JP2004225582A - Engine cooling structure - Google Patents

Engine cooling structure Download PDF

Info

Publication number
JP2004225582A
JP2004225582A JP2003012584A JP2003012584A JP2004225582A JP 2004225582 A JP2004225582 A JP 2004225582A JP 2003012584 A JP2003012584 A JP 2003012584A JP 2003012584 A JP2003012584 A JP 2003012584A JP 2004225582 A JP2004225582 A JP 2004225582A
Authority
JP
Japan
Prior art keywords
cooling water
intake
port
end side
cylinder head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003012584A
Other languages
Japanese (ja)
Other versions
JP4211405B2 (en
Inventor
Tetsuro Ishida
哲朗 石田
Tokiichi Mizukami
外喜市 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2003012584A priority Critical patent/JP4211405B2/en
Publication of JP2004225582A publication Critical patent/JP2004225582A/en
Application granted granted Critical
Publication of JP4211405B2 publication Critical patent/JP4211405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an engine cooling structure for restraining an excessive rise in a contact fire surface temperature of a combustion chamber opposed part opposed to inter-port clearance by making cooling water flow to the inter-port clearance of intake-exhaust ports. <P>SOLUTION: Intake-exhaust valves are arranged by sandwiching the cylinder head center line LO, and at least one of the intake-exhaust valves is juxtaposed by two in the axial direction X to one cylinder. A cooling water passage is provided for making the cooling water flow in the axial direction X. A cylinder head has a port wall part for forming the intake-exhaust ports 22 and 23 for communicating a combustion chamber C with the cylinder head outside via at least one valve of the intake-exhaust valves. The cooling water passage has a central waterway r1 for making the cooling water flow to the other end side from the axial directional one end side, intake-exhaust side waterways r2 and r3 and a sucking-out passage rs passing between the two valves, and a projecting part 27 is formed from an axial directional other end side wall surface in the port wall part positioned on the axial directional one end side among the port wall part. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、エンジンの冷却装置、特に、水冷式エンジンのシリンダヘッドに軸線方向に沿って形成された冷却水通路を有する冷却装置に関する。
【0002】
【従来の技術】
従来の水冷式内燃機関の冷却装置においては、エンジン本体であるシリンダブロックやシリンダヘッド内にウォータージャケットを形成し、これらウォータージャケットにウォーターポンプを用いて冷却水を循環させ、更に、ウォータージャケットの冷却水出口と冷却水入り口の間を連結する外部の循環路にラジエータを配備して冷却水の冷却を行なっている。
【0003】
ところで、エンジン本体の一部を成すシリンダヘッドは、その低壁がシリンダブロック側のシリンダライナーの上方開口を閉鎖することで、燃焼室を形成することより、この燃焼室対向部は高温化し易く、この部位を効果的に冷却することが必要である。そこで、シリンダヘッド側のウォータージャケットは燃焼室対向部と対向するように配設され、冷却水で燃焼室対向部を積極的に冷却するようにしている。
【0004】
特に、 燃焼室対向部には点火プラグの取り付けボス部、吸排気弁の弁座、およびそれより延出する吸排気ポートが一体的に鋳造されており、これらとの干渉を避けたうえで、ウォータージャケットが形成されることとなり、冷却水の流路であるウォータージャケットの形状は比較的複雑な形状を成す。
【0005】
例えば、直列複数気筒のシリンダヘッドの場合、その軸線方向に沿って吸排気ポートが順次配備され、それら吸排気ポートの中間部に点火プラグの取り付け筒状部が配備されており、冷却水の流路には多数の突状部材が突設され、冷却水の流れを規制することとなる。
特に、図6に示すように、1気筒の動弁系が吸気2弁排気2弁式であるとすると、シリンダヘッドにはその軸線方向Xに沿って吸気ポート110、排気ポート120が1対づつ並列状に配備され、それら4つの吸排気ポート110、120の中央に点火プラグの取り付け筒部130が配備される。
【0006】
このようなレイアウトの場合、各突起部材との干渉を避けて設けられるウォータージャケット140はシリンダヘッド中央部をその軸線方向Xに直列状に延びる中央流路n1と吸排気ポートの下側に位置する吸排側流路n2とからなる。ここで、中央流路n1は点火プラグ用の取り付け筒部130が突出するものの比較的冷却水の流動量を確保して軸線方向Xに流すことができる。更に、中央流路n1を挟んで左右に位置する吸排側流路n2は比較的流路断面が狭くなるが、中央流路と同様に、軸線方向Xに略直列状に延びることより、冷却水の流動量を所定量確保して軸線方向Xに流すことができる。
【0007】
これらに対し、軸線方向Xに沿って1対づつ並列状に配備される給気ポート110や排気ポート120のポート間の隙間160には、中央流路n1と吸排気側流路n2とを連通する連通路が形成されて、吸排気側n2を流通した冷却水がポート間の隙間160を通って中央流路n1へ合流されるように構成されている。しかし、中央流路n1の冷却水の流れが強いと、この中央流路n1の冷却水の流れが連通路での冷却水の流動を抑えるように影響を与えてしまい、ポート間の隙間160に冷却水が滞留して、ポート間の冷却が良好に行なえない。
【0008】
そこで、ポート間の冷却水の滞留を排除する上で、例えば、シリンダヘッドのウォータージャケットにおける冷却水の流量を十分に確保したり、あるいは、燃焼室対向部のポート間部位の触火面温度の上昇を抑制すべく、シリンダヘッドの軸線方向の縦流れの強化を図ることが行なわれている。
【0009】
なお、実公平7−34197号公報(特許文献1)には強制空冷式シリンダヘッドが開示され、ここには冷却風入口側通路からの冷却風を、排気ポートの上流側に突出し形成された突起部で左右に分割し、左右の冷却風出口側通路に冷却風を確実に流下させ、排気ポートやその近傍の液冷室の加熱を防止するという構成が開示されている。
【0010】
【特許文献1】
実公平7−34197号公報
【0011】
【発明が解決しようとする課題】
上述のように、シリンダヘッドの下壁の燃焼室対向部は高温化する傾向にあり、このうち、冷却水の流動方向における吸排気ポートの下流部位、特に、ポート間隙間には冷却水が滞留する傾向が高い。従来、この冷却水滞留排除のため、シリンダヘッドの軸線方向の縦流れの強化を図っていたが、十分な滞留防止機能が得られず、ポンプ吐出量の増加を招くこともあった。更に、特許文献1に開示される様に、冷却媒体を冷却目標部位側に分岐して流入させる等の対策が成された場合、本来、十分な流量を保持していた主要流路の流量が減ることとなり、この場合、次の様な問題がある。
【0012】
即ち、主要流路上には点火プラグ用筒部等が突出し、そのボス部は比較高温化し易く、また、そのボス部の近傍には吸排気弁の弁座の中央対向壁側が位置する。このため、これら部位の触火面温度を気筒間格差を排除するように十分に冷却する必要があり、主要流路の冷却水量を低減することは好ましくないという要請がある。
【0013】
本発明は、以上のような課題に基づきなされたもので、シリンダヘッドのウォータージャケット内の主要流路の流量を低減させることなく、吸排気ポートのポート間隙間に冷却水を流し、ポート間隙間と対向する燃焼室対向部の触火面温度の過度な上昇を防止するようにしたエンジンの冷却構造を提供することを目的とする。
【0014】
【課題を解決するための手段】
上述の目的を達成するために、請求項1の発明は、クランク軸と平行な軸線を挟んで一方に吸気弁が配置され他方に排気弁が配置されるとともに、1つの気筒に対して上記吸気弁又は上記排気弁の少なくとも一方が上記軸線方向に2つ並設されるエンジンであって、上記エンジンのシリンダヘッド内に形成されて、冷却水を上記軸線方向に流通させる冷却水路を有するエンジンの冷却構造において、上記シリンダヘッドは、上記少なくとも一方の弁を介して燃焼室とシリンダヘッド外とを連通するポートを形成するポート壁部を有し、上記冷却水路は、上記軸線上で上記冷却水を軸線方向一端側から他端側へ流通させる第1水路と、上記ポート壁部の下方で上記冷却水を上記軸線方向一端側から上記他端側へ流通させる第2水路と、上記少なくとも一方の弁を構成する2つの弁の間を通って上記第1水路と上記第2水路とを連通する連通路とを有し、上記ポート壁部のうち上記軸線方向一端側に位置するポート壁部は、上記軸方向他端側の壁面に上記軸方向他端側に向かって突出するように形成される突出部が形成されていることを特徴とする。
【0015】
このように、吸気弁又は上記排気弁、即ち、吸排気ポートの少なくとも一方が軸線方向に2つ並設され、冷却水が軸線方向に流通されているもので、吸排気ポートの少なくとも一方の上流側のポート壁部より他方の下流側のポート壁部の壁面に向かって突出部が突出形成されることより、第1水路を流通する冷却水の一部がポート間の隙間に流れ込んで連通路の冷却水の流動に影響を与えることが抑制されて、この下流側のポート壁部の壁面と突出部の先端部との隙間の冷却水が、第1水路を軸線方向に流動する冷却水の流速による吸い込み作用を受け、 第1水路側に吸い込み流動し、ポート間隙間に冷却水の流を生成でき、 ポート間、即ち、弁間隙間の冷却を確実に促進でき、この際、第1水路側の流量に大きな変動を来すことも無い。
【0016】
請求項2記載のエンジンの冷却構造は、請求項1記載の上記シリンダヘッドには、気筒中心部に点火プラグ又は燃料噴射弁を配設するための中心壁部が形成され、上記突出部の上記軸線側側面は、上記中心壁部の形状に沿うように形成されていることを特徴とする。
このように、気筒中心部の中心壁部に対して突出部の対向壁面である軸線側側面が中心壁部の形状に沿うように形成されるので、第1水路における冷却水の流動に大きな影響を与えることが無い。
【0017】
【発明の実施の形態】
図1乃至4に示すエンジンの冷却装置は、図示しない車両のエンジン1に搭載され、エンジン本体を強制水冷する。このエンジン1はシリンダブロック2の上下にシリンダヘッド3、オイルパン4を一体結合してエンジン本体を構成し、エンジン本体の前方にラジエータ5を配置し、シリンダブロック2にウォーターポンプ8を一体的に取り付ける。
シリンダブロック2は、図3、4に示すように、4つのシリンダライナ11をその軸線Lsを縦向きにした状態でシリンダブロック2の長手方向に順次直列状に配備している。
【0018】
シリンダブロック2はその下部に不図示のクランク軸を配備している。図1、図2にはこの不図示のクランク軸と平行な軸線L0をシリンダブロック2の上側のシリンダヘッド3とともに開示した。
このシリンダヘッド3の平面視において、クランク軸と平行な軸線L0を挟んで一方(図1、2で上側)に不図示の吸気弁に開閉される1対の吸気ポート22が配置され、他方(図1、2で下側)に不図示の排気弁に開閉される排気ポート23が配置される。
【0019】
なお、シリンダブロック2は外壁9と4つのシリンダライナ11との間に環状にシリンダブロック側ウォータジャケット12(以後単に下ジャケットと記す)を形成している。下ジャケット12の上壁13には複数の冷却水導入穴14が形成され、前端側の外壁9に排出口15が形成される。なお、場合により、上壁13はシリンダブロック2に形成されることなく、冷却水導入穴14はガスケット16によって配置された構成を採っても良い。
【0020】
この下ジャケット12は冷却水回路Aに接続されている。排出口15は下パイプ7を介しラジエータ5に連通する。
図3に示すように、シリンダヘッド3はシリンダブロック2の上壁13にガスケット16を介して重ねられる下壁17を有し、その周縁より縦向きに延出する環状の外壁18と、外壁18の上端側に一体結合するヘッド上壁19とを備える。シリンダヘッド3の下壁17はシリンダブロック2側の各シリンダライナ11に対向する燃焼室Cと対向する燃焼室対向部Bが上向き凸状に形成される。
【0021】
シリンダヘッド3の下壁17の上には不図示の動弁系、点火系の部材と干渉しない状態でシリンダヘッド側ウォータージャケット21(以後単に上ジャケットと記す)が形成され、同上ジャケット21は冷却水回路Aに接続されている。
図2に示すように、シリンダヘッド3の下壁17はクランク軸と平行な軸線L0の方向である軸線方向Xに、各シリンダライナ11と対向する燃焼室対向部Bを順次配設している。
【0022】
各燃焼室対向部Bには各1対の吸気ポート22及び排気ポート23の基端側が一体的に取り付けられ、それらの中央である気筒中心部に不図示の点火プラグを嵌着するための筒部材26を嵌着する中心壁部24が形成される。
ここで、図3に示すように、各吸排気ポート22、23の基端の内側下面には不図示の各吸排気弁が接離する環状弁座221、231が形成され、これら各環状弁座221、231の近傍の下向き面が触火面fを形成する。各吸排気ポート22、23は略筒状のポート壁部で形成され、同ポート壁部は湾曲した上でその延出端が外壁18に一体的に結合されるよう形成され、その連結部外側には不図示の吸排多岐管が連結される。ここで、湾曲した各ポート壁部はその下方である下向き面dfの下側に後述の第2水路としての吸排気側水路r2、r3を配置している。
【0023】
更に、図3に示すように、各燃焼室対向部Bに対して所定量上方側に離れてジャケット上壁20が配備され、このジャケット上壁20は吸排気ポート22、23および中心壁部24との当接部位で相互に一体的に結合されるように鋳造されている。
このため、シリンダヘッドの下壁17とジャケット上壁20間に、上ジャケット21を形成しており、ジャケット上壁20とヘッド上壁19との間の空間に不図示の動弁系や点火プラグ用筒部材26の上部が収容されている。
【0024】
ここで、シリンダヘッド3の下壁17とジャケット上壁20間の上ジャケット21にはクランク軸と平行な軸線L0の方向である軸線方向Xに向けて、中央水路r1と、その左右端側の吸排気側水路r2、r3とが並列状に形成される。
この内、上ジャケット21の中央水路r1は燃焼室対向部Bの中央部と、吸排気ポートの中央側壁部と、中心壁部24とに沿って順次冷却水を流下させる水路であり、比較的流路抵抗が小さく、比較大きな流量を確保でき、冷却水速度を大きく確保できる。
【0025】
吸排気側水路r2、r3は燃焼室対向部Bの側部と、吸排気ポート22、23の下向き面dfと、縦向きの外壁18とに沿って順次冷却水を流下させる水路であり、比較的流路断面積が小さいが、冷却水速度を比較的大きく確保できる。
図1に示すように、吸排気ポート22、23はそれぞれ、上ジャケット21内において、その中央側壁部が軸線方向Xである中央水路r1の軸線方向Xに沿って上流側と下流側とに並列に順次配備されている。
【0026】
ここで、上流排気ポート23uと下流排気ポート23dは対向壁面間に隙間eを有し、同隙間eは中央水路r1、排気側流路r3に連通する。同様に、上流吸気ポート22uと下流吸気ポート22dは対向壁面間に隙間eを有し、同隙間eは中央水路r1、吸気側流路r2に連通する。
ここで、上流排気ポート23uと上流吸気ポート22uとの各中央側壁部の近傍で軸線方向Xで他端側ポート(下流排気ポート22d、下流排気ポート23d)の壁面に向かって突出部27がそれぞれ突出形成される。
【0027】
各突出部27は縦向き片状体で上流排気、吸気ポート23u、22uの各中央側壁部との結合部において比較的肉厚状態を確保し、突出し端に向けてその肉厚を薄厚化して形成される。特に、各先端部分は下流排気ポート23dと下流吸気ポート22dの各中央側壁部に対して所定幅を保って対向するように形成され、同部に吸い出し口mが形成される。
【0028】
ここで、上流排気ポート23uと上流吸気ポート22uの各突出部27は各軸線側側面である中央縦面faが中央水路r1の冷却水の流線に沿う形状に形成され、各隙間縦面fbが下流排気ポート23d或いは下流吸気ポート22dの各対向壁面f1に沿う形状に形成される。
ここで、各突出部27の軸線側側面である中央縦面faは中央水路r1の流線に沿うと共に、燃焼室対向部Bの中心壁部24の形状に沿うように形成されるので、同部によってこの部位を通過する冷却水に流動抵抗を与え、流量に大きな影響を与えるということを確実に防止できる。
【0029】
さらに、各突出部27の各隙間縦面fbは下流排気ポート23d或いは下流吸気ポート22dの各対向壁面に所定間隔を保って沿う形状に形成される。ここで、各隙間縦面fbは吸気側流路r2、排気側流路r3の冷却水を吸い出し口mに容易に導くことが可能な吸い出し路rsとしての形状を採る。
ここで、各吸い出し口mは中央水路r1と対向し、特に、冷却水の流線に対し鋭角状を保つように形成される。このため、中央水路r1に所定量以上の流速の冷却水が流れると、中央水路r1の冷却水流れに吸い出し路rsの冷却水が吸い出し口mより吸い出され、噴流ポンプ機能を発揮できる。
【0030】
このような構成のエンジン冷却装置の作動を説明する。
エンジン1の駆動と共にウォーターポンプ8が駆動し、主パイプ34から吸入した冷却水を上ジャケット21に吐出する。
この場合、エンジン1が冷態時にあると、上ジャケット21の出口側のサーモスタット10はラジエータ側の第1入口31を閉じ、上ジャケット21側の第2入口32を開き、上ジャケット21の冷却水を出口33、主パイプ34、ウォーターポンプ8と暖気サイクルR1で流し、暖気促進が図られる。
【0031】
冷却水の温度が所定の高温域に達すると、サーモスタット10は第2入口32を閉じ、第1入口31を開き、主パイプ34にラジエータ側の冷却水を流す。
即ち、冷却水の温度が所定の高温域にあると、上ジャケット21の冷却水は複数の冷却水導入穴14よりシリンダ列回りの下ジャケット12に流入し、シリンダ列の冷却の後、外壁9の排出口15に達する。排出口15の冷却水は下パイプ7、ラジエータ5を経て、サーモスタット10の第2入口31、主パイプ34、ウォーターポンプ8へと流動し、冷却サイクルR2に沿って冷却水を流する。
【0032】
このようにエンジン1の上下ジャケット21、12に冷却水が流動するにあたり、特に、上ジャケット21には常に軸線方向Xに冷却水が流動し、即ち、中央水路r1および吸排気側水路r2、r3に沿って冷却水が流動する。
【0033】
このような上ジャケット21内に複数配備される給排気ポートのうちの各上流排気ポート23uと上流吸気ポート22uには突出部27がそれぞれ形成され、これにより吸い出し口mおよび吸い出し路rsが形成されている。このため、軸線方向である中央水路r1に所定量の流速で冷却水が流動すると、吸い出し口mの働きで、噴流ポンプの吸い込み作用が働き、吸気側流路r2、排気側流路r3の冷却水をポート間の吸い出し路rsより吸い出し口mを介し、要部流路である中央水路r1側に吸い出しでき、ポート間隙間に冷却水の流を生成できる。また、この突出部27によって、中央水路r1を流通する冷却水の一部がポート間の隙間に流れ込むのを防止でき、中央水路r1を流動する冷却水が吸い出し路rsでの冷却水の流動に悪影響を与えることはない。この際、不図示の各吸排気弁が接離する環状弁座221、231等の近傍の触火面fで生じる熱を吸い出し路rsを流動する冷却水により確実に冷却でき、ポート間、即ち、弁間隙間の冷却を確実に促進でき、信頼性向上と抗ノック性の向上を図れ、この際、要部流路である中央水路r1側の流量に大きな変動を来すことも無い。
【0034】
上述のところにおいて、燃焼室対向部Bの中央には点火プラグ用の中心壁部24が形成されていたが、これに代えて燃料噴射弁用の中心壁部が形成されるように形成されていても良く、この場合も図1のエンジンの冷却構造と同様の作用効果が得られる。
上述のところにおいて、図1のエンジンの冷却構造では、上ジャケット21内に複数配備される各上流排気ポート23uと上流吸気ポート22uに突出部27がそれぞれ形成されていたが、場合により、触火面温度が特に上昇し易い上流排気ポート23u側にのみ突起部27を設け、構成の簡素化を図っても良い。
【0035】
【発明の効果】
以上のように、請求項1の発明は、吸気弁又は上記排気弁、即ち、吸排気ポートの少なくとも一方が軸線方向に2つ並設され、冷却水が軸線方向に流通されているもので、吸排気ポートの少なくとも一方の上流側のポート壁部より他方の下流側のポート壁部の壁面に向かって突出部が突出形成されることより、この下流側のポート壁部の壁面と突出部の先端部との隙間の冷却水が、吸排気弁間の要部流路を軸線方向に流動する冷却水の流速による吸い込み作用を受け、要部流路側に吸い込み流動し、ポート間隙間に冷却水の流を生成でき、ポート間、即ち、弁間隙間の冷却を確実に促進でき、この際、 要部流路の流量に大きな変動を来すことも無い。
【0036】
請求項2の発明は、気筒中心部の中心壁部に対して突出部の対向壁面である軸線側側面が中心壁部の形状に沿うように形成されるので、同部の冷却水流量に大きな影響を与えることが無い。
【図面の簡単な説明】
【図1】本発明の一実施例としてのエンジンの冷却構造を適用したエンジンのシリンダヘッドよりジャケット上壁を排除した状態での要部切欠平面図である。
【図2】図1のシリンダヘッドよりジャケット上壁を排除した状態でのシリンダヘッドの全体平面図である。
【図3】図1のシリンダヘッドおよびシリンダブロックの要部切欠断面図である。
【図4】図1のシリンダヘッドを備えたエンジンの全体概略側面図である。
【図5】図1のシリンダヘッドよりジャケット上壁を排除した状態での斜視図であり、(a)は流路上流側よりの要部切欠概略斜視図、(b)は流路下流側よりの要部切欠概略斜視図である。
【図6】従来のエンジンの冷却構造を備えたシリンダヘッドよりジャケット上壁を排除した状態での要部切欠平面図である。
【符号の説明】
1 エンジン
3 シリンダヘッド
20 ジャケット上壁
21 上ジャケット
22 吸気ポート
23 排気ポート
27 突出部
L0 中心線(クランク軸と平行な軸線)
X 軸線方向(クランク軸線方向)
c 燃焼室
m 吸い出し口
r1 中央水路(第1水路)
r2、r3 吸排気側水路(第2水路)
rs 吸い出し路(連通路)
[0001]
[Industrial application fields]
The present invention relates to an engine cooling device, and more particularly to a cooling device having a cooling water passage formed in an axial direction in a cylinder head of a water-cooled engine.
[0002]
[Prior art]
In a conventional cooling device for a water-cooled internal combustion engine, a water jacket is formed in a cylinder block or a cylinder head which is an engine body, and cooling water is circulated in the water jacket using a water pump. Cooling water is cooled by installing a radiator in an external circulation path connecting between the water outlet and the cooling water inlet.
[0003]
By the way, the cylinder head forming a part of the engine main body closes the upper opening of the cylinder liner on the cylinder block side so that the combustion chamber is formed. It is necessary to cool this part effectively. Therefore, the water jacket on the cylinder head side is disposed so as to face the combustion chamber facing portion, and the combustion chamber facing portion is positively cooled with cooling water.
[0004]
In particular, the spark plug mounting boss, the intake / exhaust valve seat, and the intake / exhaust port extending from it are integrally cast on the opposite part of the combustion chamber. A water jacket is formed, and the shape of the water jacket, which is the flow path of the cooling water, has a relatively complicated shape.
[0005]
For example, in the case of an in-line multiple cylinder cylinder head, intake / exhaust ports are sequentially arranged along the axial direction, and an ignition plug mounting cylindrical portion is provided in the middle of the intake / exhaust ports. A large number of projecting members are provided on the road to restrict the flow of the cooling water.
In particular, as shown in FIG. 6, if the valve operating system of one cylinder is an intake 2 valve exhaust 2 valve type, a pair of intake ports 110 and exhaust ports 120 are arranged along the axial direction X in the cylinder head. Arranged in parallel, a spark plug mounting cylinder 130 is disposed in the center of the four intake and exhaust ports 110 and 120.
[0006]
In the case of such a layout, the water jacket 140 provided so as to avoid interference with the protruding members is located below the central flow path n1 extending in series in the axial direction X and the intake / exhaust port at the center of the cylinder head. It comprises an intake / exhaust flow path n2. Here, the central flow path n1 can flow in the axial direction X while ensuring a relatively large amount of cooling water, although the mounting tube portion 130 for the spark plug protrudes. Furthermore, the suction / discharge side flow channel n2 located on the left and right sides of the central flow channel n1 has a relatively narrow flow channel cross section, but, like the central flow channel, extends substantially in series in the axial direction X. It is possible to flow in the axial direction X by securing a predetermined amount of flow.
[0007]
On the other hand, the central flow path n1 and the intake / exhaust flow path n2 are communicated with the gap 160 between the ports of the air supply port 110 and the exhaust port 120 arranged in parallel in a pair along the axial direction X. The cooling water flowing through the intake / exhaust side n2 is joined to the central flow path n1 through the gap 160 between the ports. However, if the flow of the cooling water in the central flow path n1 is strong, the flow of the cooling water in the central flow path n1 affects the flow of the cooling water in the communication path so that the gap 160 between the ports is not affected. Cooling water stays and cooling between ports cannot be performed well.
[0008]
Therefore, in order to eliminate the retention of the cooling water between the ports, for example, a sufficient flow rate of the cooling water in the water jacket of the cylinder head is ensured, or the contact surface temperature of the portion between the ports in the combustion chamber facing portion is reduced. In order to suppress the rise, the longitudinal flow in the axial direction of the cylinder head is enhanced.
[0009]
Incidentally, Japanese Utility Model Publication No. 7-34197 (Patent Document 1) discloses a forced air cooling type cylinder head, in which cooling air from a cooling air inlet side passage is formed to protrude upstream of an exhaust port. A structure is disclosed in which the cooling air is divided into left and right portions and the cooling air is surely flowed down to the left and right cooling air outlet side passages to prevent heating of the exhaust port and the liquid cooling chamber in the vicinity thereof.
[0010]
[Patent Document 1]
Japanese Utility Model Publication No. 7-34197 [0011]
[Problems to be solved by the invention]
As described above, the combustion chamber facing portion of the lower wall of the cylinder head tends to be heated, and among these, the cooling water stays in the downstream portion of the intake / exhaust port in the flow direction of the cooling water, in particular, between the port gaps. The tendency to do is high. Conventionally, in order to eliminate the retention of the cooling water, the longitudinal flow in the axial direction of the cylinder head has been strengthened. However, a sufficient retention preventing function cannot be obtained, and the pump discharge amount may be increased. Furthermore, as disclosed in Patent Document 1, when measures such as branching the cooling medium to the cooling target portion side and making it flow in are taken, the flow rate of the main flow channel that originally maintained a sufficient flow rate is reduced. In this case, there are the following problems.
[0012]
That is, a spark plug cylinder or the like protrudes on the main flow path, and its boss portion is easily heated to a comparatively high temperature, and the central facing wall side of the valve seat of the intake / exhaust valve is located in the vicinity of the boss portion. For this reason, it is necessary to sufficiently cool the contact surface temperature of these parts so as to eliminate the difference between the cylinders, and there is a demand that it is not preferable to reduce the amount of cooling water in the main flow path.
[0013]
The present invention has been made on the basis of the above problems, and allows cooling water to flow between the port gaps of the intake and exhaust ports without reducing the flow rate of the main flow path in the water jacket of the cylinder head. It is an object of the present invention to provide a cooling structure for an engine that prevents an excessive increase in the temperature of the contact surface of the combustion chamber facing portion facing the cylinder.
[0014]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention of claim 1 is characterized in that an intake valve is disposed on one side and an exhaust valve is disposed on the other side with an axis parallel to the crankshaft interposed therebetween, and the intake air is applied to one cylinder. An engine having at least one of a valve and two exhaust valves arranged in parallel in the axial direction, the engine having a cooling water passage that is formed in a cylinder head of the engine and distributes cooling water in the axial direction. In the cooling structure, the cylinder head has a port wall portion that forms a port that communicates between the combustion chamber and the outside of the cylinder head via the at least one valve, and the cooling water channel is formed on the axis line with the cooling water. A first water channel that circulates from one end side to the other end side in the axial direction, a second water channel that circulates the cooling water from one end side to the other end side in the axial direction below the port wall, and the few A port located on one end side in the axial direction of the port wall portion, having a communication passage that connects the first water passage and the second water passage through two valves constituting one of the valves. The wall portion is characterized in that a protruding portion is formed on the wall surface on the other end side in the axial direction so as to protrude toward the other end side in the axial direction.
[0015]
As described above, at least one of the intake valve or the exhaust valve, that is, the intake / exhaust port is arranged in parallel in the axial direction, and the cooling water is circulated in the axial direction, and upstream of at least one of the intake / exhaust ports. Since the projecting portion projects from the port wall portion on the side toward the wall surface of the other downstream port wall portion, a part of the cooling water flowing through the first water channel flows into the gap between the ports. The cooling water in the gap between the wall surface of the downstream port wall portion and the tip end portion of the protruding portion is suppressed from affecting the flow of the cooling water of the cooling water flowing in the axial direction in the first water channel. The suction action due to the flow velocity causes the suction flow to the first water channel side, the flow of cooling water can be generated between the port gaps, and the cooling between the ports, that is, between the valve gaps, can be surely promoted. There will be no major fluctuations in the flow rate on the side.
[0016]
According to a second aspect of the present invention, there is provided a cooling structure for an engine, wherein the cylinder head according to the first aspect is formed with a central wall portion for disposing an ignition plug or a fuel injection valve at a center portion of the cylinder, The axial side surface is formed so as to follow the shape of the central wall portion.
As described above, the axial side surface, which is the opposing wall surface of the protrusion, is formed along the shape of the central wall portion with respect to the central wall portion of the cylinder central portion, so that the flow of cooling water in the first water channel is greatly affected. Is not given.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The engine cooling apparatus shown in FIGS. 1 to 4 is mounted on an engine 1 of a vehicle (not shown) and performs forced water cooling on the engine body. In this engine 1, a cylinder head 3 and an oil pan 4 are integrally coupled to the upper and lower sides of a cylinder block 2 to constitute an engine body, a radiator 5 is disposed in front of the engine body, and a water pump 8 is integrally formed with the cylinder block 2. Install.
As shown in FIGS. 3 and 4, the cylinder block 2 has four cylinder liners 11 arranged in series in the longitudinal direction of the cylinder block 2 in a state where the axis Ls is vertically oriented.
[0018]
The cylinder block 2 is provided with a crankshaft (not shown) in the lower part thereof. 1 and 2 disclose an axis L0 parallel to the crankshaft (not shown) together with the cylinder head 3 above the cylinder block 2.
In a plan view of the cylinder head 3, a pair of intake ports 22 that are opened and closed by an intake valve (not shown) are disposed on one side (upper side in FIGS. 1 and 2) across an axis L 0 parallel to the crankshaft, and the other ( An exhaust port 23 that is opened and closed by an exhaust valve (not shown) is disposed on the lower side in FIGS.
[0019]
The cylinder block 2 forms a cylinder block side water jacket 12 (hereinafter simply referred to as a lower jacket) between the outer wall 9 and the four cylinder liners 11 in an annular shape. A plurality of cooling water introduction holes 14 are formed in the upper wall 13 of the lower jacket 12, and a discharge port 15 is formed in the outer wall 9 on the front end side. In some cases, the upper wall 13 may not be formed in the cylinder block 2, and the cooling water introduction hole 14 may be arranged by the gasket 16.
[0020]
The lower jacket 12 is connected to the cooling water circuit A. The discharge port 15 communicates with the radiator 5 through the lower pipe 7.
As shown in FIG. 3, the cylinder head 3 has a lower wall 17 that is overlapped with an upper wall 13 of the cylinder block 2 via a gasket 16, an annular outer wall 18 that extends vertically from the peripheral edge thereof, and an outer wall 18. And an upper head wall 19 integrally coupled to the upper end side of the head. The lower wall 17 of the cylinder head 3 is formed with a combustion chamber facing portion B facing the combustion chamber C facing each cylinder liner 11 on the cylinder block 2 side so as to protrude upward.
[0021]
A cylinder head-side water jacket 21 (hereinafter simply referred to as an upper jacket) is formed on the lower wall 17 of the cylinder head 3 without interfering with a valve system and ignition system members (not shown). It is connected to the water circuit A.
As shown in FIG. 2, the lower wall 17 of the cylinder head 3 sequentially arranges combustion chamber facing portions B facing the cylinder liners 11 in the axial direction X that is the direction of the axis L0 parallel to the crankshaft. .
[0022]
A base end side of each pair of intake port 22 and exhaust port 23 is integrally attached to each combustion chamber facing portion B, and a cylinder for fitting a spark plug (not shown) at the center of the cylinder at the center thereof. A central wall portion 24 to which the member 26 is fitted is formed.
Here, as shown in FIG. 3, annular valve seats 221 and 231 are formed on the inner lower surfaces of the base ends of the intake and exhaust ports 22 and 23. A downward surface in the vicinity of the seats 221 and 231 forms a flaming surface f. Each intake / exhaust port 22, 23 is formed by a substantially cylindrical port wall portion, and the port wall portion is curved and formed so that its extended end is integrally coupled to the outer wall 18, and the outside of the connecting portion An intake / exhaust manifold (not shown) is connected to. Here, the curved port wall portions are provided with intake and exhaust side water channels r2 and r3 as second water channels, which will be described later, below the downward surface df below the port wall.
[0023]
Further, as shown in FIG. 3, a jacket upper wall 20 is provided at a predetermined amount above the combustion chamber facing portion B, and the jacket upper wall 20 is provided with intake and exhaust ports 22 and 23 and a center wall portion 24. It is cast so as to be integrally coupled with each other at the contact portion.
For this reason, an upper jacket 21 is formed between the lower wall 17 of the cylinder head and the jacket upper wall 20, and a valve system or ignition plug (not shown) is formed in the space between the jacket upper wall 20 and the head upper wall 19. The upper part of the cylinder member 26 is accommodated.
[0024]
Here, the upper jacket 21 between the lower wall 17 of the cylinder head 3 and the jacket upper wall 20 faces the central water channel r1 and its left and right end sides in the axial direction X, which is the direction of the axis L0 parallel to the crankshaft. The intake / exhaust water channels r2, r3 are formed in parallel.
Among these, the central water channel r1 of the upper jacket 21 is a water channel through which cooling water flows down along the central part of the combustion chamber facing part B, the central side wall part of the intake / exhaust port, and the central wall part 24. The flow resistance is small, a relatively large flow rate can be secured, and a large cooling water speed can be secured.
[0025]
The intake and exhaust side water channels r2 and r3 are water channels that sequentially flow cooling water along the side of the combustion chamber facing part B, the downward surface df of the intake and exhaust ports 22 and 23, and the vertical outer wall 18. Although the target channel cross-sectional area is small, a relatively large cooling water speed can be secured.
As shown in FIG. 1, the intake / exhaust ports 22 and 23 are respectively arranged in parallel in the upper jacket 21 along the upstream side and the downstream side along the axial direction X of the central water channel r <b> 1 whose central side wall portion is the axial direction X. Are deployed sequentially.
[0026]
Here, the upstream exhaust port 23u and the downstream exhaust port 23d have a gap e between the opposing wall surfaces, and the gap e communicates with the central water channel r1 and the exhaust side channel r3. Similarly, the upstream intake port 22u and the downstream intake port 22d have a gap e between the opposing wall surfaces, and the gap e communicates with the central water channel r1 and the intake side flow channel r2.
Here, in the vicinity of the central side wall portions of the upstream exhaust port 23u and the upstream intake port 22u, the projecting portions 27 are formed in the axial direction X toward the wall surface of the other end side port (downstream exhaust port 22d, downstream exhaust port 23d). Protrusions are formed.
[0027]
Each projecting portion 27 is a vertically-facing piece that ensures a relatively thick state at the joint with the upstream side wall and each central side wall portion of the intake ports 23u, 22u, and thins the thickness toward the projecting end. It is formed. In particular, each tip portion is formed so as to face each central side wall portion of the downstream exhaust port 23d and the downstream intake port 22d with a predetermined width, and a suction port m is formed in the same portion.
[0028]
Here, each protrusion 27 of the upstream exhaust port 23u and the upstream intake port 22u is formed such that a central vertical surface fa which is a side surface of each axial line is formed along the flow line of the cooling water in the central water channel r1, and each vertical clearance surface fb. Is formed in a shape along each opposing wall surface f1 of the downstream exhaust port 23d or the downstream intake port 22d.
Here, the central vertical surface fa which is the axial side surface of each protrusion 27 is formed along the streamline of the central water channel r1 and along the shape of the central wall 24 of the combustion chamber facing portion B. By providing the flow resistance to the cooling water passing through this portion by the portion, it is possible to reliably prevent the flow rate from being greatly affected.
[0029]
Further, each gap vertical surface fb of each protrusion 27 is formed in a shape along the opposing wall surfaces of the downstream exhaust port 23d or the downstream intake port 22d with a predetermined interval. Here, each gap vertical surface fb takes the shape of a suction path rs that can easily guide the cooling water of the intake side flow path r2 and the exhaust side flow path r3 to the suction port m.
Here, each suction port m faces the central water channel r1, and is formed so as to keep an acute angle with respect to the flow line of the cooling water. For this reason, when cooling water having a flow rate of a predetermined amount or more flows in the central water channel r1, the cooling water in the suction channel rs is sucked out from the suction port m into the cooling water flow in the central water channel r1, and the jet pump function can be exhibited.
[0030]
The operation of the engine cooling apparatus having such a configuration will be described.
When the engine 1 is driven, the water pump 8 is driven, and the cooling water sucked from the main pipe 34 is discharged to the upper jacket 21.
In this case, when the engine 1 is in a cold state, the thermostat 10 on the outlet side of the upper jacket 21 closes the first inlet 31 on the radiator side, opens the second inlet 32 on the upper jacket 21 side, and cools the cooling water of the upper jacket 21. Through the outlet 33, the main pipe 34, the water pump 8 and the warming-up cycle R1 to promote warming-up.
[0031]
When the temperature of the cooling water reaches a predetermined high temperature range, the thermostat 10 closes the second inlet 32, opens the first inlet 31, and causes the cooling water on the radiator side to flow through the main pipe 34.
That is, when the temperature of the cooling water is within a predetermined high temperature range, the cooling water in the upper jacket 21 flows into the lower jacket 12 around the cylinder row through the plurality of cooling water introduction holes 14, and after cooling the cylinder row, the outer wall 9. Reaches the discharge port 15. The cooling water at the discharge port 15 flows through the lower pipe 7 and the radiator 5 to the second inlet 31, the main pipe 34, and the water pump 8 of the thermostat 10, and the cooling water flows along the cooling cycle R2.
[0032]
Thus, when the cooling water flows in the upper and lower jackets 21 and 12 of the engine 1, in particular, the cooling water always flows in the axial direction X in the upper jacket 21, that is, the central water channel r1 and the intake and exhaust side water channels r2 and r3. The cooling water flows along.
[0033]
Projections 27 are formed in the upstream exhaust ports 23u and the upstream intake ports 22u among the plurality of supply / exhaust ports arranged in the upper jacket 21, thereby forming the suction port m and the suction path rs. ing. For this reason, when the cooling water flows in the central water channel r1 in the axial direction with a predetermined flow rate, the suction port m works to suck the action of the jet pump, thereby cooling the intake side flow path r2 and the exhaust side flow path r3. Water can be sucked out from the suction path rs between the ports through the suction port m to the central water channel r1 side which is a main flow path, and a flow of cooling water can be generated between the port gaps. Further, the protruding portion 27 can prevent a part of the cooling water flowing through the central water channel r1 from flowing into the gap between the ports, and the cooling water flowing through the central water channel r1 can flow into the cooling water in the suction channel rs. There is no adverse effect. At this time, the heat generated on the contact surface f in the vicinity of the annular valve seats 221 and 231 to which the respective intake and exhaust valves (not shown) contact and separate can be reliably cooled by the cooling water flowing through the suction passage rs, The cooling between the valve gaps can be surely promoted, and the reliability and the anti-knock property can be improved. At this time, the flow rate on the central water channel r1 side, which is the main channel, does not change greatly.
[0034]
In the above description, the central wall portion 24 for the spark plug is formed in the center of the combustion chamber facing portion B. Instead, the central wall portion for the fuel injection valve is formed. In this case, the same effect as the engine cooling structure of FIG. 1 can be obtained.
As described above, in the engine cooling structure of FIG. 1, the plurality of upstream exhaust ports 23u and upstream intake ports 22u provided in the upper jacket 21 are formed with protrusions 27. The protrusion 27 may be provided only on the upstream exhaust port 23u side where the surface temperature is particularly likely to rise, thereby simplifying the configuration.
[0035]
【The invention's effect】
As described above, the invention of claim 1 is the one in which at least one of the intake valve or the exhaust valve, that is, the intake / exhaust port is arranged in parallel in the axial direction, and the cooling water is circulated in the axial direction. Since the projecting portion protrudes from the port wall portion on the upstream side of at least one of the intake and exhaust ports toward the wall surface of the port wall portion on the other downstream side, the wall surface and the projecting portion of the downstream port wall portion are formed. Cooling water in the gap with the tip is sucked by the flow rate of cooling water flowing in the axial direction through the main flow path between the intake and exhaust valves, flows into the main flow path, and flows between the port gaps. The flow between the ports, that is, between the valve gaps can be surely promoted, and at this time, the flow rate of the main flow path does not change greatly.
[0036]
According to the second aspect of the present invention, the axial side surface, which is the opposing wall surface of the projecting portion, is formed along the shape of the central wall portion with respect to the central wall portion of the cylinder central portion. There is no impact.
[Brief description of the drawings]
FIG. 1 is a cutaway plan view of a main part in a state where an upper jacket wall is removed from an engine cylinder head to which an engine cooling structure according to an embodiment of the present invention is applied.
2 is an overall plan view of the cylinder head in a state where a jacket upper wall is excluded from the cylinder head of FIG. 1. FIG.
FIG. 3 is a cutaway cross-sectional view of a main part of the cylinder head and cylinder block of FIG. 1;
4 is an overall schematic side view of an engine including the cylinder head of FIG. 1;
5 is a perspective view of the cylinder head of FIG. 1 with the upper jacket wall removed, (a) is a schematic cutaway perspective view of the main part from the upstream side of the flow path, and (b) is from the downstream side of the flow path. It is a principal part notch schematic perspective view.
FIG. 6 is a cutaway plan view of a main part in a state in which a jacket upper wall is excluded from a cylinder head having a conventional engine cooling structure.
[Explanation of symbols]
1 Engine 3 Cylinder Head 20 Jacket Upper Wall 21 Upper Jacket 22 Intake Port 23 Exhaust Port 27 Projection L0 Center Line (Axis Parallel to Crankshaft)
X axis direction (crank axis direction)
c Combustion chamber m Suction port r1 Central waterway (first waterway)
r2, r3 Intake / exhaust water channel (second water channel)
rs Suction path (communication path)

Claims (2)

クランク軸と平行な軸線を挟んで一方に吸気弁が配置され他方に排気弁が配置されるとともに、1つの気筒に対して上記吸気弁又は上記排気弁の少なくとも一方が上記軸線方向に2つ並設されるエンジンであって、
上記エンジンのシリンダヘッド内に形成されて、冷却水を上記軸線方向に流通させる冷却水路を有するエンジンの冷却構造において、
上記シリンダヘッドは、上記少なくとも一方の弁を介して燃焼室とシリンダヘッド外とを連通するポートを形成するポート壁部を有し、
上記冷却水路は、上記軸線上で上記冷却水を軸線方向一端側から他端側へ流通させる第1水路と、上記ポート壁部の下方で上記冷却水を上記軸線方向一端側から上記他端側へ流通させる第2水路と、上記少なくとも一方の弁を構成する2つの弁の間を通って上記第1水路と上記第2水路とを連通する連通路とを有し、
上記ポート壁部のうち上記軸線方向一端側に位置するポート壁部は、上記軸方向他端側の壁面に上記軸方向他端側に向かって突出するように形成される突出部が形成されていることを特徴とするエンジンの冷却構造。
An intake valve is disposed on one side and an exhaust valve is disposed on the other side of an axis parallel to the crankshaft, and at least one of the intake valve or the exhaust valve is aligned in the axial direction with respect to one cylinder. An engine to be installed,
In the engine cooling structure having a cooling water passage formed in the cylinder head of the engine and circulating the cooling water in the axial direction,
The cylinder head has a port wall portion that forms a port for communicating the combustion chamber and the outside of the cylinder head through the at least one valve.
The cooling water channel includes a first water channel that circulates the cooling water from one axial end side to the other end side on the axial line, and the cooling water from the one axial end side to the other end side below the port wall portion. A second water channel that circulates to and a communication passage that communicates between the first water channel and the second water channel through two valves constituting the at least one valve,
The port wall portion located on the one axial end side of the port wall portion is formed with a protruding portion formed on the wall surface on the other axial end side so as to project toward the other axial end side. An engine cooling structure characterized by that.
上記シリンダヘッドには、気筒中心部に点火プラグ又は燃料噴射弁を配設するための中心壁部が形成され、
上記突出部の上記軸線側側面は、上記中心壁部の形状に沿うように形成されていることを特徴とする、請求項1記載のエンジンの冷却構造。
The cylinder head is formed with a central wall portion for disposing an ignition plug or a fuel injection valve at the center of the cylinder.
The engine cooling structure according to claim 1, wherein the axial side surface of the projecting portion is formed along the shape of the central wall portion.
JP2003012584A 2003-01-21 2003-01-21 Engine cooling structure Expired - Fee Related JP4211405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012584A JP4211405B2 (en) 2003-01-21 2003-01-21 Engine cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012584A JP4211405B2 (en) 2003-01-21 2003-01-21 Engine cooling structure

Publications (2)

Publication Number Publication Date
JP2004225582A true JP2004225582A (en) 2004-08-12
JP4211405B2 JP4211405B2 (en) 2009-01-21

Family

ID=32901150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012584A Expired - Fee Related JP4211405B2 (en) 2003-01-21 2003-01-21 Engine cooling structure

Country Status (1)

Country Link
JP (1) JP4211405B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265839A (en) * 2009-05-15 2010-11-25 Honda Motor Co Ltd Cylinder head water jacket structure
JP2015113704A (en) * 2013-12-09 2015-06-22 マツダ株式会社 Cooling structure of engine
JP2015113705A (en) * 2013-12-09 2015-06-22 マツダ株式会社 Cooling structure of engine
US10655560B2 (en) 2017-12-22 2020-05-19 Toyota Jidosha Kabushiki Kaisha Cylinder head
CN111271186A (en) * 2020-01-19 2020-06-12 一汽解放汽车有限公司 Cylinder head cooling structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265839A (en) * 2009-05-15 2010-11-25 Honda Motor Co Ltd Cylinder head water jacket structure
JP2015113704A (en) * 2013-12-09 2015-06-22 マツダ株式会社 Cooling structure of engine
JP2015113705A (en) * 2013-12-09 2015-06-22 マツダ株式会社 Cooling structure of engine
US10655560B2 (en) 2017-12-22 2020-05-19 Toyota Jidosha Kabushiki Kaisha Cylinder head
CN111271186A (en) * 2020-01-19 2020-06-12 一汽解放汽车有限公司 Cylinder head cooling structure
CN111271186B (en) * 2020-01-19 2021-09-28 一汽解放汽车有限公司 Cylinder head cooling structure

Also Published As

Publication number Publication date
JP4211405B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
US8960137B2 (en) Integrated exhaust cylinder head
US10107171B2 (en) Cooling structure of internal combustion engine
JP3700836B2 (en) Cylinder head cooling structure for internal combustion engine
JP4788236B2 (en) Cylinder head cooling structure
JP5093930B2 (en) Cooling water passage structure in cylinder head of internal combustion engine
JP6299737B2 (en) Multi-cylinder engine cooling structure
JP3775572B2 (en) Water-cooled internal combustion engine
US20050087154A1 (en) Cylinder head with integrated exhaust manifold
JP4768560B2 (en) Water-cooled engine
JP6384492B2 (en) Multi-cylinder engine cooling structure
JP4791305B2 (en) Water-cooled multi-cylinder engine
JP4100279B2 (en) Cylinder head precooled engine
JP2014084736A (en) Water jacket structure of cylinder head
JP2005315118A (en) Cooling structure of cylinder block
EP3034846A1 (en) Cylinder block
JP2003201842A (en) Cooling device of engine
JP6314966B2 (en) Multi-cylinder engine cooling structure
JP4211405B2 (en) Engine cooling structure
JP5587380B2 (en) Cylinder head water jacket structure
JP2014084738A (en) Cooling liquid passage structure of cylinder head
JP2008014263A (en) Cooling structure for internal combustion engine and cylinder head gasket used for same
JP2008075507A (en) Water cooled multi-cylinder engine
JP3618593B2 (en) Structure of cylinder head in internal combustion engine
JP4791304B2 (en) Water-cooled engine
JP3707415B2 (en) Cooling water passage structure of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4211405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees