JP2004247064A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004247064A
JP2004247064A JP2003032669A JP2003032669A JP2004247064A JP 2004247064 A JP2004247064 A JP 2004247064A JP 2003032669 A JP2003032669 A JP 2003032669A JP 2003032669 A JP2003032669 A JP 2003032669A JP 2004247064 A JP2004247064 A JP 2004247064A
Authority
JP
Japan
Prior art keywords
insulating tape
positive electrode
negative electrode
electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003032669A
Other languages
Japanese (ja)
Other versions
JP4251882B2 (en
Inventor
Kazuya Murakami
一哉 村上
Akiyoshi Tamaoki
日義 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003032669A priority Critical patent/JP4251882B2/en
Publication of JP2004247064A publication Critical patent/JP2004247064A/en
Application granted granted Critical
Publication of JP4251882B2 publication Critical patent/JP4251882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery reducing an obstacle of an adhesive of an insulating tape for preventing an internal short circuit to the manufacturing equipment of a spiral electrode body and to assembly work, and eliminating a bad influence on battery specifications. <P>SOLUTION: The nonaqueous electrolyte secondary battery has the spiral electrode body 10A formed by spirally winding a positive electrode 15 having a positive electrode mix coated part 15a and a positive electrode mix uncoated exposed part 15b on metal core foil and a negative electrode 12 having a negative electrode mix coated part 12a and a negative electrode mix uncoated exposed part 12b by a separator, and a first insulating tape 16 is stuck in a position on the back side of an electrode on the outermost circumferential side of the spiral electrode body 10A, in a boundary between the mix coated part and the exposed part of the electrode, and corresponding to the final end of the mix coated part of the counter electrode, and a second insulating tape (not shown in Fig.) is stuck so as to cover a part where an adhesive surface 16b of the first insulating tape 16 is exposed from the core foil 16. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、非水電解質二次電池に係り、更に詳しくは、内部短絡防止用絶縁テープの粘着剤が渦巻電極体の製造装置や電池組立て作業への障害となるのを低減すると共に、電池仕様への悪影響をなくした非水電解質二次電池に関する。
【0002】
【従来の技術】
携帯型の電子機器の急速な普及に伴い、それに使用される電池への要求仕様は、年々厳しくなり、特に小型・薄型化、高容量でサイクル特性が優れ、性能の安定したものが要求されており、二次電池分野では他の電池に比べて高エネルギー密度なリチウム二次電池が注目され、このリチウム二次電池の占める割合は二次電池市場において大きな伸びを示している。
【0003】
このリチウム二次電池は、短冊状の銅箔等からなる負極集電体の両面に負極用活物質を被膜状に塗布した負極と、短冊状のアルミニウム箔等からなる正極集電体の両面に正極用活物質を被膜状に塗布した正極との間に、微多孔性ポリプロピレンフィルム等からなるセパレータを介して、負極及び正極を互いに絶縁した状態で円柱状又は楕円形状に巻回した後、角型電池の場合は更に巻回電極体を押し潰して偏平状に形成し、負極及び正極の各所定部分にそれぞれ負極リード及び正極リードを接続して所定形状の缶体に収納した構成を有している。
ところが、セパレータを介して巻回された電極体の電極群は、セパレータが破損したりバリや塵等によりセパレータが貫通したりすると、電極間に内部短絡が発生する。そのため、例えば正極、セパレータ、負極のうち少なくとも正極リードに対向する部分の負極に絶縁性の被覆を施して内部短絡を未然に防止する対策が採られている。(例えば、特許文献1、2)。
【0004】
【特許文献1】
特開2002−42881号公報(第3頁右蘭〜第4頁左欄、図8)
【特許文献2】
特開平10−241737号公報(図1、図3、図5、図7)
【0005】
上記特許文献1及び2には、正極と負極とをセパレータを介在させて重ねた状態で形成される所定電極体の負極を位置決めし、電極体が形成される際に正極との短絡の原因となる正極側及び/又は負極側に生じているばりの高さよりも厚い所定の絶縁テープを、位置決めされた負極の少なくとも一方の面における正極との短絡想定位置に貼着させた二次電池が記載されている。
【0006】
【発明が解決しようとする課題】
ところが、このような短絡想定個所に貼付させた内部短絡防止用の絶縁テープの粘着面は、渦巻状の電極体を形成する際に電極体の表面に露出しまうことがある。図6は、従来技術を示し、図6(a)は缶体から取り出した渦巻電極体の斜視図、図6(b)は渦巻電極体の側面図である。
この渦巻電極体10は、正極と、負極とがセパレータ11を介して、最外周に正極が位置するように巻回されている。なお、符号13は負極リード、15cは正極リードとなるように正極芯体に設けた切込み部及び20は正極の最終端縁部を留める絶縁テープである。
図6に示すように、短絡防止用の絶縁テープ16は、短絡想定箇所を全て覆わなければならないことから、短絡想定箇所より大きな絶縁テープが貼付されている。勿論、この想定箇所と同寸法の絶縁テープの貼付が望ましいが、短絡想定箇所の選定及び貼付作業等から同寸法の絶縁テープの貼付は不可能であって、必然的に大きな絶縁テープを貼付せざるを得なかった。このため、渦巻電極体の外表面には、絶縁テープがセパレータの縦幅の上下方向へはみ出し、このはみ出しによって絶縁テープの粘着剤の露出した部分が発生する。
【0007】
すると、この絶縁テープ16のはみ出した部分の粘着剤16b、16b’は、露出しているため、塵、ごみ等が付着し易く、また粘着剤が露出したまま外装缶に挿入する際にも、粘着剤が外装缶に付着し挿入が困難なことがあった。更に渦巻電極体の製造装置(図示省略)、例えば渦巻状の電極体を押し潰して偏平状等に成形する際に、粘着剤がプレス機等へ付着してしまう。そのため、塵、ごみ等が付着しないように電極体を扱わなければならず、しかも、外装缶への挿入作業に支障を来たし、更にプレス機等はこの粘着剤を除去するために製造装置の運転を一時停止し、頻繁に清掃をしなければならなかった。
本発明は、従来技術が抱える課題を解決するためになされたものであって、
この発明の目的は、内部短絡防止用の絶縁テープの粘着剤が渦巻電極体の製造装置、組立て作業への障害を低減すると共に、電池仕様へ悪影響をなくした非水電解質二次電池を提供することにある。
【0008】
【課題を解決するための手段】
上記発明の目的は、以下の手段によって、達成される。すなわち、本発明の非水電解質二次電池は、
金属製芯体箔上にリチウムイオンを吸蔵放出する正極活物質を含む正極合剤が塗布された部分と未塗布の露出部とを有する正極と、
金属製芯体箔上にリチウムイオンを吸蔵放出する負極活物質を含む負極合剤が塗布された部分と未塗布の露出部とを有する負極と、
がセパレータを介して積層、巻回された渦巻電極体を有する非水電解質二次電池において、
前記渦巻電極体の最外周側の極の裏側面には、その極の合剤塗布部と露出部の境界であり、かつその対向極の合剤塗布部の終端に対応する位置に第1の絶縁テープが貼付され、
更に該第1の絶縁テープの粘着面が前記芯体箔からはみ出た部分を覆うように第2の絶縁テープが貼付されているを特徴とする。
そして、前記第2の絶縁テープは、前記渦巻電極体の巻回終端固定用の絶縁テープであることが好ましい。
【0009】
この非水電解質二次電池は、芯体箔からはみ出した第1の絶縁テープの粘着剤が第2の絶縁テープで覆われているので、粘着剤に埃、塵等が付着することなく、且つ渦巻電極体を外装缶に挿入することが簡単になる。
また、渦巻電極体の製造装置、例えば渦巻状の電極体を押し潰す際に粘着剤がプレス機等へ付着することはなくなる。したがって、従来技術のようにプレス機等は粘着剤を除去するために製造装置の運転を一時停止したり、頻繁に清掃をする必要はなくなり、渦巻電極体の生産効率を向上させることができる。
更に、第2の絶縁テープを巻回終端固定用の絶縁テープと兼用して第1の絶縁テープの粘着面を覆うことにより、製造工程を削減でき、貼付する絶縁テープ量も削減できるようになる。
【0010】
【発明の実施形態】
以下、図面を参照して本発明に係る非水電解質二次電池の一実施の形態を説明する。図1は、本発明の一実施形態の非水電解質二次電池を示し、図1(a)はその一部透視斜視図、図1(b)は図1(a)の渦巻電極体の正面図、図2は、図1(b)の渦巻電極体の巻回する前の状態を示す平面図、図3は、図2の積層体を個々に分解したもので、図3(a)はセパレータの平面図、図3(b)は負極板の平面図、図3(c)はセパレータの平面図、図3(d)は絶縁テープの平面図、図3(e)は正極板の平面図である。
【0011】
非水電解質二次電池1は、図1に示すように、渦巻電極体10Aと、この電極体10Aを収納する角型外装缶2と、外装缶の開口縁2aを封緘する封口板3とからなり、開口縁2aと封口板3との間に正極リード15c’を介在させた状態で封口板4をレーザー等で溶接され、その後、封口板3の透孔から外装缶2の内部に非水電解掖が注入され、電池キャップ4が固定された構成を有する。
【0012】
上記渦巻電極体10Aは、図2〜3に示すように、負極板12と、正極板15及びセパレータ11とからなり、これらは何れも所定の幅長さ及び長さを有する帯状体で形成され、負極板12と正極板15との間にセパレータ11bが介在されて正極板15が最外周部分に位置するように巻回されている。
セパレータ11は、1つの渦巻電極体で2枚のセパレータ11a、11bが使用され、負極板12及び正極板15より幅広の帯状体であて、微多孔性ポリプロピレンフィルム等で形成される。
【0013】
負極板12は、銅箔等からなる芯体12Aに、その表裏面にリチウムイオンを吸蔵放出する負極活物質を含む負極合剤が塗布され所定の処理を施した負極活物質層12aと、この活物質が塗布されていない露出部12bとからなり、芯体12Aの露出部12bに負極リード13が接続されている。
【0014】
第1の絶縁テープ16は、セパレータ11の縦幅長より短い縦幅長と所定の横幅長を有する絶縁基材16Aと、この絶縁基材の一面に貼着された粘着剤16Bとからなる。
【0015】
正極板15は、アルミニウム箔等からなる芯体15Aに、そのその表裏面にリチウムイオンを吸蔵放出する正極活物質を含む正極合剤が塗布され所定の処理を施した正極活物質層15aと、この活物質が塗布されていない露出部15bとからなり、露出部15bの芯体は、その先端部に近接して切込み部15cが形成されている。この切込み部15cは、外装缶の開口縁2aを封緘する際に根元部分から折り曲げ封口板3の間に挟んで正極リード15c’として使用される。
【0016】
上記の負極板12、正極板15及びセパレータ11を用い、渦巻電極体10Aは、以下の方法で作製される。
先ず、巻回装置の円柱状巻心にセパレータ11a、11bを合わせて先端部を巻き取り、セパレータ11aの上とセパレータ11aと11bとの間に負極板12と正極板15を載置して巻回する。巻回途中において、正極板の正極活物質層15aの最終端(表裏2箇所各々)を検出し、この部分に第1の絶縁テープ16を貼付する。なお絶縁テープ16が貼付される部分は、セパレータを介して負極板12の巻き終わり部分にある負極活物質層の終端に対向するように設計されている。そして、正極板15が最外周になるように巻回を終了し、端部を絶縁テープで固定する。このとき、2箇所貼付される第1の絶縁テープ16のうち1箇所が最外周の正極板15の裏面に貼付されるようになるので、第1の絶縁テープの粘着剤16Bの一部が電極体の幅方向からはみ出し、粘着面が露出される状態で貼付される。符号16b、16b’は、このはみ出した粘着剤部分を示している(図2参照)。
なお、第1の絶縁テープの貼着は、渦巻状電極体の作製時に貼付したが、予め正極板に貼付しておいてもよい。そして、第1の絶縁テープの粘着面露出部を第2の絶縁テープ17で覆った後、角型電池の場合、プレス機で偏平状に成型される。
【0017】
図1、4、5の渦巻電極体は、何れも上記の方法により正極板15の長さがそれぞれ異なるものを用いて作製したものである。すなわち、図1の渦巻電極体10Aは、正極板15の終端部の長さが従来のものよりLだけ長いもの使用して作製したものである。この長さLは、渦巻電極体10Aの横幅長Lに所定の長さLを加えた長さであって、所定の長さLは正極板15の端部を留める第1の絶縁テープ幅長とほぼ同じ長さである。この先端部が長さLだけ延びた正極板15を用い、セパレータ11a、負極板12、正極板15、セパレータ11bを順次積層して正極板15が最外周部分に位置するように巻回すると、正極板15は、渦巻電極体10Aを半周しその先端部が電極体の一側面、すなわち第1の絶縁テープ16が貼付されたところまで達することになる。そこで、所定の幅及び長さを有する第2の絶縁テープ17を用い、この第2の絶縁テープ17を正極板15の先端部を被覆すると共に、第1の絶縁テープの粘着剤16b、16b’の部分を覆うように貼付する。
【0018】
すると、第2の絶縁テープ17により正極板の巻回終端の固定のを行うと同時にはみ出た粘着剤16b、16b’部分をも覆うことができるので、製造工程が削減できる。また、粘着剤が露出することがないので、この部分に埃、塵等が付着することがなくなる。更に、渦巻電極体の製造装置、例えば渦巻状の電極体をプレスする際に粘着剤がプレス機等へ付着することはなくなる。
【0019】
また、正極板15の長さを延長することなく、第1の絶縁テープの粘着剤露出部に第2の絶縁テープを貼付してもよい。図3に示す渦巻電極体10Bは、第1の絶縁テープの粘着剤露出部に縦長の1本の第2の絶縁テープ17を貼付したものである。
また、図4の渦巻電極体10Cは、絶縁テープを分断し、分断した絶縁テープ片18a、18bを貼付したものである。なお、20は、正極板の巻回終端固定用絶縁テープである。
これらの渦巻電極体10B、10Cによると、正極板の先端部を延長せずに所期の機能を発揮させることができ、また、絶縁テープの節約ができる。
【0020】
【実施例】
<正極板の作製>
コバルト酸リチウムからなる正極活物質と、導電剤としてカーボンブラックと、結着剤としてポリフッ化ビニリデンをN−メチルピロリドン(NMP)を用い混練して正極合剤スラリーを作製し、この正極合剤スラリーを厚さ15μmのアルミニウム箔からなる正極芯体の両面に所定量を塗布した。このとき、集電タブの取付けのために、合剤スラリーを塗布しない部分(芯体露出部)も作製した。乾燥炉でNMPを蒸発させた後、所定の厚さに圧縮して、所定の幅に切断巻回した正極フープを作製した。
【0021】
<負極板の作製>
黒鉛からなる負極活物質と、結着剤としてポリフッ化ビニリデンをNMPを用いて混練して負極合剤スラリーを作成し、この負極合剤スラリーを厚さ10μmの銅箔からなる負極芯体の両面に所定量を塗布した。以下正極と同様にして、負極フープを作製した。
【0022】
<電極体の作製>
フープ状のセパレータ、正極板、負極板を巻回機の巻回位置に設けられた円柱状の巻芯に、セパレータ、負極、正極の順に巻回し渦巻状電極体を作製した。フープ状のセパレータ、負極板及び正極板については、所定寸法でフープから切離して巻き取った。
【0023】
<絶縁テープの貼付>
巻回機での巻回時に、巻芯までの経路内でセンサーにより負極合剤塗布部と芯体露出部を検出して、それに対応する位置の正極芯体露出部分に第1の絶縁テープを貼付した。なお、短絡防止を目的とした第1の絶縁テープの短絡想定位置への貼り付けは、上述の巻取り途中に貼り付けるものであるが、それに限定されることなく、フープ状にする前に貼り付けることも可能である。
【0024】
巻回後、電極体巻回終端固定用の絶縁テープを貼付したが、この貼付位置を次のように変えて実施例1及び2比較例1の非水電解質二次電池を作製した。
(実施例1)
図4又は図5に示すように、電極体巻回終端固定用の絶縁テープと第2の絶縁テープとが別体であるもの。
(実施例2)
図1に示すように、正極芯体を図4及び図5に示したものよりも半周長く巻回し、電極体巻回終端固定用の絶縁テープと第2の絶縁テープとを兼用したもの。
(比較例1)
図4又は図5に示した例において、電極体巻回終端固定用の絶縁テープは使用したが、第2の絶縁テープを使用しないもの。
【0025】
この実施例1及び2、比較例1の製法によると、プレス・プレートの清掃頻度は、以下の表1に示す結果になった。
表1
実施例1
実施例2
比較例1
清掃頻度
500ショット毎
500ショット毎
50ショット毎
【0026】
この結果から、第2の絶縁テープを貼付した電極体では、粘着剤がプレートに付着することがないため、清掃頻度が大幅に低下した。また、正極芯体箔を半周長く巻回した仕様では、電極体巻回終端固定用絶縁テープにより第2の絶縁テープを兼ねて粘着剤の露出を防いでいるので、同様に粘着剤がプレートに付着することがないため、清掃頻度が大幅に低下した。
【0027】
【発明の効果】
上述のように本発明によれば、短絡防止用絶縁テープの粘着剤に埃、塵等が付着することなく、且つ電池組立ての際に外装缶への挿入が簡単になる。また、渦巻電極体の製造装置、例えば渦巻状の電極体を押し潰す際に粘着剤がプレス機等へ付着することはなくなるため、従来技術のようにプレス機等から粘着剤を除去するために、製造装置の運転を一時停止したり、頻繁に清掃をする必要はなく、渦巻電極体の生産効率を向上させることができる。
【0028】
更に、電極体巻回終端固定用絶縁テープを兼用して第1の絶縁テープの粘着面を覆うことにより、製造工程を削減でき、貼付する絶縁テープも削減できる。
【図面の簡単な説明】
【図1】本発明の一実施形態の非水電解質二次電池を示し、図1(a)はその一部透視斜視図、図1(b)は図1(a)の渦巻電極体の正面図である。
【図2】図1(b)の渦巻電極体の巻回する前の状態を示す平面図である。
【図3】図2の積層体を個々に分解したもので、図3(a)はセパレータの平面図、図3(b)は負極板の平面図、図3(c)はセパレータの平面図、図3(d)は絶縁テープの平面図、図3(e)は正極板の平面図である。
【図4】本発明の第2の実施形態の非水電解質二次電池に使用する渦巻電極体を示す正面図である。
【図5】本発明の第3の実施形態の非水電解質二次電池に使用する渦巻電極体を示す正面図である。
【図6】従来技術の渦巻電極体を示し、図6(a)は正面図、図6(b)は側面図である。
【符号の説明】
1 非水電解質二次電池
2 外装缶
10、10A、10B、10C 渦巻電極体
11 セパレータ
12 負極板
12a 負極活物質層
12b 芯体露出部
15 正極板
15a 正極活物質層
15b 芯体露出部
16 絶縁テープ(第1の絶縁テープ)
16b、16b’ 粘着剤露出部
17、18a、18b 絶縁テープ(第2の絶縁テープ)
20 絶縁テープ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to reduce the possibility that an adhesive of an insulating tape for preventing internal short-circuit will hinder a spiral electrode assembly manufacturing apparatus and a battery assembling operation, The present invention relates to a non-aqueous electrolyte secondary battery which has no adverse effect on water.
[0002]
[Prior art]
With the rapid spread of portable electronic devices, the required specifications for batteries used in them have become stricter year by year. Particularly, small and thin type, high capacity, excellent cycle characteristics, and stable performance are required. In the field of secondary batteries, attention has been paid to lithium secondary batteries having a higher energy density than other batteries, and the proportion occupied by the lithium secondary batteries has shown a large growth in the secondary battery market.
[0003]
This lithium secondary battery has a negative electrode in which a negative electrode active material is coated on both surfaces of a negative electrode current collector made of a strip-shaped copper foil and the like, and a negative electrode current collector made of a strip-shaped aluminum foil and the like on both surfaces. Between the positive electrode coated with the positive electrode active material in the form of a film, via a separator made of a microporous polypropylene film or the like, the negative electrode and the positive electrode are wound in a cylindrical or elliptical shape while being insulated from each other. In the case of a type battery, the wound electrode body is further crushed to form a flat shape, and a negative electrode lead and a positive electrode lead are connected to predetermined portions of the negative electrode and the positive electrode, respectively, and housed in a can body of a predetermined shape. ing.
However, in the electrode group of the electrode body wound via the separator, an internal short circuit occurs between the electrodes when the separator is damaged or the separator penetrates due to burrs, dust, or the like. Therefore, for example, measures are taken to prevent an internal short circuit by applying an insulating coating to at least a portion of the positive electrode, the separator, and the negative electrode that faces the positive electrode lead. (For example, Patent Documents 1 and 2).
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-42881 (page 3 right orchid to page 4 left column, FIG. 8)
[Patent Document 2]
Japanese Patent Application Laid-Open No. Hei 10-241737 (FIGS. 1, 3, 5, and 7)
[0005]
Patent Documents 1 and 2 disclose a method of positioning a negative electrode of a predetermined electrode body formed in a state where a positive electrode and a negative electrode are stacked with a separator interposed therebetween, and causing a short circuit with the positive electrode when the electrode body is formed. A secondary battery is described in which a predetermined insulating tape thicker than the height of the burr generated on the positive electrode side and / or the negative electrode side is attached to at least one surface of the positioned negative electrode at an expected short-circuit with the positive electrode. Have been.
[0006]
[Problems to be solved by the invention]
However, the adhesive surface of the insulating tape for preventing an internal short-circuit applied to such a short-circuit supposed place may be exposed on the surface of the electrode when the spiral electrode is formed. 6A and 6B show a conventional technique. FIG. 6A is a perspective view of a spiral electrode body taken out of a can body, and FIG. 6B is a side view of the spiral electrode body.
In the spiral electrode body 10, a positive electrode and a negative electrode are wound via a separator 11 such that the positive electrode is located on the outermost periphery. Reference numeral 13 denotes a negative electrode lead, 15c denotes a cut portion provided on the positive electrode core so as to become a positive electrode lead, and 20 denotes an insulating tape for fixing the final edge of the positive electrode.
As shown in FIG. 6, the insulating tape 16 for preventing short-circuiting must cover all the expected short-circuited portions, and therefore, an insulating tape larger than the expected short-circuited portion is attached. Of course, it is desirable to attach an insulating tape of the same size as the assumed location, but it is impossible to attach an insulating tape of the same size due to the selection of the expected short-circuit location and the attaching work, etc., and inevitably attach a large insulating tape. I had to help. Therefore, on the outer surface of the spiral electrode body, the insulating tape protrudes in the vertical direction of the vertical width of the separator, and the protruding portion generates an exposed portion of the adhesive of the insulating tape.
[0007]
Then, since the adhesive 16b, 16b 'at the protruding portion of the insulating tape 16 is exposed, dust, dirt, etc. easily adhere thereto, and also when the adhesive is inserted into the outer can with the adhesive being exposed, In some cases, the adhesive adhered to the outer can and insertion was difficult. Further, when a spiral electrode body manufacturing apparatus (not shown), for example, a spiral electrode body is crushed and formed into a flat shape or the like, an adhesive adheres to a press machine or the like. Therefore, it is necessary to handle the electrode body so that dust and dirt do not adhere thereto, and the insertion work into the outer can is hindered. Further, a press machine or the like operates the manufacturing apparatus to remove the adhesive. Had to pause and clean frequently.
The present invention has been made to solve the problems of the prior art,
SUMMARY OF THE INVENTION An object of the present invention is to provide a non-aqueous electrolyte secondary battery in which an adhesive of an insulating tape for preventing internal short-circuit reduces an obstacle to a spiral electrode assembly manufacturing apparatus and an assembling operation and has no adverse effect on battery specifications. It is in.
[0008]
[Means for Solving the Problems]
The above object of the present invention is achieved by the following means. That is, the non-aqueous electrolyte secondary battery of the present invention,
A positive electrode having a portion where a positive electrode mixture containing a positive electrode active material that absorbs and releases lithium ions on a metal core foil and an uncoated exposed portion,
A negative electrode having a portion coated with a negative electrode mixture containing a negative electrode active material that occludes and releases lithium ions on a metal core foil and an uncoated exposed portion,
Is laminated via a separator, in a non-aqueous electrolyte secondary battery having a spirally wound electrode body,
On the back surface of the outermost pole on the outermost peripheral side of the spiral electrode body, a first boundary is provided at a position corresponding to the boundary between the mixture application portion and the exposed portion of the pole and corresponding to the end of the mixture application portion of the opposite electrode. Insulating tape is affixed,
Furthermore, a second insulating tape is attached so that the adhesive surface of the first insulating tape covers a portion protruding from the core foil.
Further, it is preferable that the second insulating tape is an insulating tape for fixing a winding end of the spiral electrode body.
[0009]
In this nonaqueous electrolyte secondary battery, since the adhesive of the first insulating tape protruding from the core foil is covered with the second insulating tape, dust and dirt do not adhere to the adhesive, and It becomes easy to insert the spiral electrode body into the outer can.
Further, the adhesive does not adhere to a press machine or the like when a spiral electrode body manufacturing apparatus, for example, a spiral electrode body is crushed. Therefore, it is not necessary for the press machine or the like to temporarily stop the operation of the manufacturing apparatus or to frequently clean the apparatus to remove the adhesive as in the prior art, and it is possible to improve the production efficiency of the spiral electrode body.
Further, by covering the adhesive surface of the first insulating tape by using the second insulating tape also as the insulating tape for fixing the winding end, the manufacturing process can be reduced, and the amount of the insulating tape to be applied can be reduced. .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a nonaqueous electrolyte secondary battery according to the present invention will be described with reference to the drawings. FIG. 1 shows a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. FIG. 1 (a) is a partially perspective perspective view thereof, and FIG. 1 (b) is a front view of a spiral electrode body of FIG. 1 (a). FIG. 2 is a plan view showing a state before the spiral electrode body of FIG. 1B is wound, and FIG. 3 is an exploded view of the laminate of FIG. 3B is a plan view of the negative electrode plate, FIG. 3C is a plan view of the separator, FIG. 3D is a plan view of the insulating tape, and FIG. 3E is a plan view of the positive electrode plate. FIG.
[0011]
As shown in FIG. 1, the non-aqueous electrolyte secondary battery 1 includes a spiral electrode body 10A, a rectangular outer can 2 accommodating the electrode body 10A, and a sealing plate 3 for sealing an opening edge 2a of the outer can. The sealing plate 4 is welded by a laser or the like with the positive electrode lead 15c 'interposed between the opening edge 2a and the sealing plate 3, and then the non-water is inserted into the exterior can 2 through the through hole of the sealing plate 3. Electrolyte is injected and the battery cap 4 is fixed.
[0012]
As shown in FIGS. 2 and 3, the spiral electrode body 10A includes a negative electrode plate 12, a positive electrode plate 15, and a separator 11, each of which is formed of a strip having a predetermined width and length. The separator 11b is interposed between the negative electrode plate 12 and the positive electrode plate 15, and the positive electrode plate 15 is wound so as to be located at the outermost peripheral portion.
The separator 11 is a spiral electrode body, and two separators 11a and 11b are used. The separator 11 is a belt-shaped body wider than the negative electrode plate 12 and the positive electrode plate 15, and is formed of a microporous polypropylene film or the like.
[0013]
The negative electrode plate 12 has a negative electrode active material layer 12a obtained by applying a predetermined process to a core 12A made of a copper foil or the like and applying a negative electrode mixture containing a negative electrode active material that occludes and releases lithium ions to the front and back surfaces thereof. The exposed portion 12b is not coated with an active material, and the negative electrode lead 13 is connected to the exposed portion 12b of the core 12A.
[0014]
The first insulating tape 16 includes an insulating base material 16A having a vertical width shorter than the vertical width of the separator 11 and a predetermined horizontal width, and an adhesive 16B attached to one surface of the insulating base material.
[0015]
The positive electrode plate 15 has a core body 15A made of aluminum foil or the like, and a positive electrode mixture containing a positive electrode active material for absorbing and releasing lithium ions applied to the front and back surfaces thereof, and a positive electrode active material layer 15a subjected to a predetermined process; The exposed portion 15b to which the active material is not applied is formed, and the core of the exposed portion 15b has a cut portion 15c formed in the vicinity of its tip. The cut portion 15c is used as a positive electrode lead 15c 'by being bent from the root portion and sandwiched between the sealing plate 3 when sealing the opening edge 2a of the outer can.
[0016]
Using the negative electrode plate 12, the positive electrode plate 15, and the separator 11, the spiral electrode body 10A is manufactured by the following method.
First, the separators 11a and 11b are aligned with the cylindrical core of the winding device, and the leading end is wound up. The negative electrode plate 12 and the positive electrode plate 15 are placed on the separator 11a and between the separators 11a and 11b and wound. Turn. During the winding, the final end (each of the front and back sides) of the positive electrode active material layer 15a of the positive electrode plate is detected, and the first insulating tape 16 is attached to this portion. The portion to which the insulating tape 16 is attached is designed to face the end of the negative electrode active material layer at the end of winding of the negative electrode plate 12 with the separator interposed therebetween. Then, the winding is completed so that the positive electrode plate 15 is located at the outermost periphery, and the ends are fixed with insulating tape. At this time, one portion of the first insulating tape 16 applied at two locations is attached to the back surface of the outermost positive electrode plate 15, so that part of the adhesive 16B of the first insulating tape is It sticks out from the width direction of the body and the adhesive surface is exposed. Reference numerals 16b and 16b 'indicate the protruding adhesive portion (see FIG. 2).
Although the first insulating tape was attached at the time of producing the spiral electrode body, it may be attached to the positive electrode plate in advance. Then, after the exposed portion of the adhesive surface of the first insulating tape is covered with the second insulating tape 17, in the case of a rectangular battery, it is molded into a flat shape by a press.
[0017]
The spiral electrode bodies shown in FIGS. 1, 4, and 5 are all manufactured by using the above-described method with the positive electrode plates 15 having different lengths. That is, the spiral electrode body 10A in FIG. 1 is a length of the end portion of the positive electrode plate 15 was prepared using L 3 only longer than conventional. The length L 3, the horizontal width dimension L 1 of the spiral electrode body 10A to a length obtained by adding a predetermined length L 2, the predetermined length L 2 is first to fasten the ends of the positive electrode plate 15 The length is almost the same as the width of the insulating tape. Using a positive electrode plate 15 that the tip extends by a length L 3, the separator 11a, the negative electrode 12, positive electrode plate 15, the positive electrode plate 15 are sequentially stacked separator 11b is wound so as to be located in the outermost peripheral portion The positive electrode plate 15 makes a half turn around the spiral electrode body 10A, and its tip reaches one side surface of the electrode body, that is, the place where the first insulating tape 16 is attached. Therefore, a second insulating tape 17 having a predetermined width and length is used. The second insulating tape 17 covers the front end of the positive electrode plate 15 and the adhesives 16b, 16b ′ of the first insulating tape. Affix so as to cover the part.
[0018]
Then, the winding end of the positive electrode plate is fixed by the second insulating tape 17, and at the same time, the protruding adhesives 16b and 16b 'can be covered, so that the manufacturing process can be reduced. Further, since the adhesive is not exposed, dust, dust and the like do not adhere to this portion. Furthermore, when a spiral electrode body is manufactured, for example, when a spiral electrode body is pressed, the adhesive does not adhere to a press machine or the like.
[0019]
Further, the second insulating tape may be attached to the adhesive exposed portion of the first insulating tape without extending the length of the positive electrode plate 15. The spiral electrode body 10B shown in FIG. 3 is one in which one vertically long second insulating tape 17 is adhered to the adhesive exposed portion of the first insulating tape.
In addition, the spiral electrode body 10C in FIG. 4 is obtained by dividing the insulating tape and affixing the divided insulating tape pieces 18a and 18b. Reference numeral 20 denotes an insulating tape for fixing the winding end of the positive electrode plate.
According to these spiral electrode bodies 10B and 10C, the desired function can be exhibited without extending the tip of the positive electrode plate, and the insulating tape can be saved.
[0020]
【Example】
<Preparation of positive electrode plate>
A positive electrode mixture slurry is prepared by kneading a positive electrode active material composed of lithium cobalt oxide, carbon black as a conductive agent, and polyvinylidene fluoride as a binder using N-methylpyrrolidone (NMP). Was applied on both sides of a positive electrode core made of aluminum foil having a thickness of 15 μm in a predetermined amount. At this time, a portion (core exposed portion) where the mixture slurry was not applied was also prepared for attaching the current collecting tab. After evaporating NMP in a drying oven, the NMP was compressed to a predetermined thickness and cut and wound into a predetermined width to produce a positive electrode hoop.
[0021]
<Preparation of negative electrode plate>
A negative electrode active material composed of graphite and polyvinylidene fluoride as a binder are kneaded using NMP to prepare a negative electrode mixture slurry, and the negative electrode mixture slurry is coated on both sides of a 10 μm-thick negative electrode core made of copper foil. Was applied in a predetermined amount. Thereafter, a negative electrode hoop was produced in the same manner as the positive electrode.
[0022]
<Preparation of electrode body>
The hoop-shaped separator, the positive electrode plate, and the negative electrode plate were wound around a cylindrical core provided at the winding position of the winding machine in the order of the separator, the negative electrode, and the positive electrode to produce a spiral electrode body. The hoop-shaped separator, the negative electrode plate and the positive electrode plate were cut off from the hoop at a predetermined size and wound.
[0023]
<Attaching insulating tape>
At the time of winding by the winding machine, the negative electrode mixture application portion and the core exposed portion are detected by a sensor in the path to the core, and the first insulating tape is applied to the exposed portion of the positive electrode core at the corresponding position. Affixed. The first insulating tape for the purpose of preventing a short circuit is attached to the expected short circuit position during the above-mentioned winding, but is not limited thereto, and may be applied before forming the hoop shape. It is also possible to attach.
[0024]
After the winding, an insulating tape for fixing the winding end of the electrode body was attached. The attaching position was changed as follows, and the nonaqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Example 1 were produced.
(Example 1)
As shown in FIG. 4 or 5, the insulating tape for fixing the winding end of the electrode body and the second insulating tape are separate bodies.
(Example 2)
As shown in FIG. 1, the positive electrode core is wound half a circumference longer than that shown in FIGS. 4 and 5, and the insulating tape for fixing the winding end of the electrode body is also used as the second insulating tape.
(Comparative Example 1)
In the example shown in FIG. 4 or 5, an insulating tape for fixing the winding end of the electrode body is used, but the second insulating tape is not used.
[0025]
According to the production methods of Examples 1 and 2 and Comparative Example 1, the cleaning frequency of the press plate was as shown in Table 1 below.
Table 1
Example 1
Example 2
Comparative Example 1
Cleaning frequency 500 shots every 500 shots every 50 shots
From this result, in the electrode body to which the second insulating tape was attached, the frequency of cleaning was significantly reduced because the adhesive did not adhere to the plate. In addition, in the specification in which the positive electrode core foil is wound half a circumference long, the exposure of the adhesive is prevented by also using the insulating tape for fixing the winding end of the electrode as the second insulating tape. Since there is no adhesion, the frequency of cleaning has been significantly reduced.
[0027]
【The invention's effect】
As described above, according to the present invention, dust and dirt do not adhere to the adhesive of the insulating tape for short circuit prevention, and insertion into the outer can during battery assembly is simplified. In addition, since the adhesive does not adhere to a press machine or the like when a spiral electrode body manufacturing apparatus, for example, a spiral electrode body is crushed, it is necessary to remove the adhesive from the press machine or the like as in the related art. In addition, there is no need to temporarily stop the operation of the manufacturing apparatus or perform frequent cleaning, and it is possible to improve the production efficiency of the spiral electrode body.
[0028]
Further, by covering the adhesive surface of the first insulating tape also as the insulating tape for fixing the winding end of the electrode body, the manufacturing process can be reduced, and the insulating tape to be stuck can be reduced.
[Brief description of the drawings]
1 shows a non-aqueous electrolyte secondary battery according to an embodiment of the present invention, FIG. 1 (a) is a partially transparent perspective view, and FIG. 1 (b) is a front view of a spiral electrode body of FIG. 1 (a). FIG.
FIG. 2 is a plan view showing a state before the spiral electrode body of FIG. 1B is wound.
3 (a) is a plan view of a separator, FIG. 3 (b) is a plan view of a negative electrode plate, and FIG. 3 (c) is a plan view of a separator. FIG. 3D is a plan view of the insulating tape, and FIG. 3E is a plan view of the positive electrode plate.
FIG. 4 is a front view showing a spiral electrode body used for a nonaqueous electrolyte secondary battery according to a second embodiment of the present invention.
FIG. 5 is a front view showing a spiral electrode body used for a nonaqueous electrolyte secondary battery according to a third embodiment of the present invention.
6A and 6B show a conventional spiral electrode body, wherein FIG. 6A is a front view and FIG. 6B is a side view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Outer can 10, 10A, 10B, 10C Spiral electrode body 11 Separator 12 Negative electrode plate 12a Negative electrode active material layer 12b Core exposed part 15 Positive electrode plate 15a Positive electrode active material layer 15b Core exposed part 16 Insulation Tape (first insulating tape)
16b, 16b 'Adhesive exposed portion 17, 18a, 18b Insulating tape (second insulating tape)
20 Insulating tape

Claims (2)

金属製芯体箔上にリチウムイオンを吸蔵放出する正極活物質を含む正極合剤が塗布された部分と未塗布の露出部とを有する正極と、
金属製芯体箔上にリチウムイオンを吸蔵放出する負極活物質を含む負極合剤が塗布された部分と未塗布の露出部とを有する負極と、
がセパレータを介して積層、巻回された渦巻電極体を有する非水電解質二次電池において、
前記渦巻電極体の最外周側の極の裏側面には、その極の合剤塗布部と露出部の境界であり、かつその対向極の合剤塗布部の終端に対応する位置に第1の絶縁テープが貼付され、
更に該第1の絶縁テープの粘着面が前記芯体箔からはみ出た部分を覆うように第2の絶縁テープが貼付されていることを特徴とする非水電解質二次電池。
A positive electrode having a portion where a positive electrode mixture containing a positive electrode active material that absorbs and releases lithium ions on a metal core foil and an uncoated exposed portion,
A negative electrode having a portion coated with a negative electrode mixture containing a negative electrode active material that occludes and releases lithium ions on a metal core foil and an uncoated exposed portion,
Is laminated via a separator, in a non-aqueous electrolyte secondary battery having a spirally wound electrode body,
On the back surface of the outermost pole on the outermost peripheral side of the spiral electrode body, a first boundary is provided at a position corresponding to the boundary between the mixture application portion and the exposed portion of the pole and corresponding to the end of the mixture application portion of the opposite electrode. Insulating tape is affixed,
A non-aqueous electrolyte secondary battery, wherein a second insulating tape is attached so that an adhesive surface of the first insulating tape covers a portion protruding from the core foil.
前記第2の絶縁テープは、前記渦巻電極体の巻回巻き終わり部を固定するための絶縁テープであることを特徴とする請求項1記載の非水電解質二次電池。2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the second insulating tape is an insulating tape for fixing a winding end portion of the spiral electrode body. 3.
JP2003032669A 2003-02-10 2003-02-10 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4251882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003032669A JP4251882B2 (en) 2003-02-10 2003-02-10 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003032669A JP4251882B2 (en) 2003-02-10 2003-02-10 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004247064A true JP2004247064A (en) 2004-09-02
JP4251882B2 JP4251882B2 (en) 2009-04-08

Family

ID=33018952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003032669A Expired - Fee Related JP4251882B2 (en) 2003-02-10 2003-02-10 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4251882B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120604A (en) * 2004-09-03 2006-05-11 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
WO2008072456A1 (en) 2006-12-15 2008-06-19 Panasonic Corporation Method for evaluating internal short circuit of battery, device for evaluating internal short circuit of battery, battery, battery pack and their manufacturing methods
WO2008132837A1 (en) 2007-04-24 2008-11-06 Panasonic Corporation Battery internal short-circuit safety evaluating method, battery whose safety determined by internal short-circuit safety evaluating method, battery pack, and their manufacturing method
US7811696B2 (en) 2005-01-12 2010-10-12 Panasonic Corporation Lithium secondary battery and method for producing the same
WO2011109480A3 (en) * 2010-03-02 2011-10-27 Applied Nanostructed Solution, Llc Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
US8325079B2 (en) 2009-04-24 2012-12-04 Applied Nanostructured Solutions, Llc CNT-based signature control material
CN103299453A (en) * 2011-01-25 2013-09-11 株式会社Lg化学 Cylindrical secondary battery
US8664573B2 (en) 2009-04-27 2014-03-04 Applied Nanostructured Solutions, Llc CNT-based resistive heating for deicing composite structures
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US8787001B2 (en) 2010-03-02 2014-07-22 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
TWI463726B (en) * 2011-12-14 2014-12-01 Amita Technologies Inc Ltd Lithium battery having electrode tabs with safe modification
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US9163354B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
JP2018018646A (en) * 2016-07-27 2018-02-01 マクセルホールディングス株式会社 Lithium ion secondary battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120604A (en) * 2004-09-03 2006-05-11 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
US7811696B2 (en) 2005-01-12 2010-10-12 Panasonic Corporation Lithium secondary battery and method for producing the same
US8163409B2 (en) 2006-12-15 2012-04-24 Panasonic Corporation Evaluation method for safety upon battery internal short circuit, evaluation device for safety upon battery internal short circuit, battery, battery pack, and manufacturing method for battery and battery pack
WO2008072456A1 (en) 2006-12-15 2008-06-19 Panasonic Corporation Method for evaluating internal short circuit of battery, device for evaluating internal short circuit of battery, battery, battery pack and their manufacturing methods
EP2337140A1 (en) 2006-12-15 2011-06-22 Panasonic Corporation Method for evaluating internal short-circuit of battery, device for evaluating internal short-circuit of battery, battery, battery pack and their manufacturing methods
EP2337139A1 (en) 2006-12-15 2011-06-22 Panasonic Corporation Method for evaluating internal short-circuit of battery, device for evaluating internal short-circuit of battery, battery, battery pack and their manufacturing methods
EP2337138A1 (en) 2006-12-15 2011-06-22 Panasonic Corporation Method for evaluating internal short-circuit of battery, device for evaluating internal short-circuit of battery, battery, battery pack and their manufacturing methods
US8168314B2 (en) 2006-12-15 2012-05-01 Panasonic Corporation Method for evaluating internal short-circuit of battery, device for evaluating internal short-circuit of battery, battery, battery pack and their manufacturing methods
US8444717B2 (en) 2007-04-24 2013-05-21 Panasonic Corporation Method for evaluating battery safety under internal short-circuit condition, battery and battery pack whose safety is identified by internal short-circuit safety evaluation method, and method for producing the same
WO2008132837A1 (en) 2007-04-24 2008-11-06 Panasonic Corporation Battery internal short-circuit safety evaluating method, battery whose safety determined by internal short-circuit safety evaluating method, battery pack, and their manufacturing method
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
US8325079B2 (en) 2009-04-24 2012-12-04 Applied Nanostructured Solutions, Llc CNT-based signature control material
US9241433B2 (en) 2009-04-24 2016-01-19 Applied Nanostructured Solutions, Llc CNT-infused EMI shielding composite and coating
US8664573B2 (en) 2009-04-27 2014-03-04 Applied Nanostructured Solutions, Llc CNT-based resistive heating for deicing composite structures
US9163354B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US8787001B2 (en) 2010-03-02 2014-07-22 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
WO2011109480A3 (en) * 2010-03-02 2011-10-27 Applied Nanostructed Solution, Llc Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
US8665581B2 (en) 2010-03-02 2014-03-04 Applied Nanostructured Solutions, Llc Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
CN102934267A (en) * 2010-03-02 2013-02-13 应用奈米结构公司 Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
CN103299453A (en) * 2011-01-25 2013-09-11 株式会社Lg化学 Cylindrical secondary battery
TWI463726B (en) * 2011-12-14 2014-12-01 Amita Technologies Inc Ltd Lithium battery having electrode tabs with safe modification
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
JP2018018646A (en) * 2016-07-27 2018-02-01 マクセルホールディングス株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP4251882B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP6735445B2 (en) Wound battery
JP2004247064A (en) Nonaqueous electrolyte secondary battery
JP5174840B2 (en) Secondary battery
JP4711653B2 (en) battery
JP4075034B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP5133307B2 (en) Secondary battery
JP2010003692A (en) Electrode assembly, secondary battery using the same, and manufacturing method for the secondary battery
CN107851768B (en) Method for manufacturing electrochemical device
JP6857872B2 (en) Revolving battery
JP2002008708A (en) Flat wound electrode cell
WO2011002064A1 (en) Laminated battery
JP6775170B2 (en) Revolving battery
JP4518850B2 (en) Secondary battery electrode plate, method for producing the same, and secondary battery using the electrode plate
JP2006139919A (en) Lithium ion secondary battery and its manufacturing method
JP2012164476A (en) Laminate type battery and lamination layer type battery with it
JP2006004729A (en) Electrochemical element
JPH08115729A (en) Organic electrolyte battery and its manufacture
WO2013047515A1 (en) Non-aqueous electrolyte secondary battery
JP2002175839A (en) Sealed battery
JP2006107742A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
JP2011216209A (en) Laminated battery and its manufacturing method
JP2011216205A (en) Laminated battery and its manufacturing method
JP5334109B2 (en) Laminated battery
JPWO2016158398A1 (en) Rectangular secondary battery and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees