JP2004257652A - Control device of air conditioner - Google Patents
Control device of air conditioner Download PDFInfo
- Publication number
- JP2004257652A JP2004257652A JP2003048928A JP2003048928A JP2004257652A JP 2004257652 A JP2004257652 A JP 2004257652A JP 2003048928 A JP2003048928 A JP 2003048928A JP 2003048928 A JP2003048928 A JP 2003048928A JP 2004257652 A JP2004257652 A JP 2004257652A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- delay time
- response delay
- started
- air conditioner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 claims abstract description 25
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 238000001816 cooling Methods 0.000 abstract description 10
- 230000003111 delayed Effects 0.000 abstract description 2
- 239000006185 dispersion Substances 0.000 abstract 1
- 238000010257 thawing Methods 0.000 description 5
- 238000004378 air conditioning Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000035832 Lag time Effects 0.000 description 1
- 230000035648 Lag-time Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000000630 rising Effects 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N tin hydride Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/90—Constructional details or arrangements of video game devices not provided for in groups A63F13/20 or A63F13/25, e.g. housing, wiring, connections or cabinets
- A63F13/98—Accessories, i.e. detachable arrangements optional for the use of the video game device, e.g. grip supports of game controllers
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/20—Input arrangements for video game devices
- A63F13/24—Constructional details thereof, e.g. game controllers with detachable joystick handles
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、空気調和機の制御装置に関するものである。
【0002】
【従来の技術】
従来、圧縮機を駆動する場合、駆動回路の応答遅れ時間を測定することで、駆動回路のスイッチングデバイスのバラツキによる信号入力が出力されるまでの応答時間のバラツキを排除し、適切な補正制御を行い、安定した圧縮機の駆動を得ようとしていた。このため、圧縮機起動直前に、常に駆動回路の応答時間測定を実施していた。図9のフローチャートに示す如く、室外機が室内機からの圧縮機駆動指示を受信した場合、圧縮機駆動直前に、まず、駆動回路の応答遅れ時間測定し、その後、圧縮機起動を開始していた。
【0003】
また、室内温度がリモコン設定温度に近接することにより圧縮機を一旦停止し、その後再度圧縮機を駆動する場合や、暖房運転の除霜中に圧縮機を停止した直後の圧縮機再起動時においても同様に、駆動回路の応答遅れ時間測定後に圧縮機を起動していた(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開平07−015248号公報
【0005】
【発明が解決しようとする課題】
しかしながら、駆動回路のスイッチングデバイスには、6相の出力がある為、それぞれにおいて応答遅れ時間を測定する必要があり、また、信号の立ち上がりと立ち下がりでは、応答遅れ時間が異なるため、立ち上がり、立ち下がりのそれぞれにおいて応答遅れ時間を測定する必要があった。更に、精度の高い応答遅れ時間の測定を実施するには、データの平均化などが必要となり、複数回の測定を繰り返し行わなければならなかった。その結果、スイッチングデバイス全出力の応答遅れ時間を高精度で測定するのに、長時間を費やすかたちとなってしまった。
【0006】
そのため、可及的速やかに快適な空調を実現するため、圧縮機をすぐに駆動すべきであるにも関わらず、安定した圧縮機駆動を実現するのに、常に応答遅れ時間測定の一定時間経過後に、圧縮機起動を実施するため、冷房・暖房の立上がりが遅れ、快適な空調に到達するのに時間がかかるといった課題を有していた。
【0007】
本発明は、駆動回路のスイッチングデバイスの応答時間のバラツキを排除し、適切な補正制御を行い、安定した圧縮機の駆動を得つつ、実施空気調和機の冷房、暖房の立ちあがりを改善することを目的とするものである。
【0008】
【課題を解決するための手段】
上記課題を解決するために本発明は、AC電圧をDC電圧に変換する電源回路と、圧縮機を駆動する為のスイッチングデバイスを含む駆動回路と、駆動回路を制御するマイクロコンピュータから構成され、マイクロコンピュータから駆動回路への駆動入力信号に対する駆動回路からの駆動出力信号の応答遅れ時間を測定する機能を備えた制御装置において、圧縮機起動直前に駆動回路の応答遅れ時間を測定し、しかる後に圧縮機を起動する場合と、圧縮機起動直前に応答遅れ時間を測定せずに圧縮機を駆動する場合の2つの方式とを切換えるものである。
【0009】
上記の構成をなすことにより、駆動回路のスイッチングデバイスの応答時間のバラツキを排除し、適切な補正制御を行い、安定した圧縮機の駆動を得つつ、実施空気調和機の冷房、暖房の立ちあがりを改善し、快適な空調に到達するまでの時間を短縮することができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
【0011】
(実施の形態1)
図1は本発明の実施例の基本構成図であり、室外ユニットの制御装置11、圧縮機12からなっている。制御装置11は、AC電圧をDC電圧に変換する電源回路13と、圧縮機を駆動する為のスイッチングデバイスを含む駆動回路14と、駆動回路を制御するマイクロコンピュータ15とから構成されている。
【0012】
次に、図2、図3により、マイクロコンピュータから駆動回路への駆動入力信号に対する駆動回路からの駆動出力信号の応答遅れ時間を測定する機能について説明する。図3は駆動回路の応答遅れ時間の例を示すチャートである。同図に示すように、スイッチングデバイスを含む駆動回路には、駆動回路へ入力パルス幅Tinの信号が入力されてから、出力パルス幅Toutの信号が出力されるまで、立上がり応答遅れ時間Ton、立下り応答遅れ時間Toffが存在する。この応答遅れ時間は、圧縮機駆動に対して大きな影響があるため、この応答遅れ時間を実際に測定し、そのバラツキを排除することで、より適切な補正制御を行い、安定した圧縮機駆動制御を得ている。
【0013】
また、図2は応答遅れ時間測定のフローチャートである。前記理由により、同図に示すように、マイクロコンピュータでは、まず、駆動回路のある相へパルス出力する(ステップ21)と共に、応答遅れ時間計測用タイマをスタート(ステップ22)させ、その後、駆動回路からのフィードバック信号がかえってきたか否かの判断を行い(ステップ23)、フィードバック信号がかえってきた時点での計測用タイマの値を読み取ること(ステップ24)で応答遅れ時間を測定している。そして、これら一連の動作をU、V、W、X、Y、Zの計6相にそれぞれ実施すると共に、応答遅れ時間が立ちあがり信号と立ち下がり信号で異なるため、立ちあがり、立ち下がりのそれぞれにおいて応答時間を測定し、更に、精度の高い応答遅れ時間の測定を実施するにために、各測定ポイントに対して複数回の測定をはかることにより、データの平均化を行っている。
【0014】
ここで、第1の実施の形態の動作について、図4のフローチャートを用いて説明する。
【0015】
まず、室内機から圧縮機駆動指示が室外機へ送信される(ステップ41)。すると、制御装置は今回の駆動条件により駆動回路の応答遅れ時間測定を実施すべきかどうかを判断する(ステップ42)。そして、応答遅れ時間を測定する場合は、駆動回路の応答遅れ時間を測定(ステップ43)し、圧縮機を起動する(ステップ44)が、応答遅れ時間を測定しない場合は、応答遅れ時間測定(ステップ43)を実行せず、圧縮機起動を実行する(ステップ44)。
【0016】
そしてこの構成によれば、最低限、応答遅れ時間を測定する必要がある場合のみ圧縮機起動前に応答遅れ時間測定を行い、それ以外は応答遅れ時間を測定しないことで、安定した圧縮機の駆動を得つつ、空気調和機の冷房、暖房の立ちあがりを改善することができる。
【0017】
(実施の形態2)
本発明の第2の実施の形態の動作について、図5のフローチャートを用いて説明する。
まず、室内機から圧縮機駆動指示が室外機へ送信される(ステップ51)。そして制御装置は、リモコンにより空気調和機が運転を開始し、室内機から圧縮機駆動指示が送信されてきたのか、それとも、室内温度がリモコン設定温度に近接することで圧縮機が停止した後の圧縮機再起動であるかの判断をする(ステップ52)。
【0018】
もし、リモコンにより空気調和機が運転開始したためと判断した場合は、、前回の応答遅れ時間測定より大幅な時間が経過している場合や、まだ1回も応答遅れ時間測定を行っていない場合があるため、応答遅れ時間を測定し(ステップ53)、圧縮機を起動する(ステップ54)が、室内温度がリモコン設定温度に近接することで圧縮機が停止した後の圧縮機再起動であると判定した場合は、空気調和機としては、連続運転中であり、前回の応答遅れ時間測定から、まだ、長期間経過していないため、前回測定した応答遅れ時間は信頼せきるデータであるとの判断をし、応答遅れ時間測定(ステップ53)を実行せず、圧縮機を起動する(ステップ54)。
【0019】
そしてこの構成によれば、室内温度がリモコン設定温度に近接した場合の圧縮機起動時においての空気調和機の冷房、暖房の立ちあがりを改善することができる。
【0020】
(実施の形態3)
本発明の第3の実施の形態の動作について、図6のフローチャートを用いて説明する。
まず、室外機制御装置の内部で、圧縮機駆動指示が発生し(ステップ61)、続いて除霜終了後の圧縮機の再起動であるかの判断をする(ステップ62)。もし、除霜終了後の圧縮機再起動であると判定した場合、空気調和機としては、連続運転中であり、前回の応答遅れ時間測定から、まだ、長期間経過していないため、前回測定した応答遅れ時間は信頼できるデータであるとの判断をし、応答遅れ時間測定(ステップ63)を実行せず、圧縮機を起動する(ステップ64)。
【0021】
そしてこの構成によれば、除霜終了後の圧縮機再起動時においての空気調和機の冷房、暖房の立ちあがりを改善することができる。
【0022】
(実施の形態4)
本発明の第4の実施の形態の動作について、図7のフローチャートを用いて説明する。まず、室外機制御装置の内部で、圧縮機駆動指示が発生し(ステップ71)、続いて前回の応答遅れ時間測定中に圧縮機起動を中止したかの判断をする(ステップ72)。もし、前回の応答遅れ時間測定中に圧縮機起動中止により、応答遅れ時間測定が途中で中断した場合、誤ったデータを取得しているの可能性がため、前回データ採用することなく、新規に応答遅れ時間測定(ステップ73)し、圧縮機を起動する(ステップ74)。そして、もし、前回の応答遅れ時間測定中に圧縮機起動を中止していない場合は、応答遅れ時間測定(ステップ73)せずに、圧縮機を起動する(ステップ74)。
【0023】
そしてこの構成によれば、応答遅れ時間測定が途中で中断した場合の誤った可能性があるデータを採用することなく、新規に測定したデータを採用することで、適切な補正制御を行い、安定した圧縮機の駆動を得ることができる。
【0024】
(実施の形態5)
本発明の第5の実施の形態の動作について、図8のフローチャートを用いて説明する。まず、室外機制御装置の内部で、圧縮機駆動指示が発生し(ステップ81)、続いて前回圧縮機停止時には、圧縮機駆動に関係する異常により圧縮機が停止したかどうかの判断をする(ステップ82)。もし、前回、圧縮機駆動に関係する異常により圧縮機が停止していた場合、圧縮機駆動に失敗するなどの誤ったデータを取得しているの可能性がため、新規に応答遅れ時間測定(ステップ83)し、圧縮機を起動する(ステップ84)。そして、もし、前回、圧縮機駆動に関係する異常により圧縮機が停止していなかった場合は、応答遅れ時間測定(ステップ83)せずに、圧縮機を起動する(ステップ84)。
【0025】
そしてこの構成よれば、圧縮機駆動に失敗するなどの誤った可能性があるデータを採用することなく、新規に測定したデータを採用することで、適切な補正制御を行い、安定した圧縮機の駆動を得ることができる。
【0026】
【発明の効果】
上記実施例より明らかなように本発明は、AC電圧をDC電圧に変換する電源回路と、圧縮機を駆動する為のスイッチングデバイスを含む駆動回路と、駆動回路を制御するマイクロコンピュータから構成され、マイクロコンピュータから駆動回路への駆動入力信号に対する駆動回路からの駆動出力信号の応答遅れ時間を測定する機能を備えた制御装置において、圧縮機起動直前に駆動回路の応答遅れ時間を測定し、しかる後に圧縮機を起動する場合と、圧縮機起動直前に応答遅れ時間を測定せずに圧縮機を駆動する場合の2つの方式とを切換えるもので、この構成によれば、最低限、応答遅れ時間を測定する必要がある場合のみ圧縮機起動前に応答遅れ時間測定を行い、それ以外は応答遅れ時間を測定しないことで、安定した圧縮機の駆動を得つつ、空気調和機の冷房、暖房の立ちあがりを改善することができるという効果を奏する。
【0027】
また、本発明は、リモコンにより空気調和機が運転開始した時には、圧縮機起動直前に応答遅れ時間を測定し、圧縮機が一旦停止した後再度圧縮機を駆動する場合は、応答遅れ時間を測定せずに圧縮機を駆動するもので、この構成によれば、室内温度がリモコン設定温度に近づいた場合の圧縮機起動時においての空気調和機の冷房、暖房の立ちあがりを改善することができるという効果を奏する。
【0028】
また本発明は、暖房運転中の、除霜制御中に圧縮機を停止し、除霜終了後に、圧縮機を再起動するときには、応答遅れ時間を測定せずに圧縮機を起動するもので、この構成によれば、除霜終了後の圧縮機再起動時においての空気調和機の冷房、暖房の立ちあがりを改善することができるという効果を奏する。
【0029】
また本発明は、応答遅れ時間測定中に圧縮機起動を中止した場合、次回圧縮機起動時の起動直前には、応答遅れ時間を測定するもので、この構成によれば、応答遅れ時間測定が途中で中断した場合の誤った可能性があるデータを採用することなく、新規に測定したデータを採用することで、適切な補正制御を行い、安定した圧縮機の駆動を得ることができるという効果を奏する。
【0030】
また本発明は、圧縮機駆動に関係する異常により圧縮機が停止した場合、次回圧縮機起動時の起動直前には、応答遅れ時間を測定するもので、この構成よれば、圧縮機駆動に失敗するなどの誤った可能性があるデータを採用することなく、新規に測定したデータを採用することで、適切な補正制御を行い、安定した圧縮機の駆動を得ることができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施例の基本構成図
【図2】応答遅れ時間測定のフローチャート
【図3】駆動回路の応答遅れ時間の例の図
【図4】本発明の実施例1のフローチャート
【図5】本発明の実施例2のフローチャート
【図6】本発明の実施例3のフローチャート
【図7】本発明の実施例4のフローチャート
【図8】本発明の実施例5のフローチャート
【図9】従来例のフローチャート
【符号の説明】
11 室外ユニットの制御装置
12 圧縮機
13 電源回路
14 駆動回路
15 マイクロコンピュータ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for an air conditioner.
[0002]
[Prior art]
Conventionally, when driving a compressor, by measuring the response delay time of the drive circuit, the response time variation until the signal input due to the variation of the switching device of the drive circuit is output is eliminated, and appropriate correction control is performed. And tried to obtain a stable compressor drive. For this reason, the response time of the drive circuit was always measured immediately before the compressor was started. As shown in the flowchart of FIG. 9, when the outdoor unit receives the compressor drive instruction from the indoor unit, immediately before driving the compressor, the response delay time of the drive circuit is first measured, and then the compressor is started. Was.
[0003]
In addition, when the compressor temporarily stops after the indoor temperature approaches the remote control set temperature and then drives the compressor again, or when the compressor is restarted immediately after stopping the compressor during the defrosting of the heating operation. Similarly, the compressor was started after the response delay time of the drive circuit was measured (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP 07-015248 A [0005]
[Problems to be solved by the invention]
However, since the switching device of the drive circuit has six-phase outputs, it is necessary to measure the response delay time for each. Also, since the response delay time differs between the rise and fall of the signal, the rise and fall of the signal are required. It was necessary to measure the response lag time at each fall. Further, in order to measure the response delay time with high accuracy, data averaging and the like are required, and the measurement must be repeated a plurality of times. As a result, it takes a long time to measure the response delay time of all outputs of the switching device with high accuracy.
[0006]
Therefore, even though the compressor should be driven immediately to achieve comfortable air conditioning as quickly as possible, a certain period of time of response delay time measurement is always required to achieve stable compressor drive. Later, since the compressor was started, the rise of cooling and heating was delayed, and there was a problem that it took time to reach comfortable air conditioning.
[0007]
The present invention eliminates variations in the response time of the switching device of the drive circuit, performs appropriate correction control, and achieves stable compressor drive while improving the rise of cooling and heating of the implemented air conditioner. It is the purpose.
[0008]
[Means for Solving the Problems]
To solve the above problems, the present invention comprises a power supply circuit for converting an AC voltage to a DC voltage, a drive circuit including a switching device for driving a compressor, and a microcomputer for controlling the drive circuit. In a control device having a function of measuring a response delay time of a drive output signal from a drive circuit with respect to a drive input signal from a computer to a drive circuit, the response delay time of the drive circuit is measured immediately before the compressor is started, and then the compression is performed. The two methods are switched between a case where the compressor is started and a case where the compressor is driven without measuring the response delay time immediately before the start of the compressor.
[0009]
With the above configuration, the variation of the response time of the switching device of the drive circuit is eliminated, appropriate correction control is performed, and the stable operation of the compressor is obtained. It can improve and reduce the time to reach comfortable air conditioning.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0011]
(Embodiment 1)
FIG. 1 is a basic configuration diagram of an embodiment of the present invention, which comprises an outdoor unit control device 11 and a compressor 12. The control device 11 includes a power supply circuit 13 for converting an AC voltage to a DC voltage, a drive circuit 14 including a switching device for driving a compressor, and a microcomputer 15 for controlling the drive circuit.
[0012]
Next, a function for measuring a response delay time of a drive output signal from the drive circuit to a drive input signal from the microcomputer to the drive circuit will be described with reference to FIGS. FIG. 3 is a chart showing an example of the response delay time of the drive circuit. As shown in the figure, in the drive circuit including the switching device, a rise response delay time Ton, a rise response delay time Ton, from when a signal having an input pulse width Tin is input to the drive circuit to when a signal having an output pulse width Tout is output. There is a downlink response delay time Toff. Since this response delay time has a great effect on the compressor drive, this response delay time is actually measured, and by eliminating the variation, more appropriate correction control is performed, and stable compressor drive control is performed. Have gained.
[0013]
FIG. 2 is a flowchart of the response delay time measurement. For the above-mentioned reason, as shown in the figure, the microcomputer first outputs a pulse to a certain phase of the drive circuit (step 21) and starts a response delay time measurement timer (step 22). It is determined whether or not the feedback signal has returned (step 23), and the value of the measurement timer at the time when the feedback signal has returned is read (step 24) to measure the response delay time. These series of operations are performed for each of the six phases U, V, W, X, Y, and Z, and the response delay time differs between the rising signal and the falling signal. In order to measure the time and to measure the response delay time with high accuracy, data is averaged by measuring a plurality of times for each measurement point.
[0014]
Here, the operation of the first embodiment will be described with reference to the flowchart of FIG.
[0015]
First, a compressor drive instruction is transmitted from the indoor unit to the outdoor unit (step 41). Then, the control device determines whether to measure the response delay time of the drive circuit based on the current drive condition (step 42). When the response delay time is measured, the response delay time of the drive circuit is measured (step 43), and the compressor is started (step 44). When the response delay time is not measured, the response delay time is measured (step 43). The compressor is started (step 44) without executing step 43).
[0016]
According to this configuration, at least, when the response delay time needs to be measured, the response delay time is measured before starting the compressor, and otherwise, the response delay time is not measured. It is possible to improve the start of cooling and heating of the air conditioner while obtaining the drive.
[0017]
(Embodiment 2)
The operation of the second embodiment of the present invention will be described with reference to the flowchart of FIG.
First, a compressor drive instruction is transmitted from an indoor unit to an outdoor unit (step 51). Then, the control device starts the operation of the air conditioner by the remote controller, whether a compressor drive instruction is transmitted from the indoor unit, or after the compressor is stopped due to the indoor temperature approaching the remote control set temperature. It is determined whether or not the compressor is restarted (step 52).
[0018]
If the remote controller determines that the air conditioner has started operation, it may mean that a longer time has elapsed since the previous measurement of the response delay time, or that no response delay time measurement has been performed yet. Therefore, the response delay time is measured (Step 53) and the compressor is started (Step 54). However, it is assumed that the compressor is restarted after the compressor is stopped because the indoor temperature approaches the remote control set temperature. If it is determined, the air conditioner is in continuous operation, and since the previous response delay time measurement has not yet elapsed for a long time, the response delay time measured last time is reliable data. The compressor is started (step 54) without making the response delay time measurement (step 53).
[0019]
According to this configuration, it is possible to improve the rise of cooling and heating of the air conditioner at the time of starting the compressor when the room temperature is close to the remote control set temperature.
[0020]
(Embodiment 3)
The operation of the third embodiment of the present invention will be described with reference to the flowchart of FIG.
First, a compressor drive instruction is generated inside the outdoor unit control device (step 61), and then it is determined whether or not the compressor is to be restarted after the completion of defrosting (step 62). If it is determined that the compressor is restarted after defrosting is completed, the air conditioner is in continuous operation, and since the response delay time measurement has not been performed for a long period of time, the previous measurement The determined response delay time is determined to be reliable data, and the compressor is started (step 64) without executing the response delay time measurement (step 63).
[0021]
According to this configuration, it is possible to improve the rise of cooling and heating of the air conditioner when the compressor is restarted after the completion of defrosting.
[0022]
(Embodiment 4)
The operation of the fourth embodiment of the present invention will be described with reference to the flowchart of FIG. First, a compressor drive instruction is generated inside the outdoor unit controller (step 71), and subsequently, it is determined whether or not the start of the compressor was stopped during the previous measurement of the response delay time (step 72). If the response delay time measurement is interrupted halfway due to the compressor stoppage during the previous response delay time measurement, there is a possibility that erroneous data has been acquired. The response delay time is measured (step 73), and the compressor is started (step 74). If the compressor activation has not been stopped during the previous response delay time measurement, the compressor is activated (step 74) without measuring the response delay time (step 73).
[0023]
According to this configuration, appropriate correction control is performed by adopting newly measured data without employing data that may be erroneous when the response delay time measurement is interrupted halfway, thereby achieving stable correction. Compressor drive can be obtained.
[0024]
(Embodiment 5)
The operation of the fifth embodiment of the present invention will be described with reference to the flowchart of FIG. First, a compressor drive instruction is generated inside the outdoor unit control device (step 81). Subsequently, when the compressor is stopped last time, it is determined whether or not the compressor has stopped due to an abnormality related to the compressor drive ( Step 82). If the compressor was stopped due to an abnormality related to the compressor drive last time, there is a possibility that erroneous data such as compressor drive failure has been acquired, so a new response delay time measurement ( Step 83) and start the compressor (step 84). If the compressor was not stopped due to an abnormality related to the compressor drive last time, the compressor is started (step 84) without measuring the response delay time (step 83).
[0025]
According to this configuration, appropriate correction control is performed by adopting newly measured data without employing data that may be erroneous, such as a failure in compressor drive, to achieve a stable compressor. Drive can be obtained.
[0026]
【The invention's effect】
As is clear from the above embodiments, the present invention includes a power supply circuit for converting an AC voltage to a DC voltage, a drive circuit including a switching device for driving a compressor, and a microcomputer for controlling the drive circuit. In a control device having a function of measuring a response delay time of a drive output signal from a drive circuit with respect to a drive input signal from a microcomputer to a drive circuit, a response delay time of the drive circuit is measured immediately before the compressor is started, and thereafter, In this case, the two systems are switched between a case where the compressor is started and a case where the compressor is driven without measuring the response delay time immediately before the start of the compressor. According to this configuration, at least the response delay time is reduced. Only when it is necessary to measure, measure the response delay time before starting the compressor, and otherwise do not measure the response delay time to ensure stable driving of the compressor. While an effect that it is possible to improve cooling of the air conditioner, the rise of the heating.
[0027]
Further, the present invention measures the response delay time immediately before the compressor starts when the air conditioner is started to operate by the remote controller, and measures the response delay time when the compressor is stopped and then driven again. According to this configuration, it is possible to improve the rise of the cooling and heating of the air conditioner at the time of starting the compressor when the indoor temperature approaches the set temperature of the remote controller. It works.
[0028]
Further, the present invention, during the heating operation, to stop the compressor during the defrost control, after the completion of defrost, when restarting the compressor, start the compressor without measuring the response delay time, According to this configuration, it is possible to improve the rise of cooling and heating of the air conditioner when the compressor is restarted after the completion of the defrosting.
[0029]
Further, according to the present invention, when the compressor is stopped during the response delay time measurement, the response delay time is measured immediately before the start of the next compressor startup. According to this configuration, the response delay time measurement is performed. By adopting newly measured data without adopting data that may be erroneous when interrupted halfway, appropriate correction control can be performed and stable compressor drive can be obtained. To play.
[0030]
Further, according to the present invention, when the compressor is stopped due to an abnormality related to the compressor drive, the response delay time is measured immediately before the next start of the compressor, and according to this configuration, the compressor drive fails. By adopting newly measured data without employing data that may be erroneous, such as performing a correct operation, it is possible to perform appropriate correction control and obtain a stable compressor drive.
[Brief description of the drawings]
FIG. 1 is a basic configuration diagram of an embodiment of the present invention. FIG. 2 is a flowchart of response delay time measurement. FIG. 3 is a diagram of an example of a response delay time of a drive circuit. FIG. 4 is a flowchart of Embodiment 1 of the present invention. FIG. 5 is a flowchart of Embodiment 2 of the present invention. FIG. 6 is a flowchart of Embodiment 3 of the present invention. FIG. 7 is a flowchart of Embodiment 4 of the present invention. FIG. 8 is a flowchart of Embodiment 5 of the present invention. Flowchart of conventional example [Explanation of reference numerals]
11 control unit for outdoor unit 12 compressor 13 power supply circuit 14 drive circuit 15 microcomputer
Claims (5)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003048928A JP3821104B2 (en) | 2003-02-26 | 2003-02-26 | Air conditioner control device |
KR1020040001440A KR101013391B1 (en) | 2003-02-26 | 2004-01-09 | Controller for air conditioner |
CNB2004100076030A CN100380060C (en) | 2003-02-26 | 2004-02-26 | Control device of air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003048928A JP3821104B2 (en) | 2003-02-26 | 2003-02-26 | Air conditioner control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004257652A true JP2004257652A (en) | 2004-09-16 |
JP3821104B2 JP3821104B2 (en) | 2006-09-13 |
Family
ID=33114755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003048928A Expired - Fee Related JP3821104B2 (en) | 2003-02-26 | 2003-02-26 | Air conditioner control device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3821104B2 (en) |
KR (1) | KR101013391B1 (en) |
CN (1) | CN100380060C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100626425B1 (en) * | 2004-11-24 | 2006-09-20 | 삼성전자주식회사 | Method for control operating delay of air conditioner |
CN109340990A (en) * | 2017-07-31 | 2019-02-15 | 广东美的制冷设备有限公司 | The detection method of cooler compressor starting time |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100664085B1 (en) * | 2005-11-24 | 2007-01-03 | 엘지전자 주식회사 | Apparatus for controlling air conditioner |
KR101979665B1 (en) * | 2012-11-22 | 2019-05-20 | 삼성전자 주식회사 | A Method For Driving Condition Control based on Driving state and Electronic Device supporting the same |
JP6646460B2 (en) * | 2016-02-15 | 2020-02-14 | 株式会社荏原製作所 | Substrate cleaning device and substrate processing device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05344741A (en) * | 1992-06-10 | 1993-12-24 | Hitachi Ltd | Inverter unit, air-conditioner, electric washing machine, and electric cleaner equipped with inverter unit |
JP3234930B2 (en) * | 1992-11-30 | 2001-12-04 | 株式会社日立製作所 | Air conditioner |
JP3201125B2 (en) * | 1994-02-25 | 2001-08-20 | 株式会社デンソー | Vehicle air conditioner |
JP3402924B2 (en) * | 1996-04-10 | 2003-05-06 | 三洋電機株式会社 | Control device for air conditioner |
JP2001012785A (en) * | 1999-06-29 | 2001-01-19 | Matsushita Electric Ind Co Ltd | Operation controller and control method for air conditioner |
JP2001304651A (en) * | 2000-04-18 | 2001-10-31 | Sanyo Electric Co Ltd | Air conditioner and its operation control method |
-
2003
- 2003-02-26 JP JP2003048928A patent/JP3821104B2/en not_active Expired - Fee Related
-
2004
- 2004-01-09 KR KR1020040001440A patent/KR101013391B1/en not_active IP Right Cessation
- 2004-02-26 CN CNB2004100076030A patent/CN100380060C/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100626425B1 (en) * | 2004-11-24 | 2006-09-20 | 삼성전자주식회사 | Method for control operating delay of air conditioner |
CN109340990A (en) * | 2017-07-31 | 2019-02-15 | 广东美的制冷设备有限公司 | The detection method of cooler compressor starting time |
Also Published As
Publication number | Publication date |
---|---|
KR101013391B1 (en) | 2011-02-14 |
KR20040076579A (en) | 2004-09-01 |
CN100380060C (en) | 2008-04-09 |
CN1525112A (en) | 2004-09-01 |
JP3821104B2 (en) | 2006-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6508072B1 (en) | Air conditioner outdoor unit drive control unit | |
EP1074797B1 (en) | Operation control method for air conditioning system and air conditioning system | |
EP2863537B1 (en) | Motor control device | |
US20080000246A1 (en) | Conveying Temperature Information in a Controlled Variable Speed Heating, Ventilation, and Air Conditioning (HVAC) System | |
JPH1114124A (en) | Air conditioner | |
AU2007210546B2 (en) | Outdoor unit for air conditioner and method of controlling the same | |
CA2865319C (en) | Air conditioner and control method of air conditioner | |
KR20090039485A (en) | Motor controller and method of controlling motor | |
KR101013391B1 (en) | Controller for air conditioner | |
JP2000337682A (en) | Air conditioner | |
JP6599805B2 (en) | Air conditioning control system | |
JPH10174449A (en) | Dead time compensation for compressor of air conditioner | |
JP6031974B2 (en) | Air conditioner outdoor unit | |
JPH11211253A (en) | Controller for separation type air conditioning equipment | |
JP2006207983A (en) | Air conditioner | |
JPH06294542A (en) | Control method of airconditioning apparatus | |
JP2000234787A (en) | Operation controlling method and apparatus for air conditioning | |
US11588427B2 (en) | Motor drive device and air conditioner | |
JP2000292014A (en) | Drive control device for compressor for air-conditioner and refrigerant flooding preventing control method therefor | |
JP3606755B2 (en) | Air conditioner | |
JP2005098532A (en) | Phase control device for air conditioner | |
JP4289774B2 (en) | Sensorless DC brushless motor control method, sensorless DC brushless motor, fan motor and compressor motor, refrigeration and air conditioning fan motor and refrigeration and air conditioning compressor motor | |
JP2006280085A (en) | Motor controller and its built-in fan control method | |
JP2019158182A (en) | Air conditioning control device and air conditioner equipped with the same | |
JP2021010282A (en) | Motor control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050708 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060530 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060612 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3821104 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100630 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100630 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110630 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120630 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130630 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |