JP2004235048A - Method for manufacturing organic el panel - Google Patents

Method for manufacturing organic el panel Download PDF

Info

Publication number
JP2004235048A
JP2004235048A JP2003023143A JP2003023143A JP2004235048A JP 2004235048 A JP2004235048 A JP 2004235048A JP 2003023143 A JP2003023143 A JP 2003023143A JP 2003023143 A JP2003023143 A JP 2003023143A JP 2004235048 A JP2004235048 A JP 2004235048A
Authority
JP
Japan
Prior art keywords
organic
support substrate
electrode
panel
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003023143A
Other languages
Japanese (ja)
Inventor
Katsuji Yoshikawa
勝司 吉川
Kazuya Naito
和哉 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seiki Co Ltd
Original Assignee
Nippon Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seiki Co Ltd filed Critical Nippon Seiki Co Ltd
Priority to JP2003023143A priority Critical patent/JP2004235048A/en
Publication of JP2004235048A publication Critical patent/JP2004235048A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an organic EL panel for suppressing re-adsorption of moisture to a component member of an organic EL element after a heat dehydration treating and obtaining a sufficient dehydration effect. <P>SOLUTION: The method for manufacturing the organic EL panel 1 in which a first electrode (transparent electrode) 4 formed in a prescribed shape, an insulative layer 5, an organic layer 7 having at least light emitting layer and a second electrode (rear surface electrode) 8 are sequentially laminated on a light-transmissive support substrate 2 comprises processes of performing the heat dehydration treating by heating the support substrate 2 under the ambiance of a low dew point, and performing a lowering treatment of lowering the temperature of the support substrate 2 by eliminating or while eliminating the moisture generated in the ambiance of the low dew point by the heat dehydration treating after the heat dehydration treating, at least after forming the insulative layer 5. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、少なくとも発光層を有する有機層を一対の電極で挟持した有機EL(エレクトロルミネッセンス)素子を透光性の支持基板上に配設してなる有機ELパネルの製造方法に関する。
【0002】
【従来の技術】
有機EL素子を用いた有機ELパネルとしては、ガラス材料からなる透光性の支持基板上に、陽極となるITO(Indium Tin Oxide)等からなる透明電極(第一電極)と、絶縁層と、正孔注入層,正孔輸送層,発光層及び電子輸送層等からなる有機層と、陰極となるアルミニウム(Al)等からなる非透光性の背面電極(第二電極)と、を順次積層して前記有機EL素子を形成し、前記有機EL素子を気密的に覆うようにガラス材料からなる封止部材を配設して構成されるものが知られている。(例えば、特許文献1参照)
【0003】
かかる有機ELパネルにおいては、前記封止部材によって前記有機EL素子を気密的に覆うことによって、水分が前記有機EL素子内に侵入し、ダークスポットと呼ばれる非発光部分の発生及びその面積の拡大を防止している。
【0004】
また、ダークスポット発生の原因となる水分は前記有機ELパネルの構成部材そのものにも吸着しており、かかる水分を脱離させるために、前記有機ELパネルの構成部材のすくなくとも一部が形成された前記支持基板に低露点雰囲気下で加熱脱水処理等を行う方法が知られている。(例えば、特許文献2参照)特に、前記絶縁層は吸着性の高いポリイミド系やフェノール系等の絶縁材料を用いることが多く、多量の水分が吸着されているため脱水処理を行う必要性が高い。
【0005】
【特許文献1】
特開平11−162635号公報
【特許文献2】
特開2000−150147号公報
【0006】
【発明が解決しようとする課題】
しかしながら、前記加熱脱水処理においては、加熱後に前記支持基板の温度を下げる際に加熱によって前記構成部材から脱離された雰囲気中の水分が前記構成部材に再吸着し、前記加熱脱水処理による脱水効果を十分に得ることができないという問題を有していた。
【0007】
本発明は、このような問題に鑑み、加熱脱水処理後の有機ELパネルの構成部材への水分の再吸着を抑制し、十分な脱水効果を得ることが可能な有機ELパネルの製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、前記課題を解決するために、請求項1に記載のように、所定の形状に形成された第一電極と、絶縁層と、少なくとも発光層を有する有機層と、第二電極と、を透光性の支持基板上に順次積層形成してなる有機ELパネルの製造方法であって、少なくとも前記絶縁層形成後に、低露点雰囲気下にて前記支持基板を加熱して加熱脱水処理を行う工程と、前記加熱脱水処理後に前記加熱脱水処理によって前記低露点雰囲気中に生じた水分を除去してあるいは除去しながら前記支持基板の温度を下げる降温処理を行う工程と、を含むことを特徴とする。
【0009】
また、請求項1において、請求項2に記載のように、前記加熱脱水処理を、前記低露点雰囲気を入れ替えながら行うことを特徴とする。
【0010】
また、請求項1または請求項2において、請求項3に記載のように、前記降温処理を、前記低露点雰囲気を入れ替えてあるいは入れ替えながら行うことを特徴とする。
【0011】
また、請求項1から請求項3において、請求項4に記載のように、前記第一電極をストライプ状に形成し、前記第一電極及び前記絶縁層上に隔壁部を前記第一電極と交差するように形成し、前記絶縁層及び前記隔壁部形成後に、前記支持基板を前記加熱脱水処理及び前記降温処理することを特徴とする。
【0012】
【発明の実施の形態】
以下、ドットマトリクス型の有機ELパネルに本発明を適用した実施形態を添付の図面に基いて説明する。
【0013】
有機ELパネル1は、例えばガラス材料からなる支持基板2に有機EL素子3を形成したものである。有機EL素子3は、透明電極4(第一電極),絶縁層5,隔壁部6,有機層7,背面電極8(第二電極)からなるものであり、支持基板2上に順次積層形成されている。また、有機ELパネル1は、有機EL素子3を気密的に覆う封止部材9を備える。なお、図1は、有機ELパネル1の断面図であり、図2は、有機ELパネル1を封止部材9側から見た正面図である。
【0014】
透明電極4は、例えば酸化スズ(SnO2)に酸化インジウム(In2O3)をドープしたITO(Indium Tin Oxide)をスパッタリング,蒸着法あるいはイオンプレーティング等の方法で支持基板2上に層状に形成し、例えばフォトリソグラフィー法にてストライプ状にパターニングしてなるものである。透明電極4は、陽極配線部4a及び陽極部4bを有している。また、陽極配線部4aは終端部に陽極端子部4cを備え、陽極端子部4cを介して図示しない外部電源と電気的に接続されている。
【0015】
絶縁層5は、ポリイミド系やフェノール系等の絶縁材料からなるものでフォトリソグラフィー法等の手段によって支持基板2上の非発光個所に所定の形状にて形成される。有機ELパネル1において、絶縁層5は、透明電極4の複数形成される陽極部4bの間に形成されるとともに透明電極3と若干重なるように形成され、透明電極4と背面電極8の間を絶縁するものである。
【0016】
隔壁部6は、例えばフェノール系等の絶縁材料からなるものであり、フォトリソグラフィー法等の手段によって逆テーパー状に形成される。隔壁部6は透明電極4及び絶縁層5上においては陽極部4bと略直角に交わるように形成され、また、支持基板2上の後述する陰極配線部8aに対応する個所においては図2に示すように封止部材9側から見て円弧状となるように形成される。
【0017】
有機層7は、正孔注入層7a,正孔輸送層7b,発光層7c及び電子輸送層7dからなるものであり(図3参照)、陽極部4b上に積層されている。
【0018】
背面電極8は、アルミニウム(Al)からなるものであり、蒸着等の方法で形成される。背面電極8は、円弧状の陰極配線部8a及び透明電極に略直角に交わる陰極部8bを有しており、陰極配線部8a及び陰極部8bは、背面電極8を隔壁部6によってストライプ状に切断されて形成される。また陰極配線部8aは例えばITOからなる接続配線部8cに電気的に接続されており、接続配線部8cの終端部に設けられた陰極端子部8dを介して前記外部電源と電気的に接続されている。
【0019】
封止部材9は、例えばガラス材料からなる平板部材をサンドブラスト,切削,エッチングあるいは熱間プレス加工等の適宜方法で凹形状に形成してなるものである。封止部材9は、例えば紫外線硬化性エポキシ樹脂からなる接着剤9aを介して支持基板2上に気密的に配設され、封止部材9と支持基板2とで有機EL素子3を封止する。また、封止部材9は、接地端子部4d,陽極端子部4cおよび陰極端子部8cが外部に露出するように支持基板2よりも若干小さめに構成されている。
【0020】
以上の各部によって有機ELパネル1が形成されている。有機ELパネル1は、陽極部4bと陰極部8bの対向箇所からなる画素がマトリクス状に設けられて表示部が形成されており、前記外部電源によって前記各画素に定電流を選択的に付与することによって前記各画素を支持基板2方向に向けて選択的に発光させ、種々の文字や図形を表示する。
【0021】
次に、図4及び図5を用いて有機ELパネル1の製造方法について説明する。
【0022】
まず、蒸着法等の手段によって支持基板2上にITOを層状に形成し、その後、フォトリソグラフィー法及びエッチング処理によってパターニングし、陽極配線部4a,陽極部4b及び陽極端子部4cを備える透明電極4と接続配線部8cとを形成する(図4(a)参照)。
【0023】
次に、層状の絶縁材料を塗布し、フォトリソグラフィー法及びエッチング処理によってパターニングし絶縁層5を支持基板2及び透明電極4上に形成する。さらに、層状の絶縁材料を塗布し、フォトリソグラフィー法及びエッチング処理によって透明電極4の陽極部4bと略直角に交わる逆テーパー状の隔壁部6を支持基板2,透明電極4上に形成する(図4(b)参照)。
【0024】
次に、透明電極4,絶縁層5及び隔壁部6が形成された支持基板2を図5に示す加熱室A内に配設し、支持基板2を加熱室A内で加熱して加熱脱水処理を行い、支持基板2,透明電極4,絶縁層5及び隔壁部6に吸着されている水分を蒸発させる。加熱室Aは、導入口10から窒素を導入して、加熱室A内の雰囲気を露点が−65℃以下の低露点とするとともに、排気口11から加熱室A内の窒素雰囲気を自然対流にて排気し、加熱室A内の窒素雰囲気を常に入れ替えるものである。また、加熱室A内には支持基板2を収納する筒状の収納部材12と、収納部材の外面に捲回される加熱コイル(図示しない)とが設けられており、前記加熱コイルに所定の電流を印加することによって収納部材12を加熱し、収納部材12の熱によって支持基板2を例えば250℃まで加熱して前記加熱脱水処理を行う。なお、加熱温度としては支持基板2,透明電極4,絶縁層5及び隔壁部6に吸着されている水分を蒸発させることが可能な温度であればよい。
【0025】
さらに、前記加熱脱水処理後、前記加熱コイルによる加熱を停止するとともに加熱室A内の窒素雰囲気を引き続き入れ替えながら支持基板2の温度を例えば100℃以下に下げる降温処理を行う。なお、前記降温処理においては支持基板2が後の工程で破損しない程度の温度まで下げればよい。前記降温処理の方法としては、加熱室Aは窒素の導入によって生じる導入風が支持基板2に吹き付けられるように導入口10が形成されており、窒素雰囲気の入れ替えによる窒素雰囲気の温度低下と前記導入風とによって支持基板2の温度を下げる方法を用いている。加熱室Aにて前記加熱脱水処理中、また、前記降温処理中に窒素雰囲気を入れ替えることにより、前記加熱脱水処理中に窒素雰囲気中に生じた水分が加熱室Aの外部に排出されるため、前記加熱脱水処理によって生じた水分を除去してあるいは除去しながら前記降温処理を行うことが可能となる。
【0026】
なお、加熱室A内の窒素雰囲気を入れ替える方法としては、本実施の形態に限定されるものではなく、窒素の導入あるいは排気に専用のポンプを設けて、このポンプによって加熱室A内の窒素雰囲気を入れ替えてもよい。また、排気された窒素雰囲気に含まれる水分を除去する脱水機構を備え、加熱室A内の窒素雰囲気を循環させてもよい。また、前記降温処理の方法としては、例えば加熱室A内の窒素雰囲気を入れ替えた後に、支持基板2を冷却された平板部材に接触あるいは近接させて支持基板2の温度を下げる方法を用いてもよい。また、加熱室Aに導入される気体は窒素に限定されるものではなく、例えば水分を除去した大気を導入して加熱室A内の雰囲気を低露点とする方法を用いてもよい。
【0027】
さらに、蒸着法等の手段によって、正孔注入層7a,正孔輸送層7b,発光層7c及び電子輸送層7dを順次積層形成し、有機層7を形成する。さらに蒸着法等の手段によってアルミニウムを積層形成し、層状の背面電極8を形成する。このとき、背面電極8は隔壁部6によってストライプ状に切断され、円弧状の陰極配線部8a及び透明電極に略直角に交わる陰極部8bが形成される(図4(c)参照)。以上の方法によって、陽極部4bと陰極部8bの対向箇所からなる画素がマトリクス状に設けられた有機EL素子3を得る。
【0028】
次に、封止部材9を、有機EL素子3を取り囲むように支持基板2上に接着剤9aを介して配設すると共に、紫外線を照射して接着剤9aを硬化させ、支持基板2と封止部材9とを気密的に接合し、有機EL素子3を前記表示部とする有機ELパネル1を得る(図4(d)参照)。
【0029】
かかる有機ELパネル1の製造方法は、水分を多く含む絶縁層5及び隔壁部6形成後に、低露点雰囲気下にて支持基板2を加熱して前記加熱脱水処理する工程と、前記加熱脱水処理後に、前記加熱脱水処理によって前記低露点雰囲気中に生じた水分を除去してあるいは除去しながら支持基板2の温度を下げる前記降温処理する工程とを含むものである。また、加熱室A内の低露点雰囲気を入れ替えながら前記加熱脱水処理を行うものである。また、加熱室A内の低露点雰囲気を入れ替えてあるいは入れ替えながら前記降温処理を行うものである。したがって、有機ELパネル1の製造方法は、前記加熱脱水処理によって発生した水分を含まないあるいは水分が低減された低露点雰囲気下にて支持基板2を前記加熱脱水処理による高温状態から所定の温度まで下げることができ、加熱後に支持基板2の温度を下げる際に、加熱によって有機EL素子3の構成部材から脱離された雰囲気中の水分が前記構成部材に再吸着することを抑制し、前記加熱脱水処理による脱水効果を十分に得ることが可能となる。
【0030】
なお、本実施形態はドットマトリクス型の有機ELパネル1であったが、セグメント型の有機ELパネルにも本発明を適用できることは言うまでもない。
【0031】
また、本実施形態は、前記加熱脱水処理時に加熱室A内の窒素雰囲気を入れ替えるとともに、前記降温処理時においても加熱室A内の窒素雰囲気を入れ替えるものであったが、本発明は、加熱脱水処理あるいは降温処理の何れか一方を行う時に雰囲気を入れ替えるものであっても十分な脱水効果を得ることができる。
【0032】
また、本実施形態は、絶縁層5及び隔壁部6形成後に、前記加熱脱水処理及び前記降温処理を行うものであったが、本発明の請求項1から請求項3に記載の本発明は、少なくとも絶縁層形成後に加熱脱水処理及び降温処理を行うものであればよい。また、本発明は、有機層あるいは第二電極形成後に加熱脱水処理及び降温処理を行うものであってもよい。また、本発明における加熱脱水処理及び降温処理を行う回数は1回に限定されるものではなく、数回行うものであってもよい。
【0033】
また、本実施形態は、加熱室A内の窒素雰囲気を入れ替えて同一の加熱室A内にて前記加熱脱水処理及び前記降温処理を行うものであったが、請求項1に記載の本発明は、加熱室と降温室とを設け、降温処理と加熱脱水処理とを異なる室内で行うことで、加熱脱水処理によって生じた水分を降温処理を行う雰囲気中から除去するものであってもよい。
【0034】
【発明の効果】
本発明は、少なくとも発光層を有する有機層を一対の電極で挟持した有機EL素子を透光性の支持基板上に配設してなる有機ELパネルの製造方法に関し、加熱脱水処理後の有機ELパネルの構成部材への水分の再吸着を抑制し、十分な脱水効果を得ることが可能となる。
【図面の簡単な説明】
【図1】本発明が適用された有機ELパネルを示す断面図。
【図2】同上を示す正面図。
【図3】同上における有機層を示す拡大断面図。
【図4】本発明の実施の形態である製造方法を示す図
【図5】同上における加熱室を示す図。
【符号の説明】
A 加熱室
1 有機ELパネル
2 支持基板
3 有機EL素子
4 透明電極(第一電極)
5 絶縁層
6 隔壁部
10 導入口
11 排気口
12 収納部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an organic EL panel in which an organic EL (electroluminescence) element in which an organic layer having at least a light emitting layer is sandwiched between a pair of electrodes is disposed on a light-transmitting support substrate.
[0002]
[Prior art]
As an organic EL panel using an organic EL element, a transparent electrode (first electrode) made of ITO (Indium Tin Oxide) or the like serving as an anode, an insulating layer, An organic layer including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and the like, and a non-transparent back electrode (second electrode) made of aluminum (Al) or the like serving as a cathode are sequentially laminated. The organic EL element is formed by forming a sealing member made of a glass material so as to hermetically cover the organic EL element. (For example, see Patent Document 1)
[0003]
In such an organic EL panel, when the organic EL element is air-tightly covered with the sealing member, moisture penetrates into the organic EL element, and the generation of a non-light-emitting portion called a dark spot and an increase in the area thereof are prevented. It is preventing.
[0004]
Further, the moisture causing the dark spot is also adsorbed to the components of the organic EL panel itself, and at least a part of the components of the organic EL panel is formed in order to desorb such moisture. A method is known in which the support substrate is subjected to a heat dehydration treatment or the like under a low dew point atmosphere. (See, for example, Patent Document 2.) In particular, the insulating layer often uses an insulating material such as a polyimide-based or phenol-based insulating material having a high adsorptivity. .
[0005]
[Patent Document 1]
JP-A-11-162635 [Patent Document 2]
JP 2000-150147 A
[Problems to be solved by the invention]
However, in the heat dehydration treatment, when the temperature of the support substrate is lowered after heating, moisture in the atmosphere desorbed from the component due to heating re-adsorbs to the component, and the dehydration effect of the heat dehydration treatment Has not been able to be obtained sufficiently.
[0007]
The present invention has been made in view of such a problem, and provides a method for manufacturing an organic EL panel capable of suppressing re-adsorption of moisture to the constituent members of the organic EL panel after the heat dehydration treatment and obtaining a sufficient dehydration effect. The purpose is to do.
[0008]
[Means for Solving the Problems]
The present invention, in order to solve the problem, as described in claim 1, a first electrode formed in a predetermined shape, an insulating layer, an organic layer having at least a light emitting layer, and a second electrode Is a method for manufacturing an organic EL panel, which is sequentially formed on a light-transmitting supporting substrate, wherein the supporting substrate is heated under a low dew point atmosphere at least after the formation of the insulating layer to perform a heat dehydration treatment. Performing, and performing a temperature lowering process of lowering the temperature of the supporting substrate while removing or removing moisture generated in the low dew point atmosphere by the thermal dehydration process after the thermal dehydration process. And
[0009]
Further, in the first aspect, as described in the second aspect, the heat dehydration treatment is performed while replacing the low dew point atmosphere.
[0010]
Further, in claim 1 or claim 2, as described in claim 3, the temperature lowering process is performed by replacing the low dew point atmosphere or while replacing the low dew point atmosphere.
[0011]
Further, in claim 1 to claim 3, as in claim 4, the first electrode is formed in a stripe shape, and a partition wall portion intersects with the first electrode on the first electrode and the insulating layer. The supporting substrate is subjected to the heat dehydration treatment and the temperature lowering treatment after the formation of the insulating layer and the partition wall portion.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a dot matrix type organic EL panel will be described with reference to the accompanying drawings.
[0013]
The organic EL panel 1 is obtained by forming an organic EL element 3 on a support substrate 2 made of, for example, a glass material. The organic EL element 3 is composed of a transparent electrode 4 (first electrode), an insulating layer 5, a partition 6, an organic layer 7, and a back electrode 8 (second electrode). ing. Further, the organic EL panel 1 includes a sealing member 9 that hermetically covers the organic EL element 3. 1 is a cross-sectional view of the organic EL panel 1, and FIG. 2 is a front view of the organic EL panel 1 as viewed from a sealing member 9 side.
[0014]
The transparent electrode 4 is formed, for example, by forming ITO (Indium Tin Oxide) in which tin oxide (SnO2) is doped with indium oxide (In2O3) on the support substrate 2 by a method such as sputtering, vapor deposition, or ion plating. It is formed by patterning into a stripe by photolithography. The transparent electrode 4 has an anode wiring part 4a and an anode part 4b. Further, the anode wiring section 4a has an anode terminal section 4c at a terminal end, and is electrically connected to an external power supply (not shown) via the anode terminal section 4c.
[0015]
The insulating layer 5 is made of a polyimide-based or phenol-based insulating material, and is formed in a predetermined shape at a non-light-emitting portion on the support substrate 2 by a method such as photolithography. In the organic EL panel 1, the insulating layer 5 is formed between the plurality of anode portions 4 b of the transparent electrode 4 and formed so as to slightly overlap the transparent electrode 3. Insulate.
[0016]
The partition 6 is made of, for example, an insulating material such as a phenol-based material, and is formed in a reverse tapered shape by a method such as a photolithography method. The partition 6 is formed on the transparent electrode 4 and the insulating layer 5 so as to intersect the anode 4b at a substantially right angle, and a portion corresponding to a later-described cathode wiring 8a on the support substrate 2 is shown in FIG. Is formed in an arc shape when viewed from the sealing member 9 side.
[0017]
The organic layer 7 includes a hole injection layer 7a, a hole transport layer 7b, a light emitting layer 7c, and an electron transport layer 7d (see FIG. 3), and is stacked on the anode section 4b.
[0018]
The back electrode 8 is made of aluminum (Al) and is formed by a method such as vapor deposition. The back electrode 8 has an arc-shaped cathode wiring portion 8a and a cathode portion 8b that intersects the transparent electrode at a right angle. The cathode wiring portion 8a and the cathode portion 8b are formed by dividing the back electrode 8 into a stripe shape by the partition wall portion 6. It is formed by cutting. Further, the cathode wiring section 8a is electrically connected to a connection wiring section 8c made of, for example, ITO, and is electrically connected to the external power supply via a cathode terminal section 8d provided at the end of the connection wiring section 8c. ing.
[0019]
The sealing member 9 is formed by, for example, forming a flat plate member made of a glass material into a concave shape by an appropriate method such as sandblasting, cutting, etching, or hot pressing. The sealing member 9 is hermetically disposed on the support substrate 2 via an adhesive 9 a made of, for example, an ultraviolet-curable epoxy resin, and seals the organic EL element 3 with the sealing member 9 and the support substrate 2. . The sealing member 9 is configured to be slightly smaller than the support substrate 2 so that the ground terminal portion 4d, the anode terminal portion 4c, and the cathode terminal portion 8c are exposed to the outside.
[0020]
The organic EL panel 1 is formed by the above components. The organic EL panel 1 has a display section in which pixels composed of opposed portions of the anode section 4b and the cathode section 8b are provided in a matrix, and a constant current is selectively applied to each pixel by the external power supply. Thus, each pixel is selectively made to emit light in the direction of the support substrate 2 to display various characters and figures.
[0021]
Next, a method for manufacturing the organic EL panel 1 will be described with reference to FIGS.
[0022]
First, ITO is formed in a layer on the support substrate 2 by means such as a vapor deposition method, and then patterned by photolithography and etching to form a transparent electrode 4 having an anode wiring portion 4a, an anode portion 4b, and an anode terminal portion 4c. And the connection wiring portion 8c are formed (see FIG. 4A).
[0023]
Next, a layered insulating material is applied and patterned by photolithography and etching to form an insulating layer 5 on the support substrate 2 and the transparent electrode 4. Further, a layered insulating material is applied, and a reverse tapered partition 6 intersecting at a right angle with the anode 4b of the transparent electrode 4 is formed on the support substrate 2 and the transparent electrode 4 by photolithography and etching (FIG. 4 (b)).
[0024]
Next, the supporting substrate 2 on which the transparent electrode 4, the insulating layer 5, and the partition 6 are formed is disposed in the heating chamber A shown in FIG. Is performed to evaporate the moisture adsorbed on the support substrate 2, the transparent electrode 4, the insulating layer 5, and the partition 6. The heating chamber A introduces nitrogen from the inlet 10 to reduce the atmosphere in the heating chamber A to a low dew point with a dew point of −65 ° C. or less, and to change the nitrogen atmosphere in the heating chamber A from the exhaust port 11 to natural convection. And the nitrogen atmosphere in the heating chamber A is constantly replaced. In the heating chamber A, a cylindrical storage member 12 for storing the support substrate 2 and a heating coil (not shown) wound around the outer surface of the storage member are provided. The housing member 12 is heated by applying an electric current, and the supporting substrate 2 is heated to, for example, 250 ° C. by the heat of the housing member 12 to perform the heating and dehydrating treatment. The heating temperature may be any temperature at which the moisture adsorbed on the support substrate 2, the transparent electrode 4, the insulating layer 5, and the partition 6 can be evaporated.
[0025]
Further, after the heating and dehydrating treatment, a temperature lowering treatment for lowering the temperature of the support substrate 2 to, for example, 100 ° C. or lower is performed while stopping the heating by the heating coil and continuously replacing the nitrogen atmosphere in the heating chamber A. In the temperature lowering process, the temperature may be reduced to a temperature at which the supporting substrate 2 is not damaged in a later step. As a method of the temperature lowering process, the heating chamber A is formed with the inlet 10 so that the introduction wind generated by the introduction of nitrogen is blown to the support substrate 2, and the temperature of the nitrogen atmosphere is reduced by replacing the nitrogen atmosphere. A method of lowering the temperature of the support substrate 2 by wind is used. During the heating and dehydrating treatment in the heating chamber A, and by replacing the nitrogen atmosphere during the temperature lowering treatment, the moisture generated in the nitrogen atmosphere during the heating and dehydrating treatment is discharged outside the heating chamber A. The temperature lowering process can be performed while removing or removing water generated by the heat dehydration process.
[0026]
The method for replacing the nitrogen atmosphere in the heating chamber A is not limited to this embodiment, but a dedicated pump is provided for introducing or exhausting nitrogen, and the nitrogen atmosphere in the heating chamber A is provided by the pump. May be replaced. Further, a dehydration mechanism for removing moisture contained in the exhausted nitrogen atmosphere may be provided to circulate the nitrogen atmosphere in the heating chamber A. Further, as the method of the temperature lowering process, for example, a method of lowering the temperature of the support substrate 2 by replacing the nitrogen atmosphere in the heating chamber A and then bringing the support substrate 2 into contact with or close to the cooled flat plate member may be used. Good. The gas introduced into the heating chamber A is not limited to nitrogen. For example, a method may be used in which the atmosphere in the heating chamber A has a low dew point by introducing air from which moisture has been removed.
[0027]
Further, a hole injection layer 7a, a hole transport layer 7b, a light-emitting layer 7c, and an electron transport layer 7d are sequentially laminated by means such as a vapor deposition method to form the organic layer 7. Further, aluminum is laminated and formed by means such as a vapor deposition method to form a layered back electrode 8. At this time, the back electrode 8 is cut into stripes by the partition 6 to form an arc-shaped cathode wiring portion 8a and a cathode portion 8b that intersects the transparent electrode at a substantially right angle (see FIG. 4C). According to the above-described method, the organic EL element 3 in which the pixels including the opposed portions of the anode portion 4b and the cathode portion 8b are provided in a matrix is obtained.
[0028]
Next, the sealing member 9 is disposed on the support substrate 2 via the adhesive 9a so as to surround the organic EL element 3, and the adhesive 9a is cured by irradiating ultraviolet rays to seal the organic EL element 3. The stop member 9 is hermetically bonded to obtain the organic EL panel 1 having the organic EL element 3 as the display section (see FIG. 4D).
[0029]
The method for manufacturing the organic EL panel 1 includes a step of heating the support substrate 2 in a low dew point atmosphere and performing the heat dehydration after the formation of the insulating layer 5 containing a large amount of water and the partition 6. Removing the moisture generated in the low dew point atmosphere by the thermal dehydration process, or lowering the temperature of the support substrate 2 while removing the moisture. Further, the heat dehydration treatment is performed while replacing the low dew point atmosphere in the heating chamber A. Further, the temperature lowering process is performed by replacing or replacing the low dew point atmosphere in the heating chamber A. Therefore, the method for manufacturing the organic EL panel 1 is such that the supporting substrate 2 is heated from a high temperature state by the heat dehydration process to a predetermined temperature in a low dew point atmosphere containing no or reduced moisture generated by the heat dehydration process. When the temperature of the support substrate 2 is lowered after heating, moisture in the atmosphere desorbed from the constituent members of the organic EL element 3 by heating is suppressed from re-adsorbing to the constituent members, and the heating is suppressed. A sufficient dehydration effect by the dehydration treatment can be obtained.
[0030]
In this embodiment, the dot matrix type organic EL panel 1 is used. However, it goes without saying that the present invention can be applied to a segment type organic EL panel.
[0031]
Further, in the present embodiment, the nitrogen atmosphere in the heating chamber A is exchanged during the heating and dehydrating processing, and the nitrogen atmosphere in the heating chamber A is also exchanged during the temperature lowering processing. A sufficient dehydration effect can be obtained even if the atmosphere is replaced when performing either the treatment or the temperature lowering treatment.
[0032]
In the present embodiment, the heating dehydration process and the temperature lowering process are performed after the insulating layer 5 and the partition 6 are formed. However, the present invention according to claims 1 to 3 of the present invention, What is necessary is to perform at least the heat dehydration treatment and the temperature reduction treatment after the formation of the insulating layer. Further, in the present invention, a heat dehydration treatment and a cooling treatment may be performed after the formation of the organic layer or the second electrode. Further, the number of times of performing the heating dehydration treatment and the temperature lowering treatment in the present invention is not limited to one time, and may be performed several times.
[0033]
In the present embodiment, the heating dehydration process and the temperature lowering process are performed in the same heating chamber A by replacing the nitrogen atmosphere in the heating chamber A. Alternatively, a heating chamber and a cooling chamber may be provided, and by performing the cooling process and the heating dehydration process in different rooms, moisture generated by the heating dehydration process may be removed from the atmosphere in which the cooling process is performed.
[0034]
【The invention's effect】
The present invention relates to a method for manufacturing an organic EL panel in which an organic EL element having at least an organic layer having a light emitting layer sandwiched between a pair of electrodes is disposed on a light-transmitting support substrate, It is possible to suppress the re-adsorption of moisture to the component members of the panel, and to obtain a sufficient dehydration effect.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an organic EL panel to which the present invention is applied.
FIG. 2 is a front view showing the same.
FIG. 3 is an enlarged sectional view showing an organic layer in the above.
FIG. 4 is a view showing a manufacturing method according to an embodiment of the present invention; FIG. 5 is a view showing a heating chamber in the same embodiment;
[Explanation of symbols]
A Heating chamber 1 Organic EL panel 2 Support substrate 3 Organic EL element 4 Transparent electrode (first electrode)
5 Insulating layer 6 Partition 10 Inlet 11 Exhaust port 12 Housing member

Claims (4)

所定の形状に形成された第一電極と、絶縁層と、少なくとも発光層を有する有機層と、第二電極と、を透光性の支持基板上に順次積層形成してなる有機ELパネルの製造方法であって、少なくとも前記絶縁層形成後に、低露点雰囲気下にて前記支持基板を加熱して加熱脱水処理を行う工程と、前記加熱脱水処理後に前記加熱脱水処理によって前記低露点雰囲気中に生じた水分を除去してあるいは除去しながら前記支持基板の温度を下げる降温処理を行う工程と、を含むことを特徴とする有機ELパネルの製造方法。Manufacture of an organic EL panel in which a first electrode formed in a predetermined shape, an insulating layer, an organic layer having at least a light-emitting layer, and a second electrode are sequentially formed on a light-transmitting support substrate. A method of heating and dehydrating the support substrate by heating the support substrate under a low dew point atmosphere at least after the formation of the insulating layer. Performing a temperature lowering process for lowering the temperature of the supporting substrate while removing or removing the moisture. 前記加熱脱水処理を、前記低露点雰囲気を入れ替えながら行うことを特徴とする請求項1に記載の有機ELパネルの製造方法。The method for manufacturing an organic EL panel according to claim 1, wherein the heat dehydration treatment is performed while changing the low dew point atmosphere. 前記降温処理を、前記低露点雰囲気を入れ替えてあるいは入れ替えながら行うことを特徴とする請求項1または請求項2に記載の有機ELパネルの製造方法。The method of manufacturing an organic EL panel according to claim 1, wherein the temperature lowering process is performed by replacing or changing the low dew point atmosphere. 前記第一電極をストライプ状に形成し、前記第一電極及び前記絶縁層上に隔壁部を前記第一電極と交差するように形成し、前記絶縁層及び前記隔壁部形成後に、前記支持基板を前記加熱脱水処理及び前記降温処理することを特徴とする請求項1から請求項3の何れかに記載の有機ELパネルの製造方法。The first electrode is formed in a stripe shape, a partition portion is formed on the first electrode and the insulating layer so as to intersect with the first electrode, and the support substrate is formed after the insulating layer and the partition portion are formed. The method for manufacturing an organic EL panel according to claim 1, wherein the heat dehydration treatment and the temperature lowering treatment are performed.
JP2003023143A 2003-01-31 2003-01-31 Method for manufacturing organic el panel Pending JP2004235048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003023143A JP2004235048A (en) 2003-01-31 2003-01-31 Method for manufacturing organic el panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003023143A JP2004235048A (en) 2003-01-31 2003-01-31 Method for manufacturing organic el panel

Publications (1)

Publication Number Publication Date
JP2004235048A true JP2004235048A (en) 2004-08-19

Family

ID=32952025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003023143A Pending JP2004235048A (en) 2003-01-31 2003-01-31 Method for manufacturing organic el panel

Country Status (1)

Country Link
JP (1) JP2004235048A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140140A (en) * 2004-10-14 2006-06-01 Semiconductor Energy Lab Co Ltd Display device
JP2007042619A (en) * 2005-07-04 2007-02-15 Semiconductor Energy Lab Co Ltd Method of manufacturing light emitting device
JP2007280920A (en) * 2006-04-05 2007-10-25 Daewoo Electronics Corp Organic electroluminescence element and manufacturing method thereof
JP2007329448A (en) * 2006-06-07 2007-12-20 Samsung Sdi Co Ltd Organic light-emitting display device
JP2009123696A (en) * 2007-10-26 2009-06-04 Mitsubishi Chemicals Corp Organic electroluminescent element, image display device, and manufacturing method for organic electroluminescent element
JP2011040408A (en) * 2004-04-16 2011-02-24 Semiconductor Energy Lab Co Ltd Light emitting device
US8288180B2 (en) 2005-07-04 2012-10-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light emitting device
US8772783B2 (en) 2004-10-14 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2018026569A (en) * 2009-09-04 2018-02-15 株式会社半導体エネルギー研究所 Method for manufacturing display device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040408A (en) * 2004-04-16 2011-02-24 Semiconductor Energy Lab Co Ltd Light emitting device
US8772783B2 (en) 2004-10-14 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2006140140A (en) * 2004-10-14 2006-06-01 Semiconductor Energy Lab Co Ltd Display device
JP2007042619A (en) * 2005-07-04 2007-02-15 Semiconductor Energy Lab Co Ltd Method of manufacturing light emitting device
US8288180B2 (en) 2005-07-04 2012-10-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light emitting device
US9196858B2 (en) 2005-07-04 2015-11-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light emitting device
JP2007280920A (en) * 2006-04-05 2007-10-25 Daewoo Electronics Corp Organic electroluminescence element and manufacturing method thereof
JP2007329448A (en) * 2006-06-07 2007-12-20 Samsung Sdi Co Ltd Organic light-emitting display device
JP4615529B2 (en) * 2006-06-07 2011-01-19 三星モバイルディスプレイ株式會社 Organic light-emitting display device
US7969086B2 (en) 2006-06-07 2011-06-28 Samsung Mobile Display, Co., Ltd. Organic light emitting display apparatus
JP2009123696A (en) * 2007-10-26 2009-06-04 Mitsubishi Chemicals Corp Organic electroluminescent element, image display device, and manufacturing method for organic electroluminescent element
JP2018026569A (en) * 2009-09-04 2018-02-15 株式会社半導体エネルギー研究所 Method for manufacturing display device
JP2019075576A (en) * 2009-09-04 2019-05-16 株式会社半導体エネルギー研究所 Method of manufacturing display device
JP2020061559A (en) * 2009-09-04 2020-04-16 株式会社半導体エネルギー研究所 Manufacturing method for display device

Similar Documents

Publication Publication Date Title
JP2015207545A (en) Oled light emission device and manufacturing method for the same
KR20110074518A (en) Method for producing an organic radiation-emitting component and organic radiation-emitting component
EP2246918A1 (en) Laser Irradiation Apparatus and Method of Manufacturing Display Device Using the Same
JP2004235048A (en) Method for manufacturing organic el panel
JP2009283396A (en) Method for manufacturing for organic el display
JP2007073305A (en) Organic el light emitting device and manufacturing method of the same
JP2002124379A (en) Manufacturing method of organic el device
JP4310843B2 (en) Method for manufacturing organic electroluminescent device
JP2008010243A (en) Organic el element and manufacturing method therefor
JP5748069B2 (en) Method for manufacturing organic electroluminescent display device having getter layer
JP2001035654A (en) Display panel and its manufacture
JP4147585B2 (en) Substrate dewatering method and dewatering apparatus
JP2009187697A (en) Active matrix type organic el display device and its manufacturing method
JP2008293957A (en) Manufacturing method of organic light emitting device
US20080268136A1 (en) Method of producing organic light emitting apparatus
JP2007200626A (en) Organic electroluminescent element
JP3772752B2 (en) Organic EL display device and organic EL element sealing method
JP2001326076A (en) Manufacturing method of organic el element
WO2010113727A1 (en) Organic el element and manufacturing method therefor
JP4264705B2 (en) Manufacturing method of organic EL panel
KR100661159B1 (en) Organic electro luminescent emitting device and the method for manufacturing the same
JP2005310639A (en) Manufacturing method of organic el element
JP2007053017A (en) Organic el panel and its manufacturing method
JP2008060024A (en) Method of manufacturing organic light emitting device and apparatus of manufacturing organic thin film
JP5367344B2 (en) Manufacturing method of organic light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080107