JP2004235261A - Optical system device and its manufacturing method - Google Patents

Optical system device and its manufacturing method Download PDF

Info

Publication number
JP2004235261A
JP2004235261A JP2003019478A JP2003019478A JP2004235261A JP 2004235261 A JP2004235261 A JP 2004235261A JP 2003019478 A JP2003019478 A JP 2003019478A JP 2003019478 A JP2003019478 A JP 2003019478A JP 2004235261 A JP2004235261 A JP 2004235261A
Authority
JP
Japan
Prior art keywords
resin
sealing
gpa
elastic modulus
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003019478A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yoshida
浩之 吉田
Mikio Masui
幹生 桝井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003019478A priority Critical patent/JP2004235261A/en
Priority to KR1020030034303A priority patent/KR100567559B1/en
Priority to US10/448,283 priority patent/US7038195B2/en
Publication of JP2004235261A publication Critical patent/JP2004235261A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical system device having high-efficiency optical characteristics and highly reliable durability, and to provide a method of manufacturing the device by which sealing of an optical element with a protective resin and formation of a high-accuracy lens can be realized. <P>SOLUTION: The optical system device 10 is manufactured by respectively forming a resin substrate 1, a first sealing layer 3, and a second sealing layer 4 of a resin having a low modulus of elasticity of ≤10 GPa, a resin having a modulus of elasticity of 1 Pa to 1 MPa and a glass transition temperature of 213-233 K, and an ultraviolet-curing resin having a modulus of elasticity of 1-2.5 GPa and a glass transition temperature of ≥413 K and sealing an optical element 2 by forming a lens section 5 of a resin having a modulus of elasticity of ≥3 GPa. Since the resins having different moduli of elasticity are used appropriately and the stress of the encapsulating resin is relieved comprehensively, such highly reliable durability can be realized that no vacuum void occurs in the resins and no peeling occurs in the interfaces of the resins even when the temperature and environment change. In addition, the high-efficiency optical characteristics can be realized by mounting the element 2 on the bottom face of a metallized recessed section and, at the same time, by encapsulating the element 2 in a reliably durable state and constituting a lens structure. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光コネクタ等を構成する光学系装置の製造方法であって、特に光学素子の封止、及びレンズ形成に関する。
【0002】
【従来の技術】
従来から、光学系装置において基板実装された発光や受光を行う光学素子を透明樹脂にて封入・封止して光学素子の保護及びレンズ形成等の光学要素形成が行われている。このような光学系装置として、図11(a)(b)に示すように、立体回路成形品100上に、発光素子101や受光素子102のような光学素子101,102を実装する共に、この光学素子の実装面とは異なる面(図では下面)に形成した凹部103に前記光学素子101,102の信号処理を行う集積回路素子104を実装し、前記光学素子101,102と前記信号処理用集積回路素子とを接続する回路を、前記光学素子の実装部位から信号処理集積回路素子の実装部位に至るように前記立体回路成形品の表面に金属めっき膜による回路パターン105〜108を構成し、前記光学素子の受光面若しくは発光面に対向するレンズ109と、前記回路パターンの保護層110と、信号処理用集積回路素子の実装部位の封止樹脂層111を2次成形の樹脂により形成したものが知られている(例えば、特許文献1参照)。
【0003】
また、他の封止成形例として、図12(a)(b)に示すように、受光素子233と発光素子234を一体的にモールドしたものが知られている(例えば、特許文献2参照)。図12(a)に示すいわゆる光結合装置(フォトカプラ)は、個別のリードフレーム231と232に、それぞれ搭載された発光素子233と受光素子234とを対向して配置し、それら素子233、234を透光性樹脂(半透明エポキシ樹脂)235で1次モールドして光結合パスを形成し、この後、外装めっきを施し、さらに外乱光の遮光のために遮光性樹脂(黒色エポキシ樹脂)236で2次モールドした、いわゆる2層モールドタイプのものである。その発光素子233には、応力緩和のためにシリコン樹脂237によるプリコートが施されたものである。また、図12(b)に示す光結合装置は、1層モールドタイプであって、リードフレーム231と232に搭載した発光素子233と受光素子234とを、互いに対向した位置関係となるようにプリコート樹脂(透明シリコン樹脂)247で結合した後、それら全体を遮光性樹脂246でモールドすることによって形成されている。
【0004】
また、上記例とは別に、図13(a)(b)に示すような光結合装置の製造方法が知られている(例えば、特許文献3参照)。リードフレーム311に搭載された発光素子314と受光素子315を覆うように光透過可能な透明ゲル樹脂318を両素子の上方から滴下するポッティング方法により塗布し、かつ透明ゲル樹脂318の外周部を覆うように光反射樹脂319をモールド成形する。前記透明ゲル樹脂318は、針入度が45〜65(JIS−K2220)の樹脂を用いている。光反射樹脂319と透明ゲル樹脂318との間に熱応力が生じた場合でも、透明ゲル樹脂自体が弾性変形して応力緩和するため、透明ゲル樹脂と光反射樹脂との界面の広い範囲にわたって剥離が生じることはなく、また、透明ゲル樹脂318の易変形性により熱応力が緩和されるため、光反射樹脂319におけるクラックの発生が防止される。
【0005】
また、光学系装置と同様の封止技術が用いられる半導体チップの封止構造について、図14に示すようなものが知られている(例えば、特許文献4参照)。その封止構造は、基板400のチップ搭載部にダイボンド材401で半導体チップ402を接着し、その半導体チップ402側と前記基板400側とをボンデイングワイヤ403を介して電気的に接続した半導体チップの封止構造において、半導体チップ402及びダイボンド材401の界面をシリコーン系のシーリング材404で封止すると共に、そのシーリング材404の高さを前記ボンデイングワイヤ403のループの位置よりも低くなるようにしたものである。この封止方法は、半導体チップ402及び半導体チップ402とボンデイングワイヤ403の接合部を封止して電気回路の保護をすると共に、ボンディングワイヤ403は完全に被覆せずに残すことにより封止工程における応力によるボンディングワイヤ403の断線や短絡の回避を図るものである。長いボンディングワイヤ403や多数のボンディングワイヤ403を密接して用いる場合に有効とされている。
【0006】
【特許文献1】
特開2002−164604号公報
【特許文献2】
特開平5−327005号公報
【特許文献3】
特開平11−233810号公報
【特許文献4】
特開平8−204048号公報
【0007】
【発明が解決しようとする課題】
しかしながら、従来の上述したような光学素子や半導体チップの封入・封止の方法においては、シリコーン系などの保護コート剤が用いられており、これらの保護コート剤は吸水・透湿性が高く光学素子や電極の腐食が生じ易く耐久性に問題があった。また、封止樹脂の応力による光学素子の破損を防止するために、低弾性率の応力緩和樹脂を保護コート剤(JCR:Junction Coating Resin)として用いて光学素子をプリコート又はシーリングすることが知られているが、このような低弾性率の保護コート剤を立体回路基板(Molded Interconnect Devise;MID基板)に適用して光学素子にプリコートした場合、立体回路基板の外周に透明樹脂によりレンズを形成する工程において、熱膨張した状態となった保護コート剤が常温に戻るときに収縮することにより、樹脂中の真空ボイドや樹脂界面の剥離が生じるため光損失が大きくなるという問題がある。
【0008】
本発明は、上記課題を解消するものであって、光学素子保護のための透明樹脂封止と高精度レンズ形成において、高効率な光特性と耐久信頼性の向上を実現できる光学系装置及びその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段及び発明の効果】
上記課題を達成するために、請求項1の発明は、樹脂基板の開口した凹部に光学素子を実装した光学系装置であって、前記樹脂基板は10GPa以下の低弾性率樹脂からなり、前記樹脂基板の開口した凹部の表面は光反射機能と電気回路機能を持たせるためにメタライズされており、前記メタライズされた凹部の底面に実装した光学素子は弾性率が1Pa以上1MPa以下かつガラス転移温度が213K以上233K以下の樹脂からなる第1の封止層により封止され、第1の封止層の上には1GPa以上2.5GPa以下かつガラス転移温度が413K以上の紫外光硬化性樹脂からなる第2の封止層が形成され、第2の封止層の上には弾性率が3GPa以上の樹脂からなるレンズ部が形成されているものである。
【0010】
上記構成においては、樹脂基板を10GPa以下の低弾性率樹脂で形成し、第1の封止層を弾性率が1Pa以上1MPa以下かつガラス転移温度が213K以上233K以下の樹脂で形成し、第2の封止層を弾性率が1GPa以上2.5GPa以下かつガラス転移温度が413K以上の紫外光硬化性樹脂で形成し、レンズ部を弾性率が3GPa以上の樹脂で形成し、これらをこの順序で積層するので、光学系装置を構成する樹脂の弾性率が適切に選択して用いられ、総合的に封止樹脂の応力が緩和されるため、温度環境の変化に対して光学装置の耐久信頼性が得られる。封止樹脂相互間の応力緩和と、界面接合力との相乗効果によって、光学系装置が置かれる−40℃〜85℃という温度環境において、樹脂中の真空ボイドや樹脂界面の剥離を生じることのない耐久信頼性の向上した光学系装置が得られる。
【0011】
例えば、233K(−40℃)×5分、358K(85℃)×5分を1サイクルとして熱衝撃試験を行ったところ700サイクルまで全品良品であった。上記の弾性率及びガラス転移温度の条件以外においては、例えば、第1の封止層の弾性率が1Pa以下又はガラス転移温度が213K以下の場合、熱衝撃試験の結果、第1の封止層の樹脂内部に真空ボイドが発生し光路障害となる。また、第1の封止層の弾性率が1MPa以上又はガラス転移温度が233K以上の場合、熱衝撃試験の結果、第1の封止層と樹脂基板凹部のメタライズ面との間で界面剥離が発生し、光路障害となる。また、第2の封止層の弾性率が1GPa以下又はガラス転移温度が413K以下の場合、熱衝撃試験の結果、第2の封止層の樹脂内部に真空ボイドが発生し光路障害となる。また、第2の封止層の弾性率が2.5GPa以上の場合、熱衝撃試験の結果、第2の封止層と樹脂基板凹部のメタライズ面との間で界面剥離が発生し、光路障害となる。また、レンズ部の樹脂の弾性率が3GPa以下の場合、熱衝撃試験の結果、第2の封止層とレンズ部の樹脂との間で界面剥離が発生し、光路障害となる。
【0012】
また、上記構成においては、メタライズした凹部の底面に光学素子を実装すると共に、上記のように信頼性の安定した封止及びレンズ構造を実現しているので、高効率な光特性が実現される。
【0013】
請求項2の発明は、樹脂基板の開口した凹部に光学素子を実装した光学系装置であって、前記樹脂基板は10GPa以下の低弾性率樹脂からなり、前記樹脂基板の開口した凹部の表面は光反射機能と電気回路機能を持たせるためにメタライズされており、前記メタライズされた凹部の底面に実装した光学素子は弾性率が2.5GPa以上3.5GPa以下かつガラス転移温度が413K以上の樹脂からなる封止層により封止され、前記封止層の上には弾性率が3GPa以上の樹脂からなるレンズ部が形成されているものである。
【0014】
上記構成においては、樹脂基板を10GPa以下の低弾性率樹脂で形成し、封止樹脂を弾性率が2.5GPa以上3.5GPa以下かつガラス転移温度が413K以上の樹脂で形成し、レンズ部を弾性率が3GPa以上の樹脂で形成し、これらをこの順序で積層するので、光学系装置を構成する樹脂の弾性率が適切に選択して用いられ、総合的に封止樹脂の応力が緩和されるため、温度環境の変化に対して光学装置の耐久信頼性が得られる。封止樹脂相互間の応力緩和と、界面接合力との相乗効果によって、光学系装置が置かれる−40℃〜85℃という温度環境において、樹脂中の真空ボイドや樹脂界面の剥離を生じることのない耐久信頼性の向上した光学系装置が得られる。
【0015】
例えば、233K(−40℃)×5分、358K(85℃)×5分を1サイクルとして熱衝撃試験を行ったところ500サイクルまで全品良品であった。上記の弾性率及びガラス転移温度の条件以外においては、例えば、封止層の弾性率が2.5GPa以下又はガラス転移温度が413K以下の場合、熱衝撃試験の結果、樹脂内部に真空ボイドが発生し光路障害となる。また、封止層の弾性率が3.5GPa以上の場合、熱衝撃試験の結果、封止層と樹脂基板凹部のメタライズ面との間で界面剥離が発生し、光路障害となる。また、レンズ部の樹脂の弾性率が3GPa以下の場合、熱衝撃試験の結果、封止層とレンズ部の樹脂との間で界面剥離が発生し、光路障害となる。
【0016】
また、上記構成においては、メタライズした凹部の底面に光学素子を実装すると共に、上記のように信頼性の安定した封止及びレンズ構造を実現しているので、高効率な光特性が実現される。
【0017】
請求項3の発明は、請求項1又は請求項2記載の光学系装置において、凹部のメタライズ面が粗面化されているものである。
【0018】
上記構成においては、光学素子を実装する凹部のメタライズ面が粗面化されているので、メタライズ面に入射する光が拡散して迷光が減少する効果が得られると共に、その粗面に樹脂が食い込むアンカー効果によって、凹部に充填する封止樹脂の界面接合力が向上する。
【0019】
請求項4の発明は、請求項1乃至請求項3のいずれか記載の光学系装置において、前記メタライズされた凹部の底面に基板樹脂が露出した部位を形成するものである。
【0020】
上記構成においては、メタライズされた凹部の底面に基板樹脂が露出した部位を形成しているので、凹部に充填する封止樹脂と基板樹脂とが前記露出した部位で樹脂同士が接合するため、メタライズ面を介しての接着よりも強固な封止樹脂の接合力が得られる。
【0021】
請求項5の発明は、請求項4記載の光学系装置において、前記メタライズされた凹部底面に基板樹脂が露出した溝を形成し、該溝に封止樹脂を注入するものである。
【0022】
上記構成においては、凹部底面に基板樹脂が露出した溝を形成し、該溝に封止樹脂を注入するので、前記同様の効果に加え、封止樹脂と基板樹脂との接合面積が増加してさらに強固な封止樹脂の接合力が得られる。
【0023】
請求項6の発明は、請求項1又は請求項2記載の光学系装置において、前記開口した凹部は樹脂基板より突出した鏡筒の先端に設けられており、前記レンズ部を形成する樹脂が前記突出した鏡筒の外側表面を覆っているものである。
【0024】
上記構成においては、レンズ部を形成する樹脂が突出した鏡筒の外側表面を覆っているので、レンズ部形成樹脂と基板樹脂との接合部界面の面積が広く取られるため、界面を通して封止部内部への吸湿が低減され、光学素子の劣化を防止できる。また、強固に形成されたレンズ部樹脂により内部の封止樹脂を包み込んでいるため、封止樹脂とレンズ樹脂との剥離が防止できる。
【0025】
請求項7の発明は、樹脂基板の開口した凹部に光学素子を実装した光学系装置の製造方法であって、10GPa以下の低弾性率樹脂からなる樹脂基板の開口した凹部が反射機能と電気回路機能を持たせるためにメタライズされており、メタライズされた凹部底面に光学素子を実装する実装工程と、弾性率が1Pa以上1MPa以下かつガラス転移温度が213K以上233K以下の樹脂で第1の封止層を形成して前記光学素子を封止する第1封止工程と、弾性率が1GPa以上2.5GPa以下かつガラス転移温度が413K以上のUV硬化性樹脂で第2の封止層を形成して前記第1の封止層を封止する第2封止工程と、前記封止した樹脂層上に弾性率が3GPa以上の樹脂からなるレンズ部を形成するレンズ形成工程と、を有するものである。
【0026】
上記製造方法においては、樹脂基板を10GPa以下の低弾性率樹脂で形成する工程と、第1の封止層を弾性率が1Pa以上1MPa以下かつガラス転移温度が213K以上233K以下の樹脂で形成する工程と、第2の封止層を弾性率が1GPa以上2.5GPa以下かつガラス転移温度が413K以上の紫外光硬化性樹脂で形成する工程と、レンズ部を弾性率が3GPa以上の樹脂で形成する工程とにより、樹脂の弾性率を適切に選択して光学系装置を製造するので、総合的に封止樹脂の応力が緩和した光学系装置が得られ、また、温度環境の変化に対して光学装置の耐久信頼性が得られる。
【0027】
例えば、233K(−40℃)×5分、358K(85℃)×5分を1サイクルとして熱衝撃試験を行ったところ700サイクルまで全品良品であった。上記の弾性率及びガラス転移温度の条件以外においては、例えば、第1の封止層の弾性率が1Pa以下又はガラス転移温度が213K以下の場合、熱衝撃試験の結果、第1の封止層の樹脂内部に真空ボイドが発生し光路障害となる。また、第1の封止層の弾性率が1MPa以上又はガラス転移温度が233K以上の場合、熱衝撃試験の結果、第1の封止層と樹脂基板凹部のメタライズ面との間で界面剥離が発生し、光路障害となる。また、第2の封止層の弾性率が1GPa以下又はガラス転移温度が413K以下の場合、熱衝撃試験の結果、第2の封止層の樹脂内部に真空ボイドが発生し光路障害となる。また、第2の封止層の弾性率が2.5GPa以上の場合、熱衝撃試験の結果、第2の封止層と樹脂基板凹部のメタライズ面との間で界面剥離が発生し、光路障害となる。また、レンズ部の樹脂の弾性率が3GPa以下の場合、熱衝撃試験の結果、第2の封止層とレンズ部の樹脂との間で界面剥離が発生し、光路障害となる。
【0028】
また、上記製造方法においては、メタライズした凹部の底面に光学素子を実装する工程と共に、上記のように信頼性の安定した封止及びレンズ構造を実現する工程によるので、高効率な光特性が実現される。
【0029】
請求項8の発明は、請求項7記載の光学系装置の製造方法において、前記第1封止工程と前記第2封止工程は、第1の封止層の樹脂を滴下し、該樹脂上面に該樹脂よりも比重の小さい第2の封止層の樹脂を滴下し、その後、これらの樹脂を硬化させるものである。
【0030】
上記製造方法においては、第1の封止層の樹脂を滴下し、該樹脂上面に該樹脂よりも比重の小さい第2の封止層の樹脂を滴下し、その後、これら2つの樹脂を硬化させるので、2つの封止樹脂の境界面が液状で形成されているため相溶化しており、2つの封止樹脂を硬化処理するとき樹脂の界面で化学結合して接合力が向上する。また、下層の樹脂よりも比重の小さい樹脂を上層に用いるので、樹脂同士の混合が防止される。
【0031】
請求項9の発明は、樹脂基板の開口した凹部に光学素子を実装した光学系装置の製造方法であって、10GPa以下の低弾性率樹脂からなる樹脂基板の開口した凹部が反射機能と電気回路機能を持たせるためにメタライズされており、メタライズされた凹部底面に光学素子を実装する工程と、弾性率が2.5GPa以上3.5GPa以下かつガラス転移温度が413K以上の樹脂で封止層を形成して前記光学素子を封止する封止工程と、前記封止層上に弾性率が3GPa以上の樹脂からなるレンズ部を形成するレンズ形成工程とを有するものである。
【0032】
上記製造方法においては、樹脂基板を10GPa以下の低弾性率樹脂で形成する工程と、封止樹脂を弾性率が2.5GPa以上3.5GPa以下かつガラス転移温度が413K以上の樹脂で形成する工程と、レンズ部を弾性率が3GPa以上の樹脂で形成する工程とにより、樹脂の弾性率を適切に選択して光学系装置を製造するので、総合的に封止樹脂の応力が緩和した光学系装置が得られ、また、温度環境の変化に対して光学装置の耐久信頼性が得られる。
【0033】
例えば、233K(−40℃)×5分、358K(85℃)×5分を1サイクルとして熱衝撃試験を行ったところ500サイクルまで全品良品であった。上記の弾性率及びガラス転移温度の条件以外においては、例えば、封止層の弾性率が2.5GPa以下又はガラス転移温度が413K以下の場合、熱衝撃試験の結果、樹脂内部に真空ボイドが発生し光路障害となる。また、封止層の弾性率が3.5GPa以上の場合、熱衝撃試験の結果、封止層と樹脂基板凹部のメタライズ面との間で界面剥離が発生し、光路障害となる。また、レンズ部の樹脂の弾性率が3GPa以下の場合、熱衝撃試験の結果、封止層とレンズ部の樹脂との間で界面剥離が発生し、光路障害となる。
【0034】
また、上記製造方法においては、メタライズした凹部の底面に光学素子を実装する工程と共に、上記のように信頼性の安定した封止及びレンズ構造を実現する工程によるので、高効率な光特性が実現される。
【0035】
請求項10の発明は、請求項9記載の光学系装置の製造方法において、前記封止工程における封止樹脂の滴下の後、該樹脂の架橋度が50〜80%の状態で前記レンズ部形成用樹脂を注入してこれらの樹脂を硬化させるものである。
【0036】
上記製造方法においては、封止樹脂の架橋度が50〜80%の状態でレンズ部形成用樹脂を注入してこれらの樹脂を硬化させるので、レンズ部形成用樹脂の硬化剤によりレンズ部下層の封止樹脂の硬化が進むと共に、レンズ部樹脂と封止樹脂との化学結合も形成されるため、レンズ部と封止樹脂との接合力が向上する。
【0037】
請求項11の発明は、請求項10記載の光学系装置の製造方法において、前記封止樹脂の架橋度を樹脂硬化時の加熱時間によって制御するものである。
【0038】
上記製造方法においては、請求項10におけると同様の効果に加え、加熱時間を変化させることにより、既存の硬化装置を用いて、架橋度を容易に制御及び変化させて製造することができる。
【0039】
請求項12の発明は、請求項7又は請求項9記載の光学系装置の製造方法において、前記レンズ形成工程の直前の封止工程に用いる封止樹脂を紫外光硬化樹脂とし、粗面化された表面を有する紫外光透過材料で形成された透明部材の粗面を前記封止樹脂に接着させ、該透明部材を介して該封止樹脂に紫外光を照射して封止樹脂を硬化させ、前記透明部材の粗面形状を前記封止樹脂表面に転写させるものである。
【0040】
上記製造方法においては、レンズ形成工程の直前の封止工程に用いる封止樹脂を紫外光硬化樹脂とし、粗面化された表面を有する紫外光透過材料で形成された透明部材の粗面を前記封止樹脂に接着させて封止樹脂を硬化させるので、封止樹脂表面に転写して形成された粗面構造により、レンズ部と封止樹脂との接合力が向上する。
【0041】
請求項13の発明は、請求項7又は請求項9記載の光学系装置の製造方法において、前記レンズ形成工程においてレンズ部を形成する樹脂を硬化させた後、常温冷却よりも遅い冷却速度で硬化温度から常温まで冷却するものである。
【0042】
上記製造方法においては、レンズ部を形成する樹脂を硬化させた後、常温冷却よりも遅い冷却速度で硬化温度から常温まで冷却するので、冷却時間を制御して熱応力の緩和を行いながら冷却できるため、急激な収縮による樹脂界面の剥離や樹脂へのクラック発生を防止できる。
【0043】
【発明の実施の形態】
以下、本発明の一実施形態に係る光学系装置及びその製造方法について、図面を参照して説明する。図1は、本発明の一実施形態の光学系装置10を示している。この光学系装置10は、立体回路成形品である樹脂基板(MID基板)1の開口した凹部13に光学素子(発光素子)2を実装及び封入してレンズ5を形成しており、光コネクタ等の発光デバイスとして用いられるものである。
【0044】
この光学系装置10の各部の構成を説明する。樹脂基板1は、弾性率が10GPa以下の材料物性を有する低弾性率樹脂からなり、基部11と基部11から突出した円柱状の鏡筒部12から構成されている。基部11は、直方体形状をしており、その下面には、凹部91が設けられ、その凹部91には光学素子2の信号処理を行う集積回路素子92が実装及び封止されている。この集積回路素子92と光学素子2とは図示しない回路パターンにより接続されている。これらの基部11部分は従来例(例えば、前出の図11参照)と同じであり以下において特に説明はしない。
【0045】
鏡筒部12の先端には、図2に示されるように、開口した凹部13があり、凹部13の表面は、光の反射機能と電気回路機能を持たせるためにメタライズが施されたメタライズ面14となっている。メタライズされた凹部底面には光学素子2が実装され、光学素子2の裏面電極が凹部底面のメタライズ面を介して電極14aに、また、光学素子2の上面電極からは金属細線21により電極14bにそれぞれ電気的に接続されている。ここで、電極14aと電極14bは互いに電気絶縁されている。光学素子2は上下面電極に電圧が印加されることにより発光する発光素子である。
【0046】
この実装された光学素子2の封止構造について、図1に戻って説明する。まず光学素子2及び金属細線21が、弾性率が1Pa以上、1MPa以下で、ガラス転移温度が213K以上233K以下の樹脂により形成した第1の封止層3により封止されている。第1の封止層3の樹脂としては、変性アクリレート樹脂の他、例えば、エポキシ樹脂などを用いてもよい。次に、第1の封止層3の樹脂層上に、弾性率が1GPa以上、2.5GPa以下で、ガラス転移温度が413K以上である紫外線(UV)硬化性樹脂により形成した第2の封止層4によりさらに封止されている。第2の封止層4の紫外線硬化性樹脂としては、エポキシ樹脂の他、例えば、変性アクリレート樹脂などを用いてもよい。そして、第2の封止層4の樹脂層上に、弾性率が3GPa以上の樹脂からなるレンズ部5が形成されている。レンズ部5の樹脂としては、エポキシ樹脂の他、例えば、変性アクリレート樹脂などを用いてもよい。
【0047】
光学系装置10の製造工程を説明する。図3は各工程毎の断面図、図4は各工程のフローを示す。まず、図3(a)に示すように、表面がメタライズされた開口部13を有する基板(基板の鏡筒部12のみ図示)を製作する(S11)。次に、図3(b)に示すように、光学素子2を、例えば導電性樹脂によりメタライズされた凹部底面15にダイボンディングして光学素子2の裏面を電極14aに接続し、表面電極を金属細線21により電極14bに接続して実装する(S12)。次に、図3(c)に示すように、凹部に封止樹脂(第1層)3を充填して第1の封止工程を行う(S13)。次に、図3(d)に示すように、凹部の残空間にUV硬化性樹脂(第2層)4を充填して第2の封止工程を行う(S14)。次に、図3(e)に示すように、封止樹脂上にレンズ部5を形成する(S15)。このレンズ部5を形成する方式として、例えば、トランスファ成形方式を用いることにより、レンズ部5の形状と面精度を高精度に成形することができる。
【0048】
上述した工程により製造した多層構造の封止部を有する光学系装置について熱衝撃試験を行った。試験品は、第1層についてもUV硬化性樹脂を用いている。また、比較例として、光学素子の封止からレンズ部形成までをレンズ部の樹脂のみで構成した単一構造の光学系装置も製造して同じ熱衝撃試験を行った。使用した樹脂の物性および硬化条件を表1に示す。
【0049】
【表1】

Figure 2004235261
【0050】
熱衝撃試験は液相にて実施し、233K(−40℃)×5分、358K(85℃)×5分を1サイクルとした。熱衝撃試験の結果、本発明に係る多層構造の光学系装置は、700サイクルまでは全品良品であったが、レンズ部樹脂による単一構造の比較例のものは、レンズ形成樹脂と光学素子との境界面で剥離が生じ、全て不良であった。
【0051】
上述のように、光学系装置10を構成する樹脂の弾性率を適切に選択して用いることにより、総合的に封止樹脂の応力が緩和され、また、界面接合力との相乗効果によって、光学系装置が置かれる−40℃〜85℃という温度環境において、樹脂中の真空ボイドや樹脂界面の剥離を生じることのない耐久信頼性の向上した光学系装置が得られた。
【0052】
また、上述の製造工程において、第1層目の封止樹脂を光学素子を覆う程度に少量滴下し硬化させた後、第2層目の封止樹脂を滴下して硬化させた。これにより、第1層目樹脂の高線膨張率に起因する体積変化の影響が抑制され、さらに追加して行った熱衝撃試験において、樹脂中の真空ボイドや樹脂界面の剥離による不良率を抑える効果が確認された。
【0053】
次に、本発明の一実施形態に係る光学系装置及びその製造方法の他の例について説明する。図5は封止樹脂が一層である光学系装置20を示し、図6はその製造方法を示すフローである。光学系装置20は、前出の光学系装置10において封止樹脂層が2層から1層になったものである。
【0054】
光学系装置20の製造工程を説明する。表面がメタライズされた開口部13を有する樹脂基板1を、弾性率が10GPa以下の低弾性率樹脂からなる樹脂を用いて製作する(S21)。次に、光学素子2を、例えば導電性樹脂によりメタライズされた凹部底面にダイボンディングして光学素子2の裏面を電気回路接続し、表面電極を金属細線21により電気回路接続して実装する(S22)。次に、弾性率が2.5GPa以上、3.5GPa以下で、ガラス転移温度が413K以上の封止樹脂による封止層6を凹部に充填して封止部を形成する封止工程を行う(S23)。封止樹脂としては、エポキシ樹脂の他、例えば、変性アクリレート樹脂などを用いてもよい。次に、封止樹脂上に弾性率が3GPa以上の樹脂からなるレンズ部5を形成する(S24)。レンズ部5の樹脂としては、エポキシ樹脂の他、例えば、変性アクリレート樹脂などを用いてもよい。このレンズ部5を形成する方式として、例えば、トランスファ成形方式を用いることにより、レンズ部5の形状と面精度を高精度に成形することができる。
【0055】
上述した工程により製造した多層構造の封止部を有する光学系装置について熱衝撃試験を行った。比較例として、光学素子の封止からレンズ部形成までをレンズ部の樹脂のみで構成した単一構造の光学系装置も製造して同じ熱衝撃試験を行った。使用した樹脂の物性および硬化条件を表2に示す。
【0056】
【表2】
Figure 2004235261
【0057】
熱衝撃試験は液相にて実施し、233K(−40℃)×5分、358K(85℃)×5分を1サイクルとした。熱衝撃試験の結果、本発明に係る多層構造の光学系装置は、500サイクルまでは全品良品であったが、レンズ部樹脂による単一構造の比較例のものは、レンズ形成樹脂と光学素子との境界面で剥離が生じ、全て不良であった。
【0058】
上述のように、封止樹脂1層とレンズ部との2層構造による光学系装置20においても、光学素子の上部空間に充填する樹脂の弾性率を適切に選択して用いることにより、総合的に封止樹脂の応力が緩和され、また、界面接合力との相乗効果によって、光学系装置が置かれる−40℃〜85℃という温度環境において、樹脂中の真空ボイドや樹脂界面の剥離を生じることのない耐久信頼性の向上した光学系装置が得られた。
【0059】
さらに他の製造方法の例を示す。樹脂層を多層化する場合、下層の樹脂を滴下し、その上面に下層の樹脂よりも比重の小さい上層の掛脂を滴下した後、これらの樹脂を硬化させるようにしてもよい。このような方法によると、2つの封止樹脂の境界面が液状で形成されているため相溶化しており、2つの封止樹脂を硬化処理するとき樹脂の界面で化学結合して接合力が向上する。また、下層の樹脂よりも比重の小さい樹脂を上層に用いるので、樹脂同士の混合が防止される。
【0060】
熱衝撃試験のために、表1に示した樹脂を用いて1層目(下層)の樹脂を滴下した後、1層目の樹脂を硬化せず、1層目よりも比重の小さい2層目(上層)の樹脂を滴下し、2層目の樹脂を滴下した後、6J/cm2の条件でUV照射し、1層目と2層目の樹脂を硬化させた光学系装置を作製した。この方法によって作製した光学系装置と、通常の方法で作製した光学系装置について、熱衝撃試験を行った。その結果、1000サイクル後に、通常方法で作製したサンプルは1層目と2層目の界面が剥離して不良となったのに対し、本方法によって作製したサンプルは1層目と2層日の界面で剥離せず、全品良品であった。
【0061】
さらに他の例として、光学素子を実装する凹部のメタライズ面を粗面化して封止樹脂を充填してもよい。この方法によると、メタライズ面に入射する光が粗面により拡散して迷光が減少する効果が得られると共に、その粗面に樹脂が食い込むアンカー効果によって、凹部に充填する封止樹脂の界面接合力が向上する効果がある。
【0062】
熱衝撃試験のために、表1に示した樹脂を用い、メタライズ面の面粗度Ryを1μm以上として光学系装置を作製した。この光学系装置の場合、1000サイクルの熱衝撃試験後において全て良品であったが、比較例として面粗度Ryを1μm未満としたものではメタライズ面と樹脂との剥離による不良品が発生した。また、本方法による光学系装置では、メタライズ面での拡散による迷光の減少によって、光学特性における損失を、通常の場合よりも5%減少できた。
【0063】
さらに他の例として、図7(a)(b)に示すように、メタライズされた凹部の底面に基板樹脂が露出した部位、例えば三日月状の基板樹脂露出部16を形成してもよい。この構成においては、凹部に充填する封止樹脂と基板樹脂とが前記露出した部位で樹脂同士が接合するため、メタライズ面を介しての接着よりも強固な封止樹脂の接合力が得られる。例えば、表1に示した樹脂を用い、図7に示される構造の光学系装置を作製したものは、熱衝撃試験1000サイクル後において全て良品であったが、底面が全面メタライズされたものは剥離により不良となった。
【0064】
上記構造に加え、図8(a)(b)に示すように、メタライズされた凹部底面に基板樹脂が露出した溝7を形成してもよい。この構成においては、溝7に封止樹脂を注入するので、前記同様の効果に加え、封止樹脂と基板樹脂との接合面積が増加してさらに強固な封止樹脂の接合力が得られる。例えば、表1に示した樹脂を用い、図7に示される構造の光学系装置を作製したものは、熱衝撃試験1500サイクル後全て良品であったが、溝のない前記の露出部のものは剥離により不良となった。
【0065】
さらに他の例として、封止樹脂の架橋度が50〜80%の状態でレンズ部形成用樹脂を注入してこれらの樹脂を硬化させてもよい。このような方法による、レンズ部形成用樹脂の硬化剤によりレンズ部下層の封止樹脂の硬化が進むと共に、レンズ部樹脂と封止樹脂との化学結合も形成されるため、レンズ部と封止樹脂との接合力が向上する。また、封止樹脂の架橋度の制御を樹脂硬化時の加熱時間によって行ってもよい。加熱時間を変化させることにより、架橋度を容易に制御及び変化させて製造することができる。
【0066】
熱衝撃試験のために、例えば、表2に示した樹脂を用い、封止樹脂を恒温槽にて408℃×30分加熱することによって70%架橋させ、その上にレンズ部を形成した光学系装置を作製した。この光学系装置について熱衝撃試験したところ、1000サイクル後において不良は発生しなかった。比較例として、408℃×2時間加熱して前記よりも架橋反応を進めて85%の架橋とし、その上にレンズ部を形成したものは1000サイクルの熱衝撃試験において封止樹脂とレンズ部樹脂の界面に剥離が生じて不良となった。また、408℃×15分加熱し45%架橋したものにレンズ部を樹脂成形するものは、樹脂成形時の圧力により封止樹脂が流される成形不良となった。
【0067】
さらに他の例を図9に示す。図9(a)に示すように、レンズ形成工程の直前の封止工程に用いる封止樹脂6を紫外光硬化樹脂として樹脂基板1の開口した凹部に光学素子2を封止するため充填する。次に、粗面化された表面を有する紫外光透過材料で形成された透明部材7の粗面を前記封止樹脂6に接着させて配置する。この状態で透明部材7を透過して封止樹脂6に紫外光を照射することによって封止樹脂6を硬化させる。このような方法によると、図9(b)に示されるように、硬化した封止樹脂6の表面には透明部材の表面から転写された粗面構造61が形成される。この粗面構造61を有する封止樹脂の上に、図9(c)に示されるようにレンズ部5を樹脂成形する。この結果、レンズ部樹脂5と封止樹脂6との接合力が向上する。
【0068】
上述した工程により製造した光学系装置について熱衝撃試験を行った。まず、封止樹脂を滴下後、紫外光透過材で形成された面粗度Ryが1.5μmの平板を封止樹脂に密着させ、この平板を介して封止樹脂に紫外光を照射し硬化させた。これにより、封止樹脂表面の面粗度Ryが1.5μmのものが得られた。粗面化された封止樹脂の上にレンズ部を成形した。レンズ部成形後のサンプルを熱衝撃試験したところ、1000サイクルにおいて不良は発生しなかった。使用した樹脂の物性および硬化条件を表3に示す。
【0069】
【表3】
Figure 2004235261
【0070】
さらに他の例を図10(a)(b)に示す。光学素子2を実装する開口凹部は、樹脂基板1の突出部からなる鏡筒12の先端に設けられている。光学素子2を実装した後、封止樹脂3,4又は封止樹脂6を充填硬化させた後、突出した鏡筒12の外側表面を覆う樹脂51を有する形状でレンズ部5が成形される。このような光学系装置40,50は、レンズ部5を形成する樹脂が突出した鏡筒12の外側表面を覆っているので、レンズ部形成樹脂と基板樹脂との接合部界面の面積を広く取ることができる。そのため、界面を通して封止部内部への吸湿が低減され、光学素子の劣化を防止できる。また、強固に形成されたレンズ部樹脂によって内部の封止樹脂を包み込んでいるため、封止樹脂とレンズ樹脂との剥離の防止ができる。
【0071】
上述した光学系装置について熱衝撃試験を行った。使用した材料は表1のものと同じである。トランスファー成形により鏡筒外側にレンズ部樹脂を成形して、図9(a)に示す光学系装置40を作製した。この光学系装置について、1000サイクルの熱衝撃試験を行ったところ、レンズ部樹脂と基板樹脂間の剥離は発生しなかった。比較例として、鏡筒上部のみレンズ部を成形した光学系装置について1000サイクルの熱衝撃試験を実施したところ、レンズ部樹脂と基板樹脂間の界面剥離が発生して不良となった。
【0072】
さらに他の例として、レンズ形成工程においてレンズ部を形成する樹脂を硬化させた後、常温冷却よりも遅い冷却速度で硬化温度から常温まで冷却するようにしてもよい。このような方法においては、冷却時間を制御して熱応力の緩和を行いながら冷却できるため、急激な収縮による樹脂界面の剥離や樹脂へのクラック発生を防止できる。例えば、表1に示した樹脂を用い、レンズ部を樹脂成形して423Kで硬化させた後、光学系装置のサンプルを成形金型から取り出しで恒温槽に投入し1分間に1Kずつ300Kまで冷却した。このサンプルに対し熱衝撃試験を行ったところ、1000サイクル後において不良は発生しなかった。
【0073】
なお、本発明は、上記構成に限られることなく種々の変形が可能である。例えば、封止樹脂を積層、又は封止樹脂にレンズ部樹脂を積層する場合、下層の樹脂を形成した後、例えば大気圧プラズマ装置を用いて、樹脂表面の清浄化/活性化を行い、各樹脂層間の濡れ性/界面接合力を向上させる処理を行ってもよい。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る光学系装置の断面図。
【図2】同上装置の光学素子実装部の斜視図。
【図3】(a)〜(e)は同上装置の製造工程を説明する断面図。
【図4】同上装置の製造方法の工程フロー図。
【図5】本発明の一実施形態に係る光学系装置の他の例を示す断面図。
【図6】同上装置の製造方法の工程フロー図。
【図7】(a)は本発明の一実施形態に係る光学系装置のさらに他の例を示す平面図、(b)は同装置の断面図。
【図8】(a)は本発明の一実施形態に係る光学系装置のさらに他の例を示す平面図、(b)は同装置の断面図。
【図9】(a)は本発明の一実施形態に係る光学系装置の製造方法を説明する断面図、(b)は同装置の部分断面図、(c)は同装置の断面図。
【図10】(a)(b)は本発明の一実施形態に係る光学系装置のさらに他の例を示す断面図。
【図11】(a)(b)は従来の光学系装置の断面図。
【図12】(a)(b)は従来の他の光学系装置の断面図。
【図13】(a)(b)は従来のさらに他の光学系装置の断面図。
【図14】従来の半導体チップの封止構造を説明する断面図。
【符号の説明】
1 樹脂基板
2 光学素子
3 封止層
4 封止層
5 レンズ部
6 封止層
13 凹部
14 メタライズ面
10,20,30,40、50 光学系装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an optical system device constituting an optical connector or the like, and particularly relates to sealing of an optical element and formation of a lens.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, optical elements mounted on a substrate in an optical system device for emitting and receiving light are sealed and sealed with a transparent resin to protect the optical elements and to form optical elements such as forming lenses. As such an optical system device, as shown in FIGS. 11A and 11B, optical elements 101 and 102 such as a light emitting element 101 and a light receiving element 102 are mounted on a three-dimensional circuit molded product 100. An integrated circuit element 104 for performing signal processing of the optical elements 101 and 102 is mounted in a concave portion 103 formed on a surface (a lower surface in the figure) different from a mounting surface of the optical element, and the optical elements 101 and 102 and the signal processing The circuit connecting the integrated circuit element, the circuit pattern 105-108 by a metal plating film on the surface of the three-dimensional circuit molded product so as to reach from the mounting part of the optical element to the mounting part of the signal processing integrated circuit element, A lens 109 facing a light receiving surface or a light emitting surface of the optical element, a protective layer 110 of the circuit pattern, and a sealing resin layer 111 at a mounting position of the signal processing integrated circuit element. Those formed by the secondary molding resin is known (for example, see Patent Document 1).
[0003]
Further, as another example of sealing molding, as shown in FIGS. 12A and 12B, a molding in which a light receiving element 233 and a light emitting element 234 are integrally molded is known (for example, see Patent Document 2). . In the so-called optical coupling device (photocoupler) shown in FIG. 12A, a light emitting element 233 and a light receiving element 234 respectively mounted on individual lead frames 231 and 232 are arranged to face each other. Is first molded with a light-transmitting resin (semi-transparent epoxy resin) 235 to form an optical coupling path, and thereafter, plating is applied to the exterior, and further, a light-shielding resin (black epoxy resin) 236 is used to shield disturbance light. , A so-called two-layer mold type. The light emitting element 233 is pre-coated with a silicon resin 237 for stress relaxation. The optical coupling device shown in FIG. 12 (b) is a single-layer mold type, in which the light emitting element 233 and the light receiving element 234 mounted on the lead frames 231 and 232 are pre-coated so as to have a positional relationship facing each other. After being bonded with a resin (transparent silicon resin) 247, they are entirely formed by molding with a light-shielding resin 246.
[0004]
In addition to the above example, a method for manufacturing an optical coupling device as shown in FIGS. 13A and 13B is known (for example, see Patent Document 3). A transparent gel resin 318 capable of transmitting light is applied by a potting method of dripping from above both elements so as to cover the light emitting element 314 and the light receiving element 315 mounted on the lead frame 311, and covers the outer periphery of the transparent gel resin 318. The light reflecting resin 319 is molded as described above. As the transparent gel resin 318, a resin having a penetration of 45 to 65 (JIS-K2220) is used. Even when a thermal stress is generated between the light reflecting resin 319 and the transparent gel resin 318, the transparent gel resin itself is elastically deformed and the stress is relaxed, so that the transparent gel resin peels over a wide range of the interface between the transparent gel resin and the light reflecting resin. Does not occur, and thermal stress is reduced by the easy deformation of the transparent gel resin 318, so that cracks in the light reflection resin 319 are prevented.
[0005]
Further, as a sealing structure of a semiconductor chip using the same sealing technology as that of the optical system device, a structure as shown in FIG. 14 is known (for example, see Patent Document 4). The sealing structure is such that a semiconductor chip 402 is bonded to a chip mounting portion of a substrate 400 with a die bonding material 401, and the semiconductor chip 402 side and the substrate 400 side are electrically connected via bonding wires 403. In the sealing structure, the interface between the semiconductor chip 402 and the die bond material 401 is sealed with a silicone-based sealing material 404, and the height of the sealing material 404 is set to be lower than the position of the loop of the bonding wire 403. Things. This sealing method seals the semiconductor chip 402 and the bonding portion between the semiconductor chip 402 and the bonding wire 403 to protect the electric circuit, and also leaves the bonding wire 403 without completely covering it, so that the sealing process can be performed. This is to avoid disconnection or short circuit of the bonding wire 403 due to stress. This is effective when a long bonding wire 403 or a large number of bonding wires 403 are used closely.
[0006]
[Patent Document 1]
JP-A-2002-164604
[Patent Document 2]
JP-A-5-327005
[Patent Document 3]
JP-A-11-233810
[Patent Document 4]
JP-A-8-204048
[0007]
[Problems to be solved by the invention]
However, in the conventional methods for encapsulating and encapsulating optical elements and semiconductor chips as described above, silicone-based protective coating agents are used, and these protective coating agents have high water absorption and moisture permeability, and thus have high optical element performance. And the corrosion of the electrode was apt to occur, and there was a problem in durability. Further, in order to prevent the optical element from being damaged by the stress of the sealing resin, it is known that the optical element is pre-coated or sealed using a low-modulus stress relaxation resin as a protective coating agent (JCR: Junction Coating Resin). However, when a protective coating agent having such a low elastic modulus is applied to a three-dimensional circuit board (Molded Interconnect Device; MID substrate) to precoat an optical element, a lens is formed of a transparent resin around the three-dimensional circuit board. In the process, the protective coating agent which has been in a thermally expanded state contracts when returning to normal temperature, which causes a problem that a vacuum void in the resin or a separation of the resin interface occurs, resulting in a large light loss.
[0008]
The present invention has been made to solve the above problems, and an optical system device capable of realizing highly efficient optical characteristics and improved durability durability in transparent resin encapsulation for protecting an optical element and forming a high-precision lens. It is intended to provide a manufacturing method.
[0009]
Means for Solving the Problems and Effects of the Invention
In order to achieve the above object, an invention according to claim 1 is an optical system device in which an optical element is mounted in an open concave portion of a resin substrate, wherein the resin substrate is made of a resin having a low elastic modulus of 10 GPa or less. The surface of the concave portion opened in the substrate is metallized to have a light reflecting function and an electric circuit function, and the optical element mounted on the bottom surface of the metalized concave portion has an elastic modulus of 1 Pa to 1 MPa and a glass transition temperature of 1 Pa or less. Sealed by a first sealing layer made of a resin of 213K or more and 233K or less, and made of an ultraviolet curable resin having a glass transition temperature of 413K or more and 1 GPa or more and 2.5 GPa on the first sealing layer. A second sealing layer is formed, and a lens portion made of a resin having an elastic modulus of 3 GPa or more is formed on the second sealing layer.
[0010]
In the above configuration, the resin substrate is formed of a resin having a low elastic modulus of 10 GPa or less, and the first sealing layer is formed of a resin having an elastic modulus of 1 Pa or more and 1 MPa or less and a glass transition temperature of 213 K or more and 233 K or less. Is formed of an ultraviolet curable resin having an elastic modulus of 1 GPa or more and 2.5 GPa or less and a glass transition temperature of 413 K or more, and a lens portion is formed of a resin having an elastic modulus of 3 GPa or more. Because of the lamination, the elastic modulus of the resin that composes the optical system device is appropriately selected and used, and the stress of the sealing resin is relaxed comprehensively, so the durability of the optical device with respect to changes in temperature environment Is obtained. Due to the synergistic effect between the stress relaxation between the sealing resins and the interface bonding force, in a temperature environment of −40 ° C. to 85 ° C. where the optical device is placed, vacuum voids in the resin and peeling of the resin interface may occur. An optical system device with improved durability and reliability can be obtained.
[0011]
For example, when a thermal shock test was performed using 233K (−40 ° C.) × 5 minutes and 358K (85 ° C.) × 5 minutes as one cycle, all the products were good up to 700 cycles. Other than the above conditions of the elastic modulus and the glass transition temperature, for example, when the elastic modulus of the first sealing layer is 1 Pa or less or the glass transition temperature is 213 K or less, as a result of the thermal shock test, the first sealing layer A vacuum void is generated inside the resin, causing an optical path obstruction. In addition, when the elastic modulus of the first sealing layer is 1 MPa or more or the glass transition temperature is 233 K or more, as a result of the thermal shock test, interfacial peeling between the first sealing layer and the metallized surface of the resin substrate concave portion occurs. Occurs, causing optical path obstruction. In addition, when the elastic modulus of the second sealing layer is 1 GPa or less or the glass transition temperature is 413 K or less, as a result of the thermal shock test, a vacuum void is generated inside the resin of the second sealing layer, causing an optical path obstruction. When the elastic modulus of the second sealing layer is 2.5 GPa or more, as a result of the thermal shock test, interface separation occurs between the second sealing layer and the metallized surface of the concave portion of the resin substrate, and optical path obstruction occurs. It becomes. In addition, when the elastic modulus of the resin of the lens unit is 3 GPa or less, interface peeling occurs between the second sealing layer and the resin of the lens unit as a result of the thermal shock test, causing an optical path obstruction.
[0012]
Further, in the above configuration, the optical element is mounted on the bottom surface of the metallized concave portion, and the highly reliable sealing and lens structure are realized as described above, so that highly efficient optical characteristics are realized. .
[0013]
The invention according to claim 2 is an optical device in which an optical element is mounted in an opened concave portion of the resin substrate, wherein the resin substrate is made of a low elastic modulus resin of 10 GPa or less, and the surface of the opened concave portion of the resin substrate is The optical element mounted on the bottom surface of the metallized recess has a modulus of elasticity of 2.5 GPa or more and 3.5 GPa or less and a glass transition temperature of 413 K or more. And a lens portion made of a resin having an elastic modulus of 3 GPa or more is formed on the sealing layer.
[0014]
In the above configuration, the resin substrate is formed of a resin having a low elastic modulus of 10 GPa or less, the sealing resin is formed of a resin having an elastic modulus of 2.5 GPa or more and 3.5 GPa or less, and a glass transition temperature of 413 K or more. Since the resin is formed of a resin having an elastic modulus of 3 GPa or more and laminated in this order, the elastic modulus of the resin constituting the optical system device is appropriately selected and used, and the stress of the sealing resin is alleviated comprehensively. Therefore, durability reliability of the optical device with respect to changes in the temperature environment can be obtained. Due to the synergistic effect between the stress relaxation between the sealing resins and the interface bonding force, in a temperature environment of −40 ° C. to 85 ° C. where the optical device is placed, vacuum voids in the resin and peeling of the resin interface may occur. An optical system device with improved durability and reliability can be obtained.
[0015]
For example, when a thermal shock test was performed with 233K (−40 ° C.) × 5 minutes and 358K (85 ° C.) × 5 minutes as one cycle, all the products were good up to 500 cycles. Except for the above conditions of the elastic modulus and the glass transition temperature, for example, when the elastic modulus of the sealing layer is 2.5 GPa or less or the glass transition temperature is 413 K or less, as a result of the thermal shock test, a vacuum void is generated inside the resin. The optical path is obstructed. When the elastic modulus of the sealing layer is 3.5 GPa or more, as a result of the thermal shock test, interface peeling occurs between the sealing layer and the metallized surface of the concave portion of the resin substrate, causing an optical path obstruction. When the elastic modulus of the resin of the lens portion is 3 GPa or less, interface peeling occurs between the sealing layer and the resin of the lens portion as a result of the thermal shock test, causing an optical path obstruction.
[0016]
Further, in the above configuration, the optical element is mounted on the bottom surface of the metallized concave portion, and the highly reliable sealing and lens structure are realized as described above, so that highly efficient optical characteristics are realized. .
[0017]
According to a third aspect of the present invention, in the optical device according to the first or second aspect, the metallized surface of the concave portion is roughened.
[0018]
In the above configuration, since the metallized surface of the concave portion for mounting the optical element is roughened, the effect of diffusing light incident on the metallized surface and reducing stray light is obtained, and the resin penetrates the rough surface. Due to the anchor effect, the interfacial bonding force of the sealing resin filling the concave portion is improved.
[0019]
According to a fourth aspect of the present invention, in the optical device according to any one of the first to third aspects, a portion where the substrate resin is exposed is formed on a bottom surface of the metallized concave portion.
[0020]
In the above configuration, since the portion where the substrate resin is exposed is formed on the bottom surface of the metallized concave portion, the sealing resin filling the concave portion and the substrate resin are bonded to each other at the exposed portion, so that the metallized portion is formed. A stronger bonding force of the sealing resin can be obtained than by bonding through the surface.
[0021]
According to a fifth aspect of the present invention, in the optical device according to the fourth aspect, a groove in which the substrate resin is exposed is formed on the bottom surface of the metallized concave portion, and a sealing resin is injected into the groove.
[0022]
In the above configuration, since the groove in which the substrate resin is exposed is formed on the bottom surface of the concave portion and the sealing resin is injected into the groove, the bonding area between the sealing resin and the substrate resin is increased in addition to the same effect as described above. Furthermore, a strong sealing resin bonding force can be obtained.
[0023]
According to a sixth aspect of the present invention, in the optical device according to the first or second aspect, the opened concave portion is provided at a tip of a lens barrel protruding from a resin substrate, and the resin forming the lens portion is It covers the outer surface of the protruding lens barrel.
[0024]
In the above configuration, since the resin forming the lens portion covers the outer surface of the protruding lens barrel, the area of the interface between the lens portion forming resin and the substrate resin is large, so that the sealing portion is formed through the interface. Moisture absorption into the inside is reduced, and deterioration of the optical element can be prevented. In addition, since the sealing resin inside is wrapped by the lens portion resin which is firmly formed, peeling of the sealing resin and the lens resin can be prevented.
[0025]
The invention according to claim 7 is a method of manufacturing an optical system device in which an optical element is mounted in an opened concave portion of a resin substrate, wherein the opened concave portion of the resin substrate made of a low elastic modulus resin of 10 GPa or less has a reflection function and an electric circuit. A mounting step of mounting an optical element on the bottom surface of the metalized concave portion, and a first encapsulation with a resin having an elastic modulus of 1 Pa or more and 1 MPa or less and a glass transition temperature of 213 K or more and 233 K or less. A first sealing step of forming a layer and sealing the optical element, and forming a second sealing layer with a UV-curable resin having an elastic modulus of 1 GPa or more and 2.5 GPa or less and a glass transition temperature of 413 K or more. A second sealing step of sealing the first sealing layer, and a lens forming step of forming a lens portion made of a resin having an elastic modulus of 3 GPa or more on the sealed resin layer. Ah .
[0026]
In the above manufacturing method, a step of forming the resin substrate with a low elastic modulus resin of 10 GPa or less, and forming the first sealing layer with a resin having an elastic modulus of 1 Pa or more and 1 MPa or less and a glass transition temperature of 213 K or more and 233 K or less. A step of forming the second sealing layer with an ultraviolet curable resin having an elastic modulus of 1 GPa or more and 2.5 GPa or less and a glass transition temperature of 413 K or more, and forming a lens portion with a resin having an elastic modulus of 3 GPa or more. The optical device is manufactured by appropriately selecting the modulus of elasticity of the resin by the step of performing, so that an optical device in which the stress of the sealing resin is relaxed comprehensively is obtained. Durability reliability of the optical device can be obtained.
[0027]
For example, when a thermal shock test was performed using 233K (−40 ° C.) × 5 minutes and 358K (85 ° C.) × 5 minutes as one cycle, all the products were good up to 700 cycles. Other than the above conditions of the elastic modulus and the glass transition temperature, for example, when the elastic modulus of the first sealing layer is 1 Pa or less or the glass transition temperature is 213 K or less, as a result of the thermal shock test, the first sealing layer A vacuum void is generated inside the resin, causing an optical path obstruction. In addition, when the elastic modulus of the first sealing layer is 1 MPa or more or the glass transition temperature is 233 K or more, as a result of the thermal shock test, interfacial peeling between the first sealing layer and the metallized surface of the resin substrate concave portion occurs. Occurs, causing optical path obstruction. In addition, when the elastic modulus of the second sealing layer is 1 GPa or less or the glass transition temperature is 413 K or less, as a result of the thermal shock test, a vacuum void is generated inside the resin of the second sealing layer, causing an optical path obstruction. When the elastic modulus of the second sealing layer is 2.5 GPa or more, as a result of the thermal shock test, interface separation occurs between the second sealing layer and the metallized surface of the concave portion of the resin substrate, and optical path obstruction occurs. It becomes. In addition, when the elastic modulus of the resin of the lens unit is 3 GPa or less, interface peeling occurs between the second sealing layer and the resin of the lens unit as a result of the thermal shock test, causing an optical path obstruction.
[0028]
In addition, in the above-described manufacturing method, a high-efficiency optical characteristic is realized because the step of mounting the optical element on the bottom surface of the metallized concave portion and the step of realizing the reliable and stable sealing and lens structure as described above are realized. Is done.
[0029]
According to an eighth aspect of the present invention, in the method for manufacturing an optical system device according to the seventh aspect, in the first sealing step and the second sealing step, a resin of a first sealing layer is dropped, and Then, the resin of the second sealing layer having a lower specific gravity than the resin is dropped, and then these resins are cured.
[0030]
In the above manufacturing method, the resin of the first sealing layer is dropped, the resin of the second sealing layer having a lower specific gravity than the resin is dropped on the upper surface of the resin, and then the two resins are cured. Therefore, since the boundary surface between the two sealing resins is formed in a liquid state, they are compatible with each other, and when the two sealing resins are cured, a chemical bond is formed at the interface between the resins, thereby improving the bonding strength. Further, since a resin having a specific gravity smaller than that of the resin in the lower layer is used for the upper layer, mixing of the resins is prevented.
[0031]
The invention according to claim 9 is a method of manufacturing an optical system device in which an optical element is mounted in an opened concave portion of a resin substrate, wherein the opened concave portion of the resin substrate made of a low elastic modulus resin of 10 GPa or less has a reflection function and an electric circuit. A step of mounting the optical element on the bottom surface of the metallized concave portion and a resin having an elastic modulus of 2.5 GPa or more and 3.5 GPa or less and a glass transition temperature of 413 K or more. A sealing step of forming and sealing the optical element; and a lens forming step of forming a lens portion made of a resin having an elastic modulus of 3 GPa or more on the sealing layer.
[0032]
In the above manufacturing method, a step of forming the resin substrate with a resin having a low elastic modulus of 10 GPa or less and a step of forming a sealing resin with a resin having an elastic modulus of 2.5 GPa or more and 3.5 GPa or less and a glass transition temperature of 413 K or more. And the step of forming the lens portion with a resin having an elastic modulus of 3 GPa or more, the optical system device is manufactured by appropriately selecting the elastic modulus of the resin. The device can be obtained, and the durability of the optical device can be obtained with respect to changes in the temperature environment.
[0033]
For example, when a thermal shock test was performed with 233K (−40 ° C.) × 5 minutes and 358K (85 ° C.) × 5 minutes as one cycle, all the products were good up to 500 cycles. Except for the above conditions of the elastic modulus and the glass transition temperature, for example, when the elastic modulus of the sealing layer is 2.5 GPa or less or the glass transition temperature is 413 K or less, as a result of the thermal shock test, a vacuum void is generated inside the resin. The optical path is obstructed. When the elastic modulus of the sealing layer is 3.5 GPa or more, as a result of the thermal shock test, interface peeling occurs between the sealing layer and the metallized surface of the concave portion of the resin substrate, causing an optical path obstruction. When the elastic modulus of the resin of the lens portion is 3 GPa or less, interface peeling occurs between the sealing layer and the resin of the lens portion as a result of the thermal shock test, causing an optical path obstruction.
[0034]
In addition, in the above-described manufacturing method, a high-efficiency optical characteristic is realized because the step of mounting the optical element on the bottom surface of the metallized concave portion and the step of realizing the reliable and stable sealing and lens structure as described above are realized. Is done.
[0035]
According to a tenth aspect of the present invention, in the method for manufacturing an optical device according to the ninth aspect, after the sealing resin is dropped in the sealing step, the lens portion is formed in a state where the degree of crosslinking of the resin is 50 to 80%. These resins are injected to cure these resins.
[0036]
In the above manufacturing method, the resin for forming the lens portion is injected and cured in a state where the degree of crosslinking of the sealing resin is 50 to 80%. As the curing of the sealing resin progresses, a chemical bond between the lens portion resin and the sealing resin is formed, so that the bonding strength between the lens portion and the sealing resin is improved.
[0037]
According to an eleventh aspect of the present invention, in the method for manufacturing an optical system device according to the tenth aspect, the degree of crosslinking of the sealing resin is controlled by a heating time during curing of the resin.
[0038]
In the above manufacturing method, in addition to the same effects as in the tenth aspect, by changing the heating time, it is possible to easily control and change the degree of cross-linking by using an existing curing device, and manufacture.
[0039]
According to a twelfth aspect of the present invention, in the method for manufacturing an optical device according to the seventh or ninth aspect, the sealing resin used in the sealing step immediately before the lens forming step is made of an ultraviolet curable resin, and the surface is roughened. A rough surface of a transparent member formed of an ultraviolet light transmitting material having a bent surface is adhered to the sealing resin, and the sealing resin is cured by irradiating the sealing resin with ultraviolet light through the transparent member, The rough surface shape of the transparent member is transferred to the sealing resin surface.
[0040]
In the above manufacturing method, the sealing resin used in the sealing step immediately before the lens forming step is an ultraviolet light curable resin, and the rough surface of the transparent member formed of an ultraviolet light transmitting material having a roughened surface is used. Since the sealing resin is cured by adhering to the sealing resin, the bonding strength between the lens portion and the sealing resin is improved by the rough surface structure formed by being transferred to the sealing resin surface.
[0041]
According to a thirteenth aspect of the present invention, in the method for manufacturing an optical device according to the seventh or ninth aspect, after the resin forming the lens portion is cured in the lens forming step, the resin is cured at a cooling rate slower than room temperature cooling. It cools from temperature to room temperature.
[0042]
In the above manufacturing method, after the resin forming the lens portion is cured, the resin is cooled from the curing temperature to room temperature at a cooling rate slower than room temperature cooling, so that cooling can be performed while controlling the cooling time and relaxing thermal stress. Therefore, peeling of the resin interface due to rapid shrinkage and generation of cracks in the resin can be prevented.
[0043]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an optical system device and a method of manufacturing the same according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an optical device 10 according to an embodiment of the present invention. This optical system device 10 has a lens 5 formed by mounting and enclosing an optical element (light emitting element) 2 in an open concave portion 13 of a resin substrate (MID substrate) 1 which is a three-dimensional circuit molded product. Is used as a light emitting device.
[0044]
The configuration of each unit of the optical system device 10 will be described. The resin substrate 1 is made of a low elastic modulus resin having a material property of an elastic modulus of 10 GPa or less, and includes a base 11 and a cylindrical lens barrel 12 protruding from the base 11. The base 11 has a rectangular parallelepiped shape, and a concave portion 91 is provided on the lower surface thereof. An integrated circuit element 92 for performing signal processing of the optical element 2 is mounted and sealed in the concave portion 91. The integrated circuit element 92 and the optical element 2 are connected by a circuit pattern (not shown). These base portions 11 are the same as in the conventional example (for example, see FIG. 11 described above), and will not be particularly described below.
[0045]
As shown in FIG. 2, at the tip of the lens barrel portion 12, there is an open concave portion 13, and the surface of the concave portion 13 has a metallized surface provided with a metallized surface so as to have a light reflecting function and an electric circuit function. It is 14. The optical element 2 is mounted on the bottom surface of the metallized concave portion, and the back electrode of the optical element 2 is connected to the electrode 14a via the metallized surface of the concave bottom surface, and from the upper electrode of the optical element 2 to the electrode 14b by the thin metal wire 21. Each is electrically connected. Here, the electrode 14a and the electrode 14b are electrically insulated from each other. The optical element 2 is a light emitting element that emits light when a voltage is applied to the upper and lower electrodes.
[0046]
Returning to FIG. 1, the sealing structure of the mounted optical element 2 will be described. First, the optical element 2 and the thin metal wire 21 are sealed by a first sealing layer 3 formed of a resin having an elastic modulus of 1 Pa or more and 1 MPa or less and a glass transition temperature of 213 K or more and 233 K or less. As the resin of the first sealing layer 3, for example, an epoxy resin may be used in addition to the modified acrylate resin. Next, a second sealing layer formed of an ultraviolet (UV) curable resin having an elastic modulus of 1 GPa or more and 2.5 GPa or less and a glass transition temperature of 413 K or more on the resin layer of the first sealing layer 3. It is further sealed by the stop layer 4. As the ultraviolet curable resin of the second sealing layer 4, for example, a modified acrylate resin or the like may be used in addition to the epoxy resin. Then, on the resin layer of the second sealing layer 4, a lens portion 5 made of a resin having an elastic modulus of 3 GPa or more is formed. As the resin of the lens portion 5, for example, a modified acrylate resin or the like may be used in addition to the epoxy resin.
[0047]
The manufacturing process of the optical device 10 will be described. FIG. 3 is a sectional view of each step, and FIG. 4 shows a flow of each step. First, as shown in FIG. 3A, a substrate (only the lens barrel 12 of the substrate is shown) having an opening 13 whose surface is metallized is manufactured (S11). Next, as shown in FIG. 3B, the optical element 2 is die-bonded to a concave bottom surface 15 metallized with, for example, a conductive resin, and the back surface of the optical element 2 is connected to the electrode 14a. The thin film 21 is connected to and mounted on the electrode 14b (S12). Next, as shown in FIG. 3C, the recess is filled with a sealing resin (first layer) 3 to perform a first sealing step (S13). Next, as shown in FIG. 3D, the remaining space of the concave portion is filled with a UV curable resin (second layer) 4 to perform a second sealing step (S14). Next, as shown in FIG. 3E, the lens unit 5 is formed on the sealing resin (S15). As a method of forming the lens portion 5, for example, by using a transfer molding method, the shape and surface accuracy of the lens portion 5 can be molded with high accuracy.
[0048]
A thermal shock test was performed on an optical system device having a sealing portion having a multilayer structure manufactured by the above-described process. The test article also uses a UV-curable resin for the first layer. In addition, as a comparative example, an optical system device having a single structure in which the process from sealing the optical element to forming the lens portion was formed only of the resin of the lens portion was also manufactured and subjected to the same thermal shock test. Table 1 shows the physical properties and curing conditions of the resin used.
[0049]
[Table 1]
Figure 2004235261
[0050]
The thermal shock test was carried out in the liquid phase, and one cycle was performed at 233 K (−40 ° C.) × 5 minutes and at 358 K (85 ° C.) × 5 minutes. As a result of the thermal shock test, the optical device having a multilayer structure according to the present invention was all good products up to 700 cycles. Peeling occurred at the boundary surface of, and all were defective.
[0051]
As described above, by appropriately selecting and using the elastic modulus of the resin constituting the optical system device 10, the stress of the sealing resin is reduced as a whole, and the synergistic effect with the interfacial bonding force allows the optical effect to be increased. In a temperature environment of −40 ° C. to 85 ° C. where the system device is placed, an optical system device with improved durability and reliability without causing vacuum voids in the resin or peeling of the resin interface was obtained.
[0052]
In the above-described manufacturing process, the sealing resin of the first layer was dropped and hardened so as to cover the optical element, and then the sealing resin of the second layer was dropped and cured. This suppresses the effect of volume change caused by a high coefficient of linear expansion of the first layer resin, and further suppresses a defective rate due to vacuum voids in the resin and peeling of the resin interface in an additional thermal shock test. The effect was confirmed.
[0053]
Next, another example of the optical device according to the embodiment of the present invention and a method of manufacturing the same will be described. FIG. 5 shows an optical system device 20 having a single layer of sealing resin, and FIG. 6 is a flow chart showing a manufacturing method thereof. The optical device 20 is obtained by changing the sealing resin layer from two to one in the optical device 10 described above.
[0054]
The manufacturing process of the optical system device 20 will be described. The resin substrate 1 having the opening 13 whose surface is metallized is manufactured using a resin made of a low elastic modulus resin having an elastic modulus of 10 GPa or less (S21). Next, the optical element 2 is die-bonded to the bottom of the concave portion metallized with, for example, a conductive resin, the back surface of the optical element 2 is connected to an electric circuit, and the front electrode is connected to the electric circuit by a thin metal wire 21 and mounted (S22). ). Next, a sealing step of forming a sealing portion by filling the sealing layer 6 with a sealing resin having an elastic modulus of 2.5 GPa or more and 3.5 GPa or less and a glass transition temperature of 413 K or more in a concave portion is performed ( S23). As the sealing resin, for example, a modified acrylate resin or the like may be used in addition to the epoxy resin. Next, the lens unit 5 made of a resin having an elastic modulus of 3 GPa or more is formed on the sealing resin (S24). As the resin of the lens portion 5, for example, a modified acrylate resin or the like may be used in addition to the epoxy resin. As a method of forming the lens portion 5, for example, by using a transfer molding method, the shape and surface accuracy of the lens portion 5 can be molded with high accuracy.
[0055]
A thermal shock test was performed on an optical system device having a sealing portion having a multilayer structure manufactured by the above-described process. As a comparative example, an optical system device having a single structure in which the process from sealing of the optical element to the formation of the lens portion was formed only of the resin of the lens portion was also manufactured and subjected to the same thermal shock test. Table 2 shows the physical properties and curing conditions of the resins used.
[0056]
[Table 2]
Figure 2004235261
[0057]
The thermal shock test was performed in the liquid phase, and one cycle was performed at 233 K (−40 ° C.) × 5 minutes and at 358 K (85 ° C.) × 5 minutes. As a result of the thermal shock test, the optical device having a multilayer structure according to the present invention was all good products up to 500 cycles. Peeling occurred at the boundary surface of, and all were defective.
[0058]
As described above, even in the optical system device 20 having the two-layer structure of the sealing resin and the lens unit, the elasticity of the resin to be filled in the upper space of the optical element is appropriately selected and used, so that the overall performance is improved. In addition, due to the synergistic effect with the interface bonding force, a vacuum void in the resin and peeling of the resin interface occur in a temperature environment of −40 ° C. to 85 ° C. due to a synergistic effect with the interface bonding force. An optical device with improved durability and reliability was obtained.
[0059]
An example of still another manufacturing method will be described. In the case where the resin layer is formed into a multilayer, the lower layer resin may be dropped, and the upper resin having a lower specific gravity than the lower layer resin may be dropped on the upper surface thereof, and then these resins may be cured. According to such a method, since the boundary surface between the two sealing resins is formed in a liquid state, they are compatible with each other, and when the two sealing resins are cured, a chemical bond is formed at an interface between the resins so that the bonding strength is reduced. improves. Further, since a resin having a specific gravity smaller than that of the resin in the lower layer is used for the upper layer, mixing of the resins is prevented.
[0060]
For the thermal shock test, the resin of the first layer (lower layer) was dropped using the resin shown in Table 1, and then the resin of the first layer was not cured, and the second layer having a lower specific gravity than the first layer was not cured. The resin of the (upper layer) was dropped, the resin of the second layer was dropped, and then UV irradiation was performed under the condition of 6 J / cm 2 to produce an optical device in which the resins of the first and second layers were cured. A thermal shock test was performed on the optical system device manufactured by this method and the optical system device manufactured by a normal method. As a result, after 1000 cycles, the sample manufactured by the normal method peeled off the interface between the first layer and the second layer and became defective, whereas the sample manufactured by the method according to the present invention failed on the first and second layers. All products were non-defective at the interface.
[0061]
As still another example, the metallized surface of the concave portion for mounting the optical element may be roughened and filled with a sealing resin. According to this method, it is possible to obtain an effect that light incident on the metallized surface is diffused by the rough surface and stray light is reduced, and an interface effect of the sealing resin filled in the concave portion due to an anchor effect that the resin bites into the rough surface. The effect is improved.
[0062]
For the thermal shock test, an optical system device was manufactured by using the resin shown in Table 1 and setting the surface roughness Ry of the metallized surface to 1 μm or more. In the case of this optical system device, all were good products after the thermal shock test of 1000 cycles, but as a comparative example, when the surface roughness Ry was less than 1 μm, defective products were generated due to peeling of the metallized surface and the resin. Further, in the optical system device according to the present method, the loss in the optical characteristics can be reduced by 5% compared to the normal case due to the reduction of the stray light due to the diffusion on the metallized surface.
[0063]
As yet another example, as shown in FIGS. 7A and 7B, a portion where the substrate resin is exposed on the bottom surface of the metallized concave portion, for example, a crescent-shaped substrate resin exposed portion 16 may be formed. In this configuration, since the sealing resin and the substrate resin to be filled in the concave portion are bonded to each other at the exposed portion, a stronger bonding force of the sealing resin than the bonding through the metallized surface can be obtained. For example, the optical system devices having the structure shown in FIG. 7 using the resins shown in Table 1 were all good after 1000 cycles of the thermal shock test, while those having the entire bottom surface metallized were peeled off. Became defective.
[0064]
In addition to the above structure, as shown in FIGS. 8A and 8B, a groove 7 in which the substrate resin is exposed may be formed on the bottom surface of the metalized concave portion. In this configuration, since the sealing resin is injected into the groove 7, in addition to the same effect as described above, the bonding area between the sealing resin and the substrate resin is increased, and a stronger bonding force of the sealing resin is obtained. For example, the optical system devices having the structure shown in FIG. 7 using the resins shown in Table 1 were all good after 1500 cycles of the thermal shock test, but those having the above-mentioned exposed portions without grooves were It became defective due to peeling.
[0065]
As still another example, these resins may be cured by injecting a resin for forming a lens portion with the degree of crosslinking of the sealing resin being 50 to 80%. According to such a method, the hardening agent of the resin for forming the lens unit is used to accelerate the curing of the sealing resin in the lower layer of the lens unit, and a chemical bond between the resin for the lens unit and the sealing resin is formed. The bonding strength with the resin is improved. Further, the control of the degree of crosslinking of the sealing resin may be performed by the heating time during curing of the resin. By changing the heating time, it is possible to easily control and change the degree of cross-linking to manufacture.
[0066]
For the thermal shock test, for example, using the resin shown in Table 2, the sealing resin was heated at 408 ° C. for 30 minutes in a constant temperature bath to crosslink 70%, and an optical system in which a lens portion was formed thereon The device was made. When a thermal shock test was performed on this optical system device, no defect occurred after 1000 cycles. As a comparative example, what was heated at 408 ° C. × 2 hours to promote the crosslinking reaction to form 85% of the crosslinking and then formed a lens portion thereon was subjected to a thermal shock test of 1000 cycles to obtain a sealing resin and a lens portion resin. Peeled off at the interface of the sample, and became defective. In the case where the lens portion was resin-molded to the one which was heated at 408 ° C. × 15 minutes and crosslinked by 45%, molding failure in which the sealing resin was flown by the pressure during resin molding resulted.
[0067]
FIG. 9 shows still another example. As shown in FIG. 9A, the sealing resin 6 used in the sealing step immediately before the lens forming step is filled with an ultraviolet curing resin to seal the optical element 2 in the opened concave portion of the resin substrate 1. Next, the rough surface of the transparent member 7 formed of an ultraviolet light transmitting material having a roughened surface is adhered to the sealing resin 6 and arranged. In this state, the sealing resin 6 is cured by irradiating the sealing resin 6 with ultraviolet light through the transparent member 7. According to such a method, as shown in FIG. 9B, a rough surface structure 61 transferred from the surface of the transparent member is formed on the surface of the cured sealing resin 6. On the sealing resin having the rough surface structure 61, the lens portion 5 is resin-molded as shown in FIG. As a result, the bonding strength between the lens resin 5 and the sealing resin 6 is improved.
[0068]
A thermal shock test was performed on the optical device manufactured by the above-described process. First, after the sealing resin is dropped, a flat plate having a surface roughness Ry of 1.5 μm formed of an ultraviolet light transmitting material is brought into close contact with the sealing resin, and the sealing resin is irradiated with ultraviolet light through the flat plate and cured. I let it. As a result, a sealing resin having a surface roughness Ry of 1.5 μm was obtained. The lens part was formed on the roughened sealing resin. When the sample after molding the lens portion was subjected to a thermal shock test, no failure occurred at 1000 cycles. Table 3 shows the physical properties and curing conditions of the resin used.
[0069]
[Table 3]
Figure 2004235261
[0070]
Still another example is shown in FIGS. The opening concave portion for mounting the optical element 2 is provided at the tip of a lens barrel 12 formed of a protruding portion of the resin substrate 1. After mounting the optical element 2, the sealing resin 3, 4 or the sealing resin 6 is filled and cured, and then the lens unit 5 is formed in a shape having a resin 51 covering the outer surface of the protruding lens barrel 12. In such optical system devices 40 and 50, since the resin forming the lens portion 5 covers the outer surface of the projecting lens barrel 12, the area of the interface between the lens portion forming resin and the substrate resin is increased. be able to. Therefore, moisture absorption into the inside of the sealing portion through the interface is reduced, and deterioration of the optical element can be prevented. Further, since the sealing resin inside is wrapped by the strongly formed lens portion resin, the separation between the sealing resin and the lens resin can be prevented.
[0071]
A thermal shock test was performed on the above-described optical system device. The materials used are the same as in Table 1. An optical system device 40 shown in FIG. 9A was manufactured by molding the lens resin outside the lens barrel by transfer molding. When a thermal shock test of 1000 cycles was performed on this optical system device, no separation between the lens resin and the substrate resin occurred. As a comparative example, a thermal shock test of 1000 cycles was performed on an optical system device in which a lens portion was formed only at the upper part of the lens barrel. As a result, interface separation between the lens portion resin and the substrate resin occurred, resulting in a failure.
[0072]
As still another example, after the resin forming the lens portion is cured in the lens forming step, the resin may be cooled from the curing temperature to room temperature at a cooling rate slower than room temperature cooling. In such a method, since cooling can be performed while controlling the cooling time while relaxing the thermal stress, peeling of the resin interface due to sudden shrinkage and generation of cracks in the resin can be prevented. For example, using the resin shown in Table 1, the lens portion is molded with resin and cured at 423K. Then, a sample of the optical system device is taken out of the molding die, put into a thermostat, and cooled to 300K at 1K per minute for 1 minute. did. When a thermal shock test was performed on this sample, no defect occurred after 1000 cycles.
[0073]
The present invention can be variously modified without being limited to the above configuration. For example, when laminating the sealing resin, or laminating the lens resin to the sealing resin, after forming the lower layer resin, for example, using an atmospheric pressure plasma device, the cleaning / activation of the resin surface is performed, A treatment for improving the wettability / interfacial bonding strength between the resin layers may be performed.
[Brief description of the drawings]
FIG. 1 is a sectional view of an optical system device according to an embodiment of the present invention.
FIG. 2 is a perspective view of an optical element mounting portion of the above device.
FIGS. 3A to 3E are cross-sectional views illustrating manufacturing steps of the above device.
FIG. 4 is a process flow chart of a method for manufacturing the above device.
FIG. 5 is a sectional view showing another example of the optical system device according to the embodiment of the present invention.
FIG. 6 is a process flow chart of a method for manufacturing the above device.
FIG. 7A is a plan view showing still another example of the optical device according to the embodiment of the present invention, and FIG. 7B is a cross-sectional view of the device.
FIG. 8A is a plan view showing still another example of the optical device according to the embodiment of the present invention, and FIG. 8B is a cross-sectional view of the device.
9A is a cross-sectional view illustrating a method for manufacturing an optical device according to an embodiment of the present invention, FIG. 9B is a partial cross-sectional view of the device, and FIG. 9C is a cross-sectional view of the device.
FIGS. 10A and 10B are cross-sectional views showing still another example of the optical system device according to the embodiment of the present invention.
11A and 11B are cross-sectional views of a conventional optical system device.
12A and 12B are cross-sectional views of another conventional optical system device.
13A and 13B are cross-sectional views of still another conventional optical system device.
FIG. 14 is a cross-sectional view illustrating a conventional semiconductor chip sealing structure.
[Explanation of symbols]
1 Resin substrate
2 Optical element
3 sealing layer
4 Sealing layer
5 Lens section
6 sealing layer
13 recess
14 Metallized surface
10,20,30,40,50 Optical system device

Claims (13)

樹脂基板の開口した凹部に光学素子を実装した光学系装置であって、
前記樹脂基板は10GPa以下の低弾性率樹脂からなり、
前記樹脂基板の開口した凹部の表面は光反射機能と電気回路機能を持たせるためにメタライズされており、
前記メタライズされた凹部の底面に実装した光学素子は弾性率が1Pa以上1MPa以下かつガラス転移温度が213K以上233K以下の樹脂からなる第1の封止層により封止され、
前記第1の封止層の上には1GPa以上2.5GPa以下かつガラス転移温度が413K以上の紫外光硬化性樹脂からなる第2の封止層が形成され、
前記第2の封止層の上には弾性率が3GPa以上の樹脂からなるレンズ部が形成されていることを特徴とする光学系装置。
An optical device in which an optical element is mounted in an open concave portion of a resin substrate,
The resin substrate is made of a low elastic modulus resin of 10 GPa or less,
The surface of the open concave portion of the resin substrate is metallized to have a light reflecting function and an electric circuit function,
The optical element mounted on the bottom surface of the metallized recess is sealed with a first sealing layer made of a resin having an elastic modulus of 1 Pa or more and 1 MPa or less and a glass transition temperature of 213 K or more and 233 K or less,
A second sealing layer made of an ultraviolet curable resin having a glass transition temperature of 1 GPa or more and 2.5 GPa or less and a glass transition temperature of 413 K or more is formed on the first sealing layer,
An optical device, wherein a lens portion made of a resin having an elastic modulus of 3 GPa or more is formed on the second sealing layer.
樹脂基板の開口した凹部に光学素子を実装した光学系装置であって、
前記樹脂基板は10GPa以下の低弾性率樹脂からなり、
前記樹脂基板の開口した凹部の表面は光反射機能と電気回路機能を持たせるためにメタライズされており、
前記メタライズされた凹部の底面に実装した光学素子は弾性率が2.5GPa以上3.5GPa以下かつガラス転移温度が413K以上の樹脂からなる封止層により封止され、
前記封止層の上には弾性率が3GPa以上の樹脂からなるレンズ部が形成されていることを特徴とする光学系装置。
An optical device in which an optical element is mounted in an open concave portion of a resin substrate,
The resin substrate is made of a low elastic modulus resin of 10 GPa or less,
The surface of the open concave portion of the resin substrate is metallized to have a light reflecting function and an electric circuit function,
The optical element mounted on the bottom surface of the metallized concave portion is sealed with a sealing layer made of a resin having an elastic modulus of 2.5 GPa or more and 3.5 GPa or less and a glass transition temperature of 413 K or more,
An optical device, wherein a lens portion made of a resin having an elastic modulus of 3 GPa or more is formed on the sealing layer.
凹部のメタライズ面が粗面化されていることを特徴とする請求項1又は請求項2記載の光学系装置。3. The optical system according to claim 1, wherein the metallized surface of the recess is roughened. 前記メタライズされた凹部の底面に基板樹脂が露出した部位を形成することを特徴とする請求項1乃至請求項3のいずれか記載の光学系装置。4. The optical system device according to claim 1, wherein a portion where the substrate resin is exposed is formed on a bottom surface of the metallized concave portion. 前記メタライズされた凹部底面に基板樹脂が露出した溝を形成し、該溝に封止樹脂を注入することを特徴とする請求項4記載の光学系装置。5. The optical system device according to claim 4, wherein a groove in which the substrate resin is exposed is formed on the bottom surface of the metallized concave portion, and a sealing resin is injected into the groove. 前記開口した凹部は樹脂基板より突出した鏡筒の先端に設けられており、前記レンズ部を形成する樹脂が前記突出した鏡筒の外側表面を覆っていることを特徴とする請求項1又は請求項2記載の光学系装置。2. The open concave portion is provided at a tip of a lens barrel projecting from a resin substrate, and a resin forming the lens unit covers an outer surface of the projecting lens barrel. Item 3. The optical device according to Item 2. 樹脂基板の開口した凹部に光学素子を実装した光学系装置の製造方法であって、
10GPa以下の低弾性率樹脂からなる樹脂基板の開口した凹部が反射機能と電気回路機能を持たせるためにメタライズされており、メタライズされた凹部底面に光学素子を実装する実装工程と、
弾性率が1Pa以上1MPa以下かつガラス転移温度が213K以上233K以下の樹脂で第1の封止層を形成して前記光学素子を封止する第1封止工程と、
弾性率が1GPa以上2.5GPa以下かつガラス転移温度が413K以上のUV硬化性樹脂で第2の封止層を形成して前記第1の封止層を封止する第2封止工程と、
前記封止した樹脂層上に弾性率が3GPa以上の樹脂からなるレンズ部を形成するレンズ形成工程と、を有することを特徴とする光学系装置の製造方法。
A method for manufacturing an optical device in which an optical element is mounted in an open concave portion of a resin substrate,
A mounting step of mounting an optical element on the bottom surface of the metalized concave portion, wherein an open concave portion of the resin substrate made of a low elastic modulus resin of 10 GPa or less is metallized to have a reflection function and an electric circuit function;
A first sealing step of forming a first sealing layer with a resin having an elastic modulus of 1 Pa to 1 MPa and a glass transition temperature of 213 K to 233 K to seal the optical element;
A second sealing step of forming a second sealing layer with a UV-curable resin having an elastic modulus of 1 GPa or more and 2.5 GPa or less and a glass transition temperature of 413 K or more and sealing the first sealing layer;
A lens forming step of forming a lens portion made of a resin having an elastic modulus of 3 GPa or more on the sealed resin layer.
前記第1封止工程と前記第2封止工程は、第1の封止層の樹脂を滴下し、該樹脂上面に該樹脂よりも比重の小さい第2の封止層の樹脂を滴下し、その後、これらの樹脂を硬化させることを特徴とする請求項7記載の光学系装置の製造方法。In the first sealing step and the second sealing step, a resin of a first sealing layer is dropped, and a resin of a second sealing layer having a lower specific gravity than the resin is dropped on an upper surface of the resin. 8. The method according to claim 7, wherein the resin is cured. 樹脂基板の開口した凹部に光学素子を実装した光学系装置の製造方法であって、
10GPa以下の低弾性率樹脂からなる樹脂基板の開口した凹部が反射機能と電気回路機能を持たせるためにメタライズされており、メタライズされた凹部底面に光学素子を実装する工程と、
弾性率が2.5GPa以上3.5GPa以下かつガラス転移温度が413K以上の樹脂で封止層を形成して前記光学素子を封止する封止工程と、
前記封止層上に弾性率が3GPa以上の樹脂からなるレンズ部を形成するレンズ形成工程とを有することを特徴とする光学系装置の製造方法。
A method for manufacturing an optical device in which an optical element is mounted in an open concave portion of a resin substrate,
A step of mounting an optical element on the bottom surface of the metalized concave portion, in which an open concave portion of a resin substrate made of a low elastic modulus resin of 10 GPa or less is metallized so as to have a reflection function and an electric circuit function;
A sealing step of forming a sealing layer with a resin having an elastic modulus of 2.5 GPa or more and 3.5 GPa or less and a glass transition temperature of 413 K or more to seal the optical element;
A lens forming step of forming a lens portion made of a resin having an elastic modulus of 3 GPa or more on the sealing layer.
前記封止工程における封止樹脂の滴下の後、該樹脂の架橋度が50〜80%の状態で前記レンズ部形成用樹脂を注入してこれらの樹脂を硬化させることを特徴とする請求項9記載の光学系装置の製造方法。10. The method according to claim 9, wherein after the sealing resin is dropped in the sealing step, the resin for forming the lens portion is injected and cured in a state where the degree of crosslinking of the resin is 50 to 80%. A manufacturing method of the optical system device described in the above. 前記封止樹脂の架橋度を樹脂硬化時の加熱時間によって制御することを特徴とする請求項10記載の光学系装置の製造方法。11. The method according to claim 10, wherein the degree of crosslinking of the sealing resin is controlled by a heating time at the time of curing the resin. 前記レンズ形成工程の直前の封止工程に用いる封止樹脂を紫外光硬化樹脂とし、粗面化された表面を有する紫外光透過材料で形成された透明部材の粗面を前記封止樹脂に接着させ、該透明部材を介して該封止樹脂に紫外光を照射して封止樹脂を硬化させ、前記透明部材の粗面形状を前記封止樹脂表面に転写させることを特徴とする請求項7又は請求項9記載の光学系装置の製造方法。The sealing resin used in the sealing step immediately before the lens forming step is an ultraviolet curing resin, and the rough surface of a transparent member formed of an ultraviolet light transmitting material having a roughened surface is bonded to the sealing resin. And irradiating the sealing resin with ultraviolet light through the transparent member to cure the sealing resin and transfer a rough surface shape of the transparent member to the sealing resin surface. 10. A method for manufacturing an optical system device according to claim 9. 前記レンズ形成工程においてレンズ部を形成する樹脂を硬化させた後、常温冷却よりも遅い冷却速度で硬化温度から常温まで冷却することを特徴とする請求項7又は請求項9記載の光学系装置の製造方法。10. The optical system device according to claim 7, wherein after the resin forming the lens portion is cured in the lens forming step, the resin is cooled from a curing temperature to a normal temperature at a cooling rate slower than the normal temperature cooling. Production method.
JP2003019478A 2002-07-25 2003-01-28 Optical system device and its manufacturing method Pending JP2004235261A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003019478A JP2004235261A (en) 2003-01-28 2003-01-28 Optical system device and its manufacturing method
KR1020030034303A KR100567559B1 (en) 2002-07-25 2003-05-29 Device with photoelectric element
US10/448,283 US7038195B2 (en) 2002-07-25 2003-05-30 Photoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019478A JP2004235261A (en) 2003-01-28 2003-01-28 Optical system device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004235261A true JP2004235261A (en) 2004-08-19

Family

ID=32949323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019478A Pending JP2004235261A (en) 2002-07-25 2003-01-28 Optical system device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004235261A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190888A (en) * 2005-01-07 2006-07-20 Stanley Electric Co Ltd Surface mounting led
EP1794808A1 (en) * 2004-09-10 2007-06-13 Seoul Semiconductor Co., Ltd. Light emitting diode package having multiple molding resins
WO2007080742A1 (en) * 2006-01-16 2007-07-19 Towa Corporation Method of photoelement resin sealing/molding
JP2008506246A (en) * 2004-07-09 2008-02-28 松下電器産業株式会社 Light emitting device
WO2009066670A1 (en) * 2007-11-20 2009-05-28 Nanoteco Corporation White led device and method for manufacturing the same
JP2009147312A (en) * 2007-11-20 2009-07-02 Nanoteco Corp White led device and method of manufacturing the same
JP2011091454A (en) * 2005-01-31 2011-05-06 Samsung Led Co Ltd Light emitting diode element
US7957434B2 (en) 2008-05-01 2011-06-07 Samsung Electronics Co., Ltd. Light emitting device and fabrication method thereof
EP2329902A1 (en) 2004-06-25 2011-06-08 Mitsubishi Materials Corporation Metal colloid particles, metal colloid and use of the colloid
DE102010026343A1 (en) * 2010-07-07 2012-03-29 Osram Opto Semiconductors Gmbh Component and method for manufacturing a device
US8188492B2 (en) 2006-08-29 2012-05-29 Seoul Semiconductor Co., Ltd. Light emitting device having plural light emitting diodes and at least one phosphor for emitting different wavelengths of light
JP2012216454A (en) * 2011-04-01 2012-11-08 Seiko Epson Corp Light-emitting device and electronic apparatus
CN108710182A (en) * 2018-08-08 2018-10-26 高意通讯(深圳)有限公司 A kind of method and sealing structure for the sealing of optical device low temperature glass
KR20200027213A (en) * 2018-09-04 2020-03-12 주식회사 엘지화학 Method for manufacturing plastic substrate and plastic substrate manufactured by the same
US11355681B2 (en) 2018-01-31 2022-06-07 Nichia Corporation Light emitting device and method of manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137655A (en) * 1987-11-25 1989-05-30 Hitachi Ltd Optical device
JP2001223305A (en) * 2000-02-10 2001-08-17 Matsushita Electric Ind Co Ltd Resin encapsulated semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137655A (en) * 1987-11-25 1989-05-30 Hitachi Ltd Optical device
JP2001223305A (en) * 2000-02-10 2001-08-17 Matsushita Electric Ind Co Ltd Resin encapsulated semiconductor device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2329902A1 (en) 2004-06-25 2011-06-08 Mitsubishi Materials Corporation Metal colloid particles, metal colloid and use of the colloid
JP2008506246A (en) * 2004-07-09 2008-02-28 松下電器産業株式会社 Light emitting device
US7737463B2 (en) 2004-09-10 2010-06-15 Seoul Semiconductor Co., Ltd. Light emitting diode package with a heat sink support ring and having multiple molding resins, wherein secondary molding resin with higher hardness than primary molding resin and which covers primary molding resin that covers LED die
EP1794808A1 (en) * 2004-09-10 2007-06-13 Seoul Semiconductor Co., Ltd. Light emitting diode package having multiple molding resins
JP2012134564A (en) * 2004-09-10 2012-07-12 Seoul Semiconductor Co Ltd Light emitting element and manufacturing method of the same
US7855395B2 (en) 2004-09-10 2010-12-21 Seoul Semiconductor Co., Ltd. Light emitting diode package having multiple molding resins on a light emitting diode die
EP1794808A4 (en) * 2004-09-10 2009-09-23 Seoul Semiconductor Co Ltd Light emitting diode package having multiple molding resins
JP2006190888A (en) * 2005-01-07 2006-07-20 Stanley Electric Co Ltd Surface mounting led
JP2011091454A (en) * 2005-01-31 2011-05-06 Samsung Led Co Ltd Light emitting diode element
WO2007080742A1 (en) * 2006-01-16 2007-07-19 Towa Corporation Method of photoelement resin sealing/molding
JP2007189116A (en) * 2006-01-16 2007-07-26 Towa Corp Resin-sealed molding method of optical element
US8188492B2 (en) 2006-08-29 2012-05-29 Seoul Semiconductor Co., Ltd. Light emitting device having plural light emitting diodes and at least one phosphor for emitting different wavelengths of light
US8674380B2 (en) 2006-08-29 2014-03-18 Seoul Semiconductor Co., Ltd. Light emitting device having plural light emitting diodes and plural phosphors for emitting different wavelengths of light
JP2009147312A (en) * 2007-11-20 2009-07-02 Nanoteco Corp White led device and method of manufacturing the same
WO2009066670A1 (en) * 2007-11-20 2009-05-28 Nanoteco Corporation White led device and method for manufacturing the same
US7957434B2 (en) 2008-05-01 2011-06-07 Samsung Electronics Co., Ltd. Light emitting device and fabrication method thereof
DE102010026343A1 (en) * 2010-07-07 2012-03-29 Osram Opto Semiconductors Gmbh Component and method for manufacturing a device
JP2012216454A (en) * 2011-04-01 2012-11-08 Seiko Epson Corp Light-emitting device and electronic apparatus
US11355681B2 (en) 2018-01-31 2022-06-07 Nichia Corporation Light emitting device and method of manufacturing same
CN108710182A (en) * 2018-08-08 2018-10-26 高意通讯(深圳)有限公司 A kind of method and sealing structure for the sealing of optical device low temperature glass
CN108710182B (en) * 2018-08-08 2024-04-02 高意通讯(深圳)有限公司 Method and sealing structure for sealing optical device low-temperature glass
KR20200027213A (en) * 2018-09-04 2020-03-12 주식회사 엘지화학 Method for manufacturing plastic substrate and plastic substrate manufactured by the same
KR102181942B1 (en) 2018-09-04 2020-11-23 주식회사 엘지화학 Method for manufacturing plastic substrate and plastic substrate manufactured by the same

Similar Documents

Publication Publication Date Title
US5458716A (en) Methods for manufacturing a thermally enhanced molded cavity package having a parallel lid
JP4241184B2 (en) Photoelectric component
JP5063398B2 (en) Method of forming a packaged semiconductor light emitting device having a front contact by compression molding
JP3417079B2 (en) Method for manufacturing semiconductor device
US8410491B2 (en) Semiconductor light emitting device substrate strips and packaged semiconductor light emitting devices
JP2004235261A (en) Optical system device and its manufacturing method
TWI274657B (en) Transparent member, optical device using transparent member and method of manufacturing optical device
KR101620113B1 (en) Optoelectronic component and method for producing an optoelectronic component
KR101398404B1 (en) Plastic overmolded packages with mechanically decoupled lid attach attachment
US8153460B2 (en) Surface mount optoelectronic component with lens having protruding structure
TWI676243B (en) Chip package structure and the method of making the same
JP2011109134A (en) Method of forming packaged semiconductor light emitting device having multiple optical elements by using compression molding
US20220157678A1 (en) Integrated circuit packages with cavities and methods of manufacturing the same
JP2010524269A (en) Photoelectric component manufacturing method and photoelectric component
KR20090092292A (en) High thermal performance packaging for circuit dies
US8293572B2 (en) Injection molding system and method of chip package
JP2008244143A (en) Method of manufacturing semiconductor light-emitting device
US20160276545A1 (en) Electronic component and method for producing an electronic component
JPH05212995A (en) Chip card and method for its production
US20130015488A1 (en) Light emitting diode package and method for fabricating the same
JP2018523310A (en) Component manufacturing method and component
JP6761472B2 (en) Flip chip module with enhanced properties
JP2982971B2 (en) Post mold cavity package for integrated circuits with internal dam bar
KR20130058751A (en) Electronic component
US9252344B2 (en) Structural component and method for producing a structural component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090723

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091002