JP2004249212A - Ultrasonic cleaning device - Google Patents

Ultrasonic cleaning device Download PDF

Info

Publication number
JP2004249212A
JP2004249212A JP2003042139A JP2003042139A JP2004249212A JP 2004249212 A JP2004249212 A JP 2004249212A JP 2003042139 A JP2003042139 A JP 2003042139A JP 2003042139 A JP2003042139 A JP 2003042139A JP 2004249212 A JP2004249212 A JP 2004249212A
Authority
JP
Japan
Prior art keywords
ultrasonic
cleaning
flat
sound pressure
ultrasonic vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003042139A
Other languages
Japanese (ja)
Other versions
JP2004249212A5 (en
Inventor
Maki Okawa
真樹 大川
Seiji Mihashi
誠二 三橋
Yoshihiro Tsurusaki
吉弘 鶴崎
Kenji Kinoshita
謙二 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Denki Alpha Co Ltd
Original Assignee
Kokusai Denki Alpha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denki Alpha Co Ltd filed Critical Kokusai Denki Alpha Co Ltd
Priority to JP2003042139A priority Critical patent/JP2004249212A/en
Priority to KR1020040010933A priority patent/KR20040075747A/en
Publication of JP2004249212A publication Critical patent/JP2004249212A/en
Publication of JP2004249212A5 publication Critical patent/JP2004249212A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/71Cleaning in a tank

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic cleaning device which has no unevenness in cleaning and a uniform sound pressure distribution. <P>SOLUTION: An ultrasonic vibration body has a composite element-arranged structure wherein a plurality of flat ultrasonic vibration elements are arranged side by side. Each of the flat ultrasonic vibration elements has a compact shape having flat ultrasonic radiation properties to a prescribed small radiation region. Further, slit working is performed to the thickness direction of the ultrasonic vibration elements. Also, provided that the extent of ultrasonics is defined as θ, 5°≤θ is satisfied, so that, even in the boundary between the adjacent vibrators of the flat ultrasonic vibration elements, the reduction of the ultrasonic sound pressure is suppressed, and substantially uniform ultrasonic radiation properties can be obtained in the whole face of the ultrasonic vibration body. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエハー,ガラスマスク,液晶ガラス基板,ハードディスク板等の精密洗浄を行う高周波超音波洗浄装置に関するものである。
【0002】
【従来の技術】
従来の超音波洗浄装置は、500KHzから1.5MHzの超音波振動子が底面に取り付けられ、その超音波振動子の振動周波数を、中心周波数に対して±5%の範囲で一定の周期で繰り返し変化させることにより洗浄のむらをなくしている。(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特第2789178号公報(第1頁、1欄)
【0004】
図11は、従来の超音波洗浄装置例であり、半導体ウエハー,液晶用のガラス,ハードディスク板等の微細加工品の精密洗浄には、500KHz以上の高周波の超音波振動体が用いられている。汚れは1μm以下の粒子等であり、洗浄槽1の中に満たされた洗浄液2の中を伝わる超音波振動、あるいは、洗浄液2と超音波振動の相乗効果により、被洗浄物の汚れを剥離させている。
超音波洗浄装置では、洗浄する対象物の大きさに合わせて、適当な大きさの平板状の超音波振動素子4を1枚あるいは複数枚の組み合わせにより、被洗浄物に満遍なく超音波振動が照射されるように超音波振動素子4を並べて配置する。この照射される超音波の均一性は音圧分布を測定することにより評価される。
【0005】
【発明が解決しようとする課題】
従来、図11に示されるように、比較的小型の被洗浄物に対しては、超音波振動素子4の1枚の大きさが大きい素子を使用すれば、複数枚組み合わせても少ない枚数なので、比較的均一な音圧分布を得ることが可能であった。
超音波振動素子4を多数枚用いたとき、音圧分布の不均一性が無視できなくなる主な要因としては、素子と素子の境目で超音波が出ていない領域の拡大が挙げられる。このため、被洗浄物の大型化、かつ、加工の微細化に伴い、超音波洗浄を行った際の洗浄むらが無視できなくなってきた。
より大きな超音波振動板3で、均一に洗浄できるように、従来は、超音波洗浄装置では振動素子の境目で音圧が低下することを考慮して、被洗浄物の置き方を工夫すること、被洗浄物を回転させて均一性を確保することなど、外形の異なる被洗浄物毎に固有な方策がとられて行われていた。
一般に、長方形の超音波振動素子の指向性に関して、発振周波数が同じであれば振動素子の幅が大きいほど指向性は鋭い、また、同じ幅であれば周波数が高いほど指向性は鋭い。
従来、用いていた超音波振動素子の幅は大きく、この場合の指向性パターン例を図12(A)及び音圧分布の概念図を図12(B)に示した。更に、図9に示すように、後述する「振動子幅と洗浄液中の超音波の波長の比d/λ」の値が5以上のところでは、指向性は鋭い(超音波の広がりθは、概ね5°以下)ので、超音波振動素子を複数配列したときの音圧分布は素子の境目に音圧が落ち込む範囲が生じることとなる。従来方式(図5 B詳細I)では、振動素子幅d=37.5mmで、指向性を表す振動子幅と洗浄液中の超音波の波長の比d/λ=25(超音波の広がりθは、概ね1°)となる。
従って、年々、ウエハー面積の拡大化、回路パターンの微細化が進む半導体プロセス等では、洗浄の均一性と精密性の点で、従来の洗浄装置では間に合わなくなってきた問題がある。
【0006】
本発明は、以上の問題を解決するために行ったものであり、洗浄むらのない、均一な音圧分布をもつ超音波洗浄装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記目的を達成するために、本発明による超音波洗浄装置は、洗浄液が溜められた洗浄槽と、該洗浄槽内の該洗浄液に500kHz以上の超音波振動を伝搬させるための超音波振動体とを備えた超音波洗浄装置であって、
前記超音波振動体は複数枚の平板状超音波振動素子が並べて配置された複合素子配置構造を有し、該複数枚の平板状超音波振動素子のおのおのは、所定の小放射領域に対して平坦状の超音波放射特性を有する小型形状を有し、かつ、超音波の広がりをθとした場合、5°≦θとなるように形成され、前記複数枚の平板状超音波振動素子の隣接振動子相互間の境目においても超音波音圧の低下が抑制されて前記超音波振動体の全面において実質上均一な超音波放射特性が得られるように構成されたこと、
更に、洗浄液が溜められた洗浄槽と、該洗浄槽内の該洗浄液に500kHz以上の超音波振動を伝搬させるための超音波振動体とを備えた超音波洗浄装置であって、
前記超音波振動体は複数枚の平板状超音波振動素子が並べて配置された複合素子配置構造を有し、該複数枚の平板状超音波振動素子のおのおのは、所定の放射領域に対して平坦状の超音波放射特性を有する形状を有し、前記超音波振動素子の厚み方向にスリット加工が施され、かつ、超音波の広がりをθとした場合、5°≦θとなるように形成され、前記複数枚の平板状超音波振動素子の隣接振動子相互間の境目においても超音波音圧の低下が抑制されて前記超音波振動体の全面において実質上均一な超音波放射特性が得られるように構成されたことを特徴とする。
【0008】
【発明の原理】
図6には、高周波電源により振動素子を励振するための振動素子電極(−、+)5と洗浄液2に超音波振動を発生させる振動板3の構成による超音波振動発生の基本原理を示した。
2枚並んだ超音波振動素子の境目で超音波が出ていない領域は、この指向性に大きく影響されていると考えられる。つまり、指向性が鋭いと超音波が出ていない領域は広く、図12(A)と比較し、図7(A)に示されるように、指向性が広いと超音波が出ていない領域は狭くなる。
これらのことより、同じ発振周波数を採用するのであれば、より小さな超音波振動素子を多数並べた超音波振動板により、振動素子の境目での音圧の低下が極めて少なく、均一な音圧分布が得られると言える。
【0009】
図8に示すように、一般に長方形の超音波振動素子において指向性は、
【数1】

Figure 2004249212
R:指向性関数、
d:超音波振動素子の幅寸法、
λ:洗浄液中の超音波の波長、
θ:超音波振動素子中心軸からの角度、
で示され、この指向性関数Rは振動素子の中心軸上のある点Pの音圧を1としたときの、それと距離が等しく角度θだけ傾いた点P’の音圧を示している。ここで、指向性の鋭さを評価するために、このP’の音圧が80%すなわちR=0.8になった角度θをもって行うものとする。このθが小さければ指向性は鋭く、大きければ指向性は広いことになる。
この指向性を決める要因となるのは、式(1)中の
【数2】
Figure 2004249212
である。
即ち、超音波振動素子の幅と洗浄液中の超音波の波長によって決められることとなる。
この式(1)でR=0.8を満たすd/λとθの関係を求めた特性が図9で示されており、d/λ=5を境にこの値が小さくなれば指向性は広く、音圧分布は均一を得る。
以上のことにより、超音波振動素子は、洗浄液中の超音波の波長に対して、幅をできるだけ小さくすることによって、均一な音圧分布を得ることができる。
ただし、振動素子を極限まで小さくして数多く配置することには、製造コスト面から考えて限度があり、それを解決するためには、図2(a)に示されたように、比較的大きな振動素子4にスリット溝加工を施せば、図2(b)〜(g)に示されたように、振動素子の幅は、複数のスリットで区切られて、複数の小幅(スリットピッチ)が形成され、この小幅の振動素子として作用する。なお、スリットの本数は多く、深さは深いほうが良いが、機械的強度との兼ね合いで決定される。
スリットの幅は、音圧分布の均一性の見地から考えると、できるだけ狭い方がよい。
【0010】
被洗浄物が大型化した今日、振動素子を大型化するには技術的あるいはコスト的に問題が多く、また、従来の大きさの振動素子を多数配置した超音波振動板では、音圧分布が不均一となり、均一な洗浄ができないため、他の振動方式が必要とされる。
【0011】
【発明の実施の形態】
本発明の超音波洗浄装置の実施例は、図1に示されるように、被洗浄物の入る、洗浄液が溜められた洗浄槽1と、洗浄液2と、被洗浄物の洗浄面に適合した大きさの振動板3と、500KHz以上の超音波振動を発振する小さな平板状の超音波の振動素子4を多数並べて配置された複合素子配置構造を有して、洗浄槽内の洗浄液に超音波振動を伝搬させる超音波振動体とで構成されている。
図2(a)〜(g)は超音波振動素子の厚さ方向の法線方向にスリット溝加工を施した振動素子4を配置し、そのスリット溝加工形態は、A詳細(I)〜(VI)に示されるように、振動素子の下側(+極側)にスリットを施したA詳細(I)、(III) 、(V)あるいは振動素子の上側(−極側)に施したA詳細(II)、(IV)、(VI)がある。
このように、振動素子4の長さ方向や幅方向さらに格子状に加工した(I)から(VI)のスリット形状のうち、いずれか一つを被洗浄物に適するものとして選択して用いればよい。
図3及び図4は、スリット溝加工を施した振動素子4を複数個並べて配置した超音波振動体を用いた超音波洗浄装置であって、図3及び図4のそれぞれに振動素子4(I)、(II)のように異形状の振動素子を組み合わせて並べられた複合素子配置として示された超音波振動体である。配列の仕方は適時、被洗浄物の大きさに適合させればよい。
【0012】
図5は、本発明による方式であるスリット溝加工を施した超音波振動素子を用いて超音波音圧分布測定実験を行い、その測定状況の概略図が示さている。
超音波の周波数fは1MHzで、洗浄液は水とし、水中を伝搬する超音波の音速は約1500m/sで、このときの洗浄液中の超音波の波長は、λ=v/fの関係式より、λ=1.5mmとなる。
超音波分布測定では、音圧センサを振動素子の幅方向にゆっくりと移動させ、その音圧値を記録している。
本発明では、振動素子幅に相当するスリットピッチd=1mmであり(図5B詳細(II)参照。)、指向性を表す振動子幅と洗浄液中の超音波の波長の比d/λ=0.67となり、従って、本発明による方式はd/λ値の小さな範囲0.67で超音波の広がり値33°となり(図9参照)、指向性が非常に広いことが示された(図7(B)及び図8参照。)。振動素子幅をd、洗浄液中の超音波の波長をλとした場合、5°≦θを満たすものである。
以上により、本発明による方式は超音波の指向性が広いので、隣り合う振動素子間の音圧は重なり合い、振動素子を組み合わせて並べられた複合素子配置とした超音波振動体の音圧分布は、平坦であることが分かる。
【0013】
また、この振動素子と振動素子との境目による超音波音圧の不均一性が生じない効果を利用すれば、従来、超音波洗浄装置では、隣り合う振動子相互間の境目で音圧が低下することを考慮して、被洗浄物の形状や置き方と、超音波振動板の振動素子配置が適切になるように被洗浄物に対応した固有の仕様化が行なわれていたが、図3、図4外観図で示したように、振動素子4の配置や形状及び複合した超音波振動体形状は自由に、被洗浄物の洗浄面の大きささえ対応するように考慮すればよい。
以上の実施例詳細説明は、スリットを有した振動素子を例としたが、本発明の他方の方式である、振動素子が小型形状化されて超音波振動体形状とした超音波洗浄装置であっても均一な超音波放射特性が得られることは云うまでもない。
【0014】
【発明の効果】
図10には、上記説明による本発明と従来方式を対比した音圧分布特性の一例として示されている。
これより従来方式の超音波振動素子の場合、素子と素子の境目での音圧の低下がはっきり現れていることがわかる。それに対して、本発明による方式の場合、被洗浄物の洗浄範囲での音圧の低下は見られず、音圧分布が均一性を保つことが示されている。
更に、超音波放射特性即ち、音圧分布の均一性を、〔標準偏差率=音圧値の標準偏差/音圧値の平均値×100%〕で定義した場合、従来方式の場合の均一性は10.8%に対し、本発明による方式の場合の均一性は5.2%とばらつきを半減させるものである。
以上詳細に説明したように、本発明を実施することにより、均一な音圧分布を得ることができ、大型でかつ、微細加工品の洗浄に適した超音波洗浄装置を供給することができる。
従来、被洗浄物を回転させて均一性を確保するなど、外形の異なる被洗浄物毎に固有な方策が求められたことが不要となったので、本発明のものは、一つの装置タイプで多様な形の被洗浄物に適応できる汎用性の広がりをもった超音波洗浄装置である。
【図面の簡単な説明】
【図1】本発明の超音波洗浄装置の概略を示す外観図の一例である。
【図2】本発明の超音波洗浄装置の概略を示す外観図の一例と振動素子構造例である。
【図3】本発明の超音波洗浄装置の振動素子配置概略を示す外観図の一例である。
【図4】本発明の超音波洗浄装置の振動素子配置概略を示す外観図の一例である。
【図5】本発明の超音波音圧分布測定の実験構成の概略図である。
【図6】本発明の超音波振動の発生原理図である。
【図7】本発明の超音波振動指向性パターン図例及び音圧分布概念図である。
【図8】本発明の超音波振動指向性の原理図である。
【図9】振動素子幅と洗浄液中超音波の波長の比と超音波の広がりの特性図である。
【図10】本発明及び従来の超音波音圧分布測定の実験結果の特性図である。
【図11】従来の超音波洗浄装置の概略を示す外観図の一例である。
【図12】従来の超音波振動指向性パターン図例及び音圧分布概念図である。
【符号の説明】
1 洗浄槽
2 洗浄液
3 振動板
4 振動素子(I、III )
5 振動素子電極(−、+)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency ultrasonic cleaning apparatus for precision cleaning of a semiconductor wafer, a glass mask, a liquid crystal glass substrate, a hard disk plate and the like.
[0002]
[Prior art]
In the conventional ultrasonic cleaning device, an ultrasonic oscillator of 500 KHz to 1.5 MHz is attached to the bottom surface, and the oscillation frequency of the ultrasonic oscillator is repeated at a constant cycle within a range of ± 5% with respect to a center frequency. Variations eliminate uneven cleaning. (For example, refer to Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Publication No. 2789178 (page 1, column 1)
[0004]
FIG. 11 shows an example of a conventional ultrasonic cleaning apparatus, and a high-frequency ultrasonic vibrator of 500 kHz or more is used for precision cleaning of finely processed products such as semiconductor wafers, glass for liquid crystal, and hard disk plates. The dirt is particles or the like having a size of 1 μm or less. The dirt on the object to be cleaned is removed by the ultrasonic vibration transmitted through the cleaning liquid 2 filled in the cleaning tank 1 or by the synergistic effect of the cleaning liquid 2 and the ultrasonic vibration. ing.
In the ultrasonic cleaning apparatus, the object to be cleaned is uniformly irradiated with ultrasonic vibration by one or a combination of a plurality of plate-like ultrasonic vibration elements 4 having an appropriate size according to the size of the object to be cleaned. The ultrasonic vibrating elements 4 are arranged side by side so as to be operated. The uniformity of the irradiated ultrasonic waves is evaluated by measuring the sound pressure distribution.
[0005]
[Problems to be solved by the invention]
Conventionally, as shown in FIG. 11, for a relatively small object to be cleaned, if one large ultrasonic vibration element 4 is used, the number of ultrasonic vibration elements 4 is small even if a plurality of ultrasonic vibration elements 4 are combined. It was possible to obtain a relatively uniform sound pressure distribution.
When a large number of ultrasonic vibrating elements 4 are used, the main factor that makes the non-uniformity of the sound pressure distribution not negligible is an expansion of a region where ultrasonic waves are not emitted at the boundary between the elements. For this reason, with an increase in the size of an object to be cleaned and miniaturization of processing, unevenness in cleaning when ultrasonic cleaning is performed cannot be ignored.
Conventionally, in order to perform uniform cleaning with a larger ultrasonic vibration plate 3, conventionally, the method of placing the object to be cleaned should be devised in consideration of a decrease in sound pressure at the boundary of the vibration element in the ultrasonic cleaning device. Unique measures have been taken for objects to be cleaned having different external shapes, such as rotating the objects to be cleaned to ensure uniformity.
In general, regarding the directivity of a rectangular ultrasonic transducer, the directivity is sharper as the width of the transducer is larger if the oscillation frequency is the same, and the directivity is sharper as the frequency is higher if the width is the same.
Conventionally, the width of an ultrasonic vibration element used is large. FIG. 12A shows an example of a directivity pattern in this case, and FIG. 12B shows a conceptual diagram of a sound pressure distribution. Further, as shown in FIG. 9, when the value of “the ratio d / λ of the transducer width and the wavelength of the ultrasonic wave in the cleaning liquid described later” is 5 or more, the directivity is sharp (the spread θ of the ultrasonic wave is (Approximately 5 ° or less), the sound pressure distribution when a plurality of ultrasonic vibrating elements are arranged has a range in which the sound pressure falls at the boundary between the elements. In the conventional method (detail I in FIG. 5B), the ratio d 0 / λ = 25 (the spread of the ultrasonic wave) of the vibrator element width indicating the directivity and the wavelength of the ultrasonic wave in the cleaning liquid when the vibration element width d 0 = 37.5 mm θ is approximately 1 °).
Therefore, there is a problem that the conventional cleaning apparatus cannot keep up with the uniformity and precision of cleaning in a semiconductor process or the like in which a wafer area is enlarged and a circuit pattern is miniaturized year by year.
[0006]
The present invention has been made to solve the above problems, and has as its object to provide an ultrasonic cleaning apparatus having a uniform sound pressure distribution without cleaning unevenness.
[0007]
[Means for Solving the Problems]
To achieve the above object, an ultrasonic cleaning apparatus according to the present invention includes a cleaning tank in which a cleaning liquid is stored, and an ultrasonic vibrator for transmitting ultrasonic vibration of 500 kHz or more to the cleaning liquid in the cleaning tank. An ultrasonic cleaning device comprising:
The ultrasonic vibrator has a composite element arrangement structure in which a plurality of plate-shaped ultrasonic vibration elements are arranged side by side, and each of the plurality of plate-shaped ultrasonic vibration elements is for a predetermined small radiation area. It has a small shape with flat ultrasonic radiation characteristics, and when the spread of ultrasonic waves is θ, it is formed so as to satisfy 5 ° ≦ θ, and is adjacent to the plurality of flat ultrasonic vibration elements. At the boundary between the transducers is also configured such that a reduction in the ultrasonic sound pressure is suppressed and a substantially uniform ultrasonic radiation characteristic is obtained on the entire surface of the ultrasonic vibrator,
Further, there is provided an ultrasonic cleaning apparatus including a cleaning tank in which a cleaning liquid is stored, and an ultrasonic vibrator for transmitting ultrasonic vibration of 500 kHz or more to the cleaning liquid in the cleaning tank,
The ultrasonic transducer has a composite element arrangement structure in which a plurality of flat ultrasonic transducers are arranged side by side, and each of the plurality of flat ultrasonic transducers is flat with respect to a predetermined radiation area. It has a shape having an ultrasonic radiation characteristic of a shape, slit processing is performed in the thickness direction of the ultrasonic vibration element, and when the spread of ultrasonic waves is θ, it is formed so that 5 ° ≦ θ. At the boundary between the adjacent transducers of the plurality of flat ultrasonic transducers, a decrease in ultrasonic sound pressure is suppressed, and substantially uniform ultrasonic radiation characteristics can be obtained on the entire surface of the ultrasonic transducer. It is characterized by having been constituted as follows.
[0008]
[Principle of the invention]
FIG. 6 shows the basic principle of ultrasonic vibration generation by the configuration of a vibration element electrode (-, +) 5 for exciting the vibration element with a high-frequency power supply and the vibration plate 3 for generating ultrasonic vibration in the cleaning liquid 2. .
It is considered that a region where no ultrasonic wave is emitted at the boundary between the two ultrasonic vibration elements arranged side by side is greatly affected by the directivity. That is, if the directivity is sharp, the region where no ultrasonic wave is emitted is wide, and as shown in FIG. 7A, the region where the ultrasonic wave is not emitted is wide as shown in FIG. Narrows.
From these facts, if the same oscillation frequency is adopted, the ultrasonic vibration plate in which a number of smaller ultrasonic vibration elements are arranged greatly reduces the sound pressure at the boundary between the vibration elements, resulting in a uniform sound pressure distribution. Is obtained.
[0009]
As shown in FIG. 8, the directivity of a generally rectangular ultrasonic vibration element is as follows.
(Equation 1)
Figure 2004249212
R: directivity function,
d: width of the ultrasonic vibration element,
λ: the wavelength of the ultrasonic wave in the cleaning liquid,
θ: Angle from the center axis of the ultrasonic transducer,
When the sound pressure at a certain point P on the central axis of the vibrating element is set to 1, the directivity function R indicates the sound pressure at a point P ′ which is equal to the distance from the point P and is inclined by an angle θ. Here, in order to evaluate the sharpness of the directivity, the evaluation is performed at an angle θ at which the sound pressure of P ′ is 80%, that is, R = 0.8. If θ is small, the directivity is sharp, and if θ is large, the directivity is wide.
The factor that determines this directivity is:
Figure 2004249212
It is.
That is, it is determined by the width of the ultrasonic vibration element and the wavelength of the ultrasonic wave in the cleaning liquid.
FIG. 9 shows the characteristic obtained by calculating the relationship between d / λ and θ satisfying R = 0.8 in this equation (1). If this value decreases at d / λ = 5, the directivity becomes Wide and uniform sound pressure distribution.
As described above, the ultrasonic vibration element can obtain a uniform sound pressure distribution by making the width as small as possible with respect to the wavelength of the ultrasonic wave in the cleaning liquid.
However, there is a limit in terms of manufacturing cost in arranging a large number of vibrating elements as small as possible, and in order to solve this, as shown in FIG. If the vibration element 4 is subjected to slit groove processing, as shown in FIGS. 2B to 2G, the width of the vibration element is divided by a plurality of slits to form a plurality of small widths (slit pitches). This acts as a vibration element having a small width. Although the number of slits is large and the depth is preferably deep, it is determined in consideration of mechanical strength.
The width of the slit should be as narrow as possible from the viewpoint of the uniformity of the sound pressure distribution.
[0010]
Today, as the size of the object to be cleaned has increased, there have been many technical or cost issues in increasing the size of the vibrating element. Since the cleaning is not uniform and cannot be performed uniformly, another vibration method is required.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, the embodiment of the ultrasonic cleaning apparatus of the present invention has a cleaning tank 1 in which a cleaning liquid is stored and a cleaning liquid 2 and a cleaning liquid 2 and a size adapted to a cleaning surface of the cleaning object. Element arrangement structure in which a number of vibration plates 3 and a large number of small flat ultrasonic vibration elements 4 that oscillate ultrasonic vibrations of 500 KHz or more are arranged side by side, and the ultrasonic vibration is applied to the cleaning liquid in the cleaning tank. And an ultrasonic vibrator that propagates.
2A to 2G show the arrangement of the vibration element 4 in which the slit groove processing is performed in the normal direction of the thickness direction of the ultrasonic vibration element. As shown in VI), A detail (I), (III), and (V) in which a slit is provided on the lower side (+ pole side) of the vibration element or A provided on the upper side (-pole side) of the vibration element There are details (II), (IV) and (VI).
As described above, if any one of the slit shapes (I) to (VI) processed in the length direction and the width direction of the vibration element 4 and further formed into a lattice shape is selected and used as a shape suitable for the object to be cleaned. Good.
3 and 4 show an ultrasonic cleaning apparatus using an ultrasonic vibrator in which a plurality of vibrating elements 4 having been subjected to slit groove processing are arranged side by side, and each of the vibrating elements 4 (I And (II) are ultrasonic transducers shown as a composite element arrangement in which vibration elements having different shapes are combined and arranged. The arrangement may be appropriately adjusted according to the size of the object to be cleaned.
[0012]
FIG. 5 is a schematic diagram showing an ultrasonic sound pressure distribution measurement experiment using an ultrasonic vibration element having a slit groove processed according to the present invention, and the measurement state thereof.
The frequency f of the ultrasonic wave is 1 MHz, the cleaning liquid is water, the sound velocity of the ultrasonic wave propagating in the water is about 1500 m / s, and the wavelength of the ultrasonic wave in the cleaning liquid at this time is given by the relational expression of λ = v / f. , Λ = 1.5 mm.
In the ultrasonic distribution measurement, the sound pressure sensor is slowly moved in the width direction of the vibration element, and the sound pressure value is recorded.
In the present invention, the slit pitch d 1 = 1 mm corresponding to the width of the vibrating element (see detail (II) in FIG. 5B), and the ratio d 1 / λ between the vibrator width indicating directivity and the wavelength of the ultrasonic wave in the cleaning liquid. = 0.67, and thus the method according to the present invention has an ultrasonic spread value of 33 ° in a small range of the d / λ value of 0.67 (see FIG. 9), indicating that the directivity is very wide (see FIG. 9). 7 (B) and FIG. 8). When the width of the vibrating element is d and the wavelength of the ultrasonic wave in the cleaning liquid is λ, 5 ° ≦ θ is satisfied.
As described above, since the directivity of the ultrasonic wave is wide in the method according to the present invention, the sound pressure between the adjacent vibration elements overlaps, and the sound pressure distribution of the ultrasonic vibration body having the composite element arrangement in which the vibration elements are combined is arranged. It turns out that it is flat.
[0013]
Also, by utilizing the effect that the ultrasonic sound pressure non-uniformity does not occur at the boundary between the vibrating elements, the conventional ultrasonic cleaning device reduces the sound pressure at the boundary between adjacent vibrators. In consideration of this, specific specifications corresponding to the object to be cleaned have been performed so that the shape and placement of the object to be cleaned and the arrangement of the vibration elements of the ultrasonic vibration plate are appropriate. As shown in the external view of FIG. 4, the arrangement and shape of the vibration element 4 and the shape of the combined ultrasonic vibrator may be freely considered so as to correspond to even the size of the cleaning surface of the object to be cleaned.
In the above detailed description of the embodiment, the vibration element having the slit has been described as an example. However, the other type of the present invention is an ultrasonic cleaning apparatus in which the vibration element is reduced in size to have an ultrasonic vibrator shape. However, it is needless to say that uniform ultrasonic radiation characteristics can be obtained.
[0014]
【The invention's effect】
FIG. 10 shows an example of a sound pressure distribution characteristic comparing the present invention and the conventional method described above.
From this, it can be seen that in the case of the conventional ultrasonic vibrating element, a drop in sound pressure at the boundary between the elements is apparent. On the other hand, in the case of the method according to the present invention, no decrease in the sound pressure is observed in the cleaning range of the object to be cleaned, indicating that the sound pressure distribution maintains uniformity.
Further, when the ultrasonic radiation characteristic, that is, the uniformity of the sound pressure distribution is defined by [standard deviation ratio = standard deviation of sound pressure value / average value of sound pressure value × 100%], the uniformity in the case of the conventional method is obtained. Is 10.8%, while the uniformity of the method according to the present invention is 5.2%, which is to reduce the variation by half.
As described in detail above, by practicing the present invention, a uniform ultrasonic pressure distribution can be obtained, and a large-sized ultrasonic cleaning apparatus suitable for cleaning microfabricated products can be provided.
Conventionally, it has become unnecessary to require a unique measure for each object to be cleaned having a different outer shape, such as by rotating the object to be cleaned to ensure uniformity. This is an ultrasonic cleaning device with a wide range of versatility that can be applied to various types of objects to be cleaned.
[Brief description of the drawings]
FIG. 1 is an example of an external view schematically showing an ultrasonic cleaning device of the present invention.
FIG. 2 is an example of an external view schematically showing an ultrasonic cleaning apparatus of the present invention and an example of a vibration element structure.
FIG. 3 is an example of an external view schematically showing a vibration element arrangement of the ultrasonic cleaning apparatus of the present invention.
FIG. 4 is an example of an external view schematically showing a vibration element arrangement of the ultrasonic cleaning apparatus of the present invention.
FIG. 5 is a schematic diagram of an experimental configuration of the ultrasonic sound pressure distribution measurement of the present invention.
FIG. 6 is a diagram illustrating the principle of generation of ultrasonic vibration according to the present invention.
FIG. 7 is an example of an ultrasonic vibration directivity pattern diagram and a conceptual diagram of sound pressure distribution according to the present invention.
FIG. 8 is a principle diagram of the ultrasonic vibration directivity of the present invention.
FIG. 9 is a characteristic diagram of the ratio of the width of the vibration element to the wavelength of the ultrasonic wave in the cleaning liquid and the spread of the ultrasonic wave.
FIG. 10 is a characteristic diagram of experimental results of the present invention and a conventional ultrasonic sound pressure distribution measurement.
FIG. 11 is an example of an external view schematically showing a conventional ultrasonic cleaning apparatus.
FIG. 12 is an example of a conventional ultrasonic vibration directivity pattern diagram and a conceptual diagram of sound pressure distribution.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cleaning tank 2 Cleaning liquid 3 Vibrating plate 4 Vibrating element (I, III)
5 vibrating element electrodes (-, +)

Claims (2)

洗浄液が溜められた洗浄槽と、該洗浄槽内の該洗浄液に500kHz以上の超音波振動を伝搬させるための超音波振動体とを備えた超音波洗浄装置であって、
前記超音波振動体は複数枚の平板状超音波振動素子が並べて配置された複合素子配置構造を有し、該複数枚の平板状超音波振動素子のおのおのは、所定の小放射領域に対して平坦状の超音波放射特性を有する小型形状を有し、かつ、超音波の広がりをθとした場合、5°≦θとなるように形成され、前記複数枚の平板状超音波振動素子の隣接振動子相互間の境目においても超音波音圧の低下が抑制されて前記超音波振動体の全面において実質上均一な超音波放射特性が得られるように構成されたことを特徴とする超音波洗浄装置。
An ultrasonic cleaning apparatus comprising: a cleaning tank storing a cleaning liquid; and an ultrasonic vibrator for transmitting ultrasonic vibration of 500 kHz or more to the cleaning liquid in the cleaning tank.
The ultrasonic vibrator has a composite element arrangement structure in which a plurality of plate-shaped ultrasonic vibration elements are arranged side by side, and each of the plurality of plate-shaped ultrasonic vibration elements is for a predetermined small radiation area. It has a small shape with flat ultrasonic radiation characteristics, and when the spread of ultrasonic waves is θ, it is formed so as to satisfy 5 ° ≦ θ, and is adjacent to the plurality of flat ultrasonic vibration elements. Ultrasonic cleaning characterized in that a reduction in ultrasonic sound pressure is suppressed even at boundaries between transducers so that substantially uniform ultrasonic radiation characteristics can be obtained over the entire surface of the ultrasonic vibrator. apparatus.
洗浄液が溜められた洗浄槽と、該洗浄槽内の該洗浄液に500kHz以上の超音波振動を伝搬させるための超音波振動体とを備えた超音波洗浄装置であって、
前記超音波振動体は複数枚の平板状超音波振動素子が並べて配置された複合素子配置構造を有し、該複数枚の平板状超音波振動素子のおのおのは、所定の放射領域に対して平坦状の超音波放射特性を有する形状を有し、前記超音波振動素子の厚み方向にスリット加工が施され、かつ、超音波の広がりをθとした場合、5°≦θとなるように形成され、前記複数枚の平板状超音波振動素子の隣接振動子相互間の境目においても超音波音圧の低下が抑制されて前記超音波振動体の全面において実質上均一な超音波放射特性が得られるように構成されたことを特徴とする超音波洗浄装置。
An ultrasonic cleaning apparatus comprising: a cleaning tank storing a cleaning liquid; and an ultrasonic vibrator for transmitting ultrasonic vibration of 500 kHz or more to the cleaning liquid in the cleaning tank.
The ultrasonic transducer has a composite element arrangement structure in which a plurality of flat ultrasonic transducers are arranged side by side, and each of the plurality of flat ultrasonic transducers is flat with respect to a predetermined radiation area. It has a shape having an ultrasonic radiation characteristic of a shape, slit processing is performed in the thickness direction of the ultrasonic vibration element, and when the spread of ultrasonic waves is θ, it is formed so that 5 ° ≦ θ. At the boundary between the adjacent transducers of the plurality of flat ultrasonic transducers, a decrease in ultrasonic sound pressure is suppressed, and substantially uniform ultrasonic radiation characteristics can be obtained on the entire surface of the ultrasonic transducer. An ultrasonic cleaning apparatus characterized by being configured as described above.
JP2003042139A 2003-02-20 2003-02-20 Ultrasonic cleaning device Pending JP2004249212A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003042139A JP2004249212A (en) 2003-02-20 2003-02-20 Ultrasonic cleaning device
KR1020040010933A KR20040075747A (en) 2003-02-20 2004-02-19 Ultrasonic cleaning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042139A JP2004249212A (en) 2003-02-20 2003-02-20 Ultrasonic cleaning device

Publications (2)

Publication Number Publication Date
JP2004249212A true JP2004249212A (en) 2004-09-09
JP2004249212A5 JP2004249212A5 (en) 2006-06-15

Family

ID=33025499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042139A Pending JP2004249212A (en) 2003-02-20 2003-02-20 Ultrasonic cleaning device

Country Status (2)

Country Link
JP (1) JP2004249212A (en)
KR (1) KR20040075747A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095738A1 (en) * 2005-03-07 2006-09-14 Kazumasa Ohnishi Ultrasonic cleaning device
JP2007216179A (en) * 2006-02-17 2007-08-30 Honda Electronic Co Ltd Ultrasonic cleaning oscillator
JP2007268448A (en) * 2006-03-31 2007-10-18 Hitachi Kokusai Denki Engineering:Kk Ultrasonic washing device
JP2008068191A (en) * 2006-09-13 2008-03-27 Pre-Tech Co Ltd Ultrasonic radiation body and manufacturing method of the same
KR101069457B1 (en) * 2005-05-26 2011-09-30 혼다덴시 가부시키가이샤 Ultrasonic washing apparatus
JP2012055818A (en) * 2010-09-08 2012-03-22 Hitachi Kokusai Denki Engineering:Kk Ultrasonic cleaning device, and ultrasonic cleaning method
WO2014168340A1 (en) * 2013-04-12 2014-10-16 (주)이엠아이지 Method for generating flash-based stereoscopic image
US11610783B2 (en) 2014-07-30 2023-03-21 Corning Incorporated Ultrasonic tank and methods for uniform glass substrate etching

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100852396B1 (en) * 2006-10-20 2008-08-14 한국기계연구원 Cleaning device using ultrasonic
KR101031374B1 (en) * 2010-03-12 2011-05-06 (주) 경일메가소닉 Ultrasonic cleaning apparatus preventing spike pulse

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003319494A (en) * 2002-04-26 2003-11-07 Tayca Corp Composite piezoelectric vibrator and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003319494A (en) * 2002-04-26 2003-11-07 Tayca Corp Composite piezoelectric vibrator and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095738A1 (en) * 2005-03-07 2006-09-14 Kazumasa Ohnishi Ultrasonic cleaning device
KR101069457B1 (en) * 2005-05-26 2011-09-30 혼다덴시 가부시키가이샤 Ultrasonic washing apparatus
JP2007216179A (en) * 2006-02-17 2007-08-30 Honda Electronic Co Ltd Ultrasonic cleaning oscillator
JP2007268448A (en) * 2006-03-31 2007-10-18 Hitachi Kokusai Denki Engineering:Kk Ultrasonic washing device
JP4733550B2 (en) * 2006-03-31 2011-07-27 株式会社日立国際電気エンジニアリング Ultrasonic cleaning equipment
JP2008068191A (en) * 2006-09-13 2008-03-27 Pre-Tech Co Ltd Ultrasonic radiation body and manufacturing method of the same
JP2012055818A (en) * 2010-09-08 2012-03-22 Hitachi Kokusai Denki Engineering:Kk Ultrasonic cleaning device, and ultrasonic cleaning method
WO2014168340A1 (en) * 2013-04-12 2014-10-16 (주)이엠아이지 Method for generating flash-based stereoscopic image
US11610783B2 (en) 2014-07-30 2023-03-21 Corning Incorporated Ultrasonic tank and methods for uniform glass substrate etching

Also Published As

Publication number Publication date
KR20040075747A (en) 2004-08-30

Similar Documents

Publication Publication Date Title
JP5328044B2 (en) Megasonic processing device, megasonic process system, megasonic cleaning device, megasonic processing method, and operation method of megasonic processing device
JP4934739B2 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
JP2004249212A (en) Ultrasonic cleaning device
US20130043768A1 (en) Ultrasound transducer array
JPH11187492A (en) Composite ultrasonic wave transducer
Bybi et al. Reducing crosstalk in array structures by controlling the excitation voltage of individual elements: a feasibility study
JP4733550B2 (en) Ultrasonic cleaning equipment
JP2015043810A (en) Backing layer, and ultrasonic probe using the same
US8652262B2 (en) Ultrasonic cleaning method for generating ultrasonic vibrations by a frequency modulated signal
JP2004080577A (en) Ultrasonic vibrator
JP2899652B2 (en) Vibration amplitude flattening method of Langevin type ultrasonic transducer
JP2972790B2 (en) Broadband ultrasonic sound source for ultrasonic cleaning equipment
JPH11207258A (en) Ultrasonic oscillation generating device and ultrasonic cleaning device
JPH0888899A (en) Ultrasonic vibrator
US7836769B2 (en) Apparatus and method of measuring acoustical energy applied to a substrate
JP2003305419A (en) Ultrasonic cleaning apparatus and method for arranging piezoelectric vibrator
JP2005110116A (en) Ultrasonic-wave transducer array and its manufacturing method
JP2003326226A (en) Ultrasonic vibrator and ultrasonic cleaner using the same
JP2012055818A (en) Ultrasonic cleaning device, and ultrasonic cleaning method
JP2861295B2 (en) Surface wave velocity distribution measuring method and apparatus
JPH0434879B2 (en)
JP3390497B2 (en) Ultrasonic generator and ultrasonic cleaner
KR101662287B1 (en) Ultrasonic cleaning apparatus
Frijlink et al. The effect of oblique sub-dicing on acoustic performance
JPH081092A (en) Ultrasonic vibration body

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203