積算流量計とを配設して、グラウトの注入圧力、注入グラウトの単位時間当たりの流量を測定し、またその時間経過に伴う積算注入量を測定し、
さらに、前記真空ポンプとケーブルシースのグラウト排出口との間にケーブルシース内の真空度を測定する負圧センサを配設して、ケーブルシース内の真空度を測定し、
そして前記圧力センサ、留圧センサ、流量計及び積算流量計から時々刻々出力される測定データを情報管理装置に収集・記録・保存し、
前記情報管理装置に収集・記録・保存される前記測定データの時間的推移を実時間でディスプレイにグラフ表示することを特徴とするPC構造物のケーブルシース内へのグラウト注入工法。
(7) When grout is injected into the cable sheath of the post-tension type PC structure, a pressure pump is connected to the grout injection side of the cable sheath, and a vacuum pump is connected to the discharge side, and the pressure inside the cable sheath is reduced by the vacuum pump. In the method of grout injection into the cable sheath of the PC structure including a vacuuming step of operating the pumping pump while operating the vacuum pump after sufficiently reducing the pressure and filling the cable sheath with grout,
A pressure sensor for measuring grout injection pressure between the pumping pump and the grout inlet of the cable sheath, a flow meter for measuring a flow rate per unit time of the injection grout, and measuring an integrated injection amount with the passage of time. By installing an integrating flow meter, measuring the grout injection pressure, the flow rate of the grout per unit time, and measuring the integrated injection amount with the passage of time,
Further, a negative pressure sensor for measuring the degree of vacuum in the cable sheath is provided between the vacuum pump and the grout outlet of the cable sheath, and the degree of vacuum in the cable sheath is measured.
And the pressure sensor, the pressure sensor, the flow meter and the measurement data output momentarily from the integrating flow meter is collected, recorded, and stored in the information management device,
A method for grouting a PC structure into a cable sheath, wherein a temporal transition of the measurement data collected, recorded, and stored in the information management device is graphically displayed on a display in real time.
(8)前記情報管理装置に、注入されるグラウトの水セメント比、使用されるPCケーブルの空隙率と長さ、圧送ポンプのグラウト吐出量、真空ポンプの吸引負圧などグラウト注入作業にかかわる条件を予め入力し、該作業条件に基づいて算出されるグラウト積算注入量の時間的推移のグラフ、及び注入圧力と真空度の設定値を前記ディスプレイに表示し、これら注入作業の設定条件に基づくグラフと前記圧力センサ、負圧センサ、及び積算流量計の測定データの時間的推移のグラフとを前記ディスプレイの画面上で比較することによって、グラウトの注入状況や異常の有無を実時間で監視、把握可能にすることを特徴とする前項(7)に記載のPC構造物のケーブルシース内へのグラウト注入工法。 (8) Conditions relating to grout injection work, such as the water-cement ratio of the grout to be injected into the information management device, the porosity and length of the PC cable used, the amount of grout discharged by the pressure pump, the negative suction pressure of the vacuum pump, etc. Is input in advance, a graph of the time transition of the grout integrated injection amount calculated based on the operation condition, and a setting value of the injection pressure and the degree of vacuum are displayed on the display, and a graph based on the setting conditions of these injection operations. By comparing on the display screen with the graph of the time transition of the measurement data of the pressure sensor, the negative pressure sensor, and the integrating flow meter on the display screen, the grout injection status and the presence or absence of an abnormality are monitored and grasped in real time. The grout injection method according to the above item (7), wherein the grout is injected into the cable sheath of the PC structure.
(9)前記情報管理装置に記録・保存される測定データをプリンタを用いて所定の用紙に印字又はグラフ表示することを特徴とする前項(6)〜(8)のいずれか1項に記載のPC構造物のケーブルシース内へのグラウト注入工法。
(10)前記情報管理装置に記録・保存された測定データの前記プリンタへの入力を、データカード又はオンラインで行うことを特徴とする前項(9)に記載のPC構造物のケーブルシース内へのグラウト注入工法。
(9) The measurement data recorded and stored in the information management device is printed or graph-displayed on a predetermined sheet by using a printer, and is described in any one of the above items (6) to (8). Grouting method into cable sheath of PC structure.
(10) The input of the measurement data recorded / stored in the information management device to the printer is performed by a data card or online, and the PC structure described in (9) above is inserted into a cable sheath. Grout injection method.
(11)前記情報管理装置に記録・保存された測定データを、PC構造物のケーブルシース内へのグラウト注入作業の管理保証データ、又はグラウトを注入したPCケーブルの品質保証データとなすことを特徴とする前項(6)〜(10)のいずれか1項に記載のPC構造物のケーブルシース内へのグラウト注入工法。 (11) The measurement data recorded and stored in the information management device may be management assurance data for grouting work into the cable sheath of the PC structure or quality assurance data for the grout-injected PC cable. The grouting method according to any one of (6) to (10) above, wherein grout is injected into the cable sheath of the PC structure.
(12)前項(6)〜(11)のいずれか1項に記載のPC構造物のケーブルシース内へのグラウト注入工法において、水セメント比が0.28〜0.38の高密度のグラウトを、ケーブルシース内の空気吸引負圧−0.05〜−0.1MPa、グラウト注入圧力0.1〜1.5MPaの条件下で注入することを特徴とするPC構造物のケーブルシース内へのグラウト注入工法。 (12) In the method for grouting the PC structure according to any one of the above items (6) to (11) into grout into a cable sheath, a high-density grout having a water cement ratio of 0.28 to 0.38 is used. Grouting into the cable sheath of the PC structure, wherein the grout is injected under the conditions of an air suction negative pressure in the cable sheath of -0.05 to -0.1 MPa and a grout injection pressure of 0.1 to 1.5 MPa. Injection method.
本願発明によれば、下記のような効果が得られる。
(ア)ケーブルシースのグラウト注入側に配設された注入圧力測定用圧力センサ、流量計及び積算流量計、前記ケーブルシースのグラウト排出側に配設された真空度測定用の圧力センサの各測定データを情報管理装置に収集・記録・保存することによって、後日当該グラウト注入作業の進捗状況や異常発生の有無等の確認が容易になり、かつ測定データの集積記録によりグラウト注入作業の問題点の所在が明確になり、改善策の立案に役立つ。
(イ)グラウトの注入・充填作業時に圧送ポンプの注入圧力、ケーブルシース内の真空度、単位時間当たりのグラウトの注入量、及びグラウトの積算注入量の推移がディスプレイ上にグラフ表示されるので、グラウト注入作業の進捗状況や異常の有無が実時間でかつ一目で監視・把握でき、異常時への対応も迅速に行える。
(ウ)グラウトの水セメント比、ケーブルシースの長さ、内径等から求められるグラウトの最終充填量などのグラウト注入作業にかかわる条件を入力し、該作業条件に基づく注入グラウトの積算注入量の推移や前記注入圧力と真空度の設定値をディスプレイ上に表示することにより、グラウト注入の遅速やグラウト注入時の注入圧力、真空度と設定値との差異が実時間で観測され、必要に応じてグラウトの水セメント比等の条件を修正することが可能になる。
(エ)上記(ア)〜(ウ)の効果により、作業現場におけるグラウト注入を最適条件下で確実・容易に行えるので、グラウトの不完全充填という失敗は生じなく、優れたポストテンション方式のPC構造物を提供することができる。
(オ)真空ポンプの吸引負圧、圧送ポンプの注入圧力の選定によりケーブルシース内での成分分離がしにくい高密度のグラウトの注入が可能となり、優れたポストテンション方式のPC構造物を提供することができる。
(カ)情報管理装置に記録・保存されたグラウト注入作業時の各測定データをプリンタを用いて所定の用紙に印字又はグラフ表示することができるので、後日関係部署へ提出する書類作成の効率化に寄与する。また、これらの測定データの印刷記録は全ケーブルシースについて得られるので、グラウト施工における管理データとしての役割を果たし、グラウト注入作業を確実に実施した証拠として施工主を始めとする関係機関に提出でき、ひいてはPCケーブルの品質保証にも役立つ。
According to the present invention, the following effects can be obtained.
(A) Inspection pressure measurement pressure sensor, flow meter and integrating flow meter disposed on the grout injection side of the cable sheath, and vacuum pressure measurement pressure sensor disposed on the grout discharge side of the cable sheath. By collecting, recording, and storing the data in the information management device, it is easy to check the progress of the grouting work and whether or not any abnormality has occurred at a later date. The location is clarified, which helps to plan improvement measures.
(A) During the grouting / filling operation, the transition of the grouting pressure of the pressure pump, the degree of vacuum in the cable sheath, the grouting amount per unit time, and the cumulative grouting amount are displayed on the display. The progress of grouting work and the presence or absence of abnormalities can be monitored and grasped in real time and at a glance, and quick responses to abnormalities can be made.
(C) Input the conditions related to grouting work such as the final filling amount of grout obtained from the water cement ratio of grout, the length and inner diameter of the cable sheath, etc., and the transition of the cumulative grouting amount of grout based on the working conditions. By displaying the set values of the injection pressure and the degree of vacuum on the display, the rate of grout injection and the injection pressure during grout injection, the difference between the degree of vacuum and the set value are observed in real time, and as necessary. It becomes possible to modify the conditions such as the water-cement ratio of the grout.
(D) Due to the effects of (a) to (c) above, grout can be reliably and easily injected at the work site under optimum conditions, so that failure of incomplete filling of grout does not occur and an excellent post-tension type PC is used. A structure can be provided.
(E) By selecting the vacuum negative pressure of the vacuum pump and the injection pressure of the pressure feed pump, it becomes possible to inject high-density grout which is difficult to separate components in the cable sheath, and to provide an excellent post-tension type PC structure. be able to.
(F) Since each measurement data recorded and stored in the information management device at the time of grouting work can be printed on a predetermined paper or displayed as a graph using a printer, the efficiency of preparing documents to be submitted to related departments at a later date is improved. To contribute. In addition, since print records of these measurement data are obtained for all cable sheaths, they can serve as management data in grouting work and can be submitted to the contractor and other related organizations as evidence that grouting work has been carried out reliably. This also helps to guarantee the quality of the PC cable.
本発明の実施の形態を図面に基づいて説明する。
図1は本発明PC構造体のケーブルシース内へのグラウト注入装置の実施例の概略構成図、図2はディスプレイの表示画面例、図3はプリンタ出力の例である。
図において、1はコンクリート構造物、2はPCケーブル、2aはケーブルシース、2bはPC鋼材、3aは注入側キャップ、3bは排出側キャップ、4aは注入側ホース、4bは排出側ホース、5は観測用排出ホース、5aは開閉栓、6aは注入側バルブ、6bは排出側バルブ、7は排気ホース、8はグラウトミキサ、9はホッパー、10は圧送ポンプ、11は流量計、12は可視ろ過器、12aは排出バルブ、13は真空ポンプであり、また21は情報管理装置、22はディスプレイ、23はプリンタ、24は圧力センサ、25は負圧センサ、26は測定データ伝送線である。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an embodiment of a grout injection device into a cable sheath of a PC structure of the present invention, FIG. 2 is an example of a display screen of a display, and FIG. 3 is an example of a printer output.
In the figure, 1 is a concrete structure, 2 is a PC cable, 2a is a cable sheath, 2b is a PC steel material, 3a is an injection-side cap, 3b is a discharge-side cap, 4a is an injection-side hose, 4b is a discharge-side hose, and 5 is a discharge-side hose. Observation discharge hose, 5a open / close plug, 6a injection side valve, 6b discharge side valve, 7 exhaust hose, 8 grout mixer, 9 hopper, 10 pump pump, 11 flow meter, 12 visible filtration , 12a is a discharge valve, 13 is a vacuum pump, 21 is an information management device, 22 is a display, 23 is a printer, 24 is a pressure sensor, 25 is a negative pressure sensor, and 26 is a measurement data transmission line.
図1に示すように、本実施例のPC構造物のケーブルシース内へのグラウト注入装置は、グラウトミキサ8で混練されたグラウトを圧送ポンプ10によって圧送し、コンクリート構造物1に配設されたPCケーブル2のケーブルシース2aとPC鋼材2bとの空隙に注入する際、前記PCケーブル2のグラウト排出側に接続された真空ポンプ13によって前記ケーブルシース2a内の気圧を前もって減圧するよう構成されたPC構造物のケーブルシース内へのグラウト注入装置において、前記圧送ポンプ10の出力側に接続され、前記圧送ポンプ10から送出されるグラウトの注入量を測定する流量計及び積算流量計11と、前記グラウトを前記PCケーブル2のグラウト注入口に導く注入側ホース4aの途中に配設されグラウトの注入圧力を測定する圧力センサ24と、可視ろ過器12と真空ポンプ13を接続している排気ホース7の途中に配設され前記真空ポンプ13の吸引負圧を測定する負圧センサ25と、これら流量計及び積算流量計11、圧力センサ24及び負圧センサ25から時々刻々出力される測定データを測定データ伝送線26を介して収集・記録・保存する情報管理装置21と、前記情報管理装置21に収集・記録される前記測定データの推移を実時間でグラフ表示する手段を備えたディスプレイ22と、前記測定データを所定の用紙に印字またはグラフ表示する手段を備えたプリンタ23から構成されている。 As shown in FIG. 1, the grout injection device into the cable sheath of the PC structure according to the present embodiment is provided with the grout kneaded by the grout mixer 8 by the pressure pump 10 and disposed on the concrete structure 1. At the time of injecting into the gap between the cable sheath 2a of the PC cable 2 and the PC steel material 2b, the air pressure in the cable sheath 2a is previously reduced by the vacuum pump 13 connected to the grout discharge side of the PC cable 2. A grout injection device into the cable sheath of the PC structure, which is connected to the output side of the pumping pump 10 and measures a grout injection amount of the grout sent from the pumping pump 10; The grout injection pressure is provided in the middle of the injection hose 4a for guiding the grout to the grout injection port of the PC cable 2. A pressure sensor 24 for measuring; a negative pressure sensor 25 disposed in the middle of the exhaust hose 7 connecting the visible filter 12 and the vacuum pump 13 to measure a suction negative pressure of the vacuum pump 13; An information management device 21 that collects, records, and stores measurement data output from the integrating flow meter 11, the pressure sensor 24, and the negative pressure sensor 25 via a measurement data transmission line 26; The display 22 includes a display 22 having means for displaying the transition of the recorded measurement data in a graph in real time, and a printer 23 having means for printing or displaying the measurement data on a predetermined sheet.
本実施例のグラウト注入装置におけるPC構造物のケーブルシース内へのグラウト注入作業は、まず注入側バルブ6aと観測用排出ホース5の開閉栓5a、及び可視ろ過器12の排出バルブ12aを閉じ、排出側バルブ6bを開いて真空ポンプ13を作動させケーブルシース2a内の空気を吸引して減圧することから始まる。このとき可視ろ過器12はケーブルシース2a内の異物やゴミ類を除去する役割を果たす。
真空ポンプ13の作動によってケーブルシース2a内の真空度が達成し得る最大負圧に達したとき、真空ポンプ13を一時停止して負圧の変化の有無を負圧センサ25の測定データで確認し、測定データに変化がなければ真空ポンプ13を再起動する。
次にグラウトミキサ8、ホッパー9及び圧送ポンプ10を作動させ、注入側バルブ6aを開いてグラウトを注入側ホース4aを介してケーブルシース2a内に注入する。この場合ケーブルシース内の減圧による吸引力と圧送ポンプ10の加圧力とにより、水セメント比の小さい0.28〜0.38のグラウトでもケーブルシース2a内への注入は容易に行える。
グラウトのケーブルシース2a内への注入・充填が進み、排出用ホース4bから可視ろ過器12にグラウトが排出され、一定量が貯留された後排出側バルブ6bを閉じて真空ポンプ13を停止するとともに開閉栓5aを開き、観測用排出ホース5から密度が許容量以上の良質なグラウトが排出されるようになったことを確認した後に開閉栓5aを閉じ、圧力センサ24で測定される注入圧力が0.8MPa以上で圧送ポンプ10に許容される値まで加圧した後、圧送ポンプ10を停止する。
The grout injection work into the cable sheath of the PC structure in the grout injection apparatus of the present embodiment is performed by first closing the injection valve 6a, the open / close plug 5a of the observation discharge hose 5, and the discharge valve 12a of the visible filter 12. The process starts by opening the discharge side valve 6b and operating the vacuum pump 13 to suck air in the cable sheath 2a to reduce the pressure. At this time, the visible filter 12 plays a role of removing foreign matter and dust in the cable sheath 2a.
When the degree of vacuum in the cable sheath 2a reaches the maximum achievable negative pressure by the operation of the vacuum pump 13, the vacuum pump 13 is temporarily stopped and the presence or absence of a change in the negative pressure is confirmed by the measurement data of the negative pressure sensor 25. If there is no change in the measured data, the vacuum pump 13 is restarted.
Next, the grout mixer 8, the hopper 9 and the pressure pump 10 are operated, the injection side valve 6a is opened, and grout is injected into the cable sheath 2a via the injection side hose 4a. In this case, the grout of 0.28 to 0.38 having a small water cement ratio can be easily injected into the cable sheath 2a by the suction force due to the reduced pressure in the cable sheath and the pressing force of the pressure pump 10.
The grout is injected and filled into the cable sheath 2a, the grout is discharged from the discharge hose 4b to the visible filter 12, and after a certain amount is stored, the discharge side valve 6b is closed and the vacuum pump 13 is stopped. After opening and closing the opening / closing stopper 5a and confirming that high-quality grout having a density equal to or more than the allowable amount has been discharged from the observation discharge hose 5, the opening / closing stopper 5a is closed, and the injection pressure measured by the pressure sensor 24 is reduced. After the pressure is increased to 0.8 MPa or more to a value allowed for the pump 10, the pump 10 is stopped.
上記注入作業の経緯、つまり真空ポンプ13の吸引負圧、圧送ポンプ10の注入圧力、単位時間ごとのグラウトの注入量及びその積算注入量は、前記圧力センサ24、負圧センサ25と、流量計及び積算流量計11が時々刻々測定し、その測定データは測定データ伝送線26を介して情報管理装置21に送られ、記録・保存される。
また、前記情報管理装置21は、測定データ伝送線26を介して送られてきた前記各測定データを実時間で前記ディスプレイ22に転送し、前記ディスプレイ22に各測定データの時間的変化を、例えば図2に示すように単位時間当たりのグラウト注入量とその積算注入量、グラウト注入圧力、及び真空ポンプの吸引負圧の時間的変化を同一画面上に表示し、あるいは個々の測定データの1種又は2種以上を1画面に切り替えて表示する。
なお、複数のディスプレイにそれぞれの測定データの時間的変化を分散表示するようにしてもよい。
さらに、注入グラウトの水セメント比、ケーブルシース長や内径等から求められる最終充填量などグラウト注入作業にかかわる条件を前記情報管理装置21に入力し、前記作業条件に基づくグラウトの積算注入量の推移のグラフ、及び注入圧力と真空度の設定値を前記ディスプレイ22に予め表示しておき、これら表示と前記各測定データの時間的変化とを比較することによって注入作業の進捗状況や異常の有無を目視により実時間で監視・把握することもできる。なおこの場合、前記条件に基づく積算注入量のグラフには排出用ホース4bから可視ろ過器12に排出されるグラウトの量をも見込んで表示しておく必要があり、さらにまた、上記PC構造物のケーブルシース内へのグラウト注入完了後、前記情報管理装置21に記録・保存された総積算注入量から前記排出用ホース4bから可視ろ過器12に排出されるグラウトの総量を差し引く補正を行っておく必要がある。
The process of the above-mentioned injection work, that is, the suction negative pressure of the vacuum pump 13, the injection pressure of the pressure pump 10, the injection amount of grout per unit time, and the integrated injection amount thereof are determined by the pressure sensor 24, the negative pressure sensor 25, and the flow meter. The integrated flow meter 11 measures every moment, and the measurement data is sent to the information management device 21 via the measurement data transmission line 26, and is recorded and stored.
Further, the information management device 21 transfers the respective measurement data sent via the measurement data transmission line 26 to the display 22 in real time, and displays the time change of each measurement data on the display 22, for example, As shown in FIG. 2, the time change of the grout injection amount per unit time and its integrated injection amount, grout injection pressure, and vacuum negative pressure of the vacuum pump are displayed on the same screen, or one type of individual measurement data is displayed. Alternatively, two or more types are switched to one screen and displayed.
In addition, you may make it disperse and display the temporal change of each measurement data on several displays.
Further, conditions relating to grout injection work such as the water cement ratio of the injected grout, the final filling amount determined from the cable sheath length and the inner diameter, etc., are input to the information management device 21, and changes in the cumulative grout injection amount based on the work conditions. And the set values of the injection pressure and the degree of vacuum are displayed on the display 22 in advance, and the progress of the injection operation and the presence / absence of abnormality are compared by comparing these displays with the temporal changes of the respective measurement data. It can also be monitored and grasped in real time visually. In this case, it is necessary to display the amount of grout discharged from the discharge hose 4b to the visible filter 12 in the graph of the integrated injection amount based on the above conditions. After the grout injection into the cable sheath is completed, a correction is made to subtract the total amount of grout discharged from the discharge hose 4b to the visible filter 12 from the total integrated injection amount recorded and stored in the information management device 21. Need to be kept.
前記情報管理装置21に記録・保存された測定データは、データカード又はオンラインでプリンタ23に転送すれば、例えば図3に示すグラウト注入管理記録のような所定の用紙の所定欄に必要データを印字、又はグラフ化して印刷することができ、後日関係部署へ提出する書類作成の効率化にも寄与する。これらの測定データの印刷記録は全ケーブルシースについて得られるので、グラウト施工における管理データとしての役割を果たし、グラウト注入作業を確実に実施した証拠として施工主を始めとする関係機関に提出でき、ひいてはPCケーブルの品質保証にも役立つこととなる。 If the measurement data recorded and stored in the information management device 21 is transferred to the printer 23 on a data card or online, the necessary data is printed on a predetermined column of a predetermined sheet such as a grout injection management record shown in FIG. Or, it can be printed as a graph, which contributes to the efficiency of preparing documents to be submitted to related departments at a later date. Since print records of these measurement data can be obtained for all cable sheaths, they can serve as management data in grouting work and can be submitted to the contractor and other related organizations as evidence that the grouting work has been carried out reliably. This will also help ensure the quality of PC cables.
本実施例では、流量計及び積算流量計11、圧力センサ24、情報管理装置21及びディスプレイ22を分散配置した形で説明したが、前記流量計及び積算流量計11、圧力センサ24、情報管理装置21及びディスプレイ22を同一筐体に収容し、これに負圧センサ25からの測定データ伝送線26を接続するだけで設営でき、作業現場の省力化が図れるグラウト注入装置とすることも好ましい。 In the present embodiment, the flow meter and the integrating flow meter 11, the pressure sensor 24, the information management device 21 and the display 22 are described in a distributed arrangement, but the flow meter and the integrating flow meter 11, the pressure sensor 24, the information management device It is also preferable to use a grout injection device which can be installed simply by housing the display 21 and the display 22 in the same housing and connecting the measurement data transmission line 26 from the negative pressure sensor 25 to the work site, thereby saving labor.
次に本発明による高密度グラウトの注入・充填について説明する。
一般に、グラウトの水セメント比は、グラウトの流動性(充填の容易性)やブリージング発生性(材料分離性)、グラウト硬化物の品質(防食性)に大きく影響する。
土木学会の「プレストレストコンクリート工法設計施工共通指針」によれば、「水セメント比は45%以下を基準とする」とある。実際の施工では、従来技術で真空ポンプを併用するしないにかかわらず、ノンブリージング型グラウトと称して、水セメント比は40〜45%が用いられている。そのノンブリージング性の根拠は土木学会規準に基づく試験結果にあるが、しかしそれは、実施工時の圧送やPC鋼材ストランドの毛細管現象やふるい効果を反映したものではない。
また、前記「プレストレストコンクリート工法設計施工共通指針」の解説において「水セメント比は、所要のコンシステンシーが得られる範囲内で、できるだけ小さくすることが必要である」としている。
しかしながら、本発明では、グラウトの注入を圧送ポンプ10の圧送と真空ポンプ13によるケーブルシース2a内の可能な限りの減圧による吸引とによって行うので、より水セメント比の小さい(ただし0.28≦W/C≦0.38)密実性に富むグラウトが使用でき、注入圧力やPC鋼材の存在による水の分離を含むブリージング発生の抑制、グラウト硬化物の品質(防食性)が向上する利点を持つ。
Next, injection and filling of high-density grout according to the present invention will be described.
In general, the ratio of grout to water-cement greatly affects the flowability (easiness of filling), the occurrence of breathing (separation of materials), and the quality of the cured grout (corrosion resistance) of grout.
According to the Japan Society of Civil Engineers' “Guidelines for Design and Construction of Prestressed Concrete Method”, “Water cement ratio is based on 45% or less”. In actual construction, a water-cement ratio of 40 to 45% is used as a non-breathing grout regardless of whether a vacuum pump is used in combination with a conventional technique. The non-breathing property is based on the test results based on the standards of the Japan Society of Civil Engineers, but it does not reflect the effect of pumping and the capillary action of PC steel strands at the time of implementation and the sieving effect.
In addition, in the commentary on the above-mentioned "Guidelines for Design and Construction of Prestressed Concrete Method", it is stated that "the water-cement ratio should be as small as possible within a range where a required consistency can be obtained".
However, in the present invention, the grout is injected by the pumping of the pumping pump 10 and the suction by the vacuum pump 13 by reducing the pressure in the cable sheath 2a as much as possible, so that the water-cement ratio is smaller (however, 0.28 ≦ W). /C≦0.38) Grout with high solidity can be used, which has the advantage of suppressing the occurrence of breathing including water separation due to the injection pressure and the presence of PC steel, and improving the quality (corrosion resistance) of the cured grout. .
本発明の真空引き工程を含むPC構造物のケーブルシース2a内へのグラウト注入工法においては、注入グラウト材料の水セメント比は、0.28≦W/C≦0.38とする。
従来、真空引き工程を含むグラウト注入工法の場合も、真空引き工程を含まない単なる圧力注入の場合と同じく、水セメント比W/C=0.4〜0.45のグラウトを用いていた。その理由は、単なる圧力注入の場合、水セメント比W/Cが0.4を下まわるとグラウトの粘性が急激に上がり、ケーブルシース2aの注入口につながる注入側ホース4aの耐圧上、ケーブルシース2aの先端までグラウトを圧送しきれないことが多いということのためであり、真空引き工程を含む場合もこれと同程度の水セメント比W/Cを踏襲しているということである。
しかしながら、本発明者らの試験と実施工の結果から、水セメント比が0.28≦W/C≦0.38であっても、ケーブルシース2aの注入側に圧送ポンプ10を、排出側に真空ポンプ13を接続して併用すれば、全長が230m程度(内径120mm)のケーブルでも片押しかつ最大でも注入圧力Pp≦0.7MPa以下で注入できることを見出した。そのときの真空ポンプによる吸引負圧Pvは注入開始直前で−0.07MPaであり、終了後では−0.09MPaであった。
このように高い真空度が達成できた最大の理由は、ケーブルシース2a及びその接続具の材料が高密度ポリエチレンであり、その相互の接続具として両側内径が若干テーパ状をなしており、左右からそれぞれケーブルシース2aを接続具の奥へ挿し込むと強固かつ密着して繋がり、全体のケーブルシース2aの密封性が向上するからである。
In the method of grout injection into the cable sheath 2a of the PC structure including the evacuation step according to the present invention, the water cement ratio of the injected grout material is set to 0.28 ≦ W / C ≦ 0.38.
Conventionally, also in the case of the grouting method including the vacuuming step, the grout having the water cement ratio W / C = 0.4 to 0.45 is used similarly to the case of the simple pressure injection without the vacuuming step. The reason is that in the case of simple pressure injection, when the water cement ratio W / C falls below 0.4, the viscosity of the grout sharply increases, and the pressure of the injection side hose 4a connected to the injection port of the cable sheath 2a increases. This is because grout cannot often be pumped to the tip of 2a, and the water / cement ratio W / C is almost the same even when the evacuation step is included.
However, according to the results of the tests and the work performed by the present inventors, even when the water cement ratio is 0.28 ≦ W / C ≦ 0.38, the pump 10 is provided on the injection side of the cable sheath 2a and the discharge pump 10 is provided on the discharge side. It has been found that if a vacuum pump 13 is connected and used, a cable having a total length of about 230 m (inner diameter of 120 mm) can be injected with a single push and an injection pressure of at most Pp ≦ 0.7 MPa. At that time, the suction negative pressure Pv by the vacuum pump was -0.07 MPa immediately before the start of the injection, and -0.09 MPa after the end.
The greatest reason why such a high degree of vacuum could be achieved is that the material of the cable sheath 2a and its connector is made of high-density polyethylene, and its inner diameter is slightly tapered as a mutual connector. This is because when the cable sheath 2a is inserted into the back of the connector, the cable sheath 2a is firmly and closely connected, and the sealing performance of the entire cable sheath 2a is improved.
なお、このグラウトは、あらかじめセメント・不分離剤・粒度粒径調整材・減水剤等を混合したいわゆるプレミックス型の材料を、グラウトミキサ8中の水に投入して練り混ぜて得られたものでもよい。 The grout is obtained by mixing a so-called premix-type material in which a cement, a non-separating agent, a particle size adjusting material, a water reducing agent, etc. are previously mixed into water in the grout mixer 8 and kneading. May be.
なお、本願発明においてグラウトの水セメント比(W/C)を0.28〜0.38に小さくすることの長所は以下のとおりである。
1)グラウト中に水量が多い程、セメント粒子と水は分離しやすくなり、空気溜まりとして残る度合が高まるが、これを回避できること。
2)水セメント比が大きいと、練り混ぜ・攪拌・圧入中にグラウト中に巻き込まれた微粒子空気泡がグラウト充填後、ケーブルシース2aの曲げ上がり高所へ移動して大きな空気溜まりとなる懸念があるが、これが回避できること。
3)ケーブルシース2a内径の急変部やその他の部分のグラウトの定常的な流れを乱され難くして、気泡発生が抑えられること。
4)水セメント比が大きいと、ケーブルシース2aが曲げ下がる箇所では、グラウトの流れの先端がケーブルシース2aの内径断面を満たすことができず、グラウトは前記断面の上部を残したまま、先流れを起こし、曲げ下がった底部断面をまず満たした後に塑行上昇して曲げ上がり頂部へ戻るようにケーブルシース2a内を充填し、このとき先流れのシース断面上部の空気は、塑行上昇するグラウトによって曲げ上がり頂部に閉じ込められるが、グラウトの水セメント比を小さくすることにより、先流れ現象を緩和してケーブルシース2aの曲げ上がり頂部又はその近辺での空気溜まりの発生防止に寄与すること。
なお、先流れ現象によるケーブルシース2aの曲げ上がり頂部又はその近辺での空気溜まりの発生防止は、通常、頂部近辺に排気口を設けて排気することによって行うが、適切な位置に適切な本数の排気口が設けられていても、それら排気口の開口と閉鎖のタイミングが適切に行われない限り空気溜まりは発生する。このような排気口の開口と閉鎖を適切に行うには、相当の経験を要するが、かなりの経験者が適切に行ったからといって、必ずしも気泡を完全に除くことは困難であり、問題となる空気溜まりがケーブルシース2aの曲げ上がり上部に残る恐れがあるのが実状であり、W/C=0.28〜0.38の低水セメント比のグラウトの使用は、その解決の一手段となる。
In the present invention, the advantages of reducing the water cement ratio (W / C) of the grout to 0.28 to 0.38 are as follows.
1) As the amount of water in the grout is larger, the cement particles and water are more easily separated, and the degree of remaining as an air pocket increases, but this can be avoided.
2) If the water-cement ratio is large, there is a concern that fine air bubbles entrained in the grout during kneading, stirring, and press-fitting may move to a high place where the cable sheath 2a bends up after filling the grout, resulting in a large air pool. There are things that can be avoided.
3) The steady flow of grout in the abruptly changing portion of the inner diameter of the cable sheath 2a and other portions is hardly disturbed, and generation of bubbles is suppressed.
4) If the water-cement ratio is large, at the point where the cable sheath 2a bends downward, the leading end of the grout cannot fill the inner diameter cross section of the cable sheath 2a, and the grout flows forward while leaving the upper part of the cross section. And then fills the inside of the cable sheath 2a so as to fill the bent bottom section first and then plastically ascend and return to the top at the time of bending. Although it is confined at the top of the bent portion by reducing the water-cement ratio of the grout, the pre-flow phenomenon is alleviated, thereby contributing to the prevention of the formation of air traps at or near the bent top portion of the cable sheath 2a.
It should be noted that the prevention of the occurrence of air traps at or near the bent top of the cable sheath 2a due to the pre-flow phenomenon is usually performed by providing an exhaust port near the top and exhausting air. Even if exhaust ports are provided, air accumulation will occur unless the timing of opening and closing the exhaust ports is properly performed. Proper opening and closing of such an exhaust port requires considerable experience, but it is difficult to completely eliminate bubbles even if a considerable number of experienced persons have performed it properly. In fact, there is a possibility that the remaining air pool may remain on the upper part of the cable sheath 2a after bending, and the use of grout having a low water cement ratio of W / C = 0.28 to 0.38 is one of the solutions. Become.
また、本願発明においては、真空ポンプ13の吸引負圧Pvを−0.05MPa≦Pv<−0.1MPaとすることが好ましい。
まず、ケーブルシース2a内部及びそれに繋がる排気口や定着部を空気漏れがないように密封し、シースの一端から真空ポンプを稼動してその時点での最大真空圧を達成する。
(試験及び実施工では、Pv=−0.07〜−0.08MPaが達成されている。このように高い真空度が達成できる最大の理由は前述したように、ケーブルシース2a及びその接続具の材料は高密度ポリエチレンであり、接続具の内径がテーパ状で全体の密封度が上がるためである。)
しかる後に、真空ポンプ13を稼働させたまま、他端から圧送ポンプ10を稼動させ、グラウトの注入を開始する。グラウトが進行してその先端が次第に真空ポンプ13側端部に近づくにつれ、真空ポンプ13の効果が上がって真空度が上がる。
しかし、絶対真空度〜−0.1MPaに達することはないが、達成できる最大の真空度になる時(グラウト先端が真空ポンプ手前のバルブに到達してバルブを閉鎖する時)まで真空ポンプは稼動を続ける。
なお、従来技術では、ケーブルシース2a内部を真空にした後、真空ポンプ13を停止して、グラウト圧送ポンプ10を稼動するか、両ポンプを併用するにしても真空度をある一定値以下に抑えるために、真空ポンプ13の運転と停止を繰り返すような操作を行っている。これは、グラウトの水セメント比が比較的大きくて真空度が比較的高い(−0.08MPa≦Pv<−0.1MPa)場合、グラウト先端部が乱れやすく空気が巻き込まれやすくなるからである。
しかしながら本発明の技術によれば、グラウトの水セメント比は0.28〜0.38とかなり小さいために、真空度が限界値−0.1MPaに近い値まで上昇したとしても、グラウト先端部はそれほど乱されることがない。したがって、たとえグラウトがケーブルシース2aの終端部に近づいてもなお稼働中の真空ポンプ13によって真空度が上昇したとしても停止することなく注入が続けられる。
また、ケーブルシース2aが短い場合においても、真空ポンプ13の効率上昇による真空度の高さにかかわらず、真空ポンプ13を稼動したまま注入を行うことができる。
Further, in the present invention, it is preferable that the suction negative pressure Pv of the vacuum pump 13 is set to −0.05 MPa ≦ Pv <−0.1 MPa.
First, the inside of the cable sheath 2a and an exhaust port and a fixing portion connected thereto are sealed so as not to leak air, and a vacuum pump is operated from one end of the sheath to achieve the maximum vacuum pressure at that time.
(Pv = −0.07 to −0.08 MPa has been achieved in the test and execution. The biggest reason why such a high degree of vacuum can be achieved is, as described above, that the cable sheath 2a and its connector are not connected to each other. This is because the material is high-density polyethylene, and the inner diameter of the connector is tapered, so that the overall sealing degree is increased.)
Thereafter, while the vacuum pump 13 is operating, the pump 10 is operated from the other end to start grout injection. As the grout advances and its tip gradually approaches the end on the vacuum pump 13 side, the effect of the vacuum pump 13 increases and the degree of vacuum increases.
However, the vacuum pump does not reach the absolute vacuum degree of -0.1 MPa, but the vacuum pump operates until the maximum achievable vacuum degree is reached (when the grout tip reaches the valve in front of the vacuum pump and closes the valve). Continue.
In the prior art, after the inside of the cable sheath 2a is evacuated, the vacuum pump 13 is stopped and the grout pressure pump 10 is operated, or the degree of vacuum is suppressed to a certain value or less even when both pumps are used in combination. For this purpose, an operation of repeating the operation and stop of the vacuum pump 13 is performed. This is because when the water cement ratio of the grout is relatively large and the degree of vacuum is relatively high (−0.08 MPa ≦ Pv <−0.1 MPa), the tip of the grout is easily disturbed, and air is easily trapped.
However, according to the technique of the present invention, the water cement ratio of the grout is quite small, 0.28 to 0.38, so even if the degree of vacuum rises to a value close to the limit value -0.1 MPa, the grout tip is Not much disturbed. Therefore, even if the grout approaches the end of the cable sheath 2a, the injection is continued without stopping even if the degree of vacuum is increased by the vacuum pump 13 in operation.
Further, even when the cable sheath 2a is short, the injection can be performed while the vacuum pump 13 is operating, regardless of the degree of vacuum due to the increase in the efficiency of the vacuum pump 13.
そして、ケーブルシース2aの曲げ下がり部での先流れが生じる場合、真空引き工程をグラウト注入時に併用すれば、曲げ上がり頂部又はその近辺に閉じこめられる空気量は、たとえ排気口が存在しなくても、真空引きが無い場合と比較すると、〔100−真空度〕%程度となり、かなり減少することになる。
試験で確認した結果では、ケーブルシース2aの曲げ上がり部頂部及びその近辺で排気口が無くても、残留空気溜まりはPC鋼材の防食上無視できる程の大きさに過ぎなかった。
しかし、実施工では排気口及びそこに結合してコンクリート部材の外表面まで立ち上げたホースは、グラウトのその個所の通過と充填を確認するための観測用排出ホース5と考え設置することが望ましい。
If a pre-flow occurs at the bent down portion of the cable sheath 2a, if the evacuation step is used at the time of grout injection, the amount of air trapped at the bent top or in the vicinity thereof can be reduced even if there is no exhaust port. In comparison with the case where no evacuation is performed, it is about [100-degree of vacuum]%, which is considerably reduced.
According to the results confirmed in the test, even if there is no exhaust port at the top of the bent portion of the cable sheath 2a and in the vicinity thereof, the residual air pool is only negligible in terms of the corrosion protection of the PC steel.
However, in practice, it is desirable that the exhaust port and the hose connected to the exhaust port and raised up to the outer surface of the concrete member be considered and installed as an observation discharge hose 5 for confirming passage and filling of the grout at that point. .
1:コンクリート構造物
2:PCケーブル
2a:ケーブルシース
2b:PC鋼材
3a:注入側キャップ
3b:排出側キャップ
4a:注入側ホース
4b:排出側ホース
5:観測用排出ホース
5a:開閉栓
6a:注入側バルブ
6b:排出側バルブ
7:排気ホース
8:グラウトミキサ
9:ホッパー
10:圧送ポンプ
11:流量計及び積算流量計
12:可視ろ過器
12a:排出バルブ
13:真空ポンプ
21:情報管理装置
22:ディスプレイ
23:プリンタ
24:圧力センサ
25:負圧センサ
26:測定データ伝送線
1: Concrete structure 2: PC cable 2a: Cable sheath 2b: PC steel material 3a: Injection side cap 3b: Discharge side cap 4a: Injection side hose 4b: Discharge side hose 5: Observation discharge hose 5a: Opening / closing plug 6a: Injection Side valve 6b: Discharge side valve 7: Exhaust hose 8: Grout mixer 9: Hopper 10: Compression pump 11: Flow meter and integrating flow meter 12: Visible filter 12a: Discharge valve 13: Vacuum pump 21: Information management device 22: Display 23: Printer 24: Pressure sensor 25: Negative pressure sensor 26: Measurement data transmission line
Claims (12)
前記圧送ポンプと前記ケーブルシースのグラウト注入口との間に配設されたグラウト注入圧力測定用の圧力センサと、注入グラウトの単位時間当たりの流量を測定する流量計及びその時間経過に伴う積算注入量を測定する積算流量計と、
前記真空ポンプとケーブルシースのグラウト排出口との間に配設されケーブルシース内の真空度を測定する負圧センサと、
そして前記圧力センサ、負圧センサ、流量計及び積算流量計から時々刻々出力される測定データを収集・記録・保存する情報管理装置とを備えてなることを特徴とするPC構造物のケーブルシース内へのグラウト注入装置。 When grout is injected into the cable sheath of the post tension type PC structure, a pressure pump is connected to the grout injection side of the cable sheath, and a vacuum pump is connected to the discharge side, and the pressure inside the cable sheath is sufficiently reduced by the vacuum pump. The grout injection device into the cable sheath of the PC structure including a vacuuming step of operating the pumping pump while operating the vacuum pump after that and filling the cable sheath with grout,
A pressure sensor for measuring grout injection pressure disposed between the pumping pump and the grout injection port of the cable sheath, a flow meter for measuring a flow rate per unit time of the injection grout, and an integrated injection over time An integrating flow meter for measuring the amount,
A negative pressure sensor disposed between the vacuum pump and the grout outlet of the cable sheath to measure the degree of vacuum in the cable sheath;
And an information management device for collecting, recording, and storing measurement data output from the pressure sensor, the negative pressure sensor, the flow meter, and the integrating flow meter every moment. Grouting machine to the grout.
前記圧送ポンプと前記ケーブルシースのグラウト注入口との間に配設されたグラウト注入圧力測定用の圧力センサと、注入グラウトの単位時間当たりの流量を測定する流量計及びその時間経過に伴う積算注入量を測定する積算流量計と、
前記真空ポンプとケーブルシースのグラウト排出口との間に配設されケーブルシース内の真空度を測定する負圧センサと、
そして前記圧力センサ、負圧センサ、流量計及び積算流量計から時々刻々出力される測定データを収集・記録・保存する情報管理装置と、
前記情報管理装置に収集・記録される前記測定データの時間的推移を実時間でグラフ表示する手段を備えたディスプレイとを備えてなることを特徴とするPC構造物のケーブルシース内へのグラウト注入装置。 When grout is injected into the cable sheath of the post tension type PC structure, a pressure pump is connected to the grout injection side of the cable sheath, and a vacuum pump is connected to the discharge side, and the pressure inside the cable sheath is sufficiently reduced by the vacuum pump. The grout injection device into the cable sheath of the PC structure including a vacuuming step of operating the pumping pump while operating the vacuum pump after that and filling the cable sheath with grout,
A pressure sensor for measuring grout injection pressure disposed between the pumping pump and the grout injection port of the cable sheath, a flow meter for measuring a flow rate per unit time of the injection grout, and an integrated injection over time An integrating flow meter for measuring the amount,
A negative pressure sensor disposed between the vacuum pump and the grout outlet of the cable sheath to measure the degree of vacuum in the cable sheath;
And an information management device that collects, records, and saves measurement data output from time to time from the pressure sensor, the negative pressure sensor, the flow meter, and the integrating flow meter;
Grouting into the cable sheath of the PC structure, characterized by comprising: a display having means for graphically displaying, in real time, a temporal transition of the measurement data collected and recorded in the information management device. apparatus.
前記圧送ポンプと前記ケーブルシースのグラウト注入口との間にグラウト注入圧力測定用の圧力センサと、注入グラウトの単位時間当たりの流量を測定する流量計及びその時間経過に伴う積算注入量を測定する積算流量計とを配設して、グラウトの注入圧力、注入グラウトの単位時間当たりの流量を測定し、またその時間経過に伴う積算注入量を測定し、
さらに、前記真空ポンプとケーブルシースのグラウト排出口との間にケーブルシース内の真空度を測定する負圧センサを配設して、ケーブルシース内の真空度を測定し、
そして前記圧力センサ、負圧センサ、流量計及び積算流量計から時々刻々出力される測定データを情報管理装置に収集・記録・保存することを特徴とするPC構造物のケーブルシース内へのグラウト注入工法。 When grout is injected into the cable sheath of the post tension type PC structure, a pressure pump is connected to the grout injection side of the cable sheath, and a vacuum pump is connected to the discharge side, and the pressure inside the cable sheath is sufficiently reduced by the vacuum pump. In the method of grout injection into the cable sheath of the PC structure, the method includes a vacuuming step of operating the pressure pump while operating the vacuum pump and filling the inside of the cable sheath with grout.
A pressure sensor for measuring grout injection pressure between the pumping pump and the grout inlet of the cable sheath, a flow meter for measuring a flow rate per unit time of the injection grout, and measuring an integrated injection amount with the passage of time. By installing an integrating flow meter, measuring the grout injection pressure, the flow rate of the grout per unit time, and measuring the integrated injection amount with the passage of time,
Further, a negative pressure sensor for measuring the degree of vacuum in the cable sheath is provided between the vacuum pump and the grout outlet of the cable sheath, and the degree of vacuum in the cable sheath is measured.
Grouting into the cable sheath of the PC structure characterized by collecting, recording and storing measurement data outputted from the pressure sensor, the negative pressure sensor, the flow meter and the integrating flow meter every moment in the information management device. Construction method.
前記圧送ポンプと前記ケーブルシースのグラウト注入口との間にグラウト注入圧力測定用の圧力センサと、注入グラウトの単位時間当たりの流量を測定する流量計及びその時間経過に伴う積算注入量を測定する積算流量計とを配設して、グラウト注入圧力、注入グラウトの単位時間当たりの流量を測定し、またその時間経過に伴う積算注入量を測定し、
さらに、前記真空ポンプとケーブルシースのグラウト排出口との間にケーブルシース内の真空度を測定する負圧センサを配設して、ケーブルシース内の真空度を測定し、
そして前記圧力センサ、留圧センサ、流量計及び積算流量計から時々刻々出力される測定データを情報管理装置に収集・記録・保存し、
前記情報管理装置に収集・記録・保存される前記測定データの時間的推移を実時間でディスプレイにグラフ表示することを特徴とするPC構造物のケーブルシース内へのグラウト注入工法。 When grout is injected into the cable sheath of the post tension type PC structure, a pressure pump is connected to the grout injection side of the cable sheath, and a vacuum pump is connected to the discharge side, and the pressure inside the cable sheath is sufficiently reduced by the vacuum pump. In the method of grout injection into the cable sheath of the PC structure, the method includes a vacuuming step of operating the pressure pump while operating the vacuum pump and filling the inside of the cable sheath with grout.
A pressure sensor for measuring grout injection pressure between the pumping pump and the grout inlet of the cable sheath, a flow meter for measuring a flow rate per unit time of the injection grout, and measuring an integrated injection amount with the passage of time. Arrange an integrating flow meter, measure the grout injection pressure, the flow rate of the grout per unit time, and measure the integrated injection amount with the passage of time,
Further, a negative pressure sensor for measuring the degree of vacuum in the cable sheath is provided between the vacuum pump and the grout outlet of the cable sheath, and the degree of vacuum in the cable sheath is measured.
And the pressure sensor, the pressure sensor, the flow meter and the measurement data output momentarily from the integrating flow meter is collected, recorded, and stored in the information management device,
A method for grouting a PC structure into a cable sheath, wherein a temporal transition of the measurement data collected, recorded, and stored in the information management device is graphically displayed on a display in real time.
The grout injection method according to any one of claims 6 to 11, wherein a high-density grout having a water-cement ratio of 0.28 to 0.38 is supplied to air in the cable sheath. A grout injection method into a cable sheath of a PC structure, wherein the grout is injected under the conditions of a suction negative pressure of -0.05 to -0.1 MPa and a grout injection pressure of 0.1 to 1.5 MPa.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003369703A JP2004263542A (en) | 2003-02-12 | 2003-10-29 | Device for injecting grout into cable sheath of pc structure and grout injection method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003034308 | 2003-02-12 | ||
JP2003369703A JP2004263542A (en) | 2003-02-12 | 2003-10-29 | Device for injecting grout into cable sheath of pc structure and grout injection method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004263542A true JP2004263542A (en) | 2004-09-24 |
Family
ID=33133909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003369703A Pending JP2004263542A (en) | 2003-02-12 | 2003-10-29 | Device for injecting grout into cable sheath of pc structure and grout injection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004263542A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100856066B1 (en) | 2008-03-18 | 2008-09-03 | 주식회사 동아지질 | Testing device for installing caisson |
CN100543233C (en) * | 2007-05-28 | 2009-09-23 | 中交第二公路工程局有限公司 | High-low pump combination hydraulic system |
CN102493359A (en) * | 2011-12-29 | 2012-06-13 | 重庆市科学技术研究院 | Device and method for vacuum anchor grouting of cable |
CN102561204A (en) * | 2012-03-08 | 2012-07-11 | 中铁二十一局集团有限公司 | Construction method for inserting super-long steel stranded wires before pouring of bridge body |
CN102704404A (en) * | 2012-06-15 | 2012-10-03 | 威胜利工程有限公司 | Vacuum assisted pressing injection technology for anchorage zone and device using technology |
CN102704403A (en) * | 2012-06-13 | 2012-10-03 | 湖南联智桥隧技术有限公司 | Prestressed mud jacking trolley and circulating mud jacking method |
CN103031809A (en) * | 2011-09-29 | 2013-04-10 | 李跃军 | Prestress hole channel grouting quality control method based on double parameters of flow and density |
CN103031810A (en) * | 2011-09-29 | 2013-04-10 | 李跃军 | Prestress hole channel grouting quality control method based on double parameters of flow and density |
CN103174088A (en) * | 2012-05-03 | 2013-06-26 | 赵幼达 | Bi-directional double-layer elevated channel |
CN103711315A (en) * | 2013-12-13 | 2014-04-09 | 柳州泰姆预应力机械有限公司 | Intelligent vacuum-cycle grouting system |
CN104074143A (en) * | 2014-07-17 | 2014-10-01 | 柳州市桥厦工程管材有限公司 | Intelligent circulating prestress mud jacking system and control method thereof |
CN104818850A (en) * | 2014-12-26 | 2015-08-05 | 柳州黔桥工程材料有限公司 | Intelligent multi-circulation mortar production and grouting system |
CN104878697A (en) * | 2015-06-03 | 2015-09-02 | 河北高达电子科技有限公司 | Grouting trolley |
CN105887683A (en) * | 2016-04-11 | 2016-08-24 | 长安大学 | Prestressed tensioning system |
CN108330848A (en) * | 2018-03-10 | 2018-07-27 | 林光琴 | A kind of bridge pavement repairing construction technology |
CN108385549A (en) * | 2018-03-25 | 2018-08-10 | 林光琴 | A kind of bridge pavement method for repairing and constructing |
CN109797655A (en) * | 2019-01-15 | 2019-05-24 | 包头市公路工程股份有限公司 | Bridge prestress intelligent tensioning mud jacking system construction engineering method |
CN111733707A (en) * | 2020-07-31 | 2020-10-02 | 陈宇豪 | Bridge prestressed duct grouting device and construction method |
CN112252088A (en) * | 2020-10-13 | 2021-01-22 | 中铁四院集团工程建设有限责任公司 | Method for remedying track settlement disease |
-
2003
- 2003-10-29 JP JP2003369703A patent/JP2004263542A/en active Pending
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100543233C (en) * | 2007-05-28 | 2009-09-23 | 中交第二公路工程局有限公司 | High-low pump combination hydraulic system |
KR100856066B1 (en) | 2008-03-18 | 2008-09-03 | 주식회사 동아지질 | Testing device for installing caisson |
CN103031809A (en) * | 2011-09-29 | 2013-04-10 | 李跃军 | Prestress hole channel grouting quality control method based on double parameters of flow and density |
CN103031810A (en) * | 2011-09-29 | 2013-04-10 | 李跃军 | Prestress hole channel grouting quality control method based on double parameters of flow and density |
CN102493359A (en) * | 2011-12-29 | 2012-06-13 | 重庆市科学技术研究院 | Device and method for vacuum anchor grouting of cable |
CN102493359B (en) * | 2011-12-29 | 2013-07-31 | 重庆市科学技术研究院 | Device and method for vacuum anchor grouting of cable |
CN102561204B (en) * | 2012-03-08 | 2014-02-12 | 中铁二十一局集团有限公司 | Construction method for inserting super-long steel stranded wires before pouring of bridge body |
CN102561204A (en) * | 2012-03-08 | 2012-07-11 | 中铁二十一局集团有限公司 | Construction method for inserting super-long steel stranded wires before pouring of bridge body |
CN103174088A (en) * | 2012-05-03 | 2013-06-26 | 赵幼达 | Bi-directional double-layer elevated channel |
CN102704403A (en) * | 2012-06-13 | 2012-10-03 | 湖南联智桥隧技术有限公司 | Prestressed mud jacking trolley and circulating mud jacking method |
CN102704404B (en) * | 2012-06-15 | 2014-06-18 | 威胜利工程有限公司 | Vacuum assisted pressing injection technology for anchorage zone and device using technology |
CN102704404A (en) * | 2012-06-15 | 2012-10-03 | 威胜利工程有限公司 | Vacuum assisted pressing injection technology for anchorage zone and device using technology |
CN103711315A (en) * | 2013-12-13 | 2014-04-09 | 柳州泰姆预应力机械有限公司 | Intelligent vacuum-cycle grouting system |
CN103711315B (en) * | 2013-12-13 | 2016-08-24 | 柳州泰姆预应力机械有限公司 | Intelligent vacuum circulation mud jacking system |
CN104074143A (en) * | 2014-07-17 | 2014-10-01 | 柳州市桥厦工程管材有限公司 | Intelligent circulating prestress mud jacking system and control method thereof |
CN104818850B (en) * | 2014-12-26 | 2017-03-29 | 柳州黔桥工程材料有限公司 | Intelligent multi cycle slurrying mud jacking system |
CN104818850A (en) * | 2014-12-26 | 2015-08-05 | 柳州黔桥工程材料有限公司 | Intelligent multi-circulation mortar production and grouting system |
CN104878697A (en) * | 2015-06-03 | 2015-09-02 | 河北高达电子科技有限公司 | Grouting trolley |
CN104878697B (en) * | 2015-06-03 | 2016-10-26 | 河北高达电子科技有限公司 | A kind of squeezing trolley |
CN105887683A (en) * | 2016-04-11 | 2016-08-24 | 长安大学 | Prestressed tensioning system |
CN108330848A (en) * | 2018-03-10 | 2018-07-27 | 林光琴 | A kind of bridge pavement repairing construction technology |
CN108330848B (en) * | 2018-03-10 | 2019-05-31 | 青海省恒立公路勘测设计有限公司 | A kind of bridge pavement repairing construction technology |
CN108385549A (en) * | 2018-03-25 | 2018-08-10 | 林光琴 | A kind of bridge pavement method for repairing and constructing |
CN109797655A (en) * | 2019-01-15 | 2019-05-24 | 包头市公路工程股份有限公司 | Bridge prestress intelligent tensioning mud jacking system construction engineering method |
CN109797655B (en) * | 2019-01-15 | 2020-11-03 | 包头市公路工程股份有限公司 | Construction method of intelligent bridge prestress tensioning and grouting system |
CN111733707A (en) * | 2020-07-31 | 2020-10-02 | 陈宇豪 | Bridge prestressed duct grouting device and construction method |
CN112252088A (en) * | 2020-10-13 | 2021-01-22 | 中铁四院集团工程建设有限责任公司 | Method for remedying track settlement disease |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004263542A (en) | Device for injecting grout into cable sheath of pc structure and grout injection method | |
JP2006028938A (en) | Grout injection control/management device into cable sheath or duct of pc structure, and injection control/management system | |
JP2005264574A (en) | Construction method for injecting grout into cable sheath of post-tensioned pc structure | |
JP2011021463A (en) | Injection method for pc grout | |
JP2005133397A (en) | Device and construction method for injecting grout into cable sheath of pc structure | |
WO2007049360A1 (en) | Device for controlling/managing injection of grout into cable sheath or duct of pc structure and injection controlling/managing system | |
KR101876420B1 (en) | System for filling repair grout of psc (pre stressed concrete) bridge, and method for the same | |
JP4991984B2 (en) | Grout filling method in sheath for inserting PC tension material in vertical direction | |
JP2020056291A (en) | Repair method and injection plug | |
CN108558253A (en) | A kind of self-repair concrete structure and preparation method thereof having self sensing capability | |
JP2008285950A (en) | Grouting method into prestressed concrete tendon insertion sheath in prestressed concrete structure | |
JP4927913B2 (en) | Grout material with thixotropic properties | |
JP5334379B2 (en) | Hollow steel pipe reinforcement method for power transmission tower | |
JP2002309777A (en) | Method and device for injecting and filling grout to pc structure, and duct for confirming grout injection | |
KR101503816B1 (en) | Vacuum grouting method for filling post-tensioned concrete grout in sheath tube of post-tensioned bridge | |
Nieuwoudt | Quantifying the cracking behaviour of strain hardening cement-based composites | |
JP6025097B2 (en) | Grout refill hose coupling device | |
WO2016050979A1 (en) | Tendons grouting with recirculation | |
KR102043390B1 (en) | System for detecting grouting defection of psc (pre stressed concrete) bridge using power shutdown apparatus, and method for the same | |
JP5579031B2 (en) | Crack repair method for concrete structure and concrete structure | |
JP2005240442A (en) | Hole plugging method for through hole of building | |
JP3833112B2 (en) | Grout equipment and grout filling method | |
CN212340622U (en) | Detachable grouting sleeve for test | |
JP2011052492A (en) | Apparatus and method for filling core hole | |
CN107620387B (en) | Method for detecting internal defects of connecting sleeve of assembly type building component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061016 |
|
A977 | Report on retrieval |
Effective date: 20090123 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090204 |
|
A02 | Decision of refusal |
Effective date: 20090610 Free format text: JAPANESE INTERMEDIATE CODE: A02 |