JP2004259619A - Flexible flat cable sheathed with shield material and manufacturing method thereof - Google Patents

Flexible flat cable sheathed with shield material and manufacturing method thereof Download PDF

Info

Publication number
JP2004259619A
JP2004259619A JP2003049741A JP2003049741A JP2004259619A JP 2004259619 A JP2004259619 A JP 2004259619A JP 2003049741 A JP2003049741 A JP 2003049741A JP 2003049741 A JP2003049741 A JP 2003049741A JP 2004259619 A JP2004259619 A JP 2004259619A
Authority
JP
Japan
Prior art keywords
shield
metal
ffc
flat cable
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003049741A
Other languages
Japanese (ja)
Other versions
JP4095469B2 (en
Inventor
Toru Washimi
亨 鷲見
Hiroshi Yamanobe
寛 山野辺
Takao Ichikawa
貴朗 市川
Masato Ito
真人 伊藤
Hidenori Kobayashi
秀徳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003049741A priority Critical patent/JP4095469B2/en
Publication of JP2004259619A publication Critical patent/JP2004259619A/en
Application granted granted Critical
Publication of JP4095469B2 publication Critical patent/JP4095469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flexible flat cable (FFC) sheathed with a shield material and a manufacturing method thereof achieving high reliability of connection between the shield material and a ground conductor. <P>SOLUTION: A plurality of flat-square conductors 4 are arranged in parallel with each other to form a conductor group. An insulating film 2c having an insulating adhesive layer 2b is bonded to each of top and bottom surfaces of the conductor group with the adhesive layer 2b facing inward, and they are integrated to form the FFC 2. The FFC 2 is formed such that the insulating film 2c is partially removed to thereby expose the ground conductor 3 from the surface of the FFC 2, and the FFC 2 and the shield material 1 are bonded to each other. Then, a metal plate 6 is placed on the shield material 1, and the exposed portion of the ground conductor 3 formed at the surface of the FFC 2 is electrically connected to a shield metal 1b of the shield material 1 and the metal plate 6 by ultrasonic bonding. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車機器等に使用されるフレキシブルフラットケーブルに係わり、特にフレキシブルフラットケーブルの両面にシールド材を被覆させたシールド材被覆フレキシブルフラットケーブル及びその製造方法に関するものである。
【0002】
【従来の技術】
従来のシールド材被覆フレキシブルフラットケーブル及びその製造方法を図4〜図6を用いて説明する。
図4は従来のシールド材被覆フレキシブルフラットケーブルの平面図、図5は図4におけるA−A部横断面図、図6は図4におけるB−B部横断面図である。まず、シールド材11を被覆する前のフレキシブルフラットケーブル(以下FFCと称する。)12について説明する。FFC12は、テープ状の電線であり、厚さは0.3mm程度以下のものが一般的に多く用いられている。
【0003】
FFC12の製造方法としては、1本から数十本の導体14を平行に配列してなる導体群の両面に、接着層12bを有する絶縁膜12cを貼り合わせると共に熱圧着して製造する方法が一般的である。絶縁膜12cは、絶縁性プラスチックフィルム12aの片面に絶縁性の接着剤12bを設けたものである。
このFFC12は、様々な電気配線に用いられるが、特に、VTR、CD、DVDプレーヤーなどのAV機器、コピー機、スキャナー、プリンターなどのOA・パソコン周辺機器、およびその他電子・電気機器などにおいては、ノイズ防止の観点から、FFC12の両面にシールド材11を貼り合わせたシールド材被覆FFCが用いられることが多い。
シールド材11は、一般的に、最外層に位置すると共に基材となる厚さ数μm〜数十μmのPETなどの絶縁性プラスチック11aと、中層となる厚さ数μm以下のCuやAlなどのシールド金属11bと、最内層となる厚さ数十μmの導電性の接着剤層11cで構成される。
【0004】
前記FFC12は、その表面(図6では図面上側または下側の面を指す。)に上記導体14が露出するように絶縁膜12cを部分的にストリップして置き、この露出させた導体(この導体が図6に示す接地導体13となる。)の露出部分と上記シールド材11を電気的に接続することで、シールド効果が得られるようにしている。15は、絶縁膜12cを部分的にストリップすることによってFFC12の表面に形成された窓(穴)である。
FFC12は耐屈曲性に優れていることから、電気・電気機器回路の可動部(屈曲部)配線に用いられることが多い。シールド材被覆FFCについても、同様の理由で可動部(屈曲部)配線に用いられる。
【0005】
上記した従来のシールド材被覆FFCの製造方法としては、未公開の先行出願である特願2002−186211号に、複数本の平角導体を平行に配列して導体群を形成し、その導体群の上下面それぞれに、絶縁性接着剤層を有する絶縁膜を接着剤層を内側にして貼り合わせると共に一体化してFFCを形成し、そのFFCの上下面に導電性接着剤層を有するシールド材を貼り合わせてシールド材被覆FFCを製造することが記載されている。
【0006】
【発明が解決しようとする課題】
従来のシールド材被覆FFCであると、接地導体13とシールド材11のシールド金属11bとは、導電性の接着剤11cを介して電気的に接続されているため、熱衝撃試験、耐熱試験などの環境試験を行うと、この導電性の接着剤11cの物性が変化し、初期のシールド性能が低下してしまい、接続信頼性が悪くなるという問題があった。
【0007】
本発明は、上記課題を解決し、シールド材と接地導体の接続に関して、信頼性の高いシールド材被覆FFC及びその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明は、複数本の導体を平行に配列して導体群を形成し、その導体群の上下面それぞれに、絶縁性の接着剤層を有する絶縁膜を接着剤層を内側にして貼り合わせると共に一体化してFFCを形成し、そのフラットケーブルの上下面にシールド金属を有するシールド材を貼り合わせてシールド材被覆FFCを製造する方法において、上記FFCは、上記絶縁膜が部分的に取り除かれて上記FFCの片面または両面から上記導体が露出するように形成して置き、上記FFCと上記シールド材を貼り合わせた後、上記FFCの片面または両面に形成した上記導体の露出部分と上記シールド材のシールド金属を超音波接合を用いて電気的に接続することにある。
【0009】
上記シールド材の上に金属板を載せ、その上から超音波接合を行い、上記導体の露出部分と上記シールド金属と上記金属板を金属接合するようにしても良い。例えば、超音波接合する際に、シールド材と超音波を印加するホーンチップとの間に金属板を入れ、金属板ごとシールド材と導体を接続する。なお、金属板の材料は、FFCの導体と同材料が望ましい。これは、同材料の方が、接合しやすく、余分なエネルギーをシールド材被覆FFCに印加しなくても良いためである。
【0010】
上記超音波接合を行った後に、上記金属板および上記接続部分を絶縁膜で覆うようにしても良い。
上記した本発明の製造方法によって超音波接合することにより、シールド材のFFCとの対向面に接着剤層が設けられている場合においても、その接着剤層を除去してシールド材のシールド金属とFFCの導体を金属接合し、直に電気的に接続することが可能となる。
【0011】
また、接着材を除去したり、シールド材のシールド金属とFFCの導体を十分に金属接合するには、それに応じた超音波のエネルギーを印加する必要があり、場合によっては、そのエネルギーに耐えきれずシールド金属が部分的に破壊し、接続信頼性が低下する恐れがあるが、シールド材の上に金属板を挟んで金属板ごとシールド材のシールド金属とFFCの導体を金属接合することにより、これを解決することができる。この金属板を用いた超音波接合によれば、シールド材のシールド金属と導体が金属接合されると共に、その直近部で金属板とも金属接合されるので、シールド金属と導体の接合を保護し、接続信頼性を向上させることができる。
【0012】
また、本発明は、複数本の導体が平行に配列された導体群の上下面のそれぞれに、絶縁性の接着剤層を有する絶縁膜が接着剤層を内側にして貼り合わされてFFCが形成され、そのFFCの上下面にシールド金属を有するシールド材が貼り合わされて形成されたシールド材被覆FFCにおいて、上記導体と上記シールド金属が上記FFCの表面上において直に電気的に接続されていることにある。
【0013】
上記導体と上記シールド金属は、金属接合により電気的に接続されているのが好ましい。
上記導体と上記シールド金属の上記接続部分の上に、金属板が設けられ、上記導体と上記シールド金属と上記金属板が金属接合により電気的に接続されているのが好ましい。
【0014】
【発明の実施の形態】
以下、本発明の好適一実施の形態を図1〜3に基づいて説明する。
図1は、本発明のシールド材被覆FFCの平面図であり、図2は、図1におけるC−C部の横断面図であり、図3は、本発明のシールド材被覆FFCの製造方法において超音波接合を行っている状態におけるシールド材被覆FFCの縦断面図である。
【0015】
複数本の厚さ127μmの銅からなる平角状の導体4を平行に配列して導体群を形成し、その導体群の上下面それぞれに、絶縁性の接着剤層2bを有する絶縁膜2cを接着剤層2bを内側にして貼り合わせると共に一体化してFFC2を形成している。絶縁膜12cは、厚さ50μmのPETからなる絶縁性プラスチックフィルム12aの片面に厚さ42μmの難燃性ポリエステル系の接着剤からなる絶縁性の接着剤12bを設けたものである。その後、FFC2の上下面にシールド金属1bを有するシールド材1を貼り合わせてシールド材被覆FFCが製造される。シールド材1は、厚さ7μmのアルミからなるシールド金属1bを厚さ9μmのPETからなる絶縁性プラスチックフィルム1aと厚さ30μmの難燃性ポリエステル系の接着剤からなる接着剤層1cで挟んだ3層構造となっており、接着剤層1cがFFC2と対向する面側に設けられている。
【0016】
FFC2は、絶縁膜2cが部分的に取り除かれてFFC2の片面(図2では図面の上側または下側の面を指す。)または両面から接地導体3(複数本の導体4の内、この導体が接地導体3となる。)が露出するように形成して置き、FFC2とシールド材1を貼り合わせた後、FFC2の片面または両面に形成した接地導体3の露出部分とシールド材1のシールド金属1bを超音波接合を用いて電気的に接続する。5は、絶縁膜12cを部分的に取り除くことによってFFC2の表面に形成された窓(穴)である。
【0017】
超音波接合を行う際は、図2及図3に示すようにシールド材1の上に金属板6を載せ、その上から超音波接合を行い、接地導体3の露出部分とシールド金属1bと金属板6を金属接合するのが好ましい。
また、図示していないが、超音波接合を行った後に、金属板6および接続部分を絶縁膜で覆うようにすれば、金属板6の外部との電気的接触を防ぐことができる。
【0018】
接地導体3とシールド金属1bがFFC2の表面上において直に電気的に接続されており、その接続部分においては、シールド金属1bと接地導体3の間には何も介在されていない構造となっている。
接地導体3とシールド金属1bの接続部分の上に、金属板6が設けられ、導体3とシールド金属1bと金属板6が金属接合により電気的に接続されているので、電気的接続の信頼性が非常に高いものとなっている。
【0019】
金属板の厚みは10μm以上100μm以下が好ましく、さらには、20μm以上80μm以下が望ましい。最適な厚みは30μm以上60μm以下である。この理由は、金属板が薄過ぎると、金属板自体が破けてしまったり、価格が高くなるため使用できなくなるという問題があり、金属板が厚過ぎると、超音波を印加するエネルギーが大きくなり、シールド金属が破壊される可能性が大きくなり、接続部の接続信頼性が低下するという問題があるからである。
【0020】
また、シールド材1の接着剤層1cは、非導電性または導電性のいずれのものであっても良い。金属板6は接地導体3と同材料とするのが好ましいが、接地導体3と接合できる金属(例えば、銅合金)であれば、限定されるものではない。超音波溶接機は、その超音波周波数は20kHz、40kHz、60kHzなどが用いられ、ホーンチップやアンビルのピッチ間隔、形状等は適宜変更可能である。
【0021】
【実施例】
上記した構成からなるシールド材被覆FFCにおいて、シールド材1の上に32μmの銅板からなる金属板6を載せ、その上から40kHzの超音波を印加して平角状の接地導体3とシールド金属1bを超音波接合する実験を行った。超音波を印加する際に、エネルギーを変えると共に、超音波ホーンチップ7により金属板6を加圧する加圧力を変え9種類の実験を行った。実験の条件は以下の通りである。
【0022】
(1)金属板:銅32μm
(2)超音波溶接機:40kHz
(3)超音波ホーンチップ形状:0.3×0.3mmピッチ
(4)アンビル形状:0.3×0.3mmピッチ
(5)加圧力:1〜5kgf
(6)印加エネルギー:5.0〜15.0J
【0023】
また、以下の(a)〜(c)の項目を基準に溶接性の良否を評価した。結果を表1に示す。
(a) 外観(シールドの破れ)
(b) アース間抵抗
(c)ピール強度(引き剥がし強さ)
【0024】
【表1】

Figure 2004259619
この結果、加圧力は2.0〜3.0kgf、印加エネルギーは5.0〜10.0Jが最良であった。
【0025】
次に、本発明のシールド材被覆FFCと図4〜図6に示した従来のシールド材被覆FFCについて、熱衝撃試験を行う前と行った後の20℃におけるアース間抵抗を測定した結果を表2に示す。熱衝撃試験は、−40℃の状態を30分保持した後、100℃の状態を30分保持して、これを1サイクルとし、100サイクルと1000サイクル繰り返した試験を行った。
【0026】
【表2】
Figure 2004259619
表2に示されているように、従来例では、熱衝撃試験による環境試験を行った際、アース間抵抗が上昇してしまうが、本実施例では、初期値と全く変わらず、優れた品質であることが分る。
【0027】
【発明の効果】
以上の要するに、本発明によれば、FFCの接地導体とシールド材のシールド金属の電気的接続信頼性の高いシールド材被覆FFCを提供することができる。
【図面の簡単な説明】
【図1】本発明のシールド材被覆FFCの平面図である。
【図2】本発明のシールド材被覆FFCの図1におけるC−C部の横断面図である。
【図3】本発明のシールド材被覆FFCの製造方法において超音波接合を行っている状態におけるシールド材被覆FFCの縦断面図である。
【図4】従来のシールド材被覆FFCの平面図である。
【図5】従来のシールド材被覆FFCの図4におけるA−A部の横断面図である。
【図6】従来のシールド材被覆FFCの図4におけるB−B部の横断面図である。
【符号の説明】
1、11 シールド材
1a、11a 絶縁性プラスチックフィルム
1b、11b シールド金属
1c、11c 接着剤層
2、12 FFC
2a、12a 絶縁性プラスチックフィルム
2b、12b 接着剤層
2c、12c 絶縁膜
3、13 接地導体
4、14 導体
5、15 窓(穴)
6 金属板
7 超音波ホーンチップ
8 超音波ホーン
9 アンビル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flexible flat cable used for automobile equipment and the like, and more particularly to a shielded material-covered flexible flat cable in which both sides of a flexible flat cable are covered with a shielding material, and a method of manufacturing the same.
[0002]
[Prior art]
A conventional shielded material-covered flexible flat cable and its manufacturing method will be described with reference to FIGS.
FIG. 4 is a plan view of a conventional flexible flat cable covered with a shield material, FIG. 5 is a cross-sectional view taken along a line AA in FIG. 4, and FIG. 6 is a cross-sectional view taken along a line BB in FIG. First, the flexible flat cable (hereinafter, referred to as FFC) 12 before covering with the shielding material 11 will be described. The FFC 12 is a tape-shaped electric wire, and a thickness of about 0.3 mm or less is generally used.
[0003]
As a method for manufacturing the FFC 12, a method is generally used in which an insulating film 12c having an adhesive layer 12b is bonded to both surfaces of a conductor group in which one to several tens of conductors 14 are arranged in parallel and thermocompression-bonded. It is a target. The insulating film 12c is obtained by providing an insulating adhesive 12b on one surface of an insulating plastic film 12a.
The FFC 12 is used for various electric wirings. In particular, in AV devices such as VTRs, CDs, and DVD players, OA and personal computer peripheral devices such as copiers, scanners, and printers, and other electronic and electric devices, From the viewpoint of preventing noise, a shield material-covered FFC in which the shield material 11 is bonded to both surfaces of the FFC 12 is often used.
In general, the shielding material 11 is an insulating plastic 11a such as PET having a thickness of several μm to several tens of μm serving as a base material and a middle layer of Cu or Al having a thickness of several μm or less. And a conductive adhesive layer 11c having a thickness of several tens μm as an innermost layer.
[0004]
In the FFC 12, the insulating film 12c is partially stripped so that the conductor 14 is exposed on the surface thereof (in FIG. 6, the upper surface or the lower surface in FIG. 6), and the exposed conductor (the conductor Is electrically connected between the exposed portion of the ground conductor 13 shown in FIG. 6) and the shield member 11 so that a shielding effect can be obtained. Reference numeral 15 denotes a window (hole) formed on the surface of the FFC 12 by partially stripping the insulating film 12c.
Since the FFC 12 has excellent bending resistance, it is often used for wiring of a movable portion (bent portion) of an electric / electric device circuit. The shielding material-covered FFC is also used for the movable portion (bent portion) wiring for the same reason.
[0005]
As a method of manufacturing the above-mentioned conventional shield material-coated FFC, Japanese Patent Application No. 2002-186221, which is an unpublished prior application, discloses a method in which a plurality of rectangular conductors are arranged in parallel to form a conductor group. An insulating film having an insulating adhesive layer is bonded to the upper and lower surfaces with the adhesive layer inside, and integrated to form an FFC, and a shielding material having a conductive adhesive layer is bonded to the upper and lower surfaces of the FFC. It also describes manufacturing a shield material-coated FFC.
[0006]
[Problems to be solved by the invention]
In the case of the conventional shield material-coated FFC, the ground conductor 13 and the shield metal 11b of the shield material 11 are electrically connected to each other via the conductive adhesive 11c. When an environmental test is performed, the physical properties of the conductive adhesive 11c are changed, and the initial shielding performance is reduced, resulting in a problem that connection reliability is deteriorated.
[0007]
An object of the present invention is to solve the above problems and provide a highly reliable shield material-coated FFC and a method of manufacturing the same with respect to the connection between the shield material and the ground conductor.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a conductor group formed by arranging a plurality of conductors in parallel and forming an insulating film having an insulating adhesive layer on each of the upper and lower surfaces of the conductor group with an adhesive. A method of manufacturing a shield material-covered FFC by bonding together with the layers inside and forming an FFC, and bonding a shield material having a shield metal to the upper and lower surfaces of the flat cable, wherein the FFC comprises the insulating film Is formed so that the conductor is exposed from one side or both sides of the FFC and partially removed, and after bonding the FFC and the shielding material, the conductor formed on one side or both sides of the FFC An object of the present invention is to electrically connect the exposed portion and the shield metal of the shield material by using ultrasonic bonding.
[0009]
A metal plate may be placed on the shield material, and ultrasonic bonding may be performed from above, and the exposed portion of the conductor, the shield metal, and the metal plate may be metal-bonded. For example, at the time of ultrasonic bonding, a metal plate is inserted between a shield material and a horn chip to which ultrasonic waves are applied, and the shield material and the conductor are connected together with the metal plate. The material of the metal plate is preferably the same as the material of the FFC conductor. This is because the same material is easier to join, and it is not necessary to apply extra energy to the shielding material-coated FFC.
[0010]
After performing the ultrasonic bonding, the metal plate and the connection portion may be covered with an insulating film.
By ultrasonic bonding according to the above-described manufacturing method of the present invention, even when an adhesive layer is provided on the surface of the shield material facing the FFC, the adhesive layer is removed and the shield metal of the shield material is removed. The conductor of the FFC can be metal-joined and directly electrically connected.
[0011]
In addition, in order to remove the adhesive or to sufficiently metal-join the shield metal of the shield material and the conductor of the FFC, it is necessary to apply ultrasonic energy in accordance with the energy. There is a possibility that the shield metal may be partially broken and the connection reliability may be reduced, but by sandwiching the metal plate on the shield material and connecting the shield metal of the shield material and the FFC conductor together with the metal plate, This can be solved. According to the ultrasonic bonding using the metal plate, the shield metal of the shield material and the conductor are metal-bonded, and the metal plate is also metal-bonded immediately adjacent to the shield metal, so that the protection between the shield metal and the conductor is protected, Connection reliability can be improved.
[0012]
Further, according to the present invention, an FFC is formed by bonding an insulating film having an insulating adhesive layer to the upper and lower surfaces of a conductor group in which a plurality of conductors are arranged in parallel with the adhesive layer inside. In a shield material-covered FFC formed by bonding a shield material having a shield metal on the upper and lower surfaces of the FFC, the conductor and the shield metal are directly electrically connected on the surface of the FFC. is there.
[0013]
It is preferable that the conductor and the shield metal are electrically connected by metal bonding.
It is preferable that a metal plate is provided on the connection portion between the conductor and the shield metal, and the conductor, the shield metal, and the metal plate are electrically connected by metal bonding.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a plan view of a shield material-coated FFC of the present invention, FIG. 2 is a cross-sectional view of a portion C-C in FIG. 1, and FIG. It is a longitudinal section of shield material covering FFC in the state where ultrasonic bonding is performed.
[0015]
A conductor group is formed by arranging a plurality of rectangular conductors 4 made of copper having a thickness of 127 μm in parallel, and an insulating film 2c having an insulating adhesive layer 2b is bonded to the upper and lower surfaces of the conductor group. The FFC 2 is formed by laminating and integrating with the agent layer 2b inside. The insulating film 12c is obtained by providing an insulating plastic film 12a made of PET having a thickness of 50 μm and an insulating adhesive 12b made of a flame-retardant polyester-based adhesive having a thickness of 42 μm on one surface. Thereafter, the shield material 1 having the shield metal 1b is attached to the upper and lower surfaces of the FFC 2 to manufacture a shield material-coated FFC. In the shielding material 1, a shielding metal 1b made of aluminum having a thickness of 7 μm is sandwiched between an insulating plastic film 1a made of PET having a thickness of 9 μm and an adhesive layer 1c made of a flame-retardant polyester adhesive having a thickness of 30 μm. It has a three-layer structure, and the adhesive layer 1c is provided on the side facing the FFC 2.
[0016]
In the FFC 2, the grounding conductor 3 (of the plurality of conductors 4) is formed on one side (in FIG. 2, the upper or lower side of the drawing) or both sides of the FFC 2 with the insulating film 2 c partially removed. After the FFC 2 and the shield member 1 are bonded together, the exposed portion of the ground conductor 3 formed on one or both sides of the FFC 2 and the shield metal 1b of the shield member 1 are formed. Are electrically connected using ultrasonic bonding. Reference numeral 5 denotes a window (hole) formed on the surface of the FFC 2 by partially removing the insulating film 12c.
[0017]
When performing ultrasonic bonding, a metal plate 6 is placed on the shield material 1 as shown in FIGS. 2 and 3, and ultrasonic bonding is performed from above, and the exposed portion of the ground conductor 3, the shield metal 1b and the metal Preferably, the plate 6 is metal bonded.
Although not shown, if the metal plate 6 and the connection portion are covered with an insulating film after performing the ultrasonic bonding, electrical contact with the outside of the metal plate 6 can be prevented.
[0018]
The ground conductor 3 and the shield metal 1b are directly electrically connected on the surface of the FFC 2, and the connection portion has a structure in which nothing is interposed between the shield metal 1b and the ground conductor 3. I have.
Since the metal plate 6 is provided on the connection between the ground conductor 3 and the shield metal 1b, and the conductor 3, the shield metal 1b and the metal plate 6 are electrically connected by metal bonding, the reliability of the electrical connection is improved. Is very high.
[0019]
The thickness of the metal plate is preferably 10 μm or more and 100 μm or less, and more preferably 20 μm or more and 80 μm or less. The optimum thickness is 30 μm or more and 60 μm or less. The reason for this is that if the metal plate is too thin, the metal plate itself will break or become unusable because of the high price.If the metal plate is too thick, the energy for applying ultrasonic waves will increase, This is because there is a problem that the possibility that the shield metal is broken is increased, and the connection reliability of the connection portion is reduced.
[0020]
Further, the adhesive layer 1c of the shield material 1 may be non-conductive or conductive. The metal plate 6 is preferably made of the same material as the ground conductor 3, but is not limited as long as it is a metal (for example, copper alloy) that can be joined to the ground conductor 3. The ultrasonic frequency of the ultrasonic welding machine is 20 kHz, 40 kHz, 60 kHz, or the like, and the pitch interval, shape, and the like of the horn tip and the anvil can be appropriately changed.
[0021]
【Example】
In the shielded material-covered FFC having the above-described configuration, a metal plate 6 made of a 32 μm copper plate is placed on the shield material 1, and a 40 kHz ultrasonic wave is applied from above the flat plate-shaped ground conductor 3 and the shield metal 1b. An experiment of ultrasonic bonding was performed. When applying the ultrasonic waves, the energy was changed, and the pressing force for pressing the metal plate 6 by the ultrasonic horn tip 7 was changed, and nine types of experiments were performed. The conditions of the experiment are as follows.
[0022]
(1) Metal plate: copper 32 μm
(2) Ultrasonic welding machine: 40 kHz
(3) Ultrasonic horn tip shape: 0.3 x 0.3 mm pitch (4) Anvil shape: 0.3 x 0.3 mm pitch (5) Pressure: 1 to 5 kgf
(6) Applied energy: 5.0 to 15.0 J
[0023]
In addition, the weldability was evaluated based on the following items (a) to (c). Table 1 shows the results.
(A) Appearance (break of shield)
(B) Ground resistance (c) Peel strength (peel strength)
[0024]
[Table 1]
Figure 2004259619
As a result, the best pressure was 2.0 to 3.0 kgf and the applied energy was 5.0 to 10.0 J.
[0025]
Next, with respect to the shield material-coated FFC of the present invention and the conventional shield material-coated FFC shown in FIGS. 4 to 6, the results of measuring the resistance between the earth at 20 ° C. before and after performing the thermal shock test are shown. It is shown in FIG. In the thermal shock test, a test in which a state of −40 ° C. was maintained for 30 minutes, a state of 100 ° C. was maintained for 30 minutes, and this was regarded as one cycle was repeated 100 cycles and 1000 cycles.
[0026]
[Table 2]
Figure 2004259619
As shown in Table 2, in the conventional example, when an environmental test by a thermal shock test was performed, the resistance between the grounds increased. It turns out that it is.
[0027]
【The invention's effect】
In summary, according to the present invention, it is possible to provide a shield material-coated FFC with high electrical connection reliability between the ground conductor of the FFC and the shield metal of the shield material.
[Brief description of the drawings]
FIG. 1 is a plan view of a shield material-coated FFC of the present invention.
FIG. 2 is a cross-sectional view of a portion C-C in FIG. 1 of the shield material-coated FFC of the present invention.
FIG. 3 is a longitudinal sectional view of the shield material-coated FFC in a state where ultrasonic bonding is performed in the method of manufacturing a shield material-coated FFC of the present invention.
FIG. 4 is a plan view of a conventional shield material-coated FFC.
FIG. 5 is a cross-sectional view taken along the line AA in FIG. 4 of the conventional shield material-coated FFC.
FIG. 6 is a cross-sectional view of a conventional shield material-coated FFC taken along a line BB in FIG. 4;
[Explanation of symbols]
1, 11 Shielding material 1a, 11a Insulating plastic film 1b, 11b Shielding metal 1c, 11c Adhesive layer 2, 12 FFC
2a, 12a Insulating plastic film 2b, 12b Adhesive layer 2c, 12c Insulating film 3, 13 Grounding conductor 4, 14 Conductor 5, 15 Window (hole)
6 Metal plate 7 Ultrasonic horn tip 8 Ultrasonic horn 9 Anvil

Claims (6)

複数本の導体を平行に配列して導体群を形成し、その導体群の上下面それぞれに、絶縁性の接着剤層を有する絶縁膜を接着剤層を内側にして貼り合わせると共に一体化してフレキシブルフラットケーブルを形成し、そのフレキシブルフラットケーブルの上下面にシールド金属を有するシールド材を貼り合わせてシールド材被覆フレキシブルフラットケーブルを製造する方法において、
上記フレキシブルフラットケーブルは、上記絶縁膜が部分的に取り除かれて上記フレキシブルフラットケーブルの片面または両面から上記導体が露出するように形成して置き、上記フレキシブルフラットケーブルと上記シールド材を貼り合わせた後、上記フレキシブルフラットケーブルの片面または両面に形成した上記導体の露出部分と上記シールド材のシールド金属を超音波接合を用いて電気的に接続することを特徴とするシールド材被覆フレキシブルフラットケーブルの製造方法。
A conductor group is formed by arranging a plurality of conductors in parallel, and an insulating film having an insulating adhesive layer is attached to each of the upper and lower surfaces of the conductor group with the adhesive layer inside and integrated and flexible. Forming a flat cable, in a method of manufacturing a shielded material-covered flexible flat cable by bonding a shielding material having a shielding metal to the upper and lower surfaces of the flexible flat cable,
The flexible flat cable is formed so that the insulating film is partially removed and the conductor is exposed from one or both surfaces of the flexible flat cable, and the flexible flat cable and the shield material are bonded. A method of manufacturing a shielded material-covered flexible flat cable, wherein an exposed portion of the conductor formed on one or both surfaces of the flexible flat cable is electrically connected to a shield metal of the shield material by using ultrasonic bonding. .
上記シールド材の上に金属板を載せ、その上から超音波接合を行い、上記導体の露出部分と上記シールド金属と上記金属板を金属接合することを特徴とする請求項1記載のシールド材被覆フレキシブルフラットケーブルの製造方法。The shield material coating according to claim 1, wherein a metal plate is placed on the shield material, and ultrasonic bonding is performed from above, and the exposed portion of the conductor, the shield metal, and the metal plate are metal-bonded. Manufacturing method of flexible flat cable. 上記超音波接合を行った後に、上記金属板および上記接続部分を絶縁膜で覆うことを特徴とする請求項1または請求項2記載のシールド材被覆フレキシブルフラットケーブルの製造方法。3. The method according to claim 1, wherein after the ultrasonic bonding is performed, the metal plate and the connection portion are covered with an insulating film. 複数本の導体が平行に配列された導体群の上下面のそれぞれに、絶縁性の接着剤層を有する絶縁膜が接着剤層を内側にして貼り合わされてフレキシブルフラットケーブルが形成され、そのフレキシブルフラットケーブルの上下面にシールド金属を有するシールド材が貼り合わされて形成されたシールド材被覆フレキシブルフラットケーブルにおいて、
上記導体と上記シールド金属が上記フレキシブルフラットケーブルの表面上において直に電気的に接続されていることを特徴とするシールド材被覆フレキシブルフラットケーブル。
An insulating film having an insulating adhesive layer is attached to each of the upper and lower surfaces of the conductor group in which a plurality of conductors are arranged in parallel with the adhesive layer inside, to form a flexible flat cable. In a shielding material-covered flexible flat cable formed by bonding a shielding material having a shielding metal on the upper and lower surfaces of the cable,
A flexible flat cable covered with a shield material, wherein the conductor and the shield metal are directly electrically connected on a surface of the flexible flat cable.
上記導体と上記シールド金属は、金属接合により電気的に接続されていることを特徴とする請求項4記載のシールド材被覆フレキシブルフラットケーブル。The flexible flat cable covered with a shield material according to claim 4, wherein the conductor and the shield metal are electrically connected by metal bonding. 上記導体と上記シールド金属の上記接続部分の上に、金属板が設けられ、上記導体と上記シールド金属と上記金属板が金属接合により電気的に接続されていることを特徴とする請求項4または請求項5記載のシールド材被覆フレキシブルフラットケーブル。The metal plate is provided on the connection portion between the conductor and the shield metal, and the conductor, the shield metal, and the metal plate are electrically connected by metal bonding. A flexible flat cable covered with a shield material according to claim 5.
JP2003049741A 2003-02-26 2003-02-26 Shielding material-coated flexible flat cable and manufacturing method thereof Expired - Fee Related JP4095469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049741A JP4095469B2 (en) 2003-02-26 2003-02-26 Shielding material-coated flexible flat cable and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049741A JP4095469B2 (en) 2003-02-26 2003-02-26 Shielding material-coated flexible flat cable and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004259619A true JP2004259619A (en) 2004-09-16
JP4095469B2 JP4095469B2 (en) 2008-06-04

Family

ID=33115371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049741A Expired - Fee Related JP4095469B2 (en) 2003-02-26 2003-02-26 Shielding material-coated flexible flat cable and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4095469B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093178A (en) * 2003-09-16 2005-04-07 Hitachi Cable Ltd Flexible shield covered flexible flat cable and its manufacturing method
CN101840749B (en) * 2009-03-20 2012-05-23 住友电气工业株式会社 Shielded flat cable
US9576699B2 (en) 2014-11-06 2017-02-21 Fuji Xerox Co., Ltd. Wiring member, method of manufacturing the same, method of designing the same, and electronic apparatus
US9629234B2 (en) 2014-11-06 2017-04-18 Fuji Xerox Co., Ltd. Wiring member for shielding noise, and method of manufacturing, method of designing, and electronic apparatus thereof
JP2019192575A (en) * 2018-04-27 2019-10-31 住友電気工業株式会社 Shield flat cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445008A (en) * 1987-08-13 1989-02-17 Fujikura Ltd Tape wire equipped with shield
JPS6448311A (en) * 1987-08-19 1989-02-22 Fujikura Ltd Shielded tape wire
JPH0455712U (en) * 1990-09-19 1992-05-13

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445008A (en) * 1987-08-13 1989-02-17 Fujikura Ltd Tape wire equipped with shield
JPS6448311A (en) * 1987-08-19 1989-02-22 Fujikura Ltd Shielded tape wire
JPH0455712U (en) * 1990-09-19 1992-05-13

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093178A (en) * 2003-09-16 2005-04-07 Hitachi Cable Ltd Flexible shield covered flexible flat cable and its manufacturing method
JP4517612B2 (en) * 2003-09-16 2010-08-04 日立電線株式会社 Bend-resistant shield-coated flexible flat cable and method for manufacturing the same
CN101840749B (en) * 2009-03-20 2012-05-23 住友电气工业株式会社 Shielded flat cable
US9576699B2 (en) 2014-11-06 2017-02-21 Fuji Xerox Co., Ltd. Wiring member, method of manufacturing the same, method of designing the same, and electronic apparatus
US9629234B2 (en) 2014-11-06 2017-04-18 Fuji Xerox Co., Ltd. Wiring member for shielding noise, and method of manufacturing, method of designing, and electronic apparatus thereof
JP2019192575A (en) * 2018-04-27 2019-10-31 住友電気工業株式会社 Shield flat cable
JP7006489B2 (en) 2018-04-27 2022-01-24 住友電気工業株式会社 Shielded flat cable

Also Published As

Publication number Publication date
JP4095469B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP3565768B2 (en) Wiring board
US6528731B2 (en) Flat shield harness and method for manufacturing the same
JP4816724B2 (en) Shielded flat cable
JPH06500905A (en) Device with flexible strip wire conductor and method for manufacturing the device
US6696133B2 (en) Wiring boards and processes for manufacturing wiring boards
JP2011198687A (en) Flat cable
KR20130020901A (en) Flat cable and its manufacturing method
CN110415876A (en) Shielded flat cable
JP4095469B2 (en) Shielding material-coated flexible flat cable and manufacturing method thereof
JP4517612B2 (en) Bend-resistant shield-coated flexible flat cable and method for manufacturing the same
JP4066725B2 (en) Manufacturing method for shielded flexible flat cable
JP4590689B2 (en) Printed wiring board connection method and connection structure
JP2553870B2 (en) Manufacturing method of taped electric wire with shield
JP2003151371A (en) Flat cable with shield layer
JP4855572B2 (en) Flat shield harness and method for manufacturing flat shield harness
JP2002163934A (en) Flat type shield harness and manufacturing method of flat type shield harness
US20080083554A1 (en) Hybrid bonded flex circuit
JP2012014934A (en) Coaxial wire harness, module for the same, electronic equipment for the same, and method for manufacturing the same
JP4193653B2 (en) Manufacturing method for shielded flexible flat cable
JPH0433211A (en) Shielded tape wire
JPH0690082A (en) Method of connecting circuit substrate
JP4196313B2 (en) Connection method and connection structure between flexible electrode strip and substrate
JP2016219098A (en) Flat cable
JPH0741874U (en) Shield flat wire
JP2002231063A (en) Shielded flat cable and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060509

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4095469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees