JP2004256329A - Method and apparatus for refining carbonized material and production facility - Google Patents

Method and apparatus for refining carbonized material and production facility Download PDF

Info

Publication number
JP2004256329A
JP2004256329A JP2003046913A JP2003046913A JP2004256329A JP 2004256329 A JP2004256329 A JP 2004256329A JP 2003046913 A JP2003046913 A JP 2003046913A JP 2003046913 A JP2003046913 A JP 2003046913A JP 2004256329 A JP2004256329 A JP 2004256329A
Authority
JP
Japan
Prior art keywords
carbide
furnace
refining
carbonized
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003046913A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kashiwagi
佳行 柏木
Original Assignee
Meidensha Corp
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, 株式会社明電舎 filed Critical Meidensha Corp
Priority to JP2003046913A priority Critical patent/JP2004256329A/en
Publication of JP2004256329A publication Critical patent/JP2004256329A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refining method in which a carbonized material originating from a material to be treated is utilized as a resource by stabilizing the production of the carbonized material, reducing the cost, surely and easily carrying out the removal of a combustible gas component contained in the carbonized material and safely and inexpensively storing and preserving the carbonized material. <P>SOLUTION: The carbonized material is obtained by drying a raw material originating from various materials to be treated which is an organic material in a drying furnace 1 and thermally decomposing the raw material in a carbonization furnace 2. The carbonized material is turned to a refined carbonized material by being introduced into a refining furnace 4 and induction-heated by a magnetic field generating means 42 to remove the combustible component in the carbonized material. The steam produced in the drying furnace 1, a thermal decomposition gas produced in the thermally decomposition furnace 2 and the combustible component produced in the refining furnace 4 are combusted in a gas combustion furnace 5 to make harmless. The gas combustion-treated in the gas combustion furnace 5 is released to the outside after being cooled, for example, by a heat exchanger 6. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、炭化物の精錬方法,精錬装置,生成施設であって、例えば従来は廃棄されている有機性物質、例えば各種汚泥,植物由来の各種廃棄物,プラスチック類を含む石油製品由来の高分子物質を熱分解処理加工により炭化し、その炭化物を有効利用することが可能な精錬方法,精錬装置,生成施設に関するものである。
【0002】
【従来の技術】
従来は廃棄されていた有機性物質の各種被処理物、例えば各種汚泥,植物由来の端材物,プラスチック類を含む石油製品由来の高分子物質は、熱分解処理加工により炭化し、その炭化物を有効利用する試みが成されている。
【0003】
前記の炭化物は、例えば肥料用資材,土壌改良材資材,融雪資材として利用されている。また、前記の炭化物は、例えば貯留サイロ,フレコンパック,袋詰等の各種形態によって貯留保管されている。
【0004】
炭化物から活性炭を得る賦活処理技術としては、例えば特公昭28−2625号公報に示すように、炭化物を高周波電磁場内に位置させ、その炭化物を高周波電流により急激に温度上昇させて誘導加熱すると共に、放電作用により微紛化,オゾン酸化させて賦活処理する方法が知られている。
【0005】
【特許文献1】
特公昭28−2625号公報(第1頁左欄第28行目〜右欄第3行目)。
【0006】
また、特開平9―309714号公報に示すように、誘導加熱,誘電加熱,マイクロ波加熱のうち何れかのエネルギーにより、炭化物と水蒸気との水生ガス反応を促進させながら賦活処理する方法が知られている。なお、この特開平9―309714号公報では、例えば600〜700℃の温度で熱分解処理加工して得た炭化物の場合、750〜900℃の温度で賦活処理することが開示されている。
【0007】
【特許文献2】
特開平9―309714号公報(段落[0005])。
【0008】
【発明が解決しようとする課題】
前記の熱分解処理加工により得た炭化物を各種形態(例えば、袋詰等)により貯留保管する場合において、その炭化物の自然発火により火災に至る問題が生じている。このように炭化物が自然発火する現象の原因については、明確には解明されていないが、例えば炭化物中で化合物として残存する水素,酸素等の成分や可燃性成分(有機物等)による化学反応等(例えば、水素,酸素の酸化反応)を起因とした現象、炭化物中に含有(残存)するAl,Fe,Ca等の成分による化学反応等(例えば、各種被処理物由来の炭化物に含まれる各種金属が触媒として機能した酸化反応)を起因とした現象、が作用しているものと考えられる。
【0009】
一般的に、炭化物の熱分解処理加工における温度(以下、熱分解温度と称する)の上昇に伴って、その炭化物中のガス成分(例えば、水素,酸素や可燃性成分)の含有量は減少するが、前記の熱分解温度が低くなると前記の残存量は増加する。
【0010】
従って、前記の熱分解温度を高く設定(例えば、800〜1000℃)することにより、発火現象を惹起しない炭化物が得られ易くなるが、その炭化物の生成に要するエネルギーのコストが増加し、また、生成中に炭化物が燃焼する現象が生じる等の理由により、安定して炭化物を得ることが困難となる。
【0011】
さらに、高温で熱分解処理加工を行う場合には、その施設を耐高温仕様にする必要があり、すなわち施設のコストおよび該施設の維持管理に要するランニングコストが高くなってしまう。
【0012】
一方、前記の熱分解温度を例えば500〜700℃程度に低く設定すると、前記の熱分解温度を高く設定した場合と比較して、炭化物の生成等に要するコストを低減できると共に安定して炭化物を得ることはできるが、その生成された炭化物中には可燃性のガス成分が残存し易くなり、発火現象を惹起する傾向となる。
【0013】
前記のように熱分解温度を低く設定した場合、その熱分解処理加工に費やす時間を長くすることにより、前記の発火現象を回避することができるが、炭化物の生成に要するエネルギーのコストが増加するため好ましくない。
【0014】
前記炭化物の各種保管貯留の形態のうち、袋詰による形態は比較的取り扱いが簡便および安価であり、ビニール製,紙製の袋が一般的には使用されている。しかし、前記の袋は、炭化物に含有されている可燃性成分の酸化等を起因とした発火や、炭化物中に含有するAl,Fe,Ca等の成分が触媒として機能することを起因とした発火により、火災等を惹起する可能性がある。
【0015】
本発明は、前記課題に基づいてなされたものであり、炭化物の生成を安定化および低コスト化し、その炭化物中に含有する可燃性のガス成分の除去を確実および容易に行い、炭化物の貯留保管を安全かつ安価に行うことができ、被処理物由来の炭化物の資源再利用に貢献することが可能な炭化物の精錬方法およびそのシステム及びその施設を提供することにある。
【0016】
【課題を解決するための手段】
本発明は、前記課題の解決を図るために、請求項1記載の発明は、可燃性成分を含んだ炭化物の精錬方法において、前記炭化物を磁界中に配置し、その磁界により前記炭化物に誘導電流を発生させ、その誘導電流により前記炭化物を加熱し、その加熱により前記炭化物中の可燃性成分を除去することを特徴とする。
【0017】
請求項2記載の発明は、炭化物の精錬方法において、非磁性材料から成る回転筒内に収納され該回転筒の軸方向に移動する炭化物に対し、前記回転筒の外周側に設けられた磁界発生手段により誘導電流を惹起して、前記誘導電流により前記の個々の炭化物を加熱し、この加熱により前記の個々の炭化物中に含まれる可燃性成分を除去することを特徴とする。
【0018】
請求項3記載の発明は、前記の請求項1または2記載の発明において、前記炭化物は、有機性物質を炭化して得たことを特徴とする。
【0019】
請求項4記載の発明は、前記の請求項3記載の発明において、前記有機性物質は、汚泥由来の物質(例えば、下水汚泥,生産活動に伴って発生する各種産業汚泥等),植物由来の物質(例えば、廃木材,建材等),高分子物質由来の物質(例えば、樹脂,ゴム等)のうち、何れか一つまたは二つ以上であることを特徴とする。
【0020】
請求項5記載の発明は、前記の請求項1乃至4記載の発明において、前記炭化物は、間接加熱により熱分解処理加工して得たことを特徴とする。
【0021】
請求項6記載の発明は、炭化物の精錬装置において、導入された炭化物を撹拌,搬送することが可能で非磁性材料から成る回転筒と、前記回転筒の外周側に設けられ該回転筒内に磁界を付与することが可能な磁界発生手段と、を備えたことを特徴とする。
【0022】
請求項7記載の発明は、炭化物の生成施設において、被処理物(例えば、有機性物質(汚泥由来の物質,植物由来の物質,高分子物質由来の物質等))を熱分解処理加工して炭化物を得る手段と、前記の得られた炭化物中の可燃性成分を除去して精錬する手段と、を備えたことを特徴とする。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態における炭化物の精錬方法,精錬システム,生成施を図面等に基づいて詳細に説明する。
【0024】
本発明者は、炭化物の精錬方法,精錬システム,生成施設において、前記の誘導加熱によって活性炭を得る賦活処理技術を適用して、熱分解処理加工で得られる炭化物を加熱すれば、その炭化物中の可燃性成分を除去できることに着目した。
【0025】
すなわち、賦活処理で消費されるほどの大きなエネルギーを要することなく、比較的低負荷の誘導加熱によって、個々の炭化物自体を該炭化物内部から発熱させて加熱し、個々の炭化物の少なくとも外表面部分から可燃性成分を除去して、火災等を惹起する危険性のない精錬された炭化物(以下、精錬炭化物と称する)が得られることに着目した。
【0026】
図1は、本実施の形態における炭化物(精錬炭化物)の生成施設の一例を示す概略説明図である。図1において、乾燥炉1は、回転キルン方式を採用した回転自在の回転炉11と、その回転炉11の外周側に形成されたガスダクト(図示省略)を介して導入される熱風ガスにより該回転炉11を外部から加熱することが可能な外部加熱手段としての加熱ジャケット12と、前記の回転炉11を該回転炉11の両端側にて回転自在に支承する支持ローラ110と、前記の回転炉11を回転駆動する回転駆動源111と、を具備して成る。なお、前記の熱風ガスは、熱風炉15から導入される。
【0027】
前記の回転炉11の一端側には、原料(被処理物;例えば、有機性物質の各種廃棄物等)を搬入するための供給口(図示省略)が設けられ、その他端側には排出口(図示省略)が設けられる。また、回転炉11内部には、搬送物を撹拌搬送するための送り羽根(図示省略)が複数枚具備される。そして、ダクト10から供給された原料を前記の供給口側から回転炉11に導入し、その回転炉11を回転させることによって、前記の原料を撹拌しながら排出口側へ移送することが可能となる。なお、前記ダクト10には、原料を投入するホッパー設備101が設けられる。
【0028】
炭化炉2は、乾燥炉1にて乾燥処理された原料を熱分解処理加工する手段であり、回転キルン方式を採用した前記乾燥炉1と同様の構成をなし、回転炉21,加熱ジャケット22,ダクト23,支持ローラ210,回転駆動源211を備える。
【0029】
前記の乾燥炉1および炭化炉2は、図示するように、前記乾燥炉1の排出口と炭化炉2の供給口とが連絡するように配置される。この場合、乾燥炉1の排出口と炭化炉2の供給口には、これら排出口と供給口を覆って連通する連絡ダクト20が設けられる。この連絡ダクト20には、前記の乾燥炉1内で発生した水蒸気,炭化炉2内で発生した熱分解ガスをそれぞれガス燃焼炉6に移送するための経路(例えば、配管)が接続される。また、連絡ダクト20内には、乾燥した原料を炭化炉2に誘導するためのガイド201が設けられる。
【0030】
熱風炉24は、熱風ガスを供給するための手段であり、熱風ガスを発生させるための燃焼バーナー240が備えられている。前記の熱風ガスは、循環ブロア13によって炭化炉2の加熱ジャケット22に供給され、回転炉21を加熱する。その後、前記の炭化炉2の回転炉21を加熱した熱風ガスは、乾燥炉1の加熱ジャケット12内に供給され、回転炉11を加熱する。
【0031】
なお、前記の加熱ジャケット12から排出された熱風ガスは排気(例えば、屋外へ排気)されるが、その一部のガスはエゼクタブロア14を介してエゼクタ50に供給され、ガス燃焼炉5のエゼクタ駆動ガスとしての利用に供される。
【0032】
また、前記の熱風ガスには、温度調整用の空気が注入され、ガス温度が適宜調整される。例えば、原料が脱水汚泥である場合、原料は乾燥炉1において例えば350℃で間接加熱され、次いで炭化炉2において例えば650℃で間接加熱される。このようにして、乾燥炉1内に導入される原料は乾燥処理された後、炭化炉2内にて熱分解処理されて炭化物となる。
【0033】
精錬炉4は、前記炭化物中の可燃性成分を除去するための手段であり、非磁性材料(耐熱性の絶縁材料;例えば、アルミナセラミックス)から成り回転キルン方式を採用した回転自在の回転炉41と、その回転炉41の外周側に設けられ該回転炉41内に磁界を発生させることが可能な磁界発生手段42と、前記の回転炉41を該回転炉41の両端側にて回転自在に支承する支持ローラ410と、前記の回転炉41を回転駆動する回転駆動源411と、を具備して成る(具体的な構造等については図2乃至図4に基づいて後述する)。
【0034】
この精錬炉4には、スクリューコンベア等の移送手段(例えば、ホッパー設備101と同様の構成の移送手段)3によって前記の炭化物が導入される。この精錬炉4内に導入された炭化物は、回転炉41内を該回転炉41の軸方向へ移動(図1中ではダクト40側からダクト44側へ移動)しながら、磁界発生手段42によって該炭化物内部から誘導加熱され、その炭化物中の可燃性成分が除去されて精錬炭化物となり、ダクト44を介して取り出される。このダクト44には、前記の炭化物から除去された可燃性成分をガス燃焼炉6に移送(例えば、図1中のブロア45を介して移送)するための経路(例えば、配管)が接続される。
【0035】
ガス燃焼炉5は、被処理ガス(例えば、乾燥炉1で発生した水蒸気,熱分解炉2で発生した熱分解ガス,精錬炉4で発生した可燃性成分)を燃焼し無害化処理する手段であり、燃焼室50内に導入された被処理ガスを燃焼(混合燃焼)するための燃焼バーナー52を備える。この燃焼バーナー52による燃焼は、前記熱分解ガス,可燃性成分が十分発生している場合、その発生量に応じて燃焼バーナー52の燃料の供給を規制することにより適宜制限される。なお、前記の各被処理ガスには、例えば系外から燃焼補助のための空気が適宜導入されるものとする。
【0036】
熱交換器6は、ガス燃焼炉5にて燃焼処理されたガスを冷却処理する手段であり、例えば空気を冷却媒体とする気体−気体熱交換方式のものが用いられる。この熱交換器6により、被冷却ガスを例えば200〜150℃程度までに冷却処理するが、前記被冷却ガスには新鮮な空気が適宜供給され、そのガス温度が適切に調整される。そして、冷却されたガスは、バグフィルタ61に供した後、ブロア62によって煙突73から屋外に開放している。なお、本実施形態においては、熱交換器6にて加熱された空気は、熱風炉24での熱風ガスの生成や乾燥炉4の加熱ジャケット52に供される熱風ガスとして利用されている。
【0037】
図2は、前記精錬炉4における磁界発生手段42の構造の一例を示す概略説明図である。なお、図1と同様なものには同一符号等を用いて、その詳細な説明を省略する。
【0038】
図2に示すように、磁界発生手段41は、回転炉41の外周面に沿って位置し該回転炉41内に磁界を発生させることが可能なコイル部材(図2中では6個のリング状のコイル部材)420と、例えば配線等を介してコイル部材420に電流を流すための電源(交流電源)421と、前記コイル部材の外周側に位置し精錬炉4外部に対する磁界の発散を防止することが可能な磁炉制御部材422と、を具備して成る。
【0039】
なお、図2では、コイル部材420としてリング状のものを示したが、回転炉41内に磁界を発生させ該回転炉41内の被処理物(炭化物)に誘導電流を惹起させることが可能なコイル部材であれば種々の形態のものを適用でき、例えば螺旋状,渦巻状等のコイル部材を一つまたは複数個用いても良い。
【0040】
前記のコイル部材420に電流を流すことにより、コイル部材420の内周側に対して貫装するように配置された回転炉41内には、図3の概略説明図に示すような磁力線(図3の点線部)で磁界が発生し、その磁界の精錬炉4外部への発散(膨れ)は磁炉制御部材422により防止される。
【0041】
図4は、精錬炉4の横断面形状を示す概略説明図(磁炉制御部材422は図示省略)である。なお、図2と同様なものには同一符号等を用いて、その詳細な説明を省略する。
【0042】
図4に示すように、精錬炉4の回転炉41内に導入させた炭化物7は、その回転炉41の回転(キルン回転;例えば図4の矢印方向の回転)により撹拌されながら、主に回転炉41内の下方側の位置で該回転炉41の軸方向へ移動し、その一部(比較的軽量な炭化物;例えば、粒状の炭化物)は回転炉41内を浮遊しながら該回転炉41の軸方向へ移動する。
【0043】
この際、コイル部材420に電流を流すことにより、炭化物7(回転炉41内を浮遊する炭化物を含む)には、回転炉41内に発生する磁界の磁力線が作用し、誘導電流が惹起される。なお、リング状のコイル部材420を用いた場合、例えば図4に示すように、コイル部材420の一部には絶縁部材424が設けられ、例えば支持部材(または、複数個の支持部材)423により固定される。
【0044】
これにより、前記の炭化物7は、その炭化物7内部から加熱(誘導加熱)され、個々の炭化物の少なくとも外表面部分から可燃性成分が除去されて、精錬炭化物となる。
【0045】
前記可燃性成分の除去は、たとえ炭化炉2における熱分解温度が低く設定(例えば500〜700℃程度)され炭化物中に多量の可燃性成分が含まれている場合であっても、活性炭を得るための賦活処理と比較して、低いエネルギー(誘導加熱エネルギー)によって達成される。すなわち、前記磁界発生手段42の規模(例えば、誘導加熱能力)は、賦活処理で用いられている装置と比較して、比較的低負荷の誘導加熱を行うことが可能な程度で十分である。
【0046】
以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。
【0047】
例えば、本実施形態に示した炭化物の生成施設によれば、種々の原料、例えば汚泥由来の物質(下水汚泥,し尿汚泥,生産活動に伴って発生する各種産業汚泥等),植物由来の物質(廃木材,建材等),高分子物質由来の物質(樹脂,ゴム等)や、それら各物質の混合物から精錬炭化物を得ることができる。
【0048】
また、乾燥炉,炭化炉,精錬炉,ガス燃焼炉,熱交換器等の各処理温度は、例えば被処理物である原料の種類や量に応じて種々変更することができる。
【0049】
【発明の効果】
以上示したように本発明によれば、個々の炭化物を該炭化物内部からの発熱により加熱(誘導加熱)できるため、その炭化物に含まれる可燃性成分を該炭化物の少なくとも外表面部分から確実および容易に除去(比較的低い誘導加熱エネルギーで除去)することが可能となる。
【0050】
これにより、たとえ炭化物中に金属成分が含まれていても、化学反応を起こす可燃性成分は除去されているため、炭化物による発火,火災等が惹起されることを防止でき、炭化物の貯留保管を安価で安全に行うことが可能となる。
【0051】
従って、熱分解処理加工の熱分解温度を低く設定して炭化物の生成を行うことができるため、各処理に要するエネルギーコストを低減することが可能となる。また、熱分解処理加工の装置等を耐高温仕様にしなくとも、その装置等の耐久性を維持することができるため、処理施設を安価に構築することが可能となる。
【0052】
ゆえに、例えば袋詰された炭化物を安価で安全に得ることができ、従来は廃棄されていた炭化物として資源利用に大きく貢献することが可能となる。
【図面の簡単な説明】
【図1】本実施形態における炭化物の生成施設を示す概略説明図。
【図2】本実施形態における精錬炉を示す概略説明図。
【図3】本実施形態における精錬炉の磁界発生を示す概略説明図。
【図4】本実施形態における精錬炉の横断面形状を示す概略説明図。
【符号の説明】
1…乾燥炉
2…炭化炉
4…精錬炉
5…ガス燃焼炉
6…熱交換器
11,21,41…回転炉
24…熱風炉
42…磁界発生手段
52,240…燃焼バーナー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refining method, a refining apparatus, and a production facility for carbides, for example, organic substances conventionally discarded, for example, various sludges, various wastes derived from plants, and polymers derived from petroleum products including plastics. The present invention relates to a refining method, a refining apparatus, and a production facility capable of carbonizing a substance by a thermal decomposition process and effectively utilizing the carbide.
[0002]
[Prior art]
Conventionally discarded organic materials to be treated, such as various sludges, plant-derived waste materials, and high-molecular-weight materials derived from petroleum products including plastics, are carbonized by thermal decomposition processing, and the carbides are removed. Attempts have been made to use it effectively.
[0003]
The above-mentioned carbide is used, for example, as a fertilizer material, a soil improvement material material, and a snow melting material. Further, the above-mentioned carbide is stored and stored in various forms such as a storage silo, a flexible container, and a bag.
[0004]
As an activation treatment technique for obtaining activated carbon from carbide, for example, as shown in Japanese Patent Publication No. 28-2625, a carbide is positioned in a high-frequency electromagnetic field, and the carbide is rapidly heated by a high-frequency current to induce induction heating. There has been known a method of performing activation treatment by pulverization and ozone oxidation by a discharge action.
[0005]
[Patent Document 1]
JP-B-28-2625 (page 1, left column, line 28 to right column, third line).
[0006]
Also, as disclosed in Japanese Patent Application Laid-Open No. 9-309714, a method is known in which an activation treatment is performed while accelerating an aquatic gas reaction between a carbide and water vapor by any one of induction heating, dielectric heating, and microwave heating. ing. Japanese Patent Application Laid-Open No. 9-309714 discloses that, for example, in the case of a carbide obtained by a thermal decomposition treatment at a temperature of 600 to 700 ° C., an activation treatment is performed at a temperature of 750 to 900 ° C.
[0007]
[Patent Document 2]
JP-A-9-309714 (paragraph [0005]).
[0008]
[Problems to be solved by the invention]
In the case where the carbide obtained by the thermal decomposition treatment is stored and stored in various forms (for example, bagging), there is a problem that a fire is caused by spontaneous ignition of the carbide. Although the cause of the phenomenon of spontaneous ignition of carbides has not been clearly elucidated, for example, chemical reactions caused by components such as hydrogen and oxygen remaining as compounds in the carbides and flammable components (organic substances, etc.) ( For example, phenomena caused by oxidation reaction of hydrogen and oxygen), chemical reaction by components (such as Al, Fe, Ca, etc.) contained (residual) in carbides (for example, various metals contained in carbides derived from various objects to be treated) It is considered that a phenomenon caused by an oxidation reaction which functions as a catalyst) is acting.
[0009]
In general, the content of gas components (for example, hydrogen, oxygen and flammable components) in the carbide decreases as the temperature in the pyrolysis processing of the carbide increases (hereinafter referred to as the pyrolysis temperature). However, when the thermal decomposition temperature decreases, the residual amount increases.
[0010]
Therefore, by setting the thermal decomposition temperature to a high value (for example, 800 to 1000 ° C.), a carbide that does not cause an ignition phenomenon is easily obtained. However, the cost of energy required to generate the carbide increases, and It is difficult to stably obtain carbides, for example, due to a phenomenon in which the carbides burn during the formation.
[0011]
Further, when performing the thermal decomposition treatment at a high temperature, it is necessary to make the facility a high temperature resistant specification, that is, the cost of the facility and the running cost required for the maintenance and management of the facility increase.
[0012]
On the other hand, when the thermal decomposition temperature is set to be low, for example, about 500 to 700 ° C., compared to the case where the thermal decomposition temperature is set to be high, it is possible to reduce the cost required for carbide generation and the like and to stably remove the carbide. Although it can be obtained, a flammable gas component easily remains in the generated carbide, which tends to cause an ignition phenomenon.
[0013]
When the pyrolysis temperature is set low as described above, the ignition phenomenon can be avoided by lengthening the time spent for the pyrolysis processing, but the cost of energy required to generate carbide increases. Therefore, it is not preferable.
[0014]
Among the various forms of storage and storage of the carbide, the form by bagging is relatively easy and inexpensive to handle, and vinyl and paper bags are generally used. However, the above-mentioned bag is ignited due to oxidation of combustible components contained in the carbide, or ignition caused by components such as Al, Fe, Ca, etc. contained in the carbide functioning as a catalyst. May cause a fire or the like.
[0015]
The present invention has been made based on the above problems, stabilizes and reduces the cost of producing carbides, reliably and easily removes flammable gas components contained in the carbides, and stores and stores the carbides. It is an object of the present invention to provide a carbide refining method, a system thereof, and a facility capable of safely and inexpensively performing the process and contributing to the resource recycling of the carbide derived from the object to be treated.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a method for refining a carbide containing a combustible component, wherein the carbide is disposed in a magnetic field, and an induced current is applied to the carbide by the magnetic field. Is generated, and the carbide is heated by the induced current, and the combustible component in the carbide is removed by the heating.
[0017]
According to a second aspect of the present invention, in the method for refining carbide, a magnetic field is provided on the outer peripheral side of the rotary cylinder for the carbide stored in the rotary cylinder made of a nonmagnetic material and moving in the axial direction of the rotary cylinder. An induced current is generated by the means, and the individual carbide is heated by the induced current, and the heating removes combustible components contained in the individual carbide.
[0018]
The invention according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the carbide is obtained by carbonizing an organic substance.
[0019]
The invention according to claim 4 is the invention according to claim 3, wherein the organic substance is a substance derived from sludge (for example, sewage sludge, various industrial sludge generated during production activities, etc.), or a plant-derived substance. It is characterized by being one or more of a substance (eg, waste wood, building material, etc.) and a substance derived from a polymer substance (eg, resin, rubber, etc.).
[0020]
A fifth aspect of the present invention is characterized in that, in the first to fourth aspects of the present invention, the carbide is obtained by performing a thermal decomposition process by indirect heating.
[0021]
According to a sixth aspect of the present invention, in the carbide refining apparatus, a rotating cylinder made of a non-magnetic material capable of stirring and transporting the introduced carbide, and a rotating cylinder provided on the outer peripheral side of the rotating cylinder are provided inside the rotating cylinder. Magnetic field generating means capable of applying a magnetic field.
[0022]
According to a seventh aspect of the present invention, an object to be treated (for example, an organic substance (a substance derived from sludge, a substance derived from a plant, a substance derived from a polymer substance, etc.)) is subjected to thermal decomposition processing in a carbide generation facility. It is characterized by comprising means for obtaining a carbide, and means for refining by removing a combustible component in the obtained carbide.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for refining a carbide, a refining system, and a generating apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings and the like.
[0024]
The inventor of the present invention applies the activation treatment technique for obtaining activated carbon by induction heating in the method for refining carbides, the refining system, and the production facility, and heats the carbide obtained by the thermal decomposition treatment. We focused on the ability to remove flammable components.
[0025]
That is, without requiring a large amount of energy to be consumed in the activation treatment, by relatively low-load induction heating, the individual carbide itself is heated from the inside of the carbide and heated, and at least the outer surface portion of the individual carbide is heated. The inventors focused on the fact that flammable components were removed to obtain a refined carbide having no danger of causing a fire or the like (hereinafter referred to as a refined carbide).
[0026]
FIG. 1 is a schematic explanatory view showing an example of a facility for producing carbide (refined carbide) in the present embodiment. In FIG. 1, a drying furnace 1 is rotated by a rotatable rotary furnace 11 employing a rotary kiln system and a hot air gas introduced through a gas duct (not shown) formed on the outer peripheral side of the rotary furnace 11. A heating jacket 12 as an external heating means capable of heating the furnace 11 from outside, a support roller 110 for rotatably supporting the rotary furnace 11 at both ends of the rotary furnace 11, And a rotary drive source 111 for rotating the drive 11. The hot air gas is introduced from a hot air furnace 15.
[0027]
At one end of the rotary furnace 11, a supply port (not shown) for introducing a raw material (processed material; for example, various kinds of wastes of organic substances) is provided, and at another end, a discharge port is provided. (Not shown) is provided. Further, inside the rotary furnace 11, a plurality of feed blades (not shown) for stirring and transporting the transported material are provided. Then, the raw material supplied from the duct 10 is introduced into the rotary furnace 11 from the supply port side, and by rotating the rotary furnace 11, it is possible to transfer the raw material to the discharge port side while stirring. Become. In addition, the duct 10 is provided with a hopper facility 101 for charging a raw material.
[0028]
The carbonizing furnace 2 is means for subjecting the raw material dried in the drying furnace 1 to thermal decomposition processing. The carbonizing furnace 2 has the same configuration as the drying furnace 1 employing a rotary kiln system, and includes a rotary furnace 21, a heating jacket 22, It includes a duct 23, a support roller 210, and a rotation drive source 211.
[0029]
The drying furnace 1 and the carbonization furnace 2 are arranged so that the discharge port of the drying furnace 1 and the supply port of the carbonization furnace 2 communicate with each other, as shown in the drawing. In this case, a communication duct 20 is provided at the discharge port of the drying furnace 1 and the supply port of the carbonization furnace 2 so as to cover and communicate with the discharge port and the supply port. The communication duct 20 is connected to a path (for example, a pipe) for transferring the steam generated in the drying furnace 1 and the pyrolysis gas generated in the carbonizing furnace 2 to the gas combustion furnace 6, respectively. A guide 201 for guiding the dried raw material to the carbonization furnace 2 is provided in the communication duct 20.
[0030]
The hot blast stove 24 is a means for supplying hot blast gas, and is provided with a combustion burner 240 for generating hot blast gas. The hot blast gas is supplied to the heating jacket 22 of the carbonization furnace 2 by the circulation blower 13 to heat the rotary furnace 21. Thereafter, the hot blast gas that has heated the rotary furnace 21 of the carbonizing furnace 2 is supplied into the heating jacket 12 of the drying furnace 1 to heat the rotary furnace 11.
[0031]
The hot-air gas discharged from the heating jacket 12 is exhausted (for example, exhausted to the outside), and a part of the gas is supplied to the ejector 50 via the ejector blower 14 and the ejector of the gas combustion furnace 5 is ejected. Provided for use as driving gas.
[0032]
Air for temperature adjustment is injected into the hot blast gas, and the gas temperature is adjusted appropriately. For example, when the raw material is dewatered sludge, the raw material is indirectly heated at, for example, 350 ° C. in the drying furnace 1 and then indirectly heated at, for example, 650 ° C. in the carbonizing furnace 2. In this way, the raw material introduced into the drying furnace 1 is subjected to a drying treatment, and then subjected to a thermal decomposition treatment in the carbonizing furnace 2 to become a carbide.
[0033]
The refining furnace 4 is a means for removing combustible components in the carbide, and is made of a non-magnetic material (heat-resistant insulating material; for example, alumina ceramics), and is a rotatable rotary furnace 41 employing a rotary kiln system. A magnetic field generating means 42 provided on the outer peripheral side of the rotary furnace 41 and capable of generating a magnetic field in the rotary furnace 41; and the rotary furnace 41 being rotatable at both ends of the rotary furnace 41. It comprises a supporting roller 410 for supporting the rotary furnace 41 and a rotary drive source 411 for rotating the rotary furnace 41 (specific structures and the like will be described later with reference to FIGS. 2 to 4).
[0034]
The carbide is introduced into the refining furnace 4 by a transfer means 3 such as a screw conveyor (for example, a transfer means having the same configuration as the hopper equipment 101). The carbide introduced into the refining furnace 4 is moved by the magnetic field generating means 42 in the rotary furnace 41 while moving in the axial direction of the rotary furnace 41 (moving from the duct 40 side to the duct 44 side in FIG. 1). Induction heating is performed from the inside of the carbide, and the combustible components in the carbide are removed to become refined carbide, which is taken out through the duct 44. A path (for example, a pipe) for transferring the combustible component removed from the carbide to the gas combustion furnace 6 (for example, via a blower 45 in FIG. 1) is connected to the duct 44. .
[0035]
The gas combustion furnace 5 burns a gas to be treated (for example, steam generated in the drying furnace 1, pyrolysis gas generated in the pyrolysis furnace 2, and flammable components generated in the refining furnace 4) to detoxify the gas. In addition, a combustion burner 52 for burning (mixing combustion) the gas to be treated introduced into the combustion chamber 50 is provided. When the pyrolysis gas and the flammable components are sufficiently generated, the combustion by the combustion burner 52 is appropriately restricted by regulating the fuel supply to the combustion burner 52 in accordance with the generated amount. In addition, it is assumed that, for example, air for assisting combustion is appropriately introduced from outside the system into each of the above-mentioned target gases.
[0036]
The heat exchanger 6 is a means for cooling the gas burned in the gas combustion furnace 5, and for example, a gas-gas heat exchange system using air as a cooling medium is used. The gas to be cooled is cooled by the heat exchanger 6 to, for example, about 200 to 150 ° C., and fresh air is appropriately supplied to the gas to be cooled, and the gas temperature is appropriately adjusted. After the cooled gas is supplied to the bag filter 61, the gas is released from the chimney 73 to the outside by the blower 62. In the present embodiment, the air heated by the heat exchanger 6 is used as a hot-air gas generated in the hot-air furnace 24 and supplied to the heating jacket 52 of the drying furnace 4.
[0037]
FIG. 2 is a schematic explanatory view showing an example of the structure of the magnetic field generating means 42 in the refining furnace 4. Note that the same components as those in FIG. 1 are denoted by the same reference numerals and the like, and detailed description thereof is omitted.
[0038]
As shown in FIG. 2, the magnetic field generating means 41 is a coil member (six ring-shaped in FIG. 2) positioned along the outer peripheral surface of the rotary furnace 41 and capable of generating a magnetic field in the rotary furnace 41. Coil member) 420, a power supply (AC power supply) 421 for flowing a current to the coil member 420 via, for example, wiring or the like, and a divergence of a magnetic field to the outside of the refining furnace 4 located on the outer peripheral side of the coil member. And a porcelain furnace control member 422 capable of being operated.
[0039]
Although a ring-shaped coil member 420 is shown in FIG. 2, it is possible to generate a magnetic field in the rotary furnace 41 to induce an induced current in a workpiece (carbide) in the rotary furnace 41. Various types of coil members can be applied as long as the coil members are, for example, one or a plurality of spiral or spiral coil members.
[0040]
By supplying a current to the coil member 420, magnetic field lines as shown in the schematic explanatory view of FIG. 3 are provided in the rotary furnace 41 arranged to penetrate the inner peripheral side of the coil member 420. A magnetic field is generated at the dotted line (3), and the magnetic field control member 422 prevents the magnetic field from diverging (swelling) to the outside of the refining furnace 4.
[0041]
FIG. 4 is a schematic explanatory view showing the cross-sectional shape of the refining furnace 4 (the furnace control member 422 is not shown). Note that the same components as those in FIG. 2 are denoted by the same reference numerals and the like, and detailed description thereof is omitted.
[0042]
As shown in FIG. 4, the carbide 7 introduced into the rotary furnace 41 of the refining furnace 4 mainly rotates while being stirred by the rotation of the rotary furnace 41 (kiln rotation; for example, rotation in the direction of the arrow in FIG. 4). It moves in the axial direction of the rotary furnace 41 at a position on the lower side in the furnace 41, and a part thereof (a relatively lightweight carbide; for example, granular carbide) is suspended in the rotary furnace 41 while floating in the rotary furnace 41. Move in the axial direction.
[0043]
At this time, when a current is passed through the coil member 420, the magnetic flux of the magnetic field generated in the rotary furnace 41 acts on the carbide 7 (including the carbide floating in the rotary furnace 41), and an induced current is generated. . When the ring-shaped coil member 420 is used, for example, as shown in FIG. 4, an insulating member 424 is provided on a part of the coil member 420, and for example, a support member (or a plurality of support members) 423 Fixed.
[0044]
As a result, the carbide 7 is heated (induction heating) from the inside of the carbide 7, and the flammable components are removed from at least the outer surface portion of each of the carbides to become refined carbides.
[0045]
The removal of the flammable components is achieved by obtaining activated carbon even if the pyrolysis temperature in the carbonization furnace 2 is set low (for example, about 500 to 700 ° C.) and a large amount of flammable components are contained in the carbide. Compared with the activation treatment for achieving a lower energy (induction heating energy). That is, the scale of the magnetic field generating means 42 (for example, induction heating capacity) is sufficient to perform induction heating with a relatively low load as compared with the apparatus used in the activation process.
[0046]
As described above, in the present invention, only the described specific examples have been described in detail, but it is apparent to those skilled in the art that various modifications and variations are possible within the technical idea of the present invention. It is obvious that such changes and modifications belong to the scope of the claims.
[0047]
For example, according to the carbide generation facility shown in the present embodiment, various raw materials, for example, sludge-derived substances (sewage sludge, human waste sludge, various industrial sludges generated in production activities, etc.), and plant-derived substances ( Refined carbides can be obtained from waste wood, building materials, etc., substances derived from high molecular substances (resins, rubbers, etc.), and mixtures of these substances.
[0048]
Further, the respective processing temperatures of the drying furnace, the carbonizing furnace, the refining furnace, the gas combustion furnace, the heat exchanger, and the like can be variously changed according to, for example, the type and amount of the raw material as the object to be processed.
[0049]
【The invention's effect】
As described above, according to the present invention, individual carbides can be heated (induction heating) by heat generated from the inside of the carbide, so that the combustible components contained in the carbide can be reliably and easily obtained from at least the outer surface portion of the carbide. (A relatively low induction heating energy).
[0050]
As a result, even if the metal component is contained in the carbide, the combustible component that causes a chemical reaction has been removed, so that it is possible to prevent ignition, fire, and the like caused by the carbide, and to store and store the carbide. It can be performed safely at low cost.
[0051]
Therefore, since the carbide can be generated by setting the thermal decomposition temperature of the thermal decomposition process low, it is possible to reduce the energy cost required for each process. Further, the durability of the apparatus or the like can be maintained even if the apparatus or the like for the thermal decomposition processing is not made to have a high temperature resistance specification, so that the processing facility can be constructed at a low cost.
[0052]
Therefore, for example, bagged carbide can be obtained at low cost and safely, and it is possible to greatly contribute to resource utilization as conventionally discarded carbide.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing a carbide generation facility in the present embodiment.
FIG. 2 is a schematic explanatory view showing a smelting furnace in the embodiment.
FIG. 3 is a schematic explanatory view showing generation of a magnetic field in a smelting furnace according to the embodiment.
FIG. 4 is a schematic explanatory view showing a cross-sectional shape of the refining furnace in the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Drying furnace 2 ... Carbonization furnace 4 ... Refining furnace 5 ... Gas combustion furnace 6 ... Heat exchangers 11, 21, 41 ... Rotary furnace 24 ... Hot blast furnace 42 ... Magnetic field generating means 52, 240 ... Combustion burner

Claims (7)

  1. 可燃性成分を含んだ炭化物の精錬方法において、
    前記炭化物を磁界中に配置し、その磁界により前記炭化物に誘導電流を発生させ、その誘導電流により前記炭化物を加熱し、その加熱により前記炭化物中の可燃性成分を除去することを特徴とする炭化物の精錬方法。
    In a method of refining a carbide containing a combustible component,
    Placing the carbide in a magnetic field, generating an induced current in the carbide by the magnetic field, heating the carbide by the induced current, and removing a combustible component in the carbide by the heating; Refining method.
  2. 非磁性材料から成る回転筒内に収納され該回転筒の軸方向に移動する炭化物に対して、前記回転筒の外周側に設けられた磁界発生手段により誘導電流を惹起し、
    前記誘導電流により前記の個々の炭化物を加熱し、この加熱により前記の個々の炭化物中に含まれる可燃性成分を除去することを特徴とする炭化物の精錬方法。
    Induced current is induced by magnetic field generating means provided on the outer peripheral side of the rotating cylinder with respect to the carbide stored in the rotating cylinder made of a nonmagnetic material and moving in the axial direction of the rotating cylinder,
    A method for refining carbide, comprising heating the individual carbides by the induced current and removing the combustible components contained in the individual carbides by the heating.
  3. 前記炭化物は、有機性物質を炭化して得たことを特徴とする請求項1または2記載の炭化物の精錬方法。3. The method for refining carbide according to claim 1, wherein the carbide is obtained by carbonizing an organic substance.
  4. 前記有機性物質は、汚泥由来の物質,植物由来の物質,高分子物質由来の物質のうち、何れか一つまたは二つ以上であることを特徴とする請求項3記載の炭化物の精錬方法。The method for refining carbide according to claim 3, wherein the organic substance is any one or more of a substance derived from sludge, a substance derived from a plant, and a substance derived from a polymer substance.
  5. 前記炭化物は、間接加熱により熱分解処理加工して得たことを特徴とする請求項1乃至4記載の炭化物の精錬方法。The method for refining carbide according to claim 1, wherein the carbide is obtained by performing a thermal decomposition process by indirect heating.
  6. 導入された炭化物を撹拌,搬送することが可能で非磁性材料から成る回転筒と、
    前記回転筒の外周側に設けられ該回転筒内に磁界を付与することが可能な磁界発生手段と、を備えたことを特徴とする炭化物の精錬装置。
    A rotating cylinder made of a non-magnetic material capable of stirring and transporting the introduced carbide;
    And a magnetic field generating means provided on the outer peripheral side of the rotary cylinder and capable of applying a magnetic field to the rotary cylinder.
  7. 被処理物を熱分解処理加工して炭化物を得る手段と、
    前記の得られた炭化物中の可燃性成分を除去して精錬する手段と、を備えたことを特徴とする炭化物の生成施設。
    Means for obtaining a carbide by subjecting the object to be thermally decomposed;
    Means for refining by removing combustible components in the obtained carbide.
JP2003046913A 2003-02-25 2003-02-25 Method and apparatus for refining carbonized material and production facility Pending JP2004256329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046913A JP2004256329A (en) 2003-02-25 2003-02-25 Method and apparatus for refining carbonized material and production facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046913A JP2004256329A (en) 2003-02-25 2003-02-25 Method and apparatus for refining carbonized material and production facility

Publications (1)

Publication Number Publication Date
JP2004256329A true JP2004256329A (en) 2004-09-16

Family

ID=33113297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046913A Pending JP2004256329A (en) 2003-02-25 2003-02-25 Method and apparatus for refining carbonized material and production facility

Country Status (1)

Country Link
JP (1) JP2004256329A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010371A (en) * 2005-06-28 2007-01-18 Kenji Yasuda Harmful substance detecting system, detection method of harmful wood, and waste wood treatment system
JP2007119740A (en) * 2005-09-30 2007-05-17 Ngk Insulators Ltd Process for production of carbide product and production apparatus
JP2007246245A (en) * 2006-03-17 2007-09-27 Ngk Insulators Ltd Method and device for storing powder and granular material
JP2008208001A (en) * 2007-02-27 2008-09-11 Metawater Co Ltd Method of treating carbonized product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010371A (en) * 2005-06-28 2007-01-18 Kenji Yasuda Harmful substance detecting system, detection method of harmful wood, and waste wood treatment system
JP2007119740A (en) * 2005-09-30 2007-05-17 Ngk Insulators Ltd Process for production of carbide product and production apparatus
JP2007246245A (en) * 2006-03-17 2007-09-27 Ngk Insulators Ltd Method and device for storing powder and granular material
JP2008208001A (en) * 2007-02-27 2008-09-11 Metawater Co Ltd Method of treating carbonized product

Similar Documents

Publication Publication Date Title
JP3602504B2 (en) Heat treatment equipment using superheated steam
WO2005063923A1 (en) Carbonization apparatus for producing activated carbon
WO1994002780A1 (en) Apparatus for allowing thermal dimensional changes of metal parts in a retort mechanism
JP2005103437A (en) Processing method of organic material containing water and its facility
KR20180054939A (en) Apparatus and method for pyrolysis carbonizing of sludge
JP2004256329A (en) Method and apparatus for refining carbonized material and production facility
JP2004277464A (en) Apparatus for carbonization treatment of organic material-containing sludge
JP2004277465A (en) Apparatus for carbonization treatment of organic material-containing sludge
JP2008086982A (en) Superheated steam continuously-recycling treatment apparatus
JP2003292964A (en) Apparatus and facility for heat treatment
JP4077811B2 (en) Heat treatment equipment using superheated steam
JP2005274018A (en) Indirect heating working system and indirect heating working method
KR200387714Y1 (en) appartatus for drying and carbonizing for waste matter
JP2003262316A (en) Heat treatment method and facility for water containing organic matter
JP2974067B1 (en) Waste carbonization equipment
JP2005246151A (en) Method for pyrolytically decomposing sludge and facility therefor
JPH11310782A (en) Carbonizing method for sludge
JP2003214611A (en) Heating and processing method for workpiece and its heat treatment facilities
JP2005037043A (en) Heat processing device
JP2003262314A (en) Heat treatment method and facility for water containing organic matter
KR102262101B1 (en) Hybrid system for drying and carbonizing organic matter
JP2004018808A (en) Equipment for carbonizing waste
JP2005272551A (en) Method and plant for pyrolysis processing
JP2005246149A (en) Sludge volume reduction method and its facility
KR101916958B1 (en) Apparatus and method for pyrolysis carbonizing of sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224