JP2004237375A - Small diameter drill - Google Patents

Small diameter drill Download PDF

Info

Publication number
JP2004237375A
JP2004237375A JP2003026959A JP2003026959A JP2004237375A JP 2004237375 A JP2004237375 A JP 2004237375A JP 2003026959 A JP2003026959 A JP 2003026959A JP 2003026959 A JP2003026959 A JP 2003026959A JP 2004237375 A JP2004237375 A JP 2004237375A
Authority
JP
Japan
Prior art keywords
cutting edge
edge portion
diameter
small
drill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003026959A
Other languages
Japanese (ja)
Other versions
JP4015034B2 (en
Inventor
Hiroshi Ikeuchi
寛 池内
Yasushi Ota
康史 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Kobe Tools Corp
Priority to JP2003026959A priority Critical patent/JP4015034B2/en
Publication of JP2004237375A publication Critical patent/JP2004237375A/en
Application granted granted Critical
Publication of JP4015034B2 publication Critical patent/JP4015034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress breakage in a tip part by securing high rigidity of a drill body even if working a small-diameter bore in a high rigidity material. <P>SOLUTION: The tip part 12 comprises: a first tip part 13; and a second tip part 14 which has an outside diameter D2 smaller than the outside diameter D1 of the first tip part 13 by one step and continues to the rear end side of the first tip part 13. The second tip part 14 is made gradually larger in its tip from the outside diameter D2 to the outside diameter D3 toward the rear end side in the axis O direction. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、被削材に小径の穴を加工するのに用いられる小径ドリルに関し、とくに、焼入れ鋼などの高硬度材料に小径の穴を加工するのに用いられる小径ドリルに関するものである。
【0002】
【従来の技術】
従来より、プリント基板に対して小径の穴を形成するため、小径ドリルを用いた穴明け加工がよく行われており(例えば、特許文献1,2参照)、このような小径ドリルとしては、刃先部の先端から後端まで一定の外径を有した、いわゆるストレートタイプのものが用いられるだけでなく、加工穴の内壁面へ接触する刃先部の外周面の面積を減少させるように逃げを設けて、この加工穴の内壁面精度を向上させることを狙った、図3や図4に示すような小径ドリルが用いられることが多々ある。
【0003】
図3の概略側面図に示すような小径ドリルは、軸線O回りに回転されるドリル本体1の刃先部2の外径が、軸線O方向の後端側に向かうにしたがい漸次縮径していくような、いわゆるバックテーパタイプのものであって、刃先部2の先端の外径D1が刃先部2の最大外径となっているとともに、刃先部2の後端の外径D2が刃先部2の最小外径となっているものである。
また、図4の概略側面図に示すような小径ドリルは、軸線O回りに回転されるドリル本体1の刃先部2が、第一刃先部2Aと、この第一刃先部2Aの外径D1よりも小さい外径D2で第一刃先部2Aの後端側に段差を介して連なる第二刃先部2Bとから構成された、いわゆるアンダーカットタイプのものであって、第一刃先部2Aの略全長に亘って一定とされた外径D1が刃先部2の最大外径となっているとともに、第二刃先部2Bの略全長に亘って一定とされた外径D2が刃先部2の最小外径となっているものである。
【0004】
【特許文献1】
特開昭55−150905号公報
【特許文献2】
特開平6−344212号公報
【0005】
【発明が解決しようとする課題】
ところで、最近では、比較的柔らかくドリル本体1にそれほど切削抵抗がかからないプリント基板に対して小径の穴を加工するだけではなく、熱処理が施された焼入れ鋼などの高硬度材料に対しても、基準穴やワイヤーソーを通すためのスタート穴となる小径の穴を、小径ドリルを用いた穴明け加工で形成したいという要求が高まっている。
そこで、図3に示すようなバックテーパタイプの小径ドリルを用いて、このような焼入れ鋼などの高硬度材料に穴明け加工を施そうとしたならば、小径であるがゆえに切削油剤の供給が困難であることに加え、刃先部2における先端側部分の外周面と加工穴の内壁面との間のクリアランスが確保しづらくなっているために、摩擦抵抗が大きくなり、極めて少ない穴加工数で刃先部2の折損に至ってしまうのであった。
【0006】
一方、図4に示すようなアンダーカットタイプの小径ドリルを用いて、焼入れ鋼などの高硬度材料に穴明け加工を施そうとするのであれば、刃先部2における先端側部分と加工穴の内壁面との間のクリアランスを必要十分に確保して、切削油剤の供給を改善することはできるものの、ドリル本体の剛性不足から、依然として少ない穴加工数で刃先部2の折損に至るのであった。
このような小径ドリルにおける刃先部2の折損の傾向は、穴明け加工を施す対象である被削材が高硬度材料であることや、形成した加工穴が収縮すること、ドリル本体1が超硬合金から構成されて靭性が低く脆いことなどによって助長されているのであり、焼入れ鋼のような高硬度材料に対しても、刃先部2の折損を生じさせることなく、安定した穴明け加工を継続していくことができるアンダーカットタイプの小径ドリルが熱望されていた。
【0007】
また、上記のアンダーカットタイプの小径ドリルでは、その第一刃先部2Aの外周面と第二刃先部2Bの外周面とを接続するつなぎ面3が、軸線Oに直交する方向に延在して軸線O方向の後端側を向いているため、刃先部2における第一刃先部2Aが被削材を貫通するようにして穴明け加工を施す過程において、刃先部2を被削材から引き抜くときに、上記の軸線Oに直交する方向に延在するつなぎ面3が、加工穴の内壁面に干渉して引っかかり、とくに刃先部2の折損が生じやすくなるという問題もあった。
【0008】
本発明は、上記課題に鑑みてなされたもので、たとえ高硬度材料に対して小径の穴を加工する場合であっても、ドリル本体の剛性を大きく確保することによって、刃先部の折損が生じるのを抑制することができるアンダーカットタイプの小径ドリルを提供することを第1の目的とし、また、刃先部を被削材から引き抜くときに、第一刃先部の外周面と第二刃先部の外周面とを接続するつなぎ面の、加工穴の内壁面への引っかかりを生じにくくすることができるアンダーカットタイプの小径ドリルを提供することを第2の目的とする。
【0009】
【課題を解決するための手段】
上記の課題を解決して、このような目的を達成するために、本発明は、軸線回りに回転されるドリル本体の先端側部分である刃先部が、第一刃先部とこの第一刃先部の外径よりも一段小さい外径で前記第一刃先部の後端側に連なる第二刃先部とから構成され、前記刃先部の外周にその先端から後端側に向けて延びる切屑排出溝が形成されるとともに、前記切屑排出溝のドリル回転方向前方側を向く壁面と前記刃先部の先端逃げ面との交差稜線部に切刃が形成されてなる小径ドリルにおいて、前記第二刃先部の外径が、前記軸線方向の後端側に向かうにしたがい拡径していくことを特徴とするものである。
このような構成とされた本発明では、従来のアンダーカットタイプの小径ドリルのように、第二刃先部の外径が略全長に亘って一定とされているのではなく、軸線方向の後端側に向かって拡径するように形成されていることから、刃先部における先端側部分の外周面と加工穴の内壁面との間のクリアランスを必要十分に確保しつつ、ドリル本体の剛性を高めることが可能となっている。
したがって、たとえ焼入れ鋼のような高硬度材料に対して穴明け加工を施すような場合であっても、刃先部の折損を生じにくくして、安定した穴明け加工を継続していくことができる。
【0010】
また、本発明においては、前記第一刃先部の外周面と前記第二刃先部の外周面とを接続するつなぎ面が、前記軸線方向の後端側に向かうにしたがい前記軸線に近づくように傾斜していてもよい。
このような構成とされた本発明では、アンダーカットタイプの小径ドリルについて、その刃先部における第一刃先部の外周面と第二刃先部の外周面とを接続するつなぎ面が、従来のアンダーカットタイプの小径ドリルのように、ドリル本体の軸線に直交する方向に延在しているのではなく、軸線方向の後端側に向かうにしたがい軸線に近づくように傾斜することとなる。
これにより、穴明け加工において、刃先部を被削材から引き抜く際であっても、上記のつなぎ面による加工穴の内壁面への引っかかりが生じにくくなるので、この引っかかりに起因していた刃先部の折損を抑制することができる。
【0011】
【発明の実施の形態】
まず、本発明の第1実施形態を説明する。
本第1実施形態による小径ドリルのドリル本体は、図1の概略側面図に示すように、軸線O回りに回転される軸線Oを中心とした略多段円柱状をなし、その後端側部分が工作機械の回転軸に把持される比較的大径のシャンク部11とされているとともに、先端側部分が小径の刃先部12とされている。
シャンク部11において、刃先部12との接続部分は、軸線O方向の後端側に向かうにしたがい外径が漸次拡径していくようなテーパ面11Aとされており、このテーパ面11Aによって、比較的大径のシャンク部11と小径の刃先部12とが接続されている。
【0012】
刃先部12は、その先端部分をなす第一刃先部13と、第一刃先部13の外径D1よりも一段小さい外径D2で第一刃先部13の後端側に段差を介して連なる第二刃先部14とから構成されており、本第1実施形態による小径ドリルは、いわゆるアンダーカットタイプとなっている。
刃先部12における第一刃先部13は、軸線O方向での略全長に亘って一定の外径D1を有しており、この外径D1が、刃先部12の最大外径をなしている。
【0013】
これに対し、刃先部12における第二刃先部14は、軸線O方向の後端側に向かうにしたがい一定の変化傾向で漸次拡径していくような外径を有しており、第二刃先部14における軸線O方向の先端(第一刃先部13に接続される部分)での外径がD2とされて、刃先部12の最小外径をなし、かつ、第二刃先部14における軸線O方向の後端(シャンク11におけるテーパ面11Aに接続される部分)での外径がD3とされている。また、この外径D3は、第一刃先部13の外径D1以下に設定される。
すなわち、刃先部12の外径D1,D2,D3に関して、D1>D2、D2<D3、D1≧D3の関係(D2<D3≦D1)が成り立っているのである。
【0014】
ここで、第一刃先部13の外径D1(刃先部12の最大外径)は、D1≦3mmの範囲に設定され、第二刃先部14における軸線O方向の先端での外径D2(刃先部12の最小外径)は、第一刃先部13の外径D1との関係で、0.8D1≦D2≦0.95D1の範囲に設定され、さらに、第二刃先部14における軸線O方向の後端での外径D3は、第一刃先部13の外径D1との関係で、0.85D1≦D3≦D1の範囲に設定されている。
なお、第一刃先部13の外径D1(刃先部12の最大外径)については、現時点での技術的な限界を考慮すると、0.1mm≦D1の範囲に設定されることとなる。
【0015】
また、図示は省略するが、刃先部12の外周には、その先端から後端側に向けて延びる例えば複数の切屑排出溝が、この刃先部12の略全長に亘って軸線Oを中心として螺旋状にねじれるように形成されているのであって、切屑排出溝におけるドリル回転方向前方側を向く壁面と刃先部12の先端逃げ面との交差稜線部には切刃が形成されている。
【0016】
このとき、刃先部12における切屑排出溝が形成された部分の軸線O方向での長さ(本第1実施形態では、刃先部12の略全長)、すなわち、穴明け加工に使用できる刃先部12の有効刃長Lが、第一刃先部13の外径D1との関係で、4D1≦L≦20D1の範囲に設定されており、また、第一刃先部13の軸線O方向での長さL1が、第一刃先部13の外径D1との関係で、0.5D1≦L1≦3D1の範囲に設定されている。
【0017】
以上のような小径ドリルは、そのドリル本体10が軸線O回りに回転されつつ、軸線O方向にステップ送りが与えられることにより、刃先部12の先端に形成された切刃によって、例えば熱処理が施された焼入れ鋼などの高硬度材料である被削材に対して穴明け加工を施していくのであり、この被削材には、刃先部12の最大外径(D1)に対応した径を有する小径の加工穴が形成される。
【0018】
本第1実施形態による小径ドリルは、第一刃先部13の後端側に連なる第二刃先部14の外径が、第一刃先部13に接続される部分である先端の外径D2から、シャンク11におけるテーパ面11Aに接続される部分である後端の外径D3まで、軸線O方向の後端側に向かって漸次拡径していくように形成されているため、従来のアンダーカットタイプの小径ドリルのような、第二刃先部の外径が軸線O方向に沿って一定とされたものに比べ、ドリル本体10の剛性を高い状態に維持することが可能なアンダーカットタイプとなっている。
【0019】
したがって、たとえ焼入れ鋼などの高硬度材料に対して、穴明け加工を施す際であっても、刃先部12における先端側部分の外周面と加工穴の内壁面との間のクリアランスを必要十分に確保して、切削油剤の供給を良くすることができるのに加え、ドリル本体10の剛性を高く維持できることによって、刃先部12の折損を生じにくくすることができ、安定した穴明け加工を長期間に亘って継続していくことができるのである。
【0020】
また、このように、ドリル本体10の剛性を高い状態に維持して刃先部12の折損を防止するという効果は、本第1実施形態のように、第一刃先部13の外径D1が3mm以下(とくに、外径D1が2mm以下)に設定されていて、従来のアンダーカットタイプの小径ドリルでは、ドリル本体10の剛性を非常に確保しづらいような場合に顕著なものとなる
一方、刃先部12における第二刃先部14の先端及び後端での外径D2,D3については、第一刃先部13の外径D1や被削材の種類などに基づいて、上述したような範囲内で適宜設定されるものであるが、より好ましくは、0.85D1≦D2≦0.95D1、0.9D1≦D3≦D1の範囲に設定されるのがよい。
【0021】
なお、本第1実施形態においては、第二刃先部14の外径を、軸線O方向の後端側に向かうにしたがい一定の変化傾向で漸次拡径させるようにしているが、これに限定されることはなく、第二刃先部14の外径が、軸線O方向の後端側へ向かうにしたがい拡径してさえいれば、その変化傾向は一定でなくても構わない。
【0022】
次に、本発明の第2実施形態を説明するが、上述した第1実施形態と同様の部分には、同一の符合を用いてその説明を省略する。
本第2実施形態による小径ドリルは、図2の概略側面図に示すように、上述の第1実施形態と同様の構成をなすものであるが、その相違点は、第一刃先部13の外周面と第二刃先部14の外周面とを接続しているつなぎ面15が、軸線O方向の後端側に向かうにしたがい軸線Oに近づくように傾斜したテーパ面状に形成されている点にある。つまり、このつなぎ面15の外径が、軸線O方向の後端側に向かうにしたがい一定の変化傾向で漸次縮径していくようになっているのである。
【0023】
また、軸線Oを含む断面で見たときに、このつなぎ面15における第一刃先部13の外周面と交差する部分での接線Pと軸線Oとがなす狭角θは、10゜〜60゜の範囲に設定されている(図2は、軸線Oを含む断面で見たときの図ではないが、上記の狭角θを示すのに支障はない。また、軸線Oと平行な直線を2点鎖線で示してある。)。
とくに、本第2実施形態においては、軸線Oを含む断面で見たときに、つなぎ面15が、軸線O方向の後端側に向かうにしたがい軸線Oに近づくように傾斜した略直線状に形成されているため、上記の狭角θは、断面略直線状をなすつなぎ面15と軸線Oとがなす狭角に一致する。
【0024】
本第2実施形態による小径ドリルによれば、上述した第1実施形態と同様の効果を得ることができるのに加えて、第一刃先部13の外周面と第二刃先部14の外周面とを接続するつなぎ面15が、軸線O方向の後端側に向かうにしたがい軸線Oに近づくように傾斜したテーパ面として形成されていることから、穴明け加工の過程で、被削材から刃先部12を引き抜くときであっても、このつなぎ面15が加工穴の内壁面へ引っかかるのを防止することができる。
それゆえ、この引っかかりに起因して生じていた刃先部12の折損を抑制することが可能となり、上述した第1実施形態において説明したようなドリル本体10の剛性を高く維持することができるという効果とも相俟って、より安定した穴明け加工の継続が可能になる。
【0025】
また、軸線Oを含む断面で見たとき、つなぎ面15における第一刃先部13の外周面と交差する部分での接線Pと軸線Oとのなす狭角θ(つなぎ面15と軸線Oとのなす狭角θ)が小さすぎると、刃先部12を第一刃先部13と第二刃先部14とからなるアンダーカットタイプにする効果が薄れてしまうおそれが生じ、一方、狭角θが大きすぎても、つなぎ面15の引っかかりを防止することができなくなってしまうおそれが生じてしまう。
そのため、本第2実施形態では、上記の狭角θを、10゜〜60゜の範囲(好ましくは、20゜〜50゜の範囲)に設定したことによって、より安定した穴明け加工の継続を長期間に亘って可能にしているのである。
【0026】
なお、本第2実施形態においては、つなぎ面15をテーパ面として、軸線Oに直交する断面で見たときに略直線状をなすようにしているが、これに限定されることなく、軸線O方向の後端側に向かうにしたがい軸線Oに近づくように傾斜しているのであれば、このつなぎ面15を断面略凹曲線状の凹曲面や断面略凸曲線状の凸曲面としても構わない。
【0027】
【実施例】
本発明の一例による小径ドリルを実施例1(図1に基づく小径ドリル)及び実施例2(図2に基づく小径ドリル)とし、従来の小径ドリルを従来例1(図3に基づく小径ドリル)及び従来例2(図4に基づく小径ドリル)として、穴明け加工試験を行い、刃先部が折損するまでに加工できた穴の数を計測した。その結果を図5に示す。
また、切削条件は以下の通りである。
・刃先部の最大外径(D1):0.7mm
・切削速度:35m/min
・送り:0.008mm/rev.
・穴深さ:3mm
・ステップ送り:0.07mm
・被削材:SKD11(HRC60)
・切削油:エマルション
【0028】
図5に示されるように、バックテーパタイプである従来例1では、摩擦抵抗の増大により、穴加工数が84個、212個と極めて少ない段階で刃先部が折損し、また、従来のアンダーカットタイプである従来例2でも、穴加工数が1316個、1162個と少ない段階で刃先部が折損してしまった。
これらに対して、本発明の一例である実施例1では、穴加工数が2099個、2161個となって、刃先部の折損を生じさせることなく安定した穴明け加工を継続することができ、とくに、実施例2では、穴加工数が2320個、2512個となって、非常に安定した穴明け加工を継続できたことが分かる。
【0029】
【発明の効果】
本発明によれば、アンダーカットタイプの小径ドリルにおいて、その刃先部における第二刃先部の外径を、軸線方向の後端側に向かって大きくなるように形成したことから、刃先部における先端側部分の外周面と加工穴の内壁面との間のクリアランスを必要十分に確保しつつも、ドリル本体の剛性を高めることが可能となるので、たとえ焼入れ鋼のような高硬度材料に対して穴明け加工を施すような場合でも、刃先部の折損を生じにくくして、安定した穴明け加工を継続していくことができる。
【0030】
また、本発明によれば、アンダーカットタイプの小径ドリルにおいて、その刃先部における第一刃先部の外周面と第二刃先部の外周面とを接続するつなぎ面を、軸線方向の後端側に向かうにしたがい軸線に近づくように傾斜させたことから、刃先部を被削材から引き抜く際に、上記のつなぎ面による加工穴の内壁面への引っかかりを抑制して、これに起因した刃先部の折損を生じにくくすることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態による小径ドリルを示す概略側面図である。
【図2】本発明の第2実施形態による小径ドリルを示す概略側面図である。
【図3】従来の小径ドリルの一例を示す概略側面図である。
【図4】従来の小径ドリルの他の一例を示す概略側面図である。
【図5】穴明け加工試験の結果を示すグラフである。
【符号の説明】
10 ドリル本体
11 シャンク部
11A テーパ面
12 刃先部
13 第一刃先部
14 第二刃先部
15 つなぎ面
D1 第一刃先部の外径(刃先部の最大外径)
D2 第二刃先部の先端の外径(刃先部の最小外径)
D3 第二刃先部の後端の外径
L 有効刃長
L1 第一刃先部の軸線方向での長さ
O 軸線
P 接線
θ 狭角
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a small-diameter drill used for machining a small-diameter hole in a work material, and particularly to a small-diameter drill used for machining a small-diameter hole in a hard material such as hardened steel.
[0002]
[Prior art]
Conventionally, in order to form a small-diameter hole in a printed circuit board, drilling using a small-diameter drill is often performed (for example, see Patent Documents 1 and 2). Not only the so-called straight type, which has a constant outer diameter from the front end to the rear end of the part, but also provides relief so as to reduce the area of the outer peripheral surface of the cutting edge that contacts the inner wall surface of the processing hole In many cases, a small-diameter drill as shown in FIGS. 3 and 4 is used to improve the accuracy of the inner wall surface of the machined hole.
[0003]
In the small-diameter drill as shown in the schematic side view of FIG. 3, the outer diameter of the cutting edge portion 2 of the drill body 1 rotated around the axis O gradually decreases as it goes toward the rear end side in the axis O direction. Such a so-called back taper type, in which the outer diameter D1 at the tip of the cutting edge 2 is the maximum outer diameter of the cutting edge 2 and the outer diameter D2 at the rear end of the cutting edge 2 is Is the minimum outside diameter.
Further, in the small-diameter drill as shown in the schematic side view of FIG. 4, the cutting edge 2 of the drill body 1 rotated around the axis O has a first cutting edge 2A and an outer diameter D1 of the first cutting edge 2A. Is a so-called undercut type, which is constituted by a second cutting edge portion 2B connected to the rear end side of the first cutting edge portion 2A via a step with a small outer diameter D2, and is substantially the entire length of the first cutting edge portion 2A. Is the maximum outer diameter of the cutting edge portion 2, and the outer diameter D2 that is constant over substantially the entire length of the second cutting edge portion 2B is the minimum outer diameter of the cutting edge portion 2. It is something that has become.
[0004]
[Patent Document 1]
JP-A-55-150905 [Patent Document 2]
JP-A-6-344212
[Problems to be solved by the invention]
By the way, recently, in addition to processing a small-diameter hole in a printed circuit board that is relatively soft and does not apply much cutting resistance to the drill body 1, a standard is also applied to a high-hardness material such as hardened steel that has been subjected to heat treatment. There is an increasing demand for forming a small-diameter hole serving as a start hole for passing a hole or a wire saw by using a small-diameter drill.
Therefore, if a back taper type small-diameter drill as shown in FIG. 3 is used to drill a hardened material such as quenched steel, the supply of the cutting oil is difficult due to the small diameter. In addition to the difficulty, the clearance between the outer peripheral surface of the tip side portion of the cutting edge portion 2 and the inner wall surface of the processing hole is difficult to secure, so that the frictional resistance increases and the number of drilling holes is extremely small. The blade tip 2 was broken.
[0006]
On the other hand, if an undercut type small-diameter drill as shown in FIG. 4 is used to drill a hardened material such as hardened steel, the tip side portion of the cutting edge 2 and the inside of the drilled hole Although the supply of the cutting fluid can be improved by securing a sufficient clearance between the wall and the wall, the lack of rigidity of the drill body still leads to breakage of the cutting edge portion 2 with a small number of drilling holes.
The tendency of the cutting edge 2 to break in such a small-diameter drill is that the work material to be drilled is a high-hardness material, the formed drill hole shrinks, and the drill body 1 It is made of an alloy and is promoted by its low toughness and brittleness. It continues stable drilling of hard materials such as hardened steel without causing breakage of the cutting edge 2. An undercut type small-diameter drill that can be carried out has been eagerly desired.
[0007]
In the undercut type small diameter drill described above, the connecting surface 3 connecting the outer peripheral surface of the first cutting edge 2A and the outer peripheral surface of the second cutting edge 2B extends in a direction perpendicular to the axis O. When the cutting edge portion 2A of the cutting edge portion 2 is drilled from the work material in the process of performing the boring process so that the first cutting edge portion 2A of the cutting edge portion 2 penetrates the work material because the cutting edge portion 2 faces the rear end side in the direction of the axis O. In addition, there is also a problem that the connecting surface 3 extending in the direction orthogonal to the axis O interferes with the inner wall surface of the machined hole and is caught, and in particular, the cutting edge 2 is easily broken.
[0008]
The present invention has been made in view of the above-described problems, and even when a small-diameter hole is machined in a high-hardness material, breakage of a cutting edge occurs by securing a large rigidity of a drill body. It is a first object of the present invention to provide a small diameter drill of an undercut type capable of suppressing the occurrence of an undercut, and when an edge portion is pulled out from a work material, an outer peripheral surface of a first edge portion and a second edge portion are removed. A second object of the present invention is to provide a small diameter drill of an undercut type, which can make it difficult for a connecting surface connecting an outer peripheral surface to be caught on an inner wall surface of a processing hole.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems and achieve such an object, the present invention provides a cutting edge portion which is a tip side portion of a drill body rotated around an axis, the first cutting edge portion and the first cutting edge portion. And a second cutting edge connected to the rear end of the first cutting edge with an outer diameter one step smaller than the outer diameter of the cutting edge, and a chip discharge groove extending from the front end toward the rear end side of the outer periphery of the cutting edge. A small-diameter drill, wherein a cutting edge is formed at an intersection ridge portion between a wall surface of the chip discharge groove facing forward in the drill rotation direction and a tip flank of the cutting edge portion. The diameter increases as it goes toward the rear end side in the axial direction.
In the present invention having such a configuration, the outer diameter of the second cutting edge portion is not constant over substantially the entire length as in a conventional undercut type small diameter drill, but rather is the rear end in the axial direction. Since the diameter is increased toward the side, the rigidity of the drill body is increased while ensuring sufficient and sufficient clearance between the outer peripheral surface of the tip side portion of the cutting edge and the inner wall surface of the drilled hole. It is possible.
Therefore, even when drilling is performed on a high-hardness material such as hardened steel, breakage of the cutting edge is less likely to occur, and stable drilling can be continued. .
[0010]
Further, in the present invention, the connecting surface connecting the outer peripheral surface of the first cutting edge portion and the outer peripheral surface of the second cutting edge portion is inclined so as to approach the axis line toward the rear end side in the axial direction. It may be.
In the present invention having such a configuration, in the undercut type small-diameter drill, the connecting surface connecting the outer peripheral surface of the first cutting edge portion and the outer peripheral surface of the second cutting edge portion in the cutting edge portion is formed by a conventional undercut. Unlike small diameter drills of the type, they do not extend in a direction perpendicular to the axis of the drill body, but are inclined so as to approach the axis toward the rear end side in the axial direction.
In this way, in drilling, even when the cutting edge is pulled out from the work material, it is difficult for the connecting surface to be caught on the inner wall surface of the processing hole. Can be suppressed.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
First, a first embodiment of the present invention will be described.
As shown in the schematic side view of FIG. 1, the drill body of the small-diameter drill according to the first embodiment has a substantially multi-stage cylindrical shape centered on an axis O rotated around the axis O, and a rear end portion thereof is machined. The shank 11 has a relatively large diameter to be gripped by the rotating shaft of the machine, and the tip side has a small-diameter cutting edge 12.
In the shank portion 11, the connection portion with the cutting edge portion 12 is formed as a tapered surface 11A whose outer diameter gradually increases toward the rear end side in the axis O direction. A relatively large-diameter shank portion 11 and a small-diameter cutting edge portion 12 are connected.
[0012]
The cutting edge portion 12 has a first cutting edge portion 13 forming a tip portion thereof, and a second cutting edge connected to the rear end side of the first cutting edge portion 13 with an outer diameter D2 smaller than the outer diameter D1 of the first cutting edge portion 13 by a step. The small-diameter drill according to the first embodiment is a so-called undercut type.
The first cutting edge portion 13 of the cutting edge portion 12 has a constant outer diameter D1 over substantially the entire length in the direction of the axis O, and the outer diameter D1 forms the maximum outer diameter of the cutting edge portion 12.
[0013]
On the other hand, the second cutting edge portion 14 of the cutting edge portion 12 has an outer diameter that gradually increases with a constant change tendency toward the rear end side in the axis O direction. The outer diameter at the tip of the portion 14 in the direction of the axis O (the portion connected to the first cutting edge portion 13) is D2, which forms the minimum outer diameter of the cutting edge portion 12, and the axis O of the second cutting edge portion 14 The outer diameter at the rear end in the direction (portion of the shank 11 connected to the tapered surface 11A) is D3. The outer diameter D3 is set to be equal to or less than the outer diameter D1 of the first cutting edge portion 13.
That is, the relationship of D1> D2, D2 <D3, and D1 ≧ D3 (D2 <D3 ≦ D1) holds for the outer diameters D1, D2, and D3 of the cutting edge portion 12.
[0014]
Here, the outer diameter D1 of the first cutting edge portion 13 (the maximum outer diameter of the cutting edge portion 12) is set in a range of D1 ≦ 3 mm, and the outer diameter D2 (the cutting edge) at the tip of the second cutting edge portion 14 in the direction of the axis O. The minimum outer diameter of the portion 12) is set in the range of 0.8D1 ≦ D2 ≦ 0.95D1 in relation to the outer diameter D1 of the first cutting edge portion 13, and further, in the direction of the axis O in the second cutting edge portion 14. The outer diameter D3 at the rear end is set in a range of 0.85D1 ≦ D3 ≦ D1 in relation to the outer diameter D1 of the first cutting edge portion 13.
In addition, the outer diameter D1 of the first cutting edge portion 13 (the maximum outer diameter of the cutting edge portion 12) is set in a range of 0.1 mm ≦ D1 in consideration of a technical limit at the present time.
[0015]
Although not shown, for example, a plurality of chip discharge grooves extending from the front end to the rear end side of the outer periphery of the cutting edge portion 12 are spiraled around the axis O over substantially the entire length of the cutting edge portion 12. The cutting edge is formed at the intersection ridge line between the wall surface of the chip discharge groove facing forward in the drill rotation direction and the flank of the leading edge of the cutting edge portion 12.
[0016]
At this time, the length in the direction of the axis O of the portion where the chip discharge groove is formed in the blade edge portion 12 (substantially the entire length of the blade edge portion 12 in the first embodiment), that is, the blade edge portion 12 that can be used for drilling. Is set in a range of 4D1 ≦ L ≦ 20D1 in relation to the outer diameter D1 of the first cutting edge portion 13, and the length L1 of the first cutting edge portion 13 in the direction of the axis O is set. Is set in the range of 0.5D1 ≦ L1 ≦ 3D1 in relation to the outer diameter D1 of the first cutting edge portion 13.
[0017]
The small-diameter drill as described above is provided with a step feed in the direction of the axis O while the drill body 10 is rotated around the axis O, so that, for example, heat treatment is performed by the cutting blade formed at the tip of the blade edge portion 12. Drilling is performed on a hardened material such as hardened steel, which has a diameter corresponding to the maximum outer diameter (D1) of the cutting edge portion 12. A small hole is formed.
[0018]
In the small-diameter drill according to the first embodiment, the outer diameter of the second cutting edge portion 14 connected to the rear end side of the first cutting edge portion 13 is determined from the outer diameter D2 of the tip, which is a portion connected to the first cutting edge portion 13, Since the shank 11 is formed so as to gradually increase in diameter toward the rear end side in the direction of the axis O up to the outer diameter D3 at the rear end, which is a portion connected to the tapered surface 11A, the conventional undercut type An undercut type that can maintain the rigidity of the drill body 10 in a high state as compared with a small-diameter drill such that the outer diameter of the second cutting edge is constant along the axis O direction. I have.
[0019]
Therefore, even when drilling a high-hardness material such as hardened steel, the clearance between the outer peripheral surface of the tip side portion of the blade edge portion 12 and the inner wall surface of the drilled hole is necessary and sufficient. As a result, the supply of the cutting oil can be improved and the rigidity of the drill body 10 can be maintained high, so that the cutting edge 12 can be hardly broken, and stable drilling can be performed for a long time. Can be continued.
[0020]
The effect of maintaining the rigidity of the drill body 10 in a high state and preventing breakage of the cutting edge portion 12 is different from the first embodiment in that the outer diameter D1 of the first cutting edge portion 13 is 3 mm. (Especially, the outer diameter D1 is 2 mm or less). In a conventional undercut-type small-diameter drill, when the rigidity of the drill body 10 is extremely difficult to be secured, it becomes remarkable. The outer diameters D2 and D3 at the front and rear ends of the second cutting edge portion 14 in the portion 12 are within the ranges described above based on the outer diameter D1 of the first cutting edge portion 13 and the type of work material. It is set appropriately, but more preferably, it is set in the range of 0.85D1 ≦ D2 ≦ 0.95D1, 0.9D1 ≦ D3 ≦ D1.
[0021]
In the first embodiment, the outer diameter of the second cutting edge portion 14 is gradually increased with a constant change tendency toward the rear end side in the axis O, but is not limited thereto. The change tendency may not be constant as long as the outer diameter of the second cutting edge portion 14 is increased toward the rear end side in the axis O direction.
[0022]
Next, a second embodiment of the present invention will be described, and the same parts as those in the above-described first embodiment will be denoted by the same reference numerals and description thereof will be omitted.
The small-diameter drill according to the second embodiment has the same configuration as that of the above-described first embodiment, as shown in the schematic side view of FIG. The connecting surface 15 connecting the surface and the outer peripheral surface of the second cutting edge portion 14 is formed in a tapered surface shape that is inclined so as to approach the axis O toward the rear end side in the direction of the axis O. is there. In other words, the outer diameter of the connecting surface 15 gradually decreases with a constant changing tendency toward the rear end side in the direction of the axis O.
[0023]
When viewed in a cross section including the axis O, a narrow angle θ between the tangent P and the axis O at a portion of the connecting surface 15 intersecting with the outer peripheral surface of the first cutting edge 13 is 10 ° to 60 °. (FIG. 2 is not a view when viewed in a cross section including the axis O, but there is no problem in showing the above-mentioned narrow angle θ. In addition, a straight line parallel to the axis O is defined as 2 It is indicated by the dotted chain line.)
In particular, in the second embodiment, when viewed in a cross section including the axis O, the connecting surface 15 is formed in a substantially linear shape inclined so as to approach the axis O toward the rear end side in the direction of the axis O. Therefore, the narrow angle θ is equal to the narrow angle formed by the connecting surface 15 and the axis O, which are substantially linear in cross section.
[0024]
According to the small-diameter drill according to the second embodiment, in addition to obtaining the same effects as in the above-described first embodiment, in addition to the outer peripheral surface of the first cutting edge portion 13 and the outer peripheral surface of the second cutting edge portion 14, Is formed as a tapered surface inclined so as to approach the axis O toward the rear end side in the direction of the axis O, so that in the process of drilling, the work material is cut from the cutting edge. Even when the 12 is pulled out, the connecting surface 15 can be prevented from being caught on the inner wall surface of the processing hole.
Therefore, it is possible to suppress breakage of the cutting edge portion 12 caused by the hooking, and it is possible to maintain the rigidity of the drill body 10 as described in the first embodiment high. Together with this, more stable drilling can be continued.
[0025]
When viewed in a cross section including the axis O, a narrow angle θ between the tangent P and the axis O at a portion of the connection surface 15 intersecting the outer peripheral surface of the first cutting edge portion 13 (the angle between the connection surface 15 and the axis O). If the narrow angle θ is too small, the effect of changing the cutting edge portion 12 to the undercut type including the first cutting edge portion 13 and the second cutting edge portion 14 may be weakened, while the narrow angle θ is too large. However, there is a possibility that the catch of the connecting surface 15 cannot be prevented.
For this reason, in the second embodiment, by setting the narrow angle θ in the range of 10 ° to 60 ° (preferably in the range of 20 ° to 50 °), more stable continuation of drilling is performed. This is possible for a long time.
[0026]
In the second embodiment, the connecting surface 15 is a tapered surface so as to be substantially linear when viewed in a cross section orthogonal to the axis O. However, the present invention is not limited to this. If the connecting surface 15 is inclined so as to approach the axis O toward the rear end side in the direction, the connecting surface 15 may be a concave curved surface having a substantially concave curved section or a convex curved surface having a substantially convex curved cross section.
[0027]
【Example】
A small diameter drill according to an example of the present invention is referred to as a first example (small diameter drill based on FIG. 1) and a second example (small diameter drill based on FIG. 2). As Conventional Example 2 (small-diameter drill based on FIG. 4), a drilling test was performed, and the number of holes that could be machined before the cutting edge was broken was measured. The result is shown in FIG.
The cutting conditions are as follows.
・ Maximum outer diameter (D1) of the blade tip: 0.7 mm
・ Cutting speed: 35m / min
-Feed: 0.008 mm / rev.
・ Hole depth: 3mm
・ Step feed: 0.07mm
・ Work material: SKD11 (HRC60)
・ Cutting oil: Emulsion [0028]
As shown in FIG. 5, in Conventional Example 1 which is a back taper type, the cutting edge is broken at a very small stage of 84 or 212 holes due to an increase in frictional resistance. Also in the conventional example 2 of the type, the cutting edge portion was broken at a stage where the number of drilled holes was as small as 1,316 and 1,162.
On the other hand, in Example 1, which is an example of the present invention, the number of drilled holes is 2099 and 2161, and stable drilling can be continued without causing breakage of the blade edge portion. In particular, in Example 2, the number of drilled holes was 2320 and 2512, indicating that extremely stable drilling could be continued.
[0029]
【The invention's effect】
According to the present invention, in the undercut type small diameter drill, since the outer diameter of the second cutting edge portion at the cutting edge portion is formed so as to increase toward the rear end side in the axial direction, the leading end side at the cutting edge portion is formed. It is possible to increase the rigidity of the drill body while ensuring the necessary and sufficient clearance between the outer peripheral surface of the part and the inner wall surface of the machined hole. Even in the case where drilling is performed, breakage of the blade edge portion is hardly generated, and stable drilling can be continued.
[0030]
Further, according to the present invention, in the undercut type small diameter drill, the connecting surface connecting the outer peripheral surface of the first cutting edge portion and the outer peripheral surface of the second cutting edge portion in the cutting edge portion is located on the rear end side in the axial direction. Since it is inclined so as to approach the axis as it goes, when the blade tip is pulled out from the work material, the above-mentioned joint surface suppresses the engagement of the processing hole with the inner wall surface, and the blade tip caused by this is suppressed. Breakage can be suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic side view showing a small diameter drill according to a first embodiment of the present invention.
FIG. 2 is a schematic side view showing a small diameter drill according to a second embodiment of the present invention.
FIG. 3 is a schematic side view showing an example of a conventional small diameter drill.
FIG. 4 is a schematic side view showing another example of a conventional small diameter drill.
FIG. 5 is a graph showing the results of a drilling test.
[Explanation of symbols]
Reference Signs List 10 Drill body 11 Shank portion 11A Tapered surface 12 Cutting edge 13 First cutting edge 14 Second cutting edge 15 Connecting surface D1 Outer diameter of first cutting edge (maximum outer diameter of cutting edge)
D2 Outer diameter of the tip of the second cutting edge (minimum outer diameter of the cutting edge)
D3 Outer diameter L of the rear end of the second cutting edge portion Effective blade length L1 Length of the first cutting edge portion in the axial direction O Axis P Tangent line θ Narrow angle

Claims (2)

軸線回りに回転されるドリル本体の先端側部分である刃先部が、第一刃先部とこの第一刃先部の外径よりも一段小さい外径で前記第一刃先部の後端側に連なる第二刃先部とから構成され、前記刃先部の外周にその先端から後端側に向けて延びる切屑排出溝が形成されるとともに、前記切屑排出溝のドリル回転方向前方側を向く壁面と前記刃先部の先端逃げ面との交差稜線部に切刃が形成されてなる小径ドリルにおいて、
前記第二刃先部の外径が、前記軸線方向の後端側に向かうにしたがい拡径していくことを特徴とする小径ドリル。
A cutting edge, which is a tip side portion of the drill body rotated about the axis, is connected to the rear end of the first cutting edge with an outer diameter one step smaller than the outer diameter of the first cutting edge and the first cutting edge. A chip discharge groove formed on the outer periphery of the cutting edge portion and extending from the front end thereof to the rear end side, and a wall surface of the chip discharging groove facing forward in the drill rotation direction and the cutting edge portion. In a small diameter drill with a cutting edge formed at the intersection ridge line with the tip flank,
A small-diameter drill, wherein the outer diameter of the second cutting edge portion increases as it goes toward the rear end side in the axial direction.
請求項1に記載の小径ドリルにおいて、
前記第一刃先部の外周面と前記第二刃先部の外周面とを接続するつなぎ面が、前記軸線方向の後端側に向かうにしたがい前記軸線に近づくように傾斜していることを特徴とする小径ドリル。
The small-diameter drill according to claim 1,
A connecting surface connecting the outer peripheral surface of the first cutting edge portion and the outer peripheral surface of the second cutting edge portion is inclined so as to approach the axis line toward the rear end side in the axial direction. Small diameter drill.
JP2003026959A 2003-02-04 2003-02-04 Small diameter drill Expired - Fee Related JP4015034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026959A JP4015034B2 (en) 2003-02-04 2003-02-04 Small diameter drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026959A JP4015034B2 (en) 2003-02-04 2003-02-04 Small diameter drill

Publications (2)

Publication Number Publication Date
JP2004237375A true JP2004237375A (en) 2004-08-26
JP4015034B2 JP4015034B2 (en) 2007-11-28

Family

ID=32954823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026959A Expired - Fee Related JP4015034B2 (en) 2003-02-04 2003-02-04 Small diameter drill

Country Status (1)

Country Link
JP (1) JP4015034B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011328A (en) * 2009-06-30 2011-01-20 Ibiden Co Ltd Cutting drill and method for manufacturing printed wiring board
CN104136165A (en) * 2012-02-28 2014-11-05 京瓷株式会社 Drill blank, manufacturing method for drill blank, drill, and manufacturing method for drill

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011328A (en) * 2009-06-30 2011-01-20 Ibiden Co Ltd Cutting drill and method for manufacturing printed wiring board
CN104136165A (en) * 2012-02-28 2014-11-05 京瓷株式会社 Drill blank, manufacturing method for drill blank, drill, and manufacturing method for drill
US9555506B2 (en) 2012-02-28 2017-01-31 Kyocera Corporation Drill blank, method for manufacturing drill blank, drill, and method for manufacturing drill
CN104136165B (en) * 2012-02-28 2017-03-08 京瓷株式会社 Drill bit blank, the manufacture method of the manufacture method of drill bit blank, drill bit and drill bit
KR101733964B1 (en) * 2012-02-28 2017-05-10 쿄세라 코포레이션 Drill blank, manufacturing method for drill blank, drill, and manufacturing method for drill

Also Published As

Publication number Publication date
JP4015034B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
CA2382942C (en) Drill having construction for reducing thrust load in drilling operation, and method of manufacturing the drill
EP2774704B1 (en) Drill
US20060039767A1 (en) Carbide drill capable of drilling hole with reduced degree of work hardening
US20080089753A1 (en) Drill
EP2698219B1 (en) Drill
EP2322303B1 (en) Drill
EP2754518A1 (en) Drill
JP2006055941A (en) Drill for machining hole as cast
JP2008137125A (en) Drill
JP2011073129A (en) Boring drill
KR100323549B1 (en) taper taps for pipes with high hardness materials
JP2002144124A (en) Small drill
JP2009255211A (en) Female screw machining tool and female screw machining method using it
JP3985713B2 (en) Drill
JP2008142834A (en) Drill
JP2007007809A (en) Cemented carbide drill causing low work hardening
JP2008149385A (en) Cemented carbide twist drill
JP2004237375A (en) Small diameter drill
JP2005305610A (en) Twist drill
JP2002205212A (en) Drill
JP2005177891A (en) Drill
JP2007007808A (en) Cemented carbide drill causing low work hardening
JP2006326752A (en) Drill
JP2007260843A (en) Drill
JP4206778B2 (en) Center drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees