JP2004260227A - Light receiving element and light receiving device - Google Patents

Light receiving element and light receiving device Download PDF

Info

Publication number
JP2004260227A
JP2004260227A JP2004181473A JP2004181473A JP2004260227A JP 2004260227 A JP2004260227 A JP 2004260227A JP 2004181473 A JP2004181473 A JP 2004181473A JP 2004181473 A JP2004181473 A JP 2004181473A JP 2004260227 A JP2004260227 A JP 2004260227A
Authority
JP
Japan
Prior art keywords
concentration layer
type high
light receiving
semiconductor substrate
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004181473A
Other languages
Japanese (ja)
Inventor
Susumu Nishimura
晋 西村
Takashi Yumoto
隆司 油本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP2004181473A priority Critical patent/JP2004260227A/en
Publication of JP2004260227A publication Critical patent/JP2004260227A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that carriers generated from other than a P type heavily doped layer contribute, as a photocurrent, to diffusion and thus deteriorate the response. <P>SOLUTION: On the periphery of a first P type heavily doped layer 2 constituting the light receiving surface of a semiconductor substrate, a second P type heavily doped layer 6 is formed separately from the first P type heavily doped layer 2. On the insulation coating 7 formed on the surface of the semiconductor substrate 1, a first electrode 82 connected with the first P type heavily doped layer 2 through a through hole and a second electrode 83 connected with the second P type heavily doped layer 6 are provided so that an independent bias voltage can be applied between the second P type heavily doped layer 6 and an N type heavily doped layer 11. When an independent bias voltage is applied between the second P type heavily doped layer 6 and the N type heavily doped layer 11, undesired carriers generated from other than the light receiving area can be taken out separately from the signal and the effect of undesired carriers can be suppressed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は光センサーに好適な受光装置に関する。   The present invention relates to a light receiving device suitable for an optical sensor.

従来より赤外線リモコンや短距離光通信の受信部を構成する光センサーに用いられる受光装置においては、例えば特許文献1に示されるように、電磁ノイズの影響を受けやすい。そこで受光素子の前方に、金属メッシュや導電性フィルムを配置してグランド電位に接続し、あるいは受光素子の表面に透明電極等で電磁シールドを施して、金属ケースに収納したり樹脂モールドを行っていた。   2. Description of the Related Art Conventionally, a light receiving device used in an infrared remote controller or an optical sensor constituting a receiving unit for short-range optical communication is susceptible to electromagnetic noise, for example, as shown in Patent Document 1. Therefore, a metal mesh or conductive film is placed in front of the light receiving element and connected to ground potential, or the surface of the light receiving element is electromagnetically shielded with a transparent electrode or the like, and is housed in a metal case or resin molded. Was.

一方、受光素子部分と受光信号処理回路をモノリシック素子として組み込む場合、特許文献2などに示されるように、受光信号処理回路のゲートやソースを形成するときに、同時に受光素子部分の表面に高濃度層を形成し、この高濃度層で配線と同時にシールドをさせようとするものがある。
実公平5−36181号公報 特公平7−120761号公報
On the other hand, when the light receiving element portion and the light receiving signal processing circuit are incorporated as a monolithic element, as described in Patent Document 2, when forming the gate and the source of the light receiving signal processing circuit, the high density In some cases, a layer is formed and this high-concentration layer attempts to shield simultaneously with wiring.
Japanese Utility Model Publication No. 5-36181 Japanese Patent Publication No. 7-120761

しかしながら、受光素子組立て体の中に電磁シールドを埋め込むものはメッシュやフィルムの位置ずれ防止や配線などが煩雑で、生産歩留まりが低くなる。また素子表面に透明電極等を設けると、そのシールド用電極と素子表面の間でコンデンサーを形成してしまい、電気容量の増大となって、受信感度が低下し、光通信にあっては通信可能到達距離が著しく短くなるという不都合がある。   However, in the case where the electromagnetic shield is embedded in the light receiving element assembly, prevention of misalignment of the mesh and the film and wiring are complicated, and the production yield is reduced. If a transparent electrode or the like is provided on the element surface, a capacitor will be formed between the shield electrode and the element surface, increasing the electric capacity, reducing the receiving sensitivity and enabling communication in optical communication. There is an inconvenience that the arrival distance is significantly shortened.

一方、受光素子部分と受光信号処理回路をモノリシックに組み込む場合、受光素子に求められる光電気特性に対応する層の深さや不純物濃度と、回路部分に求められるドーパントや不純物濃度が異なり、あるいはこれら受光素子部分と回路部分の間のマッチングが取れなくなる。従って、シールド層を配線等に利用することは可能であるが、光信号の減衰やS/N比低下を生じることとなった。更にこのような回路付モノリシック受光素子は、製造プロセスが回路部分に制約されるので、受光素子としての高速応答性が得られず、特にPiNホトダイオードは製造できなかった。   On the other hand, when the light receiving element portion and the light receiving signal processing circuit are monolithically incorporated, the depth and impurity concentration of the layer corresponding to the photoelectric characteristics required for the light receiving element are different from the dopant and impurity concentration required for the circuit portion. Matching between the element part and the circuit part cannot be obtained. Therefore, it is possible to use the shield layer for wiring or the like, but the optical signal is attenuated and the S / N ratio is reduced. Further, such a monolithic photodetector with a circuit cannot be manufactured at a high speed as a photodetector because a manufacturing process is restricted to a circuit portion. In particular, a PiN photodiode cannot be manufactured.

本発明の受光素子は請求項1に記載のように、受光面を構成するように半導体基板の表面に形成された第1のP型高濃度層と、前記半導体基板の表面の前記第1のP型高濃度層の周辺に前記第1のP型高濃度層と離れて形成された第2のP型高濃度層と、前記半導体基板の裏面に形成されたN型高濃度層と、前記半導体基板の表面に形成された絶縁被膜と、前記絶縁被膜に設けられた透孔を介して前記第1のP型高濃度層に接続された第1の電極と、前記絶縁被膜に設けられた透孔を介して前記第2のP型高濃度層に接続された第2の電極とを有したことを特徴とする。   The light-receiving element of the present invention, as described in claim 1, a first P-type high-concentration layer formed on the surface of the semiconductor substrate to constitute a light-receiving surface, the first of the surface of the semiconductor substrate A second P-type high-concentration layer formed around the P-type high-concentration layer and separated from the first P-type high-concentration layer; an N-type high-concentration layer formed on the back surface of the semiconductor substrate; An insulating coating formed on the surface of the semiconductor substrate, a first electrode connected to the first P-type high concentration layer through a through hole provided in the insulating coating, and an insulating coating provided on the insulating coating. A second electrode connected to the second P-type high concentration layer through a through hole.

本発明の受光装置は請求項2に記載のように、受光素子とこれを載置するフレームとを有した受光装置において、前記受光素子は、受光面を構成するように半導体基板の表面に形成された第1のP型高濃度層と、前記半導体基板の表面の前記第1のP型高濃度層の周辺に前記第1のP型高濃度層と離れて形成された第2のP型高濃度層と、前記半導体基板の裏面に形成されたN型高濃度層と、前記半導体基板の表面に形成された絶縁被膜と、前記絶縁被膜に設けられた透孔を介して前記第1のP型高濃度層に接続された第1の電極と、前記絶縁被膜に設けられた透孔を介して前記第2のP型高濃度層に接続された第2の電極とを有し、前記半導体基板の裏面と前記第1のP型高濃度層との間、及び前記半導体基板の裏面と前記第2のP型高濃度層との間に同じ電圧を印加することを特徴とする。   According to a second aspect of the present invention, there is provided a light receiving device having a light receiving element and a frame on which the light receiving element is mounted, wherein the light receiving element is formed on a surface of a semiconductor substrate so as to constitute a light receiving surface. A first P-type high-concentration layer, and a second P-type high-concentration layer formed around the first P-type high-concentration layer on the surface of the semiconductor substrate and separated from the first P-type high-concentration layer. A high-concentration layer, an N-type high-concentration layer formed on the back surface of the semiconductor substrate, an insulating coating formed on the front surface of the semiconductor substrate, and the first through a hole provided in the insulating coating. A first electrode connected to the P-type high-concentration layer, and a second electrode connected to the second P-type high-concentration layer via a through-hole provided in the insulating film; Between the back surface of the semiconductor substrate and the first P-type high concentration layer, and between the back surface of the semiconductor substrate and the second P-type high concentration layer. To and applying the same voltage.

本発明の受光装置は請求項3に記載のように、受光素子とこれを載置するフレームとを有した受光装置において、前記受光素子は、受光面を構成するように半導体基板の表面に形成された第1のP型高濃度層と、前記半導体基板の表面の前記第1のP型高濃度層の周辺に前記第1のP型高濃度層と離れて形成された第2のP型高濃度層と、前記半導体基板の裏面に形成されたN型高濃度層と、前記半導体基板の表面に形成された絶縁被膜と、前記絶縁被膜に設けられた透孔を介して前記第1のP型高濃度層に接続された第1の電極と、前記絶縁被膜に設けられた透孔を介して前記第2のP型高濃度層に接続された第2の電極とを有し、前記半導体基板の裏面と前記第1のP型高濃度層との間に光出力を得るための電圧印可を行い、前記半導体基板の裏面と前記第2のP型高濃度層との間に別途バイアス電圧を印加することを特徴とする。   According to a third aspect of the present invention, there is provided a light receiving device having a light receiving element and a frame on which the light receiving element is mounted, wherein the light receiving element is formed on a surface of a semiconductor substrate so as to constitute a light receiving surface. A first P-type high-concentration layer, and a second P-type high-concentration layer formed around the first P-type high-concentration layer on the surface of the semiconductor substrate and separated from the first P-type high-concentration layer. A high-concentration layer, an N-type high-concentration layer formed on the back surface of the semiconductor substrate, an insulating coating formed on the front surface of the semiconductor substrate, and the first through a hole provided in the insulating coating. A first electrode connected to the P-type high-concentration layer, and a second electrode connected to the second P-type high-concentration layer via a through-hole provided in the insulating film; A voltage is applied between the back surface of the semiconductor substrate and the first P-type high concentration layer to obtain an optical output, and the back surface of the semiconductor substrate is And applying a separate bias voltage between said second P-type high-concentration layer and.

波形なまりがきわめて少なくなった。相対感度が鋭敏になった。   Waveform rounding has become extremely small. The relative sensitivity became sharper.

図1は、本発明実施例の受光装置の側面断面図aと平面図bである。図において、1は半導体基板で、例えば光吸収層を成すように不純物濃度が4×1012cm-3以下の低不純物濃度のN型シリコン基板を用いる。特に赤外光に感度を高くし、高速応答を得るためには、空乏層の広がりも考慮して、基板は500Ω/cm以上である事が好ましい。また半導体基板1の導電型は、受光素子の出力を得る集積回路と同じフレームを用いる為に裏面の導電型と電流印加手段に制限を受けるが、他方基板自体がノイズを拾い易いか否かの特性、表面に有効な電磁シールド層を設け易いかどうかで定める。 FIG. 1 is a side sectional view a and a plan view b of a light receiving device according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a semiconductor substrate, for example, an N-type silicon substrate having a low impurity concentration of 4 × 10 12 cm −3 or less so as to form a light absorption layer. In particular, in order to increase the sensitivity to infrared light and obtain a high-speed response, it is preferable that the substrate has a resistance of 500 Ω / cm or more in consideration of the expansion of the depletion layer. In addition, the conductivity type of the semiconductor substrate 1 is limited by the conductivity type on the back surface and the current applying means in order to use the same frame as the integrated circuit that obtains the output of the light receiving element. It is determined by the characteristics and whether it is easy to provide an effective electromagnetic shield layer on the surface.

2は、その半導体基板1の表面に設けられたP型高濃度層(P+層)で、受光面を構成している。このP型高濃度層(P+層)は、例えば深さ1乃至2μmにホウ素(B)を拡散してシート抵抗20Ω/□として構成している。光感度を得るためには、このP型高濃度層の表面積は広い方がよく、シート抵抗値は10kΩ/□以下がよい。そしてこのP型高濃度層(P+層)を電磁シールド層として用いるために、この層は50Ω/cm以下であることが最も好ましい。3は、そのP型高濃度層2を周囲に設けられたN型高濃度層(N+層)で、電気的に高ゲインを有する層であり、半導体基板1の表面にP型高濃度層2を包囲するように設けられる。従ってこのN型高濃度層3は、表面から観察した形状はロ字状を成し、深さ1乃至2μmに燐(P)を不純物濃度1×1020cm-3程度に拡散して構成している。このN型高濃度層3は、不所望の光に対する感度を低減するとともに、n型の電極を取り出すために設けたものである。 Reference numeral 2 denotes a P-type high concentration layer (P + layer) provided on the surface of the semiconductor substrate 1 and constitutes a light receiving surface. The P-type high-concentration layer (P + layer) has a sheet resistance of 20Ω / □ by diffusing boron (B) to a depth of 1 to 2 μm, for example. In order to obtain photosensitivity, the surface area of the P-type high-concentration layer is preferably large, and the sheet resistance is preferably 10 kΩ / □ or less. In order to use this P-type high-concentration layer (P + layer) as an electromagnetic shielding layer, it is most preferable that this layer has a resistance of 50 Ω / cm or less. Reference numeral 3 denotes an N-type high-concentration layer (N + layer) provided around the P-type high-concentration layer 2, which is a layer having an electrically high gain. Is provided so as to surround the. Therefore, the N-type high concentration layer 3 has a rectangular shape when viewed from the surface, and is formed by diffusing phosphorus (P) to a depth of 1 to 2 μm to an impurity concentration of about 1 × 10 20 cm −3. ing. The N-type high-concentration layer 3 is provided for reducing sensitivity to undesired light and extracting an n-type electrode.

この半導体の表面には、表面保護と反射防止のために二酸化ケイ素(SiO2)等からなる絶縁被膜7が設けられている。そして、この絶縁膜7の上にはアルミニウムからなる電極81、82が設けられ、絶縁膜7に設けられた透孔を介して各層とオーミック接触が取られている。なお、P型高濃度層2に接続されている電極82は、素子表面の外周に沿って、N型高濃度層3の表面上方を覆う様に、略ロ字状に設けられている。 An insulating film 7 made of silicon dioxide (SiO 2 ) or the like is provided on the surface of the semiconductor for protecting the surface and preventing reflection. Then, electrodes 81 and 82 made of aluminum are provided on the insulating film 7, and are in ohmic contact with the respective layers via through holes provided in the insulating film 7. The electrode 82 connected to the P-type high-concentration layer 2 is provided in a substantially rectangular shape along the outer periphery of the element surface so as to cover the upper surface of the N-type high-concentration layer 3.

以上の説明が受光素子に関する部分であり、PiNホトダイオードを構成している。受光素子とその受光素子の信号を受ける集積回路素子90は、フレームに載置され、配線手段91、92で配線される。   The above description relates to the light receiving element, and constitutes a PiN photodiode. The light receiving element and the integrated circuit element 90 receiving the signal of the light receiving element are mounted on a frame and wired by wiring means 91 and 92.

4は銅、鉄、アルミニウム若しくはこれらの合金からなるフレームで、必要に応じて錫メッキなどが施されており、受光素子の載置部には凹部41を有している。この例では受光素子の載置部近傍に受光素子の側面と対向するような導電性壁を有する様に、凹部41の深さを受光素子の高さとほぼ同じに設けてある。5は、フレーム4の載置部に受光素子の底面を固着する絶縁性の接着剤である。P型高濃度層(P+層)2をシールド層とし、受光素子をシールドで覆う様に構成するため、両者をワイヤボンド線などの配線手段92で接続する。   Reference numeral 4 denotes a frame made of copper, iron, aluminum, or an alloy thereof, which is subjected to tin plating or the like as necessary, and has a concave portion 41 in a mounting portion of the light receiving element. In this example, the depth of the concave portion 41 is provided to be substantially the same as the height of the light receiving element so as to have a conductive wall near the mounting portion of the light receiving element so as to face the side surface of the light receiving element. Reference numeral 5 denotes an insulating adhesive for fixing the bottom surface of the light receiving element to the mounting portion of the frame 4. Since the P-type high-concentration layer (P + layer) 2 is used as a shield layer and the light receiving element is covered with a shield, both are connected by a wiring means 92 such as a wire bond line.

このように構成することによって、製造においては金属ネットなどは必要とせず、組立て容易であり、表面電極により不所望に要領の大きいコンデンサは形成されず、到達距離と雑音発生距離を測定した結果、良好な結果が得られた。ここに到達距離とは、一定の光出力のリモコンを用い、準備した受光装置をユニットにしてセットしたテレビ装置が、リモコンの信号を受け付けて正常に動作する最大離隔距離のことで、10cm単位で測定した。また雑音発生距離とは、準備した受光装置に電源を与えて出力をモニターできる状態のユニットとし、テレビ装置とインバータ螢光灯のノイズを発生する家庭用機器に順次近接させ、出力に雑音成分が現れたときの機器と受光素子ユニットの距離をいう。   By configuring in this way, metal nets and the like are not required in the manufacture, assembly is easy, and a capacitor having an undesirably large capacity is not formed by the surface electrode, and as a result of measuring the reach distance and the noise generation distance, Good results were obtained. Here, the reach distance is the maximum separation distance at which a television set in which a prepared light receiving device is used as a unit and which receives a signal from the remote control and operates normally using a remote controller having a constant light output. It was measured. In addition, the noise generation distance is a unit that can supply power to the prepared light receiving device and monitor the output.It is placed in close proximity to the TV device and household equipment that generates noise from the inverter fluorescent lamp, and the noise component is included in the output. The distance between the device and the light receiving element unit when it appears.

光特性について具体的に説明する。受光素子ユニットは、受光素子の上に金属ネットを配置したいわゆる従来の受光素子ユニットAと、上述した実施例のうちフレーム4に凹部を持たないで受光素子側面がフレームから露出した受光素子ユニットBと、上述した実施例通りの受光素子ユニットCで比較した。1ロット50個のテレビ用リモコンセットの受光素子ユニット5ロットずつにおいて、到達距離と雑音発生距離を測定した。到達距離は、従来のAが最も遠く、最大のもので9mであり、B、Cはほとんど同じで、5ロット平均は5.4m、5.6mであった。それに対して、雑音発生距離は、従来のAと本発明実施例のCが共に0mmであり、Bは4〜25mmであった。従って、ユニットBを従来と比較すると組立て工程・歩留まりが良好な上実用上問題がなく、本発明実施例のユニットCにおいては、製造上も有利なだけでなく、光特性上もきわめて優れたものと言える。   The optical characteristics will be specifically described. The light receiving element unit includes a so-called conventional light receiving element unit A in which a metal net is arranged on the light receiving element, and a light receiving element unit B of the above-described embodiment in which the frame 4 has no concave portion and the side of the light receiving element is exposed from the frame. And light receiving element unit C according to the above-described embodiment. The reach distance and the noise generation distance were measured for 5 lots of the light receiving element units of the TV remote control set of 50 lots per lot. The reaching distance of the conventional A was 9 m at the longest and the maximum was the same, B and C were almost the same, and the average of 5 lots was 5.4 m and 5.6 m. On the other hand, the noise generation distance was 0 mm for both the conventional A and the C of the embodiment of the present invention, and B was 4 to 25 mm. Therefore, as compared with the conventional unit B, the assembling process and yield are good and there is no practical problem. The unit C according to the embodiment of the present invention is not only advantageous in manufacturing but also extremely excellent in optical characteristics. It can be said.

更にP型高濃度層2は受光面を形成するものであるが、P型高濃度層以外からの生成キャリアが拡散により光電流として寄与してしまい、応答性が悪くなる。例えば矩形波の光信号が入射した場合、受光部で生成したキャリアによる光電流波形は光信号に追従した形となるが、受光部以外で生成されたキャリアは、拡散により光電流として寄与するため、拡散速度分、入射光信号に対して遅れることとなる。従って受光素子の出力としては、入射光信号の立ち上がりに対しては追従するものの、立ち下がりに対しては波形なまりが生じる。さらに受光面の周辺の遮光性電極との境界では遮光できない部分が広がり、漏れ電流が発生することがあった。   Further, the P-type high-concentration layer 2 forms a light receiving surface. However, carriers generated from portions other than the P-type high-concentration layer contribute as photocurrent due to diffusion, resulting in poor responsiveness. For example, when a rectangular wave optical signal is incident, the photocurrent waveform due to the carrier generated in the light receiving unit follows the optical signal, but the carrier generated in other than the light receiving unit contributes as a photocurrent by diffusion. , The diffusion speed is delayed with respect to the incident light signal. Therefore, although the output of the light receiving element follows the rising of the incident light signal, the waveform is rounded at the falling. Further, a portion that cannot be shielded at the boundary between the light-receiving surface and the light-shielding electrode expands, and a leakage current may occur.

そこで図2aに示すように、先の例と同程度の不純物濃度の低いN型の半導体基板1の表面にP型高濃度層2を設けるとともに、裏面に基板と同導電型の高濃度層11を形成する。そしてP型高濃度層(P+層)2の周辺にP型高濃度層2と離れて別のP型高濃度層(P+層)6を設ける。さらに、その周囲に設けたP型高濃度層6の上方を、遮光性の電極83で覆う。保護膜7は先の実施例と同様であるが、フレーム4には導電性の接着剤51を用いる。そして、半導体基板1の裏面と受光部であるP型高濃度層2の間に所定の電圧を印加し、さらに半導体基板1のの裏面と周辺のP型高濃度層6の間に同じ電圧を印加する。これらの電圧印加は、受光部であるP型高濃度層2の電圧印加は光出力を得るためのものであるから、別途P型高濃度層6にバイアス印加するのが好ましい。   Therefore, as shown in FIG. 2A, a P-type high-concentration layer 2 is provided on the surface of an N-type semiconductor substrate 1 having the same low impurity concentration as the previous example, and a high-concentration layer 11 of the same conductivity type as the substrate is provided on the back surface. To form Then, another P-type high concentration layer (P + layer) 6 is provided around the P-type high concentration layer (P + layer) 2 separately from the P-type high concentration layer 2. Further, the upper part of the P-type high concentration layer 6 provided therearound is covered with a light-shielding electrode 83. The protective film 7 is the same as in the previous embodiment, but a conductive adhesive 51 is used for the frame 4. Then, a predetermined voltage is applied between the back surface of the semiconductor substrate 1 and the P-type high-concentration layer 2 which is a light receiving portion, and the same voltage is applied between the back surface of the semiconductor substrate 1 and the peripheral P-type high-concentration layer 6. Apply. It is preferable to separately apply a bias to the P-type high-concentration layer 6 because the voltage application to the P-type high-concentration layer 2 as a light receiving unit is for obtaining an optical output.

このようにすることで、例えば矩形波の光信号が入射した場合、受光素子の出力としては、入射光信号の立ち上がりに対しては追従し、立ち下がりに対しても波形なまりがきわめて少なくなった。また、図2bに示すように、受光素子の表面位置において、遮光電極の下側における感度がシャープとなり、従来破線のように広がっていた相対感度が、実線で示す特性のように受光領域で鋭敏となり、応答特性も光入力の強さによく追従した。また受光素子の載置部近傍に受光素子の側面と対向するように設けられたフレーム4の導電性壁は低くてもよい。   By doing so, for example, when a rectangular wave optical signal is incident, the output of the light receiving element follows the rising edge of the incident optical signal, and the rounding of the waveform is extremely reduced even at the falling edge. . In addition, as shown in FIG. 2B, at the surface position of the light receiving element, the sensitivity under the light-shielding electrode becomes sharp, and the relative sensitivity, which has conventionally spread as indicated by the broken line, is sharper in the light receiving region as indicated by the solid line. , And the response characteristics well followed the intensity of the light input. The conductive wall of the frame 4 provided near the mounting portion of the light receiving element so as to face the side surface of the light receiving element may be low.

以上の如く、受光面を電磁シールドとし、側面を金属フレームで覆ったので、生産性がよく、ノイズに強く、高速で高光感度の受光素子が得られた。   As described above, since the light receiving surface is an electromagnetic shield and the side surface is covered with the metal frame, a light receiving element with good productivity, strong noise, high speed and high light sensitivity is obtained.

赤外線リモコンや短距離光通信の受信部を構成する光センサーに利用することができる。   It can be used as an infrared remote control or an optical sensor that constitutes a receiving unit for short-range optical communication.

他の実施例の受光素子の側面断面図aと平面図bである。It is side sectional drawing a of the light receiving element of other Example, and top view b. 本発明実施例の受光素子の側面断面図aと特性図bである。FIG. 3 is a side sectional view a and a characteristic diagram b of the light receiving element of the embodiment of the present invention.

符号の説明Explanation of reference numerals

1半導体基板
2 P型高濃度層(P+層)
3 N型高濃度層
4 フレーム
5 接着剤
1 semiconductor substrate 2 P-type high concentration layer (P + layer)
3 N-type high concentration layer 4 Frame 5 Adhesive

Claims (3)

受光面を構成するように半導体基板の表面に形成された第1のP型高濃度層と、前記半導体基板の表面の前記第1のP型高濃度層の周辺に前記第1のP型高濃度層と離れて形成された第2のP型高濃度層と、前記半導体基板の裏面に形成されたN型高濃度層と、前記半導体基板の表面に形成された絶縁被膜と、前記絶縁被膜に設けられた透孔を介して前記第1のP型高濃度層に接続された第1の電極と、前記絶縁被膜に設けられた透孔を介して前記第2のP型高濃度層に接続された第2の電極とを有したことを特徴とする受光素子。   A first P-type high concentration layer formed on the surface of the semiconductor substrate so as to constitute a light receiving surface; and a first P-type high concentration layer around the first P-type high concentration layer on the surface of the semiconductor substrate. A second P-type high-concentration layer formed apart from the concentration layer; an N-type high-concentration layer formed on the back surface of the semiconductor substrate; an insulating film formed on the surface of the semiconductor substrate; A first electrode connected to the first P-type high-concentration layer through a through-hole provided in the second P-type high-concentration layer through a through-hole in the insulating film; A light-receiving element having a second electrode connected thereto. 受光素子とこれを載置するフレームとを有した受光装置において、前記受光素子は、受光面を構成するように半導体基板の表面に形成された第1のP型高濃度層と、前記半導体基板の表面の前記第1のP型高濃度層の周辺に前記第1のP型高濃度層と離れて形成された第2のP型高濃度層と、前記半導体基板の裏面に形成されたN型高濃度層と、前記半導体基板の表面に形成された絶縁被膜と、前記絶縁被膜に設けられた透孔を介して前記第1のP型高濃度層に接続された第1の電極と、前記絶縁被膜に設けられた透孔を介して前記第2のP型高濃度層に接続された第2の電極とを有し、前記半導体基板の裏面と前記第1のP型高濃度層との間、及び前記半導体基板の裏面と前記第2のP型高濃度層との間に同じ電圧を印加することを特徴とする受光装置。   In a light receiving device having a light receiving element and a frame on which the light receiving element is mounted, the light receiving element includes a first P-type high concentration layer formed on a surface of a semiconductor substrate so as to constitute a light receiving surface; A second P-type high-concentration layer formed on the surface of the first P-type high-concentration layer around the first P-type high-concentration layer; and an N-type high-concentration layer formed on the back surface of the semiconductor substrate. A high-concentration layer, an insulating coating formed on the surface of the semiconductor substrate, a first electrode connected to the first P-type high-concentration layer through a hole provided in the insulating coating, A second electrode connected to the second P-type high-concentration layer through a through-hole provided in the insulating film; and a back surface of the semiconductor substrate and the first P-type high-concentration layer. And the same voltage is applied between the back surface of the semiconductor substrate and the second P-type high concentration layer. Location. 受光素子とこれを載置するフレームとを有した受光装置において、前記受光素子は、受光面を構成するように半導体基板の表面に形成された第1のP型高濃度層と、前記半導体基板の表面の前記第1のP型高濃度層の周辺に前記第1のP型高濃度層と離れて形成された第2のP型高濃度層と、前記半導体基板の裏面に形成されたN型高濃度層と、前記半導体基板の表面に形成された絶縁被膜と、前記絶縁被膜に設けられた透孔を介して前記第1のP型高濃度層に接続された第1の電極と、前記絶縁被膜に設けられた透孔を介して前記第2のP型高濃度層に接続された第2の電極とを有し、前記半導体基板の裏面と前記第1のP型高濃度層との間に光出力を得るための電圧印可を行い、前記半導体基板の裏面と前記第2のP型高濃度層との間に別途バイアス電圧を印加することを特徴とする受光装置。   In a light receiving device having a light receiving element and a frame on which the light receiving element is mounted, the light receiving element includes a first P-type high concentration layer formed on a surface of a semiconductor substrate so as to constitute a light receiving surface; A second P-type high-concentration layer formed on the surface of the first P-type high-concentration layer around the first P-type high-concentration layer; and an N-type high-concentration layer formed on the back surface of the semiconductor substrate. A high-concentration layer, an insulating coating formed on the surface of the semiconductor substrate, a first electrode connected to the first P-type high-concentration layer through a hole provided in the insulating coating, A second electrode connected to the second P-type high-concentration layer through a through-hole provided in the insulating film; and a back surface of the semiconductor substrate and the first P-type high-concentration layer. A voltage is applied to obtain an optical output between the second P-type high-concentration layer and the back surface of the semiconductor substrate. Receiving apparatus characterized by applying a scan voltage.
JP2004181473A 2004-06-18 2004-06-18 Light receiving element and light receiving device Pending JP2004260227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004181473A JP2004260227A (en) 2004-06-18 2004-06-18 Light receiving element and light receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004181473A JP2004260227A (en) 2004-06-18 2004-06-18 Light receiving element and light receiving device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1996194985A Division JP3609544B6 (en) 1996-07-24 Receiver

Publications (1)

Publication Number Publication Date
JP2004260227A true JP2004260227A (en) 2004-09-16

Family

ID=33128816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004181473A Pending JP2004260227A (en) 2004-06-18 2004-06-18 Light receiving element and light receiving device

Country Status (1)

Country Link
JP (1) JP2004260227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053415A (en) * 2013-09-09 2015-03-19 株式会社東芝 Photodiode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053415A (en) * 2013-09-09 2015-03-19 株式会社東芝 Photodiode

Similar Documents

Publication Publication Date Title
JP5249994B2 (en) Semiconductor light detecting element and semiconductor device
US4318115A (en) Dual junction photoelectric semiconductor device
US20040061152A1 (en) Semiconductor photosensor device
JP2004260227A (en) Light receiving element and light receiving device
JP3609544B6 (en) Receiver
JP3609544B2 (en) Receiver
US6989522B2 (en) Light-receiving module and light-receiving device having malfunction preventing structure
JP2001358357A (en) Semiconductor light receiving unit
JP6988103B2 (en) Manufacturing method of semiconductor devices, semiconductor devices
JP3696177B2 (en) Light receiving module for optical remote control
JP3594418B2 (en) Light receiving element
JP3497977B2 (en) Light receiving element and optical coupling device using the same
JP3594418B6 (en) Light receiving element
JP2002217448A (en) Semiconductor light illuminance sensor
JP3696094B2 (en) Light receiving module
JP3516342B2 (en) Light receiving module for optical remote control
JP3696178B2 (en) Light receiving module for optical remote control
JP3177287B2 (en) Light receiving module
JP3583815B2 (en) Light receiving element
JP4036850B2 (en) Receiver module
JP3831639B2 (en) Light receiving element and light receiving module
JPH0222872A (en) Optical sensor device
JP3986267B2 (en) Light receiving element and light receiving device
JP2004055743A (en) Photodetector and photodetector module
JPS63204645A (en) Photodetector and optoelectronic device having such photodetector built-in

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040622

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127