JP2004223513A - Method for filling ion exchange resin in condensed water desalting apparatus - Google Patents

Method for filling ion exchange resin in condensed water desalting apparatus Download PDF

Info

Publication number
JP2004223513A
JP2004223513A JP2004042209A JP2004042209A JP2004223513A JP 2004223513 A JP2004223513 A JP 2004223513A JP 2004042209 A JP2004042209 A JP 2004042209A JP 2004042209 A JP2004042209 A JP 2004042209A JP 2004223513 A JP2004223513 A JP 2004223513A
Authority
JP
Japan
Prior art keywords
exchange resin
tower
regeneration
anion exchange
desalination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004042209A
Other languages
Japanese (ja)
Other versions
JP3610390B2 (en
Inventor
Takashi Kagawa
喬 香川
Yusuke Nagata
祐輔 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2004042209A priority Critical patent/JP3610390B2/en
Publication of JP2004223513A publication Critical patent/JP2004223513A/en
Application granted granted Critical
Publication of JP3610390B2 publication Critical patent/JP3610390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the quality of treated water by reducing leakage of a very small amount of organic material when a regenerated ion exchange resin is filled in a desalting column and water is supplied to the desalting apparatus, although inorganic ions such as Na-ion and CI-ion achieve the target of purity in connection with the improvement of the treated water even in case of the conventional condensed water desalting apparatus. <P>SOLUTION: A method for filling an ion exchange resin in a condensed water desalting apparatus, when a cation exchange resin C and an anion exchange resin A which are regenerated in regenerating equipment 20 are filled in a desalting column 11, is to transport and fill a part or a whole of the anion exchange resin A from the regenerating equipment 20 to the desalting column 11. Next, in the case of transporting a part of the anion exchange resin A, the cation exchange resin C and the residual anion exchange resin A are mixed in the regenerating device and the mixed ion exchange resin CA is transported from the regenerating equipment 20 to the desalting column 11 and is laminated on the cation exchange resin C. In case of transporting a whole of the anion exchange resin A, the cation exchange resin C is transported alone from the regenerating equipment 20 to the desalting column 11 and is laminated on the anion exchange resin A. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、火力発電所や原子力発電所の復水を脱塩処理する復水脱塩装置におけるイオン交換樹脂の充填方法に関するものである。   The present invention relates to a method for filling an ion exchange resin in a condensate desalination apparatus for desalinating condensate from a thermal power plant or a nuclear power plant.

火力発電所、原子力発電所で発電する場合には、火力、原子力を利用してボイラ、蒸気発生器等の内部において高純度水を加熱して蒸気を作り、この蒸気によって発電タービンを駆動し、発電するようにしている。そして、発電時には、発電後の蒸気を復水器において冷却して復水として回収し、この復水を再び加熱して蒸気を作るというサイクルを繰り返している。この循環サイクルでは、系内を循環する復水が各種の不純物イオンや金属酸化物等からなる懸濁物質(以下、「クラッド」と称す)で汚染されるため、これらの汚染物を復水中から除去する必要がある。   When generating power at a thermal power plant or a nuclear power plant, high-purity water is heated inside a boiler or steam generator using thermal power or nuclear power to produce steam, and the steam drives a power generation turbine, I am trying to generate electricity. At the time of power generation, a cycle in which steam after power generation is cooled in a condenser and collected as condensate water, and the condensate water is heated again to produce steam is repeated. In this circulation cycle, the condensed water circulating in the system is contaminated with suspended substances (hereinafter referred to as “cladding”) consisting of various impurity ions and metal oxides. Need to be removed.

そこで、上述した火力発電所や原子力発電所の復水系統では、カチオン交換樹脂及びアニオン交換樹脂が充填された脱塩塔を複数備えた復水脱塩装置を用いて複水中の不純物イオンやクラッドを除去している。また、カチオン交換樹脂は水素イオン形とし、アニオン交換樹脂は水酸基形として用いるH−OH形の復水脱塩装置と、カチオン交換樹脂はアンモニア形とし、アニオン交換樹脂は水酸基形として用いるアンモニア形の復水脱塩装置とがある。H−OH形の復水脱塩装置の場合には、仮に僅かの海水が復水器から復水中に混入することがあっても海水に起因するナトリウムイオンや塩化物イオンは復水脱塩装置により除去されるのは勿論のこと、海水が混入しない通常時にも復水に存在するクラッドや他の微量の重金属、更には腐食抑制剤として添加されたアンモニウムイオン等を復水脱塩装置により除去し、電気伝導率が一般に0.1μS/cm以下になるように復水を精製し、この精製水を発電用水として使用している。一方、アンモニア形の復水脱塩装置の場合には、カチオン交換樹脂をアンモニア形とすることによって復水中のアンモニウムイオン以外の全ての不純物イオンと懸濁物質を除去するように工夫されている。   Therefore, in the condensing system of thermal power plants and nuclear power plants described above, condensate ions and cladding in double water are used by using a condensate desalination device equipped with a plurality of desalination towers filled with cation exchange resin and anion exchange resin. Has been removed. Further, a cation exchange resin is a hydrogen ion type, an anion exchange resin is a H-OH type condensate desalination device used as a hydroxyl group type, a cation exchange resin is an ammonia type, and an anion exchange resin is an ammonia type used as a hydroxyl group type. There is a condensate desalination unit. In the case of the H-OH type condensate desalination apparatus, even if a small amount of seawater may enter the condensate from the condenser, sodium ions and chloride ions caused by the seawater can be condensed by the condensate desalination apparatus. Of course, the cladding and other trace heavy metals present in the condensate even in normal times when seawater is not mixed, as well as ammonium ions added as a corrosion inhibitor, are removed by the condensate desalination equipment. The condensate is purified so that the electric conductivity is generally 0.1 μS / cm or less, and the purified water is used as power generation water. On the other hand, in the case of an ammonia type condensate desalination apparatus, the cation exchange resin is converted into an ammonia type to remove all impurity ions and suspended substances other than ammonium ions in the condensate.

しかし、いずれのタイプの復水脱塩装置であっても一定量の復水を精製するとイオン交換樹脂がブレークするが、その時にはイオン交換樹脂の再生を行う。この再生を行う場合には、まずイオン交換樹脂を復水脱塩装置の脱塩塔から再生設備の再生塔へ移送する。そして、再生塔内で空気攪拌(エアスクラビング)と逆洗を行うことによりイオン交換樹脂の表面に付着したクラッドを除去した後、この再生塔内で比重差を利用して逆洗によりカチオン交換樹脂とアニオン交換樹脂に分離する。イオン交換樹脂を分離した後、アニオン交換樹脂には水酸化ナトリウム水溶液等のアルカリ再生剤を通薬し、カチオン交換樹脂には硫酸水溶液または塩酸水溶液等の酸再生剤を通薬し、両イオン交換樹脂に付着した不純物イオンを脱着して両イオン交換樹脂を再生している。   However, in any type of condensate desalination apparatus, when a certain amount of condensate is purified, the ion exchange resin breaks. At that time, the ion exchange resin is regenerated. When performing this regeneration, first, the ion exchange resin is transferred from the desalination tower of the condensate desalination apparatus to the regeneration tower of the regeneration equipment. Then, after removing the clad adhering to the surface of the ion exchange resin by performing air agitation (air scrubbing) and back washing in the regeneration tower, the cation exchange resin is subjected to back washing in the regeneration tower using the specific gravity difference. And an anion exchange resin. After separating the ion exchange resin, pass an alkali regenerant such as aqueous sodium hydroxide through the anion exchange resin, and pass an acid regenerant such as aqueous sulfuric acid or hydrochloric acid through the cation exchange resin. Both ion exchange resins are regenerated by desorbing impurity ions attached to the resin.

上記再生方式には一塔再生方式と二塔再生方式とがある。一塔再生方式の場合には再生塔内で両イオン交換樹脂を比重差により分離して下側にカチオン交換樹脂層を、上側にアニオン交換樹脂層を形成させ、この分離層を保持したまま下層のカチオン交換樹脂には酸再生剤を、上層のアニオン交換樹脂層にはアルカリ再生剤を通薬し、一塔内で両イオン交換樹脂を再生する方式である。また、二塔再生方式の場合には、一つの塔(カチオン再生塔)内で両イオン交換樹脂を分離した後、上層のアニオン交換樹脂を別の再生塔(アニオン再生塔)へ移送し、両イオン交換樹脂をそれぞれ別々の再生塔内で再生する方式である。   The regeneration method includes a one-tower regeneration method and a two-tower regeneration method. In the case of the single-column regeneration method, both ion exchange resins are separated by a specific gravity difference in the regeneration tower to form a cation exchange resin layer on the lower side and an anion exchange resin layer on the upper side. In this method, an acid regenerant is passed through the cation exchange resin and an alkali regenerant is passed through the upper anion exchange resin layer to regenerate both ion exchange resins in one column. In the case of the two-column regeneration method, after separating both ion-exchange resins in one column (cation regeneration column), the upper layer anion exchange resin is transferred to another regeneration column (anion regeneration column). In this method, the ion exchange resins are regenerated in separate regenerators.

両イオン交換樹脂の再生が終了すると、次の脱塩塔が通水終点に達するまでの間、再生後の両イオン交換樹脂を貯蔵タンクに貯蔵して待機させておく。そして、通水終点に達したらその脱塩塔のイオン交換樹脂を脱塩塔から取り出して再生塔へ移送する。その後、空になった脱塩塔へ貯蔵タンクで待機中の両イオン交換樹脂を移送し、その脱塩塔内でカチオン交換樹脂とアニオン交換樹脂を十分に混合した後、復水の脱塩処理に使用する。   When the regeneration of both ion-exchange resins is completed, the two ion-exchange resins after regeneration are stored in a storage tank and kept in a standby state until the next desalination tower reaches the end of water flow. Then, when the water-flow end point is reached, the ion exchange resin in the desalination tower is taken out of the desalination tower and transferred to the regeneration tower. After that, both ion exchange resins waiting in the storage tank are transferred to the empty desalination tower, and the cation exchange resin and the anion exchange resin are sufficiently mixed in the desalination tower. Used for

ところで、復水脱塩装置の処理水に要求される水質は、ボイラ、蒸気発生器、原子炉等の腐食防止やスケール付着防止の観点から最近益々高純度化する傾向にある。例えばNaイオン、Clイオン、SOイオンの場合には、それぞれの濃度が0.01ppb以下の純度を目標としている。そのため、復水脱塩装置においてはこのような高純度の処理水を得るために種々の改善がなされており、その結果、現在では上述の目標の純度は達成できる段階にある。 By the way, the water quality required for the treated water of the condensate desalination apparatus has tended to become more and more purified recently from the viewpoint of preventing corrosion of boilers, steam generators, nuclear reactors and the like and preventing scale adhesion. For example, in the case of Na ions, Cl ions, and SO 4 ions, the respective concentrations are targeted for a purity of 0.01 ppb or less. Therefore, various improvements have been made in the condensate desalination apparatus in order to obtain such high-purity treated water, and as a result, at present, the above-mentioned target purity can be achieved.

しかしながら、従来の復水脱塩装置の場合には、ボイラ、蒸気発生器、原子炉等の腐食防止やスケール付着防止の観点から処理水の水質が益々高純度化するに伴ってNaイオンやClイオン等の無機イオンは目標とする純度を達成しているが、再生後のイオン交換樹脂を脱塩塔に充填し、通水を開始すると、その開始初期において極微量の有機物が処理水中に漏出し、この極微量の有機物が高純度化傾向に伴って新たな課題になっている。特に、再生して繰り返し使用したカチオン交換樹脂は使用の間に徐々に酸化劣化して上述の有機物がカチオン交換樹脂から処理水中に漏出し易くなり、処理水の水質が悪化するという課題があった。   However, in the case of the conventional condensate desalination apparatus, Na ions and Cl have to be added as the quality of the treated water becomes higher and higher from the viewpoint of preventing corrosion of boilers, steam generators, nuclear reactors and the like and preventing adhesion of scale. Inorganic ions such as ions have achieved the target purity, but when the regenerated ion-exchange resin is filled in a desalination tower and water flow is started, a very small amount of organic matter leaks into the treated water at the beginning of the start. However, this trace amount of organic matter has become a new problem with the trend toward higher purity. In particular, the cation exchange resin that has been regenerated and used repeatedly has the problem that the organic matter gradually leaks out of the cation exchange resin into the treated water due to oxidative deterioration during use, and the quality of the treated water deteriorates. .

ところで、最近の研究によれば、有機物の中にはスチレンスルホン酸のオリゴマーや低分子ポリマーが含まれており、これらの有機物は復水脱塩装置に通常使用されている、スチレンとジビニルベンゼンとの共重合体をスルホン化した強酸性カチオン交換樹脂から溶出するものであることが判明している。また、復水脱塩装置の処理水は前述のようにボイラ、蒸気発生器、原子炉等の蒸気発生装置へ供給されるが、蒸気発生装置の内部は高温、高圧になっているため、前述の有機物が処理水中に含まれていると、これらの有機物は蒸気発生装置内で高温、高圧の作用により分解されてSOイオン等を生成し、SOイオン等が蒸気発生装置等を腐食し、蒸気発生装置等に悪影響を及ぼす虞がある。 By the way, according to recent studies, organic substances include styrene sulfonic acid oligomers and low molecular weight polymers, and these organic substances are commonly used in condensate demineralizers, such as styrene and divinylbenzene. Has been found to be eluted from the sulfonated strongly acidic cation exchange resin. Also, the treated water of the condensate desalination unit is supplied to steam generators such as boilers, steam generators, and nuclear reactors as described above. If the organic substances are contained in the treated water, these organic substances are decomposed by the action of high temperature and high pressure in the steam generator to generate SO 4 ions and the like, and the SO 4 ions corrode the steam generator and the like. There is a possibility that the steam generator and the like may be adversely affected.

本発明は、上記課題を解決するためになされたもので、復水脱塩装置のカチオン交換樹脂から処理水中へ漏出する有機物を低減して処理水の水質を向上させることができ、ひいては有機物に起因した火力発電所のボイラ、沸騰水型原子力発電所の原子炉、加圧水型原子力発電所の蒸気発生器等の高温高圧系を構成する部材の腐食を防止することができる復水脱塩装置におけるイオン交換樹脂の充填方法を提供することを目的としている。   The present invention has been made in order to solve the above-mentioned problems, and it is possible to improve the quality of treated water by reducing organic substances leaking into treated water from a cation exchange resin of a condensate desalination apparatus. In condensate desalination equipment that can prevent corrosion of components that make up high temperature and high pressure systems such as boilers of thermal power plants, nuclear reactors of boiling water nuclear power plants, steam generators of pressurized water nuclear power plants, etc. It is an object of the present invention to provide a method for filling an ion exchange resin.

本発明者らは、有機物の処理水中への漏出防止対策について種々検討した結果、従来の復水脱塩装置の場合には、再生設備からの再生済みのカチオン交換樹脂とアニオン交換樹脂との混合イオン交換樹脂を脱塩塔に移送して充填した後、更に脱塩塔内でカチオン交換樹脂とアニオン交換樹脂を空気により混合して混合イオン交換樹脂層を形成する操作を行い、次いで、脱塩処理を行うようにしているが、カチオン交換樹脂はアニオン交換樹脂より比重が大きく、上記脱塩塔での再混合を実施してもカチオン交換樹脂が混合イオン交換樹脂層の下部に偏在し易いため、復水が塔上部から下部に通水されると下部層のカチオン交換樹脂から溶出する有機物はアニオン交換樹脂と接触する確率が低くなり、アニオン交換樹脂で捕捉されずに直接処理水中に漏出することを知見した。   The present inventors have conducted various studies on measures to prevent the leakage of organic substances into the treated water, and as a result, in the case of a conventional condensate desalination apparatus, mixing of the regenerated cation exchange resin and anion exchange resin from the regeneration equipment After the ion exchange resin is transferred to the desalting tower and filled, an operation is further performed in which the cation exchange resin and the anion exchange resin are mixed with air in the desalination tower to form a mixed ion exchange resin layer. Although the treatment is performed, the cation exchange resin has a higher specific gravity than the anion exchange resin, and the cation exchange resin tends to be unevenly distributed in the lower part of the mixed ion exchange resin layer even when remixing is performed in the desalting tower. When condensate is passed from the top to the bottom of the tower, the organic substances eluted from the cation exchange resin in the lower layer have a low probability of coming into contact with the anion exchange resin, and are directly treated without being trapped by the anion exchange resin. It was found that leakage in.

本発明は上記知見に基づいてなされたもので、請求項1に記載の復水脱塩装置におけるイオン交換樹脂の充填方法は、復水脱塩装置の脱塩塔内の使用済みのカチオン交換樹脂及びアニオン交換樹脂を再生設備に移送し、この再生設備において上記各イオン交換樹脂を再生した後、再生後の各イオン交換樹脂を上記再生設備から上記脱塩塔へ移送して充填する方法において、上記再生設備で再生されたカチオン交換樹脂及びアニオン交換樹脂を上記脱塩塔に充填する際に、まず上記再生設備からアニオン交換樹脂の一部または全てを上記脱塩塔へ移送して充填し、次いで、一部のアニオン交換樹脂を移送した場合には上記再生設備においてカチオン交換樹脂と残余のアニオン交換樹脂を混合し、この混合イオン交換樹脂を上記再生設備から上記脱塩塔へ移送して上記アニオン交換樹脂上に積層し、全てのアニオン交換樹脂を移送した場合にはカチオン交換樹脂を単独で上記再生設備から上記脱塩塔へ移送して上記アニオン交換樹脂上に積層することを特徴とするものである。   The present invention has been made based on the above findings, and the method of filling an ion exchange resin in a condensate desalination apparatus according to claim 1 is a method for filling a used cation exchange resin in a desalination tower of a condensate desalination apparatus. And transferring the anion exchange resin to a regeneration facility, after regenerating each of the ion exchange resins in the regeneration facility, transferring and filling each regenerated ion exchange resin from the regeneration facility to the desalination tower, When filling the desalination tower with the cation exchange resin and the anion exchange resin regenerated in the regeneration equipment, first, transfer or fill some or all of the anion exchange resin from the regeneration equipment to the desalination tower, Next, when a part of the anion exchange resin is transferred, the cation exchange resin and the remaining anion exchange resin are mixed in the regenerating facility, and the mixed ion exchange resin is mixed with the mixed ion exchange resin from the regenerating facility. Transfer to the salt tower and laminate on the anion exchange resin, and when transferring all the anion exchange resin, transfer the cation exchange resin alone from the regeneration equipment to the desalination tower and onto the anion exchange resin. It is characterized by being laminated.

また、本発明の請求項2に記載の復水脱塩装置におけるイオン交換樹脂の充填方法は、復水脱塩装置の脱塩塔内の使用済みのカチオン交換樹脂及びアニオン交換樹脂を再生設備に移送し、この再生設備において上記各イオン交換樹脂を再生した後、再生後の各イオン交換樹脂を上記再生設備から上記脱塩塔へ移送して充填する方法において、上記再生設備で再生されたカチオン交換樹脂及びアニオン交換樹脂を上記脱塩塔に充填する際に、予め、上記再生設備内でカチオン交換樹脂とアニオン交換樹脂を混合した後、再度カチオン交換樹脂とアニオン交換樹脂に分離し、その後、上記再生設備から分離後のアニオン交換樹脂の一部または全てを上記脱塩塔へ移送して充填し、次いで、一部のアニオン交換樹脂を移送した場合にはカチオン交換樹脂と残余のアニオン交換樹脂を混合し、この混合イオン交換樹脂を上記再生設備から上記脱塩塔へ移送して上記アニオン交換樹脂上に積層し、全てのアニオン交換樹脂を移送した場合にはカチオン交換樹脂を単独で上記再生設備から上記脱塩塔へ移送して上記アニオン交換樹脂上に積層することを特徴とするものである。   In addition, the method of charging an ion exchange resin in a condensate desalination apparatus according to claim 2 of the present invention is characterized in that the used cation exchange resin and anion exchange resin in the desalination tower of the condensate desalination apparatus are supplied to a regeneration facility. Transferring, after regenerating each ion exchange resin in this regeneration equipment, in the method of transferring and filling each regenerated ion exchange resin from the regeneration equipment to the desalination tower, the cations regenerated in the regeneration equipment When filling the exchange resin and the anion exchange resin in the desalting tower, beforehand, after mixing the cation exchange resin and the anion exchange resin in the regeneration equipment, separated again into the cation exchange resin and the anion exchange resin, A part or all of the anion exchange resin after separation from the regeneration equipment is transferred to the desalting tower for filling, and then, when a part of the anion exchange resin is transferred, cation exchange is performed. Fat and the remaining anion exchange resin are mixed, and the mixed ion exchange resin is transferred from the regenerating equipment to the desalting tower and laminated on the anion exchange resin. The present invention is characterized in that the exchange resin is independently transferred from the regeneration facility to the desalination tower, and is stacked on the anion exchange resin.

また、本発明の請求項3に記載の復水脱塩装置におけるイオン交換樹脂の充填方法は、復水脱塩装置の脱塩塔内の使用済みのカチオン交換樹脂及びアニオン交換樹脂を再生設備に移送し、この再生設備の第1、第2再生塔において上記各イオン交換樹脂を個別に再生した後、再生後の各イオン交換樹脂を第1、第2再生塔から貯蔵タンクを経由して上記脱塩塔へ移送して充填する方法において、上記再生設備で再生されたカチオン交換樹脂及びアニオン交換樹脂を上記脱塩塔に充填する際に、再生後のカチオン交換樹脂を第1再生塔から上記貯蔵タンクへ移送すると共に再生後のアニオン交換樹脂をこのアニオン交換樹脂の一部を残して第2再生塔から上記貯蔵タンクへ移送する工程と、上記貯蔵タンク内でカチオン交換樹脂とアニオン交換樹脂を混合する工程と、第2再生塔内に残留するアニオン交換樹脂を第2再生塔から上記脱塩塔へ移送して充填した後、混合イオン交換樹脂を上記貯蔵タンクから上記脱塩塔へ移送してアニオン交換樹脂上に積層する工程とを有することを特徴とするものである。   In addition, the method for charging an ion exchange resin in a condensate desalination apparatus according to claim 3 of the present invention is a method for transferring used cation exchange resin and anion exchange resin in a desalination tower of a condensate desalination apparatus to a regeneration facility. After transferring and individually regenerating each of the ion exchange resins in the first and second regeneration towers of the regeneration equipment, each of the regenerated ion exchange resins is transferred from the first and second regeneration towers via the storage tank to the above-described storage tank. In the method of transferring and filling the cation exchange resin and the anion exchange resin regenerated in the regeneration facility in the desalination tower, the regenerated cation exchange resin is transferred from the first regeneration tower to the desalination tower. Transferring the regenerated anion exchange resin to the storage tank and transferring the regenerated anion exchange resin from the second regeneration tower to the storage tank while leaving a part of the anion exchange resin; and anion exchange with the cation exchange resin in the storage tank. After the step of mixing fats and transferring and filling the anion exchange resin remaining in the second regeneration tower from the second regeneration tower to the desalination tower, the mixed ion exchange resin is transferred from the storage tank to the desalination tower. And laminating on an anion exchange resin.

また、本発明の請求項4に記載の復水脱塩装置におけるイオン交換樹脂の充填方法は、復水脱塩装置の脱塩塔内の使用済みのカチオン交換樹脂及びアニオン交換樹脂を再生設備に移送し、この再生設備の第1、第2再生塔において上記各イオン交換樹脂を個別に再生した後、再生後の各イオン交換樹脂を第1、第2再生塔から貯蔵タンクを経由して上記脱塩塔へ移送して充填する方法において、上記再生設備で再生されたカチオン交換樹脂及びアニオン交換樹脂を上記脱塩塔に充填する際に、再生後のカチオン交換樹脂を第1再生塔から上記貯蔵タンクへ移送すると共に再生後のアニオン交換樹脂を第2再生塔から上記貯蔵タンクへ移送する工程と、上記貯蔵タンク内でカチオン交換樹脂とアニオン交換樹脂を混合した後、再度カチオン交換樹脂とアニオン交換樹脂に分離する工程と、分離後のアニオン交換樹脂の一部または全てを上記貯蔵タンクから上記脱塩塔へ移送して充填する工程と、一部のアニオン交換樹脂を移送した場合には上記貯蔵タンク内で分離後のカチオン交換樹脂と分離後の残余のアニオン交換樹脂を混合した後、上記貯蔵タンクから上記脱塩塔へ移送してアニオン交換樹脂上に積層し、全てのアニオン交換樹脂を移送した場合には上記貯蔵タンクから分離後のカチオン交換樹脂を単独で上記脱塩塔へ移送してアニオン交換樹脂上に積層する工程とを有することを特徴とするものである。   In addition, the method for charging an ion exchange resin in a condensate desalination apparatus according to claim 4 of the present invention is characterized in that a used cation exchange resin and an anion exchange resin in a desalination tower of a condensate desalination apparatus are supplied to a regeneration facility. After transferring and individually regenerating each of the ion exchange resins in the first and second regeneration towers of the regeneration equipment, each of the regenerated ion exchange resins is transferred from the first and second regeneration towers via the storage tank to the above-described storage tank. In the method of transferring and filling the cation exchange resin and the anion exchange resin regenerated in the regeneration facility in the desalination tower, the regenerated cation exchange resin is transferred from the first regeneration tower to the desalination tower. Transferring the regenerated anion exchange resin from the second regeneration tower to the storage tank while transferring the resin to the storage tank, and mixing the cation exchange resin and the anion exchange resin in the storage tank and then performing cation exchange again. A step of separating fats and anion exchange resins, a step of transferring some or all of the separated anion exchange resins from the storage tank to the desalting tower and filling the same, and a case where some anion exchange resins are transferred. In the storage tank, after the cation exchange resin after separation and the remaining anion exchange resin after separation are mixed, the mixture is transferred from the storage tank to the desalination tower, laminated on the anion exchange resin, and all anions are removed. And transferring the separated cation exchange resin from the storage tank to the desalting tower alone and stacking the cation exchange resin on the anion exchange resin.

また、本発明の請求項5に記載の復水脱塩装置におけるイオン交換樹脂の充填方法は、復水脱塩装置の脱塩塔内の使用済みのカチオン交換樹脂及びアニオン交換樹脂を再生設備に移送し、この再生設備の第1、第2再生塔において上記各イオン交換樹脂を個別に再生した後、再生後の各イオン交換樹脂を再生塔から直接上記脱塩塔へ移送して充填する方法において、上記再生設備で再生されたカチオン交換樹脂及びアニオン交換樹脂を上記脱塩塔に充填する際に、再生後のアニオン交換樹脂をこのアニオン交換樹脂の一部を残して第2再生塔から第1再生塔へ移送する工程と、第1再生塔内でカチオン交換樹脂と移送後のアニオン交換樹脂を混合する工程と、第2再生塔内に残留するアニオン交換樹脂を上記脱塩塔へ移送して充填した後、第1再生塔内の混合イオン交換樹脂を上記脱塩塔へ移送してアニオン交換樹脂上に積層する工程とを有することを特徴とするものである。   In addition, the method for charging an ion exchange resin in a condensate desalination apparatus according to claim 5 of the present invention provides a method for recycling used cation exchange resin and anion exchange resin in a desalination tower of a condensate desalination apparatus to a regeneration facility. A method in which each of the ion exchange resins is individually regenerated in the first and second regeneration towers of the regeneration equipment, and then the regenerated ion exchange resins are directly transferred from the regeneration tower to the desalination tower for filling. In filling the cation exchange resin and the anion exchange resin regenerated in the regeneration facility into the desalting tower, the anion exchange resin after the regeneration is removed from the second regeneration tower while leaving a part of the anion exchange resin. (1) transferring to the regeneration tower, mixing the cation exchange resin and the transferred anion exchange resin in the first regeneration tower, and transferring the anion exchange resin remaining in the second regeneration tower to the desalting tower. After filling The mixed ion exchange resin in the regeneration tower is characterized in that a step of laminating on the anion exchange resin was transferred to the demineralizer.

また、本発明の請求項6に記載の復水脱塩装置におけるイオン交換樹脂の充填方法は、復水脱塩装置の脱塩塔内の使用済みのカチオン交換樹脂及びアニオン交換樹脂を再生設備に移送し、この再生設備の第1、第2再生塔において上記各イオン交換樹脂を個別に再生した後、再生後の各イオン交換樹脂を再生塔から直接上記脱塩塔へ移送して充填する方法において、上記再生設備で再生されたカチオン交換樹脂及びアニオン交換樹脂を上記脱塩塔に充填する際に、再生後のアニオン交換樹脂を第2再生塔から第1再生塔へ移送する工程と、第1再生塔内でカチオン交換樹脂と移送後のアニオン交換樹脂を混合した後、再度カチオン交換樹脂とアニオン交換樹脂に分離する工程と、第1再生塔内のアニオン交換樹脂の一部または全てを上記脱塩塔へ移送して充填する工程と、一部のアニオン交換樹脂を移送した場合には第1再生塔内で分離後のカチオン交換樹脂と分離後の残余のアニオン交換樹脂を混合した後、第1再生塔から上記脱塩塔へ移送してアニオン交換樹脂上に積層し、全てのアニオン交換樹脂を移送した場合には第1再生塔から分離後のカチオン交換樹脂を単独で上記脱塩塔へ移送してアニオン交換樹脂上に積層する工程とを有することを特徴とするものである。   Further, the method for charging an ion exchange resin in a condensate desalination apparatus according to claim 6 of the present invention provides a method for recycling used cation exchange resin and anion exchange resin in a desalination tower of a condensate desalination apparatus to a regenerating facility. A method in which each of the ion exchange resins is individually regenerated in the first and second regeneration towers of the regeneration equipment, and then the regenerated ion exchange resins are directly transferred from the regeneration tower to the desalination tower for filling. In filling the cation exchange resin and the anion exchange resin regenerated in the regeneration equipment into the desalination tower, transferring the anion exchange resin after regeneration from the second regeneration tower to the first regeneration tower; (1) mixing the cation exchange resin and the transferred anion exchange resin in the regeneration tower, and then separating the mixture into the cation exchange resin and the anion exchange resin again; Desalination And, when a part of the anion exchange resin is transferred, mixing the cation exchange resin after separation and the remaining anion exchange resin after separation in the first regeneration tower, and then performing the first regeneration When the anion exchange resin is transported from the tower to the above-mentioned desalting tower and laminated on the anion exchange resin, and all the anion exchange resins are transported, the cation exchange resin after separation from the first regeneration tower is independently transferred to the above-mentioned desalination tower. And laminating on an anion exchange resin.

また、本発明の請求項7に記載の復水脱塩装置におけるイオン交換樹脂の充填方法は、復水脱塩装置の脱塩塔内の使用済みのカチオン交換樹脂及びアニオン交換樹脂を再生設備に移送し、この再生設備の一つの再生塔において上記各イオン交換樹脂を再生した後、再生後の各イオン交換樹脂を上記再生塔から上記脱塩塔へ移送して充填する方法において、上記再生塔内で再生されたカチオン交換樹脂及びアニオン交換樹脂を上記脱塩塔に充填する際に、上記再生塔内の再生後の分離したアニオン交換樹脂の一部または全てを上記再生塔から上記脱塩塔へ移送して充填する工程と、一部のアニオン交換樹脂を移送した場合には上記再生塔内でカチオン交換樹脂と残余のアニオン交換樹脂を混合し、この混合イオン交換樹脂を上記再生塔から上記脱塩塔へ移送してアニオン交換樹脂上に積層し、全てのアニオン交換樹脂を移送した場合には上記再生塔内のカチオン交換樹脂を上記脱塩塔へ移送してアニオン交換樹脂上に積層する工程とを有することを特徴とするものである。   In addition, the method for charging an ion exchange resin in the condensate desalination apparatus according to claim 7 of the present invention is characterized in that the used cation exchange resin and the anion exchange resin in the desalination tower of the condensate desalination apparatus are supplied to the regeneration facility. Transferring, after regenerating each of the ion-exchange resins in one regeneration tower of the regeneration equipment, transferring and regenerating each regenerated ion-exchange resin from the regeneration tower to the desalination tower, When filling the cation exchange resin and the anion exchange resin regenerated in the desalination tower, part or all of the separated anion exchange resin after the regeneration in the regeneration tower is partially or entirely separated from the regeneration tower. The step of filling by transferring to and, when a part of the anion exchange resin is transferred, the cation exchange resin and the remaining anion exchange resin are mixed in the regeneration tower, and the mixed ion exchange resin is mixed with the mixed ion exchange resin from the regeneration tower. Step of transferring to the salt tower and stacking on the anion exchange resin, and when transferring all the anion exchange resin, transferring the cation exchange resin in the regeneration tower to the desalting tower and stacking on the anion exchange resin. And characterized in that:

また、本発明の請求項8に記載の復水脱塩装置におけるイオン交換樹脂の充填方法は、復水脱塩装置の脱塩塔内の使用済みのカチオン交換樹脂及びアニオン交換樹脂を再生設備に移送し、この再生設備の一つの再生塔において上記各イオン交換樹脂を分離させて個別に再生した後、再生後の各イオン交換樹脂を上記再生塔から上記脱塩塔へ移送して充填する方法において、上記再生塔内で再生されたカチオン交換樹脂及びアニオン交換樹脂を上記脱塩塔に充填する際に、上記再生塔内の再生後の分離したカチオン交換樹脂とアニオン交換樹脂を混合した後、再度カチオン交換樹脂とアニオン交換樹脂に分離する工程と、上記再生塔内の分離後のアニオン交換樹脂の一部または全てを上記再生塔から上記脱塩塔へ移送して充填する工程と、一部のアニオン交換樹脂を移送した場合には上記再生塔内でカチオン交換樹脂と残余のアニオン交換樹脂を混合し、この混合イオン交換樹脂を上記再生塔から上記脱塩塔へ移送してアニオン交換樹脂上に積層し、全てのアニオン交換樹脂を移送した場合には上記再生塔内のカチオン交換樹脂を上記脱塩塔へ移送してアニオン交換樹脂上に積層する工程とを有することを特徴とするものである。   Further, in the method for charging an ion exchange resin in the condensate desalination apparatus according to claim 8 of the present invention, the used cation exchange resin and the anion exchange resin in the desalination tower of the condensate desalination apparatus are supplied to the regeneration facility. Transfer and separate regeneration of each of the ion exchange resins in one regeneration tower of this regeneration facility, and then transfer and recharge each ion exchange resin from the regeneration tower to the desalination tower after regeneration. In filling the cation exchange resin and the anion exchange resin regenerated in the regeneration tower into the desalination tower, after mixing the separated cation exchange resin and the anion exchange resin after regeneration in the regeneration tower, A step of separating the cation exchange resin and the anion exchange resin again, and a step of transferring a part or all of the separated anion exchange resin in the regeneration tower from the regeneration tower to the desalination tower and filling the same, When the anion exchange resin is transferred, the cation exchange resin and the remaining anion exchange resin are mixed in the regeneration tower, and the mixed ion exchange resin is transferred from the regeneration tower to the desalination tower and transferred to the anion exchange resin. Stacking and transferring all the anion exchange resin, and transferring the cation exchange resin in the regeneration tower to the desalting tower and stacking the anion exchange resin on the anion exchange resin. .

本発明の請求項1〜請求項8に記載の発明によれば、復水脱塩装置のカチオン交換樹脂から処理水中へ漏出する有機物を低減し、処理水の水質を向上させることができ、ひいては火力発電所のボイラ、沸騰水型原子力発電所の原子炉、加圧水型原子力発電所の蒸気発生器等の高温高圧系を構成する部材の腐食を防止でき、特に、カチオン交換樹脂が劣化を受けている場合に高温高圧系の構成部材の腐食を効果的に防止できる復水脱塩装置におけるイオン交換樹脂の充填方法を提供することができる。   ADVANTAGE OF THE INVENTION According to the invention as set forth in claims 1 to 8 of the present invention, it is possible to reduce organic substances leaking from the cation exchange resin of the condensate desalination apparatus into the treated water, and to improve the quality of the treated water. It can prevent corrosion of the components that make up the high-temperature and high-pressure system, such as boilers for thermal power plants, nuclear reactors for boiling water nuclear power plants, and steam generators for pressurized water nuclear power plants. In this case, it is possible to provide a method for charging an ion exchange resin in a condensate desalination apparatus capable of effectively preventing corrosion of a component of a high-temperature and high-pressure system when the ion exchange resin is used.

特に、本発明の請求項2、請求項4、請求項6及び請求項8に記載の発明によれば、上記の効果に加えて更に、脱塩塔下部にアニオン交換樹脂からなる下層を形成させることによって生じる虞のある下層のアニオン交換樹脂からの処理水中へのナトリウムリークを極力防止できる復水脱塩装置におけるイオン交換樹脂の充填方法を提供することができる。   In particular, according to the second, fourth, sixth and eighth aspects of the present invention, in addition to the above effects, a lower layer made of an anion exchange resin is further formed below the desalting tower. Thus, it is possible to provide a method of charging an ion exchange resin in a condensate desalination apparatus capable of preventing sodium leakage from the lower anion exchange resin into the treatment water, which may possibly occur, from occurring.

以下、図1〜図7及び表1〜表3に示す実施例に基づいて本発明を説明する。尚、図1は本発明の復水脱塩装置におけるイオン交換樹脂の充填方法を好適に適用できる復水脱塩装置の一実施形態を示す構成図、図2の(a)は図1に示す脱塩塔の下部の構成を示す構成図、同図の(b)は他の脱塩塔の下部の構成を示す構成図、図3〜図6はそれぞれ本発明の復水脱塩装置におけるイオン交換樹脂の充填方法を好適に適用できる復水脱塩装置の他の実施形態の再生設備を示す構成図、図7は本実施例におけるNaイオンの漏出を示すグラフであり、また、表1は本発明の復水脱塩装置の性能をベンチスケールで実験した時の実験条件を示す表、表2はベンチスケールで実験した時の有機物等の漏出結果を示す表、表3は本実施例におけるNaイオンの漏出結果を示す表である。   Hereinafter, the present invention will be described based on examples shown in FIGS. 1 to 7 and Tables 1 to 3. FIG. 1 is a block diagram showing an embodiment of a condensate desalination apparatus to which the method for filling an ion exchange resin in the condensate desalination apparatus of the present invention can be suitably applied, and FIG. 2 (a) is shown in FIG. FIG. 3B is a configuration diagram showing a configuration of a lower portion of a desalination tower, FIG. 3B is a configuration diagram showing a configuration of a lower portion of another desalination column, and FIGS. FIG. 7 is a configuration diagram showing a regeneration facility of another embodiment of a condensate desalination apparatus to which a method of filling an exchange resin can be suitably applied, FIG. 7 is a graph showing leakage of Na ions in the present example, and Table 1 is Table showing the experimental conditions when the performance of the condensate desalination apparatus of the present invention was tested on a bench scale, Table 2 shows the results of leakage of organic substances and the like when tested on a bench scale, and Table 3 shows the results in this example. It is a table | surface which shows the leak result of Na ion.

まず、本発明の復水脱塩装置におけるイオン交換樹脂の充填方法を実施する際に好適に用いられる復水脱塩装置の一実施形態について説明する。本実施形態の復水脱塩装置10は、例えば図1に示すように、複数の脱塩塔11(図1では2塔のみ図示してある)と、これらの脱塩塔11内のイオン交換樹脂を再生する再生設備20とを備えて構成されている。各脱塩塔11の上部には復水器(図示せず)から前置濾過装置(図示せず)を経由して流れて来る復水が流入する流入配管12が接続され、それぞれの下部には脱塩処理後の処理水が流出する流出配管13が接続されている。そして、流入配管12から各脱塩塔11内へ流入した復水はそれぞれのイオン交換樹脂層14を下降流で通水され、通水の間にイオン交換樹脂により脱塩処理され、処理水が流出配管13から流出するようにしてある。また、各脱塩塔11の流入配管12及び流出配管13にはバルブ12A、13Aが取り付けられ、通水終点に達した脱塩塔11内のイオン交換樹脂を再生する時にその脱塩塔11のバルブ12A、13Aを閉じ、他の脱塩塔11から切り離すようにしてある。尚、各脱塩塔11は略等しい時間間隔で順に通水終点に達するようにしてある。   First, an embodiment of a condensate desalination apparatus suitably used when carrying out the method for filling an ion exchange resin in the condensate desalination apparatus of the present invention will be described. As shown in FIG. 1, for example, as shown in FIG. 1, a condensate desalination apparatus 10 according to the present embodiment includes a plurality of desalination towers 11 (only two towers are illustrated in FIG. 1) and ion exchange in the desalination towers 11. And a regenerating facility 20 for regenerating the resin. An inflow pipe 12 into which condensate flowing from a condenser (not shown) through a pre-filter (not shown) flows in is connected to an upper part of each desalination tower 11, and a lower part of each of the lower parts. Is connected to an outflow pipe 13 through which treated water after desalination flows out. The condensed water flowing from the inflow pipe 12 into each of the desalination towers 11 flows through the respective ion-exchange resin layers 14 in a descending flow, and is desalinated by the ion-exchange resin during the flow of water. It flows out from the outflow pipe 13. Further, valves 12A and 13A are attached to the inflow pipe 12 and the outflow pipe 13 of each desalination tower 11, and when the ion-exchange resin in the desalination tower 11 that has reached the water flow end point is regenerated, The valves 12A and 13A are closed to disconnect from the other desalination towers 11. In addition, each desalination tower 11 is configured to reach the water passing end point in order at substantially equal time intervals.

而して、上記イオン交換樹脂層14は図1に示すように上下の2層から構成されている。上層14Aは強酸性カチオン交換樹脂(以下、単に「カチオン交換樹脂」と称す)Cと強塩基性アニオン交換樹脂(以下、単に「アニオン交換樹脂」と称す)Aを混合した混合イオン交換樹脂CA、または、カチオン交換樹脂C単独で形成されている。下層14Bはアニオン交換樹脂A単独で形成されている。そして、通水終点に達したイオン交換樹脂層14のカチオン交換樹脂C及びアニオン交換樹脂Aは再生設備20に移送して再生し、繰り返し使用するようにしている。   Thus, the ion-exchange resin layer 14 is composed of upper and lower layers as shown in FIG. The upper layer 14A is a mixed ion exchange resin CA obtained by mixing a strongly acidic cation exchange resin (hereinafter, simply referred to as “cation exchange resin”) C and a strongly basic anion exchange resin (hereinafter, simply referred to as “anion exchange resin”) A, Alternatively, it is formed of the cation exchange resin C alone. The lower layer 14B is formed of the anion exchange resin A alone. Then, the cation exchange resin C and the anion exchange resin A of the ion exchange resin layer 14 which has reached the water passing end point are transferred to the regeneration equipment 20 for regeneration, and are used repeatedly.

ここで、上記カチオン交換樹脂Cについて概説すると、復水脱塩装置10に使用されているカチオン交換樹脂は通常スチレンとジビニルベンゼンを共重合して共重合体を製造し、この共重合体をスルホン化することにより得られる。しかしながら、これらの合成段階で極僅かではあるが未反応のモノマーや、所期の重合度に達しないオリゴマーや低分子ポリマーの生成は避けられない。そのため、その後の精製処理によりカチオン交換樹脂の残留不純物を低減した後使用するが、スチレンスルホン酸のオリゴマーや低分子ポリマーは僅かではあるが残留し、この残留物が通水中に溶出してくることは避けられない。また、イオン交換樹脂は経年使用する間に酸化劣化を受け、カチオン交換樹脂の場合には酸化劣化によりスチレンスルホン酸のオリゴマーや低分子ポリマーが溶出し易くなる。ところが、スチレンスルホン酸は、アニオン成分であるため、アニオン交換樹脂Aとのイオン交換反応により、またアニオン交換樹脂Aへの物理吸着によりアニオン交換樹脂Aに捕捉される。   The cation exchange resin C used in the condensate desalination apparatus 10 is generally produced by copolymerizing styrene and divinylbenzene to produce a copolymer. It is obtained by converting However, it is unavoidable to produce very small but unreacted monomers, oligomers or low molecular weight polymers which do not reach the intended degree of polymerization in these synthesis steps. Therefore, the residual impurities in the cation exchange resin are reduced by subsequent purification treatment before use, but styrene sulfonic acid oligomers and low molecular weight polymers will remain, albeit slightly, and this residue will elute into running water. Is inevitable. Further, the ion exchange resin undergoes oxidative deterioration during use over time. In the case of the cation exchange resin, the styrene sulfonic acid oligomer or low molecular polymer is easily eluted due to the oxidative deterioration. However, since styrene sulfonic acid is an anion component, it is captured by the anion exchange resin A by an ion exchange reaction with the anion exchange resin A and by physical adsorption to the anion exchange resin A.

カチオン交換樹脂Cからは上述のように復水の通水中に僅かではあるが有機物が溶出するが、本実施形態では、カチオン交換樹脂Cから溶出する有機物がそのまま処理水中に漏出するのを防止するために、上記イオン交換樹脂層14は、上述のように上下二層で構成され、上層14Aはカチオン交換樹脂Cとアニオン交換樹脂Aの混合イオン交換樹脂CAまたはカチオン交換樹脂C単独で形成され、下層14Bがアニオン交換樹脂Aにより形成されている。従って、上層14Aが混合イオン交換樹脂CAにより形成されている場合には、アニオン交換樹脂Aとの比重差によりカチオン交換樹脂Cが下層部に偏在しカチオンリッチになって通水時にカチオン交換樹脂Cから溶出する有機物が上層14Aの混合イオン交換樹脂CAから漏出しても、下層14Bがアニオン交換樹脂Aにより形成されているため、上層14Aから漏出する有機物は下層14Bのアニオン交換樹脂Aにより殆ど捕捉され、処理水中へ殆ど漏出することがなく、処理水質の悪化を防止することができる。また、上層14Aがカチオン交換樹脂C単独で形成されている場合であっても同様のことが云える。   Although a small amount of organic matter is eluted from the cation exchange resin C into the condensed water as described above, in the present embodiment, the organic matter eluted from the cation exchange resin C is prevented from leaking into the treated water as it is. Therefore, the ion-exchange resin layer 14 is composed of the upper and lower two layers as described above, the upper layer 14A is formed of a mixed ion-exchange resin CA of the cation-exchange resin C and the anion-exchange resin A or the cation-exchange resin C alone, The lower layer 14B is formed of the anion exchange resin A. Therefore, when the upper layer 14A is formed of the mixed ion exchange resin CA, the cation exchange resin C is unevenly distributed in the lower layer due to the difference in specific gravity from the anion exchange resin A and becomes cation-rich, so that the cation exchange resin C is supplied when water is passed. Even if organic substances eluted from the resin leak from the mixed ion exchange resin CA of the upper layer 14A, since the lower layer 14B is formed of the anion exchange resin A, the organic substances leaking from the upper layer 14A are almost captured by the anion exchange resin A of the lower layer 14B. Therefore, it hardly leaks into the treated water, and the deterioration of the treated water quality can be prevented. The same applies to the case where the upper layer 14A is formed of the cation exchange resin C alone.

上記アニオン交換樹脂Aからなる下層14Bは上層14Aのカチオン交換樹脂Cから漏出する有機物を確実に補足できる層高hに形成しておけば良く、その層高hとしては例えば脱塩塔下部の脱塩処理水の流出点から少なくとも200mmあれば良い。層高hの採り方は脱塩塔11の塔構成によって異なる。例えば図2の(a)で示す処理水が上下複数段に渡って配置された環状の集水管15を介して流出するように構成されている場合には、その層高hは、最も上段の集水管15の流出点を基準点とし、この基準点から下層14Bの上面までの高さであり、この高さが少なくとも200mmあれば良いことになる。また、図2の(b)で示すように処理水が支持板16の流出部16Aを介して流出するように構成されている場合には、その層高hは、支持板16の流出点16Aを基準点とし、この基準点から下層14Bの上面までの高さである。   The lower layer 14B made of the anion exchange resin A may be formed at a layer height h that can surely capture the organic substances leaking from the cation exchange resin C of the upper layer 14A. What is necessary is just 200 mm from the outflow point of the salted water. How to take the bed height h differs depending on the tower configuration of the desalination tower 11. For example, when the treated water shown in FIG. 2A is configured to flow out through the annular water collecting pipes 15 arranged in a plurality of upper and lower stages, the layer height h is the highest in the uppermost stage. The outflow point of the water collecting pipe 15 is used as a reference point, and the height is from this reference point to the upper surface of the lower layer 14B. It is sufficient that this height is at least 200 mm. When the treated water is configured to flow out through the outflow portion 16A of the support plate 16 as shown in FIG. 2B, the layer height h is determined by the outflow point 16A of the support plate 16. Is the reference point, and the height from this reference point to the upper surface of the lower layer 14B.

従って、本実施形態の復水脱塩装置10のうち、上層14Aが混合イオン交換樹脂CAからなる脱塩塔11を用いて復水を処理する場合には、復水が流入配管12から各脱塩塔11内へ並行して流入すると、各脱塩塔11内では復水が上層14Aを通過する間に復水中のNaイオン、Clイオン、金属イオン等の不純物イオンは上層14Aの混合イオン交換樹脂CAにより除去される。そして、上層14Aのカチオン交換樹脂Cから漏出するスチレンスルホン酸のオリゴマー等の有機物は上層14Aでの処理水が下層14Bを通過する間にアニオン交換樹脂Aにより捕捉され、各脱塩塔11から流出する処理水中の漏出有機物は従来より格段に低減する。従って、この処理水が復水脱塩装置10の下流側にあるボイラ、蒸気発生器等において高温、高圧の作用を受けてもSOイオンを生成することなく、これらの構成機器の腐食を防止することができる。また、上層14Aがカチオン交換樹脂C単独で構成されている場合には、上層14Aのカチオン交換樹脂CによりNaイオンや金属イオン等のカチオンが捕捉され、下層14Bのアニオン交換樹脂AによりClイオン等のアニオンが捕捉される。また、下層14Bでは上層14Aから漏出する有機物をも捕捉し、処理水中への有機物の混入を格段に低減することができる。そして、いずれかの脱塩塔11が通水終点に達した時にはそのバルブ12A、13Aを閉じて他の脱塩塔11から切り離し、通水終点に達した脱塩塔11内のイオン交換樹脂を再生設備20において再生し、再生後のイオン交換樹脂をその脱塩塔11へ充填する。 Accordingly, in the condensate desalination apparatus 10 of the present embodiment, when the condensate is treated using the desalination tower 11 in which the upper layer 14A is made of the mixed ion exchange resin CA, the condensate flows from the inflow pipe 12 to the respective condensate. When the condensate flows into the salt tower 11 in parallel, in each of the desalination towers 11, while the condensate passes through the upper layer 14 </ b> A, impurity ions such as Na ions, Cl ions, and metal ions in the condensate are mixed in the upper layer 14 </ b> A. It is removed by the resin CA. Then, organic substances such as oligomers of styrene sulfonic acid leaking from the cation exchange resin C in the upper layer 14A are captured by the anion exchange resin A while the water treated in the upper layer 14A passes through the lower layer 14B, and are discharged from each desalting tower 11. The amount of organic substances leaking from the treated water is significantly reduced. Therefore, even if this treated water is subjected to the action of high temperature and high pressure in a boiler, a steam generator, and the like on the downstream side of the condensate desalination apparatus 10, it does not generate SO 4 ions and prevents the corrosion of these components. can do. When the upper layer 14A is composed of the cation exchange resin C alone, cations such as Na ions and metal ions are captured by the cation exchange resin C of the upper layer 14A, and Cl ions and the like are trapped by the anion exchange resin A of the lower layer 14B. Is trapped. In addition, the lower layer 14B also captures organic substances leaking from the upper layer 14A, and can significantly reduce the entry of organic substances into the treated water. Then, when any one of the desalination towers 11 reaches the water passing end point, the valves 12A and 13A are closed to separate from the other desalination towers 11, and the ion exchange resin in the desalting tower 11 that has reached the water passing end point is removed. The regenerated ion-exchange resin is regenerated in the regenerating facility 20, and the demineralization tower 11 is charged.

次に、本発明の復水脱塩装置におけるイオン交換樹脂の充填方法を実施する場合に好適に用いられる再生設備20について図1を参照しながら説明する。尚、本実施形態ではイオン交換樹脂の移送を中心に説明するため、以下の説明では配管として樹脂移送配管のみを図示し、その他の給排水配管及び空気等を供給するガス配管等の付帯機器は図面から省略してある。図1に示す再生設備20は二塔再生方式の再生設備である。この再生設備20は、同図に示すように、一つの脱塩塔11内の全てのイオン交換樹脂を受け取ってカチオン交換樹脂Cを再生する第1再生塔(以下、「カチオン再生塔」と称す)21と、このカチオン再生塔21からアニオン交換樹脂Aを受け取ってそれを再生する第2再生塔(以下、「アニオン再生塔」と称す)22と、両再生塔21、22において再生された各イオン交換樹脂を受け取って次の脱塩塔11が通水終点に達するまでの間両イオン交換樹脂を貯蔵する貯蔵タンク23とを備えて構成されている。   Next, the regeneration equipment 20 suitably used for carrying out the method for filling the ion exchange resin in the condensate desalination apparatus of the present invention will be described with reference to FIG. In the present embodiment, the transfer of the ion-exchange resin will be mainly described. In the following description, only the resin transfer pipe is illustrated as a pipe, and other auxiliary equipment such as a water supply / drain pipe and a gas pipe for supplying air and the like are illustrated in the drawings. Omitted from The regeneration equipment 20 shown in FIG. 1 is a two-tower regeneration type regeneration equipment. As shown in the figure, the regeneration equipment 20 receives a whole ion exchange resin in one desalination tower 11 and regenerates the cation exchange resin C, and the first regeneration tower (hereinafter referred to as “cation regeneration tower”). ) 21, a second regeneration tower (hereinafter referred to as “anion regeneration tower”) 22 for receiving the anion exchange resin A from the cation regeneration tower 21 and regenerating it, and each of the regenerated towers 21 and 22 The storage tank 23 is configured to receive the ion-exchange resin and store both ion-exchange resins until the next desalination tower 11 reaches the end point of water flow.

上記カチオン再生塔21は上記各脱塩塔11と第1樹脂移送配管24を介して接続されている。第1樹脂移送配管24は一方が各脱塩塔11の下部に接続され、その他方はカチオン再生塔21の上部に接続されている。そして、脱塩塔11からカチオン再生塔21へイオン交換樹脂を移送する場合には、第1樹脂移送配管24のバルブ24Aを開き、各脱塩塔11内に供給される脱塩水等の水及び空気等のガスにより第1樹脂移送配管24を介してイオン交換樹脂をカチオン再生塔21内へ移送するようにしてある。また、カチオン再生塔21内には塩酸や硫酸等の酸再生剤を供給するディストリビュータ21Aが配設されている。従って、このカチオン再生塔21においてカチオン交換樹脂Cを再生する場合には以下のようにして行う。即ち、カチオン再生塔21内では脱塩塔11から移送されたイオン交換樹脂をエアスクラビング操作によりイオン交換樹脂からクラッド等を剥離した後、逆洗操作により剥離したクラッド等を排出し、引き続きこの操作によりカチオン交換樹脂Cを下層にアニオン交換樹脂Aを上層に分離する。その後、アニオン交換樹脂Aを後述のようにアニオン再生塔22へ移送した後、ディストリビュータ21Aから酸再生剤を供給すると共に再生廃水を塔下部の排水管(図示せず)から排出し、カチオン交換樹脂Cを再生する。再生後のカチオン交換樹脂Cは脱塩水等を用いて水洗して酸再生剤を洗い落とす。   The cation regeneration tower 21 is connected to each of the desalination towers 11 via a first resin transfer pipe 24. One of the first resin transfer pipes 24 is connected to a lower part of each desalting tower 11, and the other is connected to an upper part of the cation regeneration tower 21. Then, when transferring the ion exchange resin from the desalting tower 11 to the cation regenerating tower 21, the valve 24 </ b> A of the first resin transfer pipe 24 is opened, and water such as demineralized water supplied into each desalting tower 11 and The ion exchange resin is transferred into the cation regeneration tower 21 via a first resin transfer pipe 24 by a gas such as air. Further, a distributor 21A for supplying an acid regenerating agent such as hydrochloric acid or sulfuric acid is provided in the cation regenerating tower 21. Accordingly, the regeneration of the cation exchange resin C in the cation regeneration tower 21 is performed as follows. That is, in the cation regeneration tower 21, after the ion-exchange resin transferred from the desalting tower 11 is separated from the ion-exchange resin by an air scrubbing operation, the clad or the like is separated from the ion-exchange resin, and the separated clad is discharged by a backwash operation. To separate the cation exchange resin C into the lower layer and the anion exchange resin A into the upper layer. Then, after transferring the anion exchange resin A to the anion regeneration tower 22 as described later, an acid regenerant is supplied from the distributor 21A, and the regeneration wastewater is discharged from a drain pipe (not shown) at the bottom of the tower. Play C. The cation exchange resin C after regeneration is washed with demineralized water or the like to wash off the acid regenerant.

上記アニオン再生塔22はカチオン再生塔21と第2樹脂移送配管25を介して接続されている。第2樹脂移送配管25は一方がカチオン再生塔21のほぼ中間部(分離後のアニオン交換樹脂Aのみを移送できる位置)に接続され、その他方はアニオン再生塔22の上部に接続されている。そして、カチオン再生塔21からアニオン再生塔22へアニオン交換樹脂Aを移送する場合には、第2樹脂移送配管25のバルブ25Aを開き、カチオン再生塔21内に供給される脱塩水等の水及び空気等のガスにより第2樹脂移送配管25を介してアニオン交換樹脂Aをアニオン再生塔22へ移送するようにしてある。また、アニオン再生塔22内には水酸化ナトリウム等のアルカリ再生剤(本実施形態及び以下の実施形態では水酸化ナトリウムを使用することとする)を供給するディストリビュータ22Aが配設されている。従って、このアニオン再生塔22においてアニオン交換樹脂Aを再生する場合には、ディストリビュータ22Aからアルカリ再生剤を供給すると共に廃水を塔下部の排水管(図示せず)から排出し、アニオン交換樹脂Aを再生し、その後アニオン交換樹脂Aを脱塩水等を用いて水洗して水酸化ナトリウムを洗い落とす。   The anion regeneration tower 22 is connected to the cation regeneration tower 21 via a second resin transfer pipe 25. One of the second resin transfer pipes 25 is connected to a substantially intermediate portion of the cation regeneration tower 21 (a position where only the separated anion exchange resin A can be transferred), and the other is connected to the upper part of the anion regeneration tower 22. When transferring the anion exchange resin A from the cation regeneration tower 21 to the anion regeneration tower 22, the valve 25 </ b> A of the second resin transfer pipe 25 is opened, and water such as desalinated water supplied into the cation regeneration tower 21 is removed. The anion exchange resin A is transferred to the anion regeneration tower 22 via a second resin transfer pipe 25 by a gas such as air. Further, in the anion regeneration tower 22, a distributor 22A for supplying an alkali regenerant such as sodium hydroxide (sodium hydroxide is used in the present embodiment and the following embodiments) is provided. Therefore, when regenerating the anion exchange resin A in the anion regeneration tower 22, the alkali regenerant is supplied from the distributor 22A, and the wastewater is discharged from a drain pipe (not shown) at the lower part of the tower to remove the anion exchange resin A. After the regeneration, the anion exchange resin A is washed with deionized water or the like to remove sodium hydroxide.

上記貯蔵タンク23はカチオン再生塔21及びアニオン再生塔22と第3樹脂移送配管26を介してそれぞれ接続されている。第3樹脂移送配管26は一方がカチオン再生塔21とアニオン再生塔22に達するように分岐し、各分岐端が両再生塔21、22の下部にそれぞれ接続され、他方が貯蔵タンク23に接続されている。そして、カチオン再生塔21及びアニオン再生塔22から貯蔵タンク23へカチオン交換樹脂C及びアニオン交換樹脂Aをそれぞれ移送する場合には、第3樹脂移送配管26のバルブ26A、26Bをそれぞれ開き、各再生塔21、22内に供給される脱塩水等の水及び空気等のガスによりカチオン交換樹脂C及びアニオン交換樹脂Aを第3樹脂移送配管26を介して貯蔵タンク23へそれぞれ移送するようにしてある。この時、アニオン再生塔22内のアニオン交換樹脂Aは一部を残して貯蔵タンク23へ移送される場合と、その全てが移送される場合とがある。また、貯蔵タンク23は各脱塩塔11と第4樹脂移送配管27を介して接続されている。第4樹脂移送配管27は一方が貯蔵タンク23の下部に接続され、他方側が各脱塩塔11に達するように分岐し、各分岐端が各脱塩塔11の上部にそれぞれ接続されている。また、貯蔵タンク23内ではカチオン交換樹脂Cとアニオン交換樹脂Aを混合して混合イオン交換樹脂CAを調整するようにしてある。貯蔵タンク23内の混合イオン交換樹脂CAはその内部に供給される脱塩水等の水及び空気等のガスを用いて第4樹脂移送配管27を介して空の脱塩塔11へ移送するようにしてある。   The storage tank 23 is connected to the cation regeneration tower 21 and the anion regeneration tower 22 via a third resin transfer pipe 26, respectively. One of the third resin transfer pipes 26 branches so as to reach the cation regeneration tower 21 and the anion regeneration tower 22, and each branch end is connected to a lower portion of both the regeneration towers 21 and 22, and the other is connected to the storage tank 23. ing. When transferring the cation exchange resin C and the anion exchange resin A from the cation regeneration tower 21 and the anion regeneration tower 22 to the storage tank 23, respectively, the valves 26A and 26B of the third resin transfer pipe 26 are opened, and The cation exchange resin C and the anion exchange resin A are respectively transferred to the storage tank 23 via the third resin transfer pipe 26 by water such as demineralized water and gas such as air supplied into the towers 21 and 22. . At this time, the anion exchange resin A in the anion regeneration tower 22 may be transferred to the storage tank 23 while leaving a part thereof, or may be entirely transferred. The storage tank 23 is connected to each of the desalination towers 11 via a fourth resin transfer pipe 27. One of the fourth resin transfer pipes 27 is connected to a lower part of the storage tank 23, and the other side is branched so as to reach each of the desalination towers 11, and each branch end is connected to an upper part of each of the desalination towers 11. In the storage tank 23, the cation exchange resin C and the anion exchange resin A are mixed to adjust the mixed ion exchange resin CA. The mixed ion exchange resin CA in the storage tank 23 is transferred to the empty desalination tower 11 through the fourth resin transfer pipe 27 using water such as demineralized water and gas such as air supplied to the inside. It is.

更に、本実施形態ではアニオン再生塔22と各脱塩塔11が第5樹脂移送配管(アニオン交換樹脂用樹脂移送管)28を介してそれぞれ接続されている。第5樹脂移送配管28は、一方が第3樹脂移送配管26のバルブ26Bの上流側に接続され、他方が第4樹脂移送配管27に接続されて各脱塩塔11と連結され、第5樹脂移送配管28を介してアニオン再生塔22内のアニオン交換樹脂Aを単独で各脱塩塔11へ直接移送できるようにしてある。従って、第5樹脂移送配管28を介してアニオン再生塔22内のアニオン交換樹脂Aを脱塩塔11内へ移送し、脱塩塔11内にアニオン交換樹脂Aからなるイオン交換樹脂層14の下層14Bを形成することができるようにしてある。   Further, in the present embodiment, the anion regeneration tower 22 and each of the desalination towers 11 are connected via a fifth resin transfer pipe (resin transfer pipe for anion exchange resin) 28, respectively. One of the fifth resin transfer pipes 28 is connected to the upstream side of the valve 26B of the third resin transfer pipe 26, and the other is connected to the fourth resin transfer pipe 27 and connected to each of the desalination towers 11, and The anion exchange resin A in the anion regeneration tower 22 can be directly transferred to each desalting tower 11 alone via the transfer pipe 28. Therefore, the anion exchange resin A in the anion regeneration tower 22 is transferred to the desalination tower 11 via the fifth resin transfer pipe 28, and the lower layer of the ion exchange resin layer 14 made of the anion exchange resin A 14B can be formed.

次に、上記再生設備20を用いて通水終点に達した脱塩塔11内のイオン交換樹脂を再生し、再生後のイオン交換樹脂を脱塩塔11内へ充填する方法の一実施形態について図1を参照しながら説明する。例えば図1の右側に示す脱塩塔11が通水終点に達した時には、そのイオン交換樹脂を再生する。それにはまず、バルブ24Aを開き、第1樹脂移送配管24を介して脱塩塔11内の全てのイオン交換樹脂をカチオン再生塔21へ移送する。尚、イオン交換樹脂の移送が終了し、空になった上記脱塩塔11には、後述のような方法で予め再生されて貯留されているアニオン再生塔22内のアニオン交換樹脂Aと貯蔵タンク23内の混合イオン交換樹脂CAとを後述のようにして移送して充填し、再び復水の通水を行う。イオン交換樹脂を脱塩塔11から移送した後、カチオン再生塔21内ではエアスクラビング洗浄を行い、イオン交換樹脂の付着物を除去した後、逆洗によりアニオン交換樹脂Aを上層に、カチオン交換樹脂Cを下層に分離する。次いで、バルブ25Aを開き、分離後のアニオン交換樹脂Aを第2樹脂移送配管25を介してアニオン再生塔22へ移送する。   Next, an embodiment of a method for regenerating the ion-exchange resin in the desalination tower 11 that has reached the water-flow end point by using the regenerating equipment 20 and charging the regenerated ion-exchange resin into the desalination tower 11 will be described. This will be described with reference to FIG. For example, when the desalination tower 11 shown on the right side of FIG. 1 reaches the end of water flow, the ion exchange resin is regenerated. First, the valve 24A is opened, and all the ion exchange resins in the desalination tower 11 are transferred to the cation regeneration tower 21 via the first resin transfer pipe 24. After the transfer of the ion-exchange resin is completed, the desalination tower 11 that has been emptied is filled with the anion-exchange resin A in the anion regeneration tower 22 that has been regenerated and stored in advance by a method described below. The mixed ion exchange resin CA in 23 is transferred and filled as described later, and condensed water is passed again. After transferring the ion-exchange resin from the desalting tower 11, air scrubbing is performed in the cation regeneration tower 21 to remove deposits on the ion-exchange resin. C is separated into lower layers. Next, the valve 25A is opened, and the separated anion exchange resin A is transferred to the anion regeneration tower 22 via the second resin transfer pipe 25.

その後、カチオン再生塔21ではディストリビュータ21Aからカチオン再生塔21内に酸再生剤を供給し、カチオン交換樹脂Cを再生し、再生後のカチオン交換樹脂Cを洗浄して酸再生剤を洗い落とす。また、アニオン再生塔22ではディストリビュータ22Aからアニオン再生塔22内にアルカリ再生剤を供給し、アニオン交換樹脂Aを再生し、再生後のアニオン交換樹脂Aを洗浄してアルカリ再生剤を洗い落とす。これらの操作を終えた後、カチオン再生塔21内のカチオン交換樹脂Cを第3樹脂移送配管26を介して貯蔵タンク23へ、また、アニオン再生塔22内のアニオン交換樹脂Aも第3樹脂移送配管26を介して貯蔵タンク23へ移送する。この時、アニオン再生塔22内にはアニオン交換樹脂Aの一部を残し、必要ならばアニオン再生塔22で残留させたアニオン交換樹脂Aを十分に洗浄する。貯蔵タンク23内では移送後のカチオン交換樹脂Cとアニオン交換樹脂Aを混合して混合イオン交換樹脂CAとして調整し、次の脱塩塔11(例えば図1の左側の脱塩塔)へ移送するまで貯蔵タンク23内で混合イオン交換樹脂CAを貯蔵する。この間、適宜の間隔で混合イオン交換樹脂CAを洗浄すると良い。   Thereafter, in the cation regeneration tower 21, an acid regenerant is supplied from the distributor 21A into the cation regeneration tower 21, the cation exchange resin C is regenerated, and the regenerated cation exchange resin C is washed to remove the acid regenerant. In the anion regeneration tower 22, an alkali regenerant is supplied from the distributor 22A into the anion regeneration tower 22, the anion exchange resin A is regenerated, and the regenerated anion exchange resin A is washed to remove the alkali regenerant. After these operations, the cation exchange resin C in the cation regeneration tower 21 is transferred to the storage tank 23 via the third resin transfer pipe 26, and the anion exchange resin A in the anion regeneration tower 22 is also transferred to the third resin. It is transferred to the storage tank 23 via the pipe 26. At this time, a part of the anion exchange resin A is left in the anion regeneration tower 22, and if necessary, the anion exchange resin A remaining in the anion regeneration tower 22 is sufficiently washed. In the storage tank 23, the cation exchange resin C and the anion exchange resin A after the transfer are mixed and adjusted as a mixed ion exchange resin CA, and then transferred to the next desalination tower 11 (for example, the left desalination tower in FIG. 1). The mixed ion exchange resin CA is stored in the storage tank 23 until this time. During this time, it is preferable to wash the mixed ion exchange resin CA at appropriate intervals.

次の脱塩塔11が通水終点に達し、その脱塩塔11へ上述のようにして再生した再生済みのイオン交換樹脂を充填する場合には、その脱塩塔11内の使用済みのイオン交換樹脂を上述したように脱塩塔11からカチオン再生塔21へ取り出した後、まず、第4樹脂移送配管27のバルブ27B及び第5樹脂移送配管28のバルブ28Aを開き、アニオン再生塔22内に残留させておいたアニオン交換樹脂Aの全てを第5樹脂移送配管28及び第4樹脂移送配管27を介して脱塩塔11へ移送して充填し、予め脱塩塔11の下部にアニオン交換樹脂Aからなる下層14Bを形成しておく。引き続き、上記バルブ28Aを閉じ、第4樹脂移送配管27の貯蔵タンク23側のバルブ27Aを開いて貯蔵タンク23内の全ての混合イオン交換樹脂CAを第4樹脂移送配管27を介して脱塩塔11へ移送し、混合イオン交換樹脂CAを先に充填したアニオン交換樹脂A上に積層する。、この結果、脱塩塔11のイオン交換樹脂層14は、上層14Aが混合イオン交換樹脂CAにより形成され、下層14Bがアニオン交換樹脂Aにより形成され、本実施形態の復水脱塩装置10の脱塩塔11が構成されたことになる。   When the next desalination tower 11 reaches the end of water flow and the recharged ion exchange resin regenerated as described above is filled in the desalination tower 11, the used ions in the desalination tower 11 are filled. After removing the exchange resin from the desalting tower 11 to the cation regeneration tower 21 as described above, first, the valve 27B of the fourth resin transfer pipe 27 and the valve 28A of the fifth resin transfer pipe 28 are opened, and the inside of the anion regeneration tower 22 is opened. All of the anion exchange resin A remaining in the desalination tower 11 is transferred to the desalination tower 11 via the fifth resin transfer pipe 28 and the fourth resin transfer pipe 27 for filling, and the anion exchange resin is previously placed in the lower part of the desalination tower 11. A lower layer 14B made of resin A is formed in advance. Subsequently, the valve 28A is closed, the valve 27A on the storage tank 23 side of the fourth resin transfer pipe 27 is opened, and all the mixed ion exchange resins CA in the storage tank 23 are desalted through the fourth resin transfer pipe 27. Then, the mixed ion exchange resin CA is stacked on the anion exchange resin A previously filled. As a result, in the ion exchange resin layer 14 of the desalination tower 11, the upper layer 14A is formed of the mixed ion exchange resin CA, and the lower layer 14B is formed of the anion exchange resin A. This means that the desalination tower 11 is configured.

また、図3は二塔再生方式の他の実施形態の再生設備20Aを示す図である。この再生設備20Aは、同図に示すように、アニオン再生塔22内の再生済みのアニオン交換樹脂Aを直接脱塩塔11へ移送する樹脂移送配管(図1における第5樹脂移送配管28)が付設されておらず、アニオン再生塔22内のアニオン交換樹脂Aの全てを第3樹脂移送配管26を介して一旦貯蔵タンク23内に移送するように構成されていると共に、貯蔵タンク23のほぼ中間部(分離後のアニオン交換樹脂Aのみを移送できる位置)にバルブ50Aを備えた第6樹脂移送配管50(アニオン交換樹脂用樹脂移送配管)が接続されており、更にこの第6樹脂移送配管50の一方が第4樹脂移送配管27に接続されている以外は上記再生設備20と同様に構成されている。このように第6樹脂移送配管50を貯蔵タンク23に接続したのは、後述するように再生後のアニオン交換樹脂Aに残留する再生剤(NaOH)由来のNaイオンを、貯蔵タンク23内でカチオン交換樹脂Cと混合することによりカチオン交換樹脂Cによって奪い取り、残留Naイオンが低減されたアニオン交換樹脂Aを脱塩塔11へ移送するためである。このような残留Naイオンの低減されたアニオン交換樹脂Aを脱塩塔11の下層14Aとして用いることにより通水時における下層14Bのアニオン交換樹脂Aからの処理水へのナトリウムリークを防止することができる。   FIG. 3 is a diagram showing a regeneration equipment 20A according to another embodiment of the double tower regeneration system. As shown in the figure, the regeneration equipment 20A has a resin transfer pipe (fifth resin transfer pipe 28 in FIG. 1) for directly transferring the regenerated anion exchange resin A in the anion regeneration tower 22 to the desalination tower 11. It is not provided, and is configured so that all of the anion exchange resin A in the anion regeneration tower 22 is temporarily transferred to the storage tank 23 via the third resin transfer pipe 26, and is substantially in the middle of the storage tank 23. A sixth resin transfer pipe 50 (resin transfer pipe for anion exchange resin) provided with a valve 50A is connected to a portion (a position where only the separated anion exchange resin A can be transferred). The configuration is the same as that of the regenerating facility 20 except that one of the two is connected to the fourth resin transfer pipe 27. The reason why the sixth resin transfer pipe 50 is connected to the storage tank 23 in this way is that Na ions derived from the regenerant (NaOH) remaining in the anion exchange resin A after regeneration are converted into cations in the storage tank 23 as described later. This is for transferring to the desalting tower 11 the anion exchange resin A in which residual Na ions have been reduced by being taken away by the cation exchange resin C by mixing with the exchange resin C. By using such an anion exchange resin A with reduced residual Na ions as the lower layer 14A of the desalting tower 11, it is possible to prevent sodium leak from the anion exchange resin A in the lower layer 14B to the treated water during the passage of water. it can.

図3に示す再生設備20Aを用いてイオン交換樹脂を充填する方法について説明する。この方法の場合には、再生するまでの操作は上記再生設備20における操作と共通するため再生後の充填操作についてのみ説明する。この実施態様では、カチオン再生塔21内で再生された再生後のカチオン交換樹脂Cをバルブ26A、第3樹脂移送配管26を介してカチオン再生塔21から貯蔵タンク23へ移送すると共に、アニオン再生塔22内で再生された再生後のアニオン交換樹脂Aの全てをバルブ26B、第3樹脂移送配管26を介してアニオン再生塔22から貯蔵タンク23へ移送し、貯蔵タンク23内に両イオン交換樹脂C、Aを充填する。次いで、貯蔵タンク23内でカチオン交換樹脂Cとアニオン交換樹脂Aを例えば空気吹込みによる攪拌によって混合し、この混合操作によりアニオン交換樹脂Aに残留する再生剤由来のNaイオンをカチオン交換樹脂Cによって奪い取り、アニオン交換樹脂Aに残留するNaイオンを低減させる。Naイオンが低減されたアニオン交換樹脂Aを後述のようにイオン交換樹脂層14の下層14Bとして使用することにより、処理水中へのナトリウムリークをより確実に防止することができる。この混合操作の後、貯蔵タンク23内で逆洗により再度カチオン交換樹脂Cとアニオン交換樹脂Aに分離する。分離後のイオン交換樹脂を脱塩塔11へ移送する方法としては2つの方法がある。   A method of filling the ion exchange resin using the regeneration equipment 20A shown in FIG. 3 will be described. In the case of this method, the operation up to the regeneration is the same as the operation in the regeneration equipment 20, so only the filling operation after the regeneration will be described. In this embodiment, the regenerated cation exchange resin C regenerated in the cation regeneration tower 21 is transferred from the cation regeneration tower 21 to the storage tank 23 via the valve 26A and the third resin transfer pipe 26, All of the regenerated anion exchange resin A regenerated in the tank 22 is transferred from the anion regeneration tower 22 to the storage tank 23 via the valve 26B and the third resin transfer pipe 26, and both ion exchange resins C are stored in the storage tank 23. , A. Next, in the storage tank 23, the cation exchange resin C and the anion exchange resin A are mixed by, for example, stirring by blowing air, and Na ions derived from the regenerant remaining in the anion exchange resin A by the mixing operation are removed by the cation exchange resin C. It deprives and reduces Na ions remaining in the anion exchange resin A. By using the anion exchange resin A with reduced Na ions as the lower layer 14B of the ion exchange resin layer 14 as described later, sodium leak into the treated water can be more reliably prevented. After this mixing operation, the cation exchange resin C and the anion exchange resin A are separated again by backwashing in the storage tank 23. There are two methods for transferring the ion-exchange resin after separation to the desalination tower 11.

第1の方法では、貯蔵タンク23内でイオン交換樹脂を分離した後、まず、アニオン交換樹脂Aの一部をバルブ50A、第6樹脂移送配管50及び第4樹脂移送配管27を介して貯蔵タンク23から脱塩塔11へ移送して充填し、予め脱塩塔11の下部にアニオン交換樹脂Aからなる下層14Bを形成しておく。次いで、バルブ50Aを閉じ、貯蔵タンク23内で分離後のカチオン交換樹脂Cと分離後の残余のアニオン交換樹脂Aを混合して混合イオン交換樹脂CAを調整した後、バルブ27Aを開き、この混合イオン交換樹脂CAをバルブ27A及び第4樹脂移送配管27を介して貯蔵タンク23から脱塩塔11へ移送して既に充填されているアニオン交換樹脂Aからなる下層14B上に積層し、混合イオン交換樹脂CAからなる上層14Aを形成する。   In the first method, after the ion exchange resin is separated in the storage tank 23, first, a part of the anion exchange resin A is transferred to the storage tank 23 via the valve 50A, the sixth resin transfer pipe 50, and the fourth resin transfer pipe 27. The lower layer 14B made of the anion exchange resin A is formed in advance in the lower part of the desalination tower 11 by transferring it from 23 to the desalination tower 11 for filling. Next, the valve 50A is closed, the cation exchange resin C after separation and the remaining anion exchange resin A after separation are mixed in the storage tank 23 to adjust the mixed ion exchange resin CA, and then the valve 27A is opened. The ion-exchange resin CA is transferred from the storage tank 23 to the desalination tower 11 via the valve 27A and the fourth resin transfer pipe 27, and is stacked on the lower layer 14B of the anion-exchange resin A that has already been filled. An upper layer 14A made of resin CA is formed.

また、第2の方法では、分離後の殆ど全てのアニオン交換樹脂Aを同様にして脱塩塔11へ移送して充填し、予め脱塩塔11の下部にアニオン交換樹脂Aからなる下層14Bを形成しておく。次いで、バルブ50Aを閉じ、貯蔵タンク23内に残るカチオン交換樹脂Cを第4樹脂移送配管27を介して貯蔵タンク23から脱塩塔11へ移送して既に充填されているアニオン交換樹脂Aからなる下層14B上に積層し、カチオン交換樹脂C単独からなる上層14Aを形成する。   Further, in the second method, almost all of the anion exchange resin A after separation is transferred to the desalting tower 11 in the same manner and filled therein, and the lower layer 14B made of the anion exchange resin A is previously placed below the desalting tower 11. It is formed. Next, the valve 50A is closed, and the cation exchange resin C remaining in the storage tank 23 is transferred from the storage tank 23 to the desalination tower 11 via the fourth resin transfer pipe 27, and is made of the anion exchange resin A already filled. The upper layer 14A made of the cation exchange resin C alone is formed by laminating on the lower layer 14B.

また、図4、図5はそれぞれ更に他の再生設備を示す図で、これらの再生設備120、120Aは、同図に示すように、図1〜図3に示す再生設備20、20Aと同様に二塔再生方式であるが、図1〜図3に示す再生設備と異なって貯蔵タンクを有しないタイプである。   FIGS. 4 and 5 are views showing still another regeneration equipment, and these regeneration equipments 120 and 120A are similar to the regeneration equipments 20 and 20A shown in FIGS. Although it is a two-tower regeneration system, it is a type that does not have a storage tank unlike the regeneration equipment shown in FIGS.

図4に示す再生設備120は、貯蔵タンクを有しない二塔再生方式の再生設備で、カチオン再生塔121とアニオン再生塔122とを備えて構成されている。カチオン再生塔121と脱塩塔は第1樹脂移送配管123によって接続され、第1樹脂移送配管123を介して通水終点に達したイオン交換樹脂を脱塩塔からカチオン再生塔121へ移送するようにしてある。また、カチオン再生塔121とアニオン再生塔122は第2樹脂移送配管124によって接続され、第2樹脂移送配管124を介してカチオン再生塔121において洗浄、分離されたアニオン交換樹脂Aをカチオン再生塔121からアニオン再生塔122へ移送するようにしてある。第1、第2樹脂移送配管123、124の接続形態は前述した再生設備と同様の接続形態になっている。   The regeneration equipment 120 shown in FIG. 4 is a two-tower regeneration type regeneration equipment having no storage tank, and includes a cation regeneration tower 121 and an anion regeneration tower 122. The cation regeneration tower 121 and the desalination tower are connected by a first resin transfer pipe 123 so that the ion exchange resin that has reached the water flow end point via the first resin transfer pipe 123 is transferred from the desalination tower to the cation regeneration tower 121. It is. Further, the cation regeneration tower 121 and the anion regeneration tower 122 are connected by a second resin transfer pipe 124, and the anion exchange resin A washed and separated in the cation regeneration tower 121 via the second resin transfer pipe 124 is supplied to the cation regeneration tower 121. From the anion regeneration tower 122. The connection form of the first and second resin transfer pipes 123 and 124 is the same as that of the above-mentioned regenerating equipment.

また、上記アニオン再生塔122とカチオン再生塔121は第3樹脂移送配管125によって接続されている。第3樹脂移送配管125は、一方がアニオン再生塔122の下部に接続され、他方がカチオン再生塔121の上部に接続されており、第3樹脂移送配管125を介して再生後のアニオン交換樹脂Aをカチオン再生塔121へ移送するようにしてある。カチオン再生塔121及びアニオン再生塔122は各脱塩塔と第4樹脂移送配管126を介してそれぞれ接続されている。第4樹脂移送配管126は一方がカチオン再生塔121とアニオン再生塔122に達するように分岐し、各分岐端が両再生塔121、122の下部にそれぞれ接続され、また、他方が図1の場合と同様に各脱塩塔に達するように分岐し、各分岐端が各脱塩塔の上部にそれぞれ接続されている。尚、121A、122Aはディストリビュータであり、124A、125A、126A、126Bはバルブである。   The anion regeneration tower 122 and the cation regeneration tower 121 are connected by a third resin transfer pipe 125. One of the third resin transfer pipes 125 is connected to a lower part of the anion regeneration tower 122, and the other is connected to an upper part of the cation regeneration tower 121. Is transferred to the cation regeneration tower 121. The cation regeneration tower 121 and the anion regeneration tower 122 are connected to each desalination tower via a fourth resin transfer pipe 126, respectively. One of the fourth resin transfer pipes 126 branches so as to reach one of the cation regeneration tower 121 and the anion regeneration tower 122, and each branch end is connected to a lower portion of both the regeneration towers 121 and 122, and the other is the case of FIG. In the same manner as described above, the water is branched to reach each desalination tower, and each branch end is connected to the upper part of each desalination tower. Note that 121A and 122A are distributors, and 124A, 125A, 126A and 126B are valves.

次に、上記再生設備120を用いて再生後のイオン交換樹脂を脱塩塔に充填する方法について説明する。再生設備120の各再生塔121、122内でカチオン交換樹脂C及びアニオン交換樹脂Aの再生が終了した後、バルブ125Aを開き、第3樹脂移送配管125を介して再生後のアニオン交換樹脂Aをその一部を残してアニオン再生塔122からカチオン再生塔121 へ移送する。カチオン再生塔121ではアニオン交換樹脂Aが移送された後、エアスクラビング操作等を行ってカチオン交換樹脂Cとアニオン交換樹脂Aを混合し、混合イオン交換樹脂CAを調整する。混合イオン交換樹脂CAを調整する間、バルブ126Bを開き、第4樹脂移送配管126を介してアニオン再生塔122内に残留するアニオン交換樹脂Aを脱塩塔へ移送して充填し、予め脱塩塔の下部にアニオン交換樹脂Aからなる下層14Bを形成しておく(図1の脱塩塔参照)。次いで、バルブ126Bを閉じ、バルブ126Aを開いてカチオン再生塔121内で調整された混合イオン交換樹脂CAを第4樹脂移送配管126を介して脱塩塔へ移送し、混合イオン交換樹脂CAを先に充填したアニオン交換樹脂A上に積層する。尚、脱塩塔内のイオン交換樹脂層の上層をカチオン交換樹脂C単独で形成し、下層をアニオン交換樹脂Aで形成する場合には、アニオン再生塔122からカチオン再生塔121へアニオン交換樹脂Aを移送する工程を省略し、まず、アニオン再生塔122からアニオン交換樹脂Aの全てをバルブ126B及び第3樹脂移送配管126を介して脱塩塔へ移送し、充填した後、カチオン再生塔121からカチオン交換樹脂Cをバルブ126A及び第3樹脂移送配管126を介して脱塩塔へ移送し、アニオン交換樹脂A上にカチオン交換樹脂Cを積層するようにすれば良い。   Next, a method for filling the deionized tower with the regenerated ion exchange resin using the regenerating facility 120 will be described. After the regeneration of the cation exchange resin C and the anion exchange resin A is completed in each of the regeneration towers 121 and 122 of the regeneration facility 120, the valve 125A is opened, and the anion exchange resin A after the regeneration is passed through the third resin transfer pipe 125. A part thereof is transferred from the anion regeneration tower 122 to the cation regeneration tower 121. In the cation regeneration tower 121, after the anion exchange resin A is transferred, the cation exchange resin C and the anion exchange resin A are mixed by performing an air scrubbing operation or the like to adjust the mixed ion exchange resin CA. During the preparation of the mixed ion exchange resin CA, the valve 126B is opened, and the anion exchange resin A remaining in the anion regeneration tower 122 is transferred to the desalination tower via the fourth resin transfer pipe 126 and filled therein, and then desalted. A lower layer 14B made of an anion exchange resin A is formed at the bottom of the column (see the desalination column in FIG. 1). Next, the valve 126B is closed, the valve 126A is opened, and the mixed ion exchange resin CA adjusted in the cation regeneration tower 121 is transferred to the desalination tower via the fourth resin transfer pipe 126, and the mixed ion exchange resin CA is first transferred. Is laminated on the anion exchange resin A filled in the resin. When the upper layer of the ion exchange resin layer in the desalting tower is formed of the cation exchange resin C alone and the lower layer is formed of the anion exchange resin A, the anion exchange resin A is transferred from the anion regeneration tower 122 to the cation regeneration tower 121. First, all of the anion exchange resin A is transferred from the anion regeneration tower 122 to the desalination tower via the valve 126B and the third resin transfer pipe 126, and is charged. The cation exchange resin C may be transferred to the desalting tower via the valve 126A and the third resin transfer pipe 126, and the cation exchange resin C may be laminated on the anion exchange resin A.

また、図5は図4と同様に貯蔵タンクを有しない二塔再生方式の他の再生設備を示す図で、図4と同一部分または相当部分には同一符号を附して説明する。図5に示す再生設備120Aの場合には、カチオン再生塔121が前記第2樹脂移送配管124から分岐した第5樹脂移送配管(アニオン交換樹脂樹脂移送管)127により、第4樹脂移送配管126を介して各脱塩塔に接続されている。これによって後述のようにカチオン再生塔121から脱塩塔へ再生後のアニオン交換樹脂Aを直接移送できるようにしてある。   FIG. 5 is a diagram showing another regeneration equipment having no two storage tanks, similar to FIG. 4, and the same or corresponding parts as in FIG. 4 are denoted by the same reference numerals. In the case of the regeneration equipment 120A shown in FIG. 5, the fourth resin transfer pipe 126 is connected to the cation regeneration tower 121 by a fifth resin transfer pipe (anion exchange resin resin transfer pipe) 127 branched from the second resin transfer pipe 124. It is connected to each desalination tower through. Thereby, the anion exchange resin A after regeneration can be directly transferred from the cation regeneration tower 121 to the desalination tower as described later.

次に、上記再生設備120Aを用いて再生後のイオン交換樹脂を脱塩塔に充填する方法について説明する。再生設備120Aの各再生塔121、122内でカチオン交換樹脂C及びアニオン交換樹脂Aの再生が終了した後、バルブ125Aを開き、第3樹脂移送配管125を介して全てのアニオン交換樹脂Aをアニオン再生塔122からカチオン再生塔121 へ移送する。カチオン再生塔121では前述した場合と同様にしてエアスクラビング操作等により混合イオン交換樹脂CAを調整する。混合イオン交換樹脂CAを調整した後、このカチオン再生塔121では再度逆洗操作により混合イオン交換樹脂CAをカチオン交換樹脂Cとアニオン交換樹脂Aに分離する。次いで、第5樹脂移送配管127のバルブ127Aを開き、分離後のアニオン交換樹脂Aの一部または全てを第5樹脂移送配管127を介して脱塩塔へ移送して充填し、アニオン交換樹脂Aからなる下層を形成しておく。   Next, a method for filling the deionized tower with the ion-exchange resin after regeneration using the regeneration facility 120A will be described. After the regeneration of the cation exchange resin C and the anion exchange resin A is completed in each of the regeneration towers 121 and 122 of the regeneration facility 120A, the valve 125A is opened, and all the anion exchange resins A are anionized through the third resin transfer pipe 125. It is transferred from the regeneration tower 122 to the cation regeneration tower 121. In the cation regeneration tower 121, the mixed ion exchange resin CA is adjusted by air scrubbing operation or the like in the same manner as described above. After adjusting the mixed ion exchange resin CA, in the cation regeneration tower 121, the mixed ion exchange resin CA is separated into the cation exchange resin C and the anion exchange resin A by the backwashing operation again. Next, the valve 127A of the fifth resin transfer pipe 127 is opened, and a part or all of the anion exchange resin A after separation is transferred to the desalting tower via the fifth resin transfer pipe 127 and filled, and the anion exchange resin A is filled. Is formed in advance.

分離後のアニオン交換樹脂Aの一部を脱塩塔へ移送した場合には、その移送操作後、カチオン再生塔121内で残余のアニオン交換樹脂Aとカチオン交換樹脂Cをエアスクラビング操作等により混合し、混合イオン交換樹脂CAを再び調整する。次いで、バルブ126Aを開き、第4樹脂移送配管126を介して混合イオン交換樹脂CAをカチオン再生塔121から脱塩塔へ移送して先に充填したアニオン交換樹脂A上に積層し、混合イオン交換樹脂CAからなる上層を形成してイオン交換樹脂層とする。また、分離後のアニオン交換樹脂Aの全てを脱塩塔へ移送した場合には、その移送操作に引き続き、カチオン再生塔121内のカチオン交換樹脂Cを第4樹脂移送配管126を介して脱塩塔へ移送し、カチオン交換樹脂Cをアニオン交換樹脂A上に積層し、アニオン交換樹脂Aからなる下層の上にカチオン交換樹脂Cからなる上層を形成してイオン交換樹脂層とする。これらの充填方法では、再生後のアニオン交換樹脂Aを脱塩塔へ充填する前に、再生後のアニオン交換樹脂Aと再生後のカチオン交換樹脂Cの混合操作を行い、アニオン交換樹脂Aの残留Naイオンがカチオン交換樹脂Cによって奪い取られるため、脱塩処理時における下層のアニオン交換樹脂Aからの処理水へのナトリウムリークを防止することができる。尚、図4、図5の場合のように再生設備内に貯蔵タンクを有しない復水脱塩装置の場合は、通水終点に達した脱塩塔から使用済みのイオン交換樹脂を再生設備に移送して再生を行い、再生後のイオン交換樹脂を再び同一の脱塩塔に戻すようにし、再生操作を行っている間はこの脱塩塔の運転を停止させておく等の運転方法を採用することができる。   When a part of the separated anion exchange resin A is transferred to the desalting tower, after the transfer operation, the remaining anion exchange resin A and the cation exchange resin C are mixed in the cation regeneration tower 121 by an air scrubbing operation or the like. Then, the mixed ion exchange resin CA is adjusted again. Next, the valve 126A is opened, and the mixed ion exchange resin CA is transferred from the cation regeneration tower 121 to the desalination tower via the fourth resin transfer pipe 126, and is stacked on the previously filled anion exchange resin A. An upper layer made of the resin CA is formed to form an ion exchange resin layer. When all of the anion exchange resin A after separation is transferred to the desalination tower, the cation exchange resin C in the cation regeneration tower 121 is desalted via the fourth resin transfer pipe 126 following the transfer operation. The mixture is transferred to a tower, the cation exchange resin C is laminated on the anion exchange resin A, and an upper layer made of the cation exchange resin C is formed on a lower layer made of the anion exchange resin A to form an ion exchange resin layer. In these filling methods, a mixing operation of the regenerated anion exchange resin A and the regenerated cation exchange resin C is performed before the regenerated anion exchange resin A is charged into the desalting tower, and the remaining amount of the anion exchange resin A remains. Since Na ions are deprived by the cation exchange resin C, it is possible to prevent sodium leak from the lower anion exchange resin A to the treated water during the desalination treatment. In the case of a condensate desalination apparatus that does not have a storage tank in the regeneration equipment as in the case of FIGS. 4 and 5, the used ion exchange resin is supplied to the regeneration equipment from the desalination tower that has reached the end point of water flow. An operation method such as transporting and regenerating the ion-exchange resin and returning the regenerated ion-exchange resin to the same desalting tower again, and stopping the operation of the desalting tower during the regenerating operation is adopted. can do.

また、図6は一塔再生方式の再生設備であって、この再生設備内に再生後のイオン交換樹脂の貯蔵タンクを有しない再生設備220を示す図である。この再生設備220は、同図に示すように、一塔の再生塔221を備えて構成されている。従って、再生塔221内にはイオン交換樹脂層の上部にアルカリ再生剤を供給するディストリビュータ221Aとカチオン交換樹脂Cとアニオン交換樹脂Aの分離境界面付近に再生廃液を排出するコレクタ225が配設されており、更に再生塔221の下部には酸再生剤を供給する酸再生剤供給配管226が配設されている。また、再生塔221と脱塩塔は第1樹脂移送配管222によって接続され、第1樹脂移送配管222を介して通水終点に達したイオン交換樹脂を脱塩塔から再生塔221へ移送するようにしてある。また、再生塔221の下部と各脱塩塔の上部は第2樹脂移送配管223によって接続され、第2樹脂移送配管223を介して再生塔221において再生されたイオン交換樹脂を再生塔221から各脱塩塔へ移送するようにしてある。また、再生塔221のほぼ中間部(カチオン交換樹脂Cとアニオン交換樹脂Aの分離境界面付近)と各脱塩塔の上部は第3樹脂移送配管(アニオン交換樹脂用樹脂移送配管)224を介して接続されている。尚、223A、224Aはバルブである。   FIG. 6 is a diagram showing a regeneration facility 220 which is a single-column regeneration type regeneration facility and does not have a storage tank for the ion-exchange resin after regeneration in the regeneration facility. As shown in the figure, the regeneration equipment 220 includes one regeneration tower 221. Therefore, a distributor 221A for supplying an alkali regenerant on the upper part of the ion exchange resin layer and a collector 225 for discharging a regeneration waste liquid near the separation boundary between the cation exchange resin C and the anion exchange resin A are provided in the regeneration tower 221. Further, an acid regenerant supply pipe 226 for supplying an acid regenerant is provided below the regeneration tower 221. In addition, the regeneration tower 221 and the desalination tower are connected by a first resin transfer pipe 222, and the ion exchange resin that has reached the water flow end point via the first resin transfer pipe 222 is transferred from the desalination tower to the regeneration tower 221. It is. Further, the lower part of the regeneration tower 221 and the upper part of each desalination tower are connected by a second resin transfer pipe 223, and the ion exchange resin regenerated in the regeneration tower 221 via the second resin transfer pipe 223 is transferred from the regeneration tower 221 to each of them. It is transferred to a desalination tower. In addition, a substantially intermediate part of the regeneration tower 221 (near the separation boundary between the cation exchange resin C and the anion exchange resin A) and the upper part of each desalination tower are connected via a third resin transfer pipe (resin transfer pipe for anion exchange resin) 224. Connected. 223A and 224A are valves.

次に、上記再生設備220を用いて再生後のイオン交換樹脂を脱塩塔に充填する方法について説明する。尚、脱塩塔から再生塔221へ移送されたイオン交換樹脂を再生する方法は従来と同様であるためその説明を省略する。イオン交換樹脂を脱塩塔に充填するにはまず、バルブ224Aを開き、再生操作により分離した再生塔221内の上層のアニオン交換樹脂Aの一部または全てを第3樹脂移送配管224を介して再生塔221から脱塩塔へ移送して充填し、予め脱塩塔の下部にアニオン交換樹脂Aからなる下層を形成しておく。そして、アニオン交換樹脂Aの一部を移送した場合には、アニオン交換樹脂Aの移送操作を行った後、再生塔221内でカチオン交換樹脂Cと残余のアニオン交換樹脂Aを混合し、次いで、バルブ223Aを開き、この混合イオン交換樹脂CAを第2樹脂移送配管223を介して再生塔221から脱塩塔へ移送してアニオン交換樹脂A上に積層し、混合イオン交換樹脂CAからなる上層を形成してイオン交換樹脂層とする。また、全てのアニオン交換樹脂Aを移送した場合には、全てのアニオン交換樹脂Aの移送操作を行った後、再生塔221内のカチオン交換樹脂Cを第2樹脂移送配管223を介して再生塔221から脱塩塔へ移送してアニオン交換樹脂Aからなる下層上に積層し、カチオン交換樹脂Cからなる上層を形成してイオン交換樹脂層とする。   Next, a method for filling the deionized tower with the regenerated ion exchange resin using the regenerating facility 220 will be described. The method of regenerating the ion-exchange resin transferred from the desalting tower to the regenerating tower 221 is the same as the conventional method, and the description thereof is omitted. To fill the ion exchange resin into the desalination tower, first, the valve 224A is opened, and part or all of the upper layer anion exchange resin A in the regeneration tower 221 separated by the regeneration operation is passed through the third resin transfer pipe 224. The lower layer made of the anion exchange resin A is formed in advance in the lower part of the desalting tower by transferring it from the regenerating tower 221 to the desalting tower for filling. When a part of the anion exchange resin A is transferred, after performing the transfer operation of the anion exchange resin A, the cation exchange resin C and the remaining anion exchange resin A are mixed in the regeneration tower 221. The valve 223A is opened, the mixed ion exchange resin CA is transferred from the regeneration tower 221 to the desalination tower via the second resin transfer pipe 223, and is stacked on the anion exchange resin A. Formed to form an ion exchange resin layer. When all the anion exchange resins A have been transferred, the cation exchange resin C in the regeneration tower 221 is transferred through the second resin transfer pipe 223 after the transfer operation of all the anion exchange resins A is performed. 221 is transferred to a desalting tower and laminated on a lower layer made of an anion exchange resin A, and an upper layer made of a cation exchange resin C is formed as an ion exchange resin layer.

また、図6に示す再生設備220を用いた他の充填方法について説明する。上述した方法では、まず再生塔221内の分離した再生後のアニオン交換樹脂Aを脱塩塔へ移送したが、これから説明する方法の場合には、まず再生塔221内の分離した再生後のカチオン交換樹脂Cとアニオン交換樹脂Aをエアスクラビング操作等により混合し、この混合操作を行った後、再び、カチオン交換樹脂Cとアニオン交換樹脂Aに分離する。この操作により再生後のアニオン交換樹脂Aの残留Naイオンをカチオン交換樹脂Cにより奪い取り、よってこのような操作を施したアニオン交換樹脂Aにより脱塩塔の下層を形成させた時に、通水時におけるアニオン交換樹脂Aからの処理水中へのナトリウムリークを防止することができる。その後の操作は上述した場合と同様である。尚、上述の例では再生設備内に貯蔵タンクを有しない場合の一塔再生方式の装置について説明したが、貯蔵タンクを有する一塔再生方式の場合は、再生塔で再生された両イオン交換樹脂を一旦貯蔵タンクに移送した後、この貯蔵タンク内で両イオン交換樹脂を分離し、然る後に上述したように再生塔から脱塩塔へ樹脂を移送する場合と同様にして再生済みのイオン交換樹脂を貯蔵タンクから脱塩塔に移送すれば良い。   Further, another filling method using the regeneration equipment 220 shown in FIG. 6 will be described. In the above-described method, first, the separated and regenerated anion exchange resin A in the regeneration tower 221 was transferred to the desalting tower. However, in the case of the method described below, first, the separated and regenerated cations in the regeneration tower 221 were separated. The exchange resin C and the anion exchange resin A are mixed by an air scrubbing operation or the like, and after this mixing operation is performed, the cation exchange resin C and the anion exchange resin A are separated again. By this operation, residual Na ions of the anion exchange resin A after regeneration are deprived by the cation exchange resin C, and thus, when the lower layer of the desalting tower is formed by the anion exchange resin A subjected to such operation, the It is possible to prevent sodium leak from the anion exchange resin A into the treated water. Subsequent operations are the same as those described above. In the above example, a single-column regeneration system having no storage tank in the regeneration facility was described. However, in the case of a single-column regeneration system having a storage tank, both ion exchange resins regenerated in the regeneration tower were used. Once transferred to a storage tank, both ion exchange resins are separated in this storage tank, and then regenerated ion exchange resin is transferred in the same manner as when transferring the resin from the regeneration tower to the desalination tower as described above. The resin may be transferred from the storage tank to the desalination tower.

また、本発明は上記各実施形態に何等制限されるものではなく、要はカチオン交換樹脂からの溶出物を低減するため、脱塩塔の下層部にアニオン交換樹脂単独の層を確実に形成することができる方法及び装置であれば、本発明に包含される。   In addition, the present invention is not limited to the above embodiments. In summary, in order to reduce the eluate from the cation exchange resin, a layer of the anion exchange resin alone is surely formed in the lower layer of the desalting tower. Any method and apparatus that can be included in the present invention.

次に、本発明の復水脱塩装置におけるイオン交換樹脂の充填方法を用いた場合に、カチオン交換樹脂からの有機物の漏出を防止あるいは抑制することができ、また、Naイオンのリークを防止できることを実験により実証した。以下でその説明を行う。   Next, when the method of filling an ion exchange resin in the condensate desalination apparatus of the present invention is used, leakage of organic substances from the cation exchange resin can be prevented or suppressed, and leakage of Na ions can be prevented. Was demonstrated experimentally. This will be described below.

実施例1
本実施例では、発電所の復水脱塩装置で約2年間使用したカチオン交換樹脂(アンバーライト(登録商標、以下同様)200CP:ローム&ハース社製)とアニオン交換樹脂(アンバーライトIRA−900CP)を表1に示した条件で各々のイオン交換樹脂を再生した後、内径32mm、長さ1500mmのアクリル製カラムに、まずアニオン交換樹脂を170mL(樹脂層高約200mm)充填し、その上部にカチオン交換樹脂を660mLとアニオン交換樹脂を170mLを混合した混合イオン交換樹脂を充填した。
Example 1
In this example, a cation exchange resin (Amberlite (registered trademark, the same applies hereinafter) 200CP: manufactured by Rohm & Haas Co.) and an anion exchange resin (Amberlite IRA-900CP) used in a condensate desalination unit of a power plant for about 2 years. ) Was regenerated under the conditions shown in Table 1, and then an acrylic column having an inner diameter of 32 mm and a length of 1500 mm was first filled with 170 mL of anion exchange resin (resin layer height about 200 mm), and A mixed ion exchange resin obtained by mixing 660 mL of the cation exchange resin and 170 mL of the anion exchange resin was filled.

次いで、上記カラムにアンモニア濃度が500ppbでヒドラジン濃度が200ppbの復水を線速度(LV)80m/時で通水した。通水開始後、1時間、3時間後に処理水をサンプリングし、各サンプリング水の導電率、TOC(全有機物濃度)を測定した。更に、各サンプル水を紫外線照射し、各サンプル水中に含まれている有機物を分解し、分解液中の硫酸イオンの濃度を測定した。それぞれの測定結果を表2に示した。   Next, condensed water having an ammonia concentration of 500 ppb and a hydrazine concentration of 200 ppb was passed through the column at a linear velocity (LV) of 80 m / hour. One hour and three hours after the start of water passage, the treated water was sampled, and the conductivity and TOC (total organic matter concentration) of each sampled water were measured. Further, each sample water was irradiated with ultraviolet rays to decompose organic substances contained in each sample water, and the concentration of sulfate ions in the decomposition solution was measured. Table 2 shows the measurement results.

実施例2
本実施例では、実施例1で用いたものと同一のイオン交換樹脂を同一の条件で再生した後、実施例1で用いたものと同一のカラムにアニオン交換樹脂を340mL(樹脂層高約400mm)充填し、その上部にカチオン交換樹脂を660mL充填し、実施例1と同一条件で通水試験を行った。そして、通水の間に、実施例1と同一の条件でサンプリング水を採取し、各サンプリング水について実施例1と同様の測定を行い、その結果を表2に示した。
Example 2
In this example, after regenerating the same ion exchange resin as used in Example 1 under the same conditions, 340 mL of anion exchange resin was applied to the same column as used in Example 1 (resin layer height about 400 mm). ), And 660 mL of the cation exchange resin was filled in the upper portion thereof, and a water flow test was performed under the same conditions as in Example 1. Then, during the passage of water, sampled water was collected under the same conditions as in Example 1, and the same measurement as in Example 1 was performed for each sampled water. The results are shown in Table 2.

比較例
本比較例では、実施例1で用いたものと同一のイオン交換樹脂を同一の条件で再生した後、340mLのアニオン交換樹脂と660mLのカチオン交換樹脂とを混合した混合イオン交換樹脂を調整した。次いで、実施例1で用いたものと同一のカラムに混合イオン交換樹脂を充填した後、実施例1と同一の条件で通水試験を行い、その結果を表2に示した。
Comparative Example In this comparative example, after regenerating the same ion exchange resin as that used in Example 1 under the same conditions, a mixed ion exchange resin obtained by mixing 340 mL of anion exchange resin and 660 mL of cation exchange resin was prepared. did. Next, the same column as used in Example 1 was filled with the mixed ion-exchange resin, and then a water flow test was performed under the same conditions as in Example 1. The results are shown in Table 2.

Figure 2004223513
Figure 2004223513

Figure 2004223513
Figure 2004223513

表2に示した結果によれば、カラム下部にアニオン交換樹脂を充填した実施例1、2の場合には処理水中のTOC濃度及び紫外線照射分解後の硫酸イオンの濃度が比較例の場合と比較して低減していることが判った。   According to the results shown in Table 2, in the case of Examples 1 and 2 where the anion exchange resin was filled in the lower part of the column, the TOC concentration in the treated water and the sulfate ion concentration after decomposition by ultraviolet irradiation were compared with those of the comparative example. It was found that it was reduced.

実施例3
本実施例では、実施例1で用いたものと同一のイオン交換樹脂を同一の条件で再生した後、内径48.5mm、長さ1000mmのアクリル製カラムに充填し、下部から5分間空気を入れ、カチオン交換樹脂とアニオン交換樹脂を混合した。混合終了後、そのままの状態で約1時間待機させ、然る後にカラムの下部から約30分間純水を通水し、アニオン交換樹脂とカチオン交換樹脂を逆洗分離した。その後、実施例1で用いたものと同一のカラムにまず分離したアニオン交換樹脂340mmを充填し、その上部に分離したカチオン交換樹脂660mmを充填し、実施例1と同一の条件で通水試験を行った。そして、通水時のカラムの出口のサンプリング水中のNaイオンの測定を行い、その結果を表3及び図7に示した。また、比較のために実施例1と実施例2についても同様にカラム出口のサンプリング水中のNaイオンの測定を行い、その結果を表3及び図7に示した。
Example 3
In this example, the same ion exchange resin as used in Example 1 was regenerated under the same conditions, and then packed in an acrylic column having an inner diameter of 48.5 mm and a length of 1000 mm, and air was introduced from the bottom for 5 minutes. The cation exchange resin and the anion exchange resin were mixed. After completion of the mixing, the mixture was allowed to stand by for about one hour, and then pure water was passed through the lower part of the column for about 30 minutes to backwash and separate the anion exchange resin and the cation exchange resin. Thereafter, the same column as that used in Example 1 was first filled with the separated anion exchange resin 340 mm, and the upper portion thereof was filled with the separated cation exchange resin 660 mm, and a water flow test was performed under the same conditions as in Example 1. went. Then, the measurement of Na ions in the sampling water at the outlet of the column at the time of passing water was performed, and the results are shown in Table 3 and FIG. Also, for comparison, in Examples 1 and 2, Na ions in the sampling water at the column outlet were measured in the same manner, and the results are shown in Table 3 and FIG.

Figure 2004223513
Figure 2004223513

表3及び図7に示す結果によれば、再生後のカチオン交換樹脂とアニオン交換樹脂を一旦混合した後、再度両イオン交換樹脂を分離してからカラムに充填することにより、通水時におけるNaイオンのリーク量が低減することが判った。   According to the results shown in Table 3 and FIG. 7, after the cation exchange resin and the anion exchange resin after regeneration are once mixed, both ion exchange resins are separated again, and then packed into a column, so that Na at the time of passing water is obtained. It was found that the amount of ion leakage was reduced.

本発明は、火力発電所や原子力発電所の復水を脱塩処理する復水脱塩装置に好適に利用することができる。   INDUSTRIAL APPLICATION This invention can be utilized suitably for the condensate desalination apparatus which performs the desalination process of the condensate of a thermal power plant or a nuclear power plant.

本発明の復水脱塩装置におけるイオン交換樹脂の充填方法を好適に適用できる復水脱塩装置の一実施形態を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows one Embodiment of the condensate desalination apparatus which can apply suitably the filling method of the ion exchange resin in the condensate desalination apparatus of this invention. (a)は図1に示す脱塩塔の下部の構成を示す構成図、(b)は他の脱塩塔の下部の構成を示す構成図である。(A) is a block diagram showing a configuration of a lower portion of the desalination tower shown in FIG. 1, and (b) is a configuration diagram showing a lower portion of another desalination column. 本発明の復水脱塩装置におけるイオン交換樹脂の充填方法を好適に適用できる復水脱塩装置の他の実施形態の再生設備を示す構成図である。It is a block diagram which shows the regeneration equipment of other embodiment of the condensate desalination apparatus which can apply suitably the filling method of the ion exchange resin in the condensate desalination apparatus of this invention. 本発明の復水脱塩装置におけるイオン交換樹脂の充填方法を好適に適用できる復水脱塩装置の更に他の実施形態の再生設備を示す構成図である。It is a block diagram which shows the regeneration equipment of further another embodiment of the condensate desalination apparatus which can apply suitably the filling method of the ion exchange resin in the condensate desalination apparatus of this invention. 本発明の復水脱塩装置におけるイオン交換樹脂の充填方法を好適に適用できる復水脱塩装置の更に他の実施形態の再生設備を示す構成図である。It is a block diagram which shows the regeneration equipment of further another embodiment of the condensate desalination apparatus which can apply suitably the filling method of the ion exchange resin in the condensate desalination apparatus of this invention. 本発明の復水脱塩装置におけるイオン交換樹脂の充填方法を好適に適用できる復水脱塩装置の更に他の実施形態の再生設備を示す構成図である。It is a block diagram which shows the regeneration equipment of further another embodiment of the condensate desalination apparatus which can apply suitably the filling method of the ion exchange resin in the condensate desalination apparatus of this invention. 本実施例におけるNaイオンの漏出を示すグラフである。It is a graph which shows the leak of Na ion in a present Example.

符号の説明Explanation of reference numerals

10 復水脱塩装置
11 脱塩塔
14 イオン交換樹脂層
14A 上層(上側のイオン交換樹脂層)
14B 下層(下側のイオン交換樹脂層)
20、20A、120、120A、220 再生設備
28、50、126、127、224 アニオン交換樹脂用樹脂移送配管
10 Condensate desalination device 11 Desalination tower 14 Ion exchange resin layer 14A Upper layer (upper ion exchange resin layer)
14B Lower layer (lower ion exchange resin layer)
20, 20A, 120, 120A, 220 Regeneration equipment 28, 50, 126, 127, 224 Resin transfer piping for anion exchange resin

Claims (8)

復水脱塩装置の脱塩塔内の使用済みのカチオン交換樹脂及びアニオン交換樹脂を再生設備に移送し、この再生設備において上記各イオン交換樹脂を再生した後、再生後の各イオン交換樹脂を上記再生設備から上記脱塩塔へ移送して充填する方法において、上記再生設備で再生されたカチオン交換樹脂及びアニオン交換樹脂を上記脱塩塔に充填する際に、まず上記再生設備からアニオン交換樹脂の一部または全てを上記脱塩塔へ移送して充填し、次いで、一部のアニオン交換樹脂を移送した場合には上記再生設備においてカチオン交換樹脂と残余のアニオン交換樹脂を混合し、この混合イオン交換樹脂を上記再生設備から上記脱塩塔へ移送して上記アニオン交換樹脂上に積層し、全てのアニオン交換樹脂を移送した場合にはカチオン交換樹脂を単独で上記再生設備から上記脱塩塔へ移送して上記アニオン交換樹脂上に積層することを特徴とする復水脱塩装置におけるイオン交換樹脂の充填方法。   The used cation exchange resin and the anion exchange resin in the desalination tower of the condensate desalination apparatus are transferred to a regeneration facility, and after regenerating each ion exchange resin in the regeneration facility, each of the regenerated ion exchange resins is recycled. In the method of transferring from the regeneration equipment to the desalination tower and filling the same, the cation exchange resin and the anion exchange resin regenerated by the regeneration equipment are charged into the desalination tower. A part or all of the resin is transferred to the desalting tower and packed, and then, when a part of the anion exchange resin is transferred, the cation exchange resin and the remaining anion exchange resin are mixed in the regenerating equipment, and this mixing is performed. The ion exchange resin is transferred from the regeneration equipment to the desalting tower and laminated on the anion exchange resin, and when all the anion exchange resins are transferred, the cation exchange resin is removed. Filling method of the ion exchange resin in the condensate demineralizer, which comprises laminating to said reproduction equipment from the transport into the demineralizer the anion exchange on resin in Germany. 復水脱塩装置の脱塩塔内の使用済みのカチオン交換樹脂及びアニオン交換樹脂を再生設備に移送し、この再生設備において上記各イオン交換樹脂を再生した後、再生後の各イオン交換樹脂を上記再生設備から上記脱塩塔へ移送して充填する方法において、上記再生設備で再生されたカチオン交換樹脂及びアニオン交換樹脂を上記脱塩塔に充填する際に、予め、上記再生設備内でカチオン交換樹脂とアニオン交換樹脂を混合した後、再度カチオン交換樹脂とアニオン交換樹脂に分離し、その後、上記再生設備から分離後のアニオン交換樹脂の一部または全てを上記脱塩塔へ移送して充填し、次いで、一部のアニオン交換樹脂を移送した場合にはカチオン交換樹脂と残余のアニオン交換樹脂を混合し、この混合イオン交換樹脂を上記再生設備から上記脱塩塔へ移送して上記アニオン交換樹脂上に積層し、全てのアニオン交換樹脂を移送した場合にはカチオン交換樹脂を単独で上記再生設備から上記脱塩塔へ移送して上記アニオン交換樹脂上に積層することを特徴とする復水脱塩装置におけるイオン交換樹脂の充填方法。   The used cation exchange resin and the anion exchange resin in the desalination tower of the condensate desalination apparatus are transferred to a regeneration facility, and after regenerating each ion exchange resin in the regeneration facility, each of the regenerated ion exchange resins is recycled. In the method of transferring from the regeneration facility to the desalination tower and filling the cation exchange resin and the anion exchange resin regenerated by the regeneration facility into the desalination tower, the After mixing the exchange resin and the anion exchange resin, the mixture is again separated into a cation exchange resin and an anion exchange resin, and then a part or all of the anion exchange resin after separation from the regeneration equipment is transferred to the desalting tower for filling. Then, when a part of the anion exchange resin is transferred, the cation exchange resin and the remaining anion exchange resin are mixed, and the mixed ion exchange resin is separated from the regeneration equipment. When transferred to the desalination tower and laminated on the anion exchange resin, and when all the anion exchange resins have been transferred, the cation exchange resin alone is transferred from the regeneration equipment to the desalination tower and transferred to the desalination tower. A method for charging an ion exchange resin in a condensate desalination apparatus, wherein the ion exchange resin is stacked on top. 復水脱塩装置の脱塩塔内の使用済みのカチオン交換樹脂及びアニオン交換樹脂を再生設備に移送し、この再生設備の第1、第2再生塔において上記各イオン交換樹脂を個別に再生した後、再生後の各イオン交換樹脂を第1、第2再生塔から貯蔵タンクを経由して上記脱塩塔へ移送して充填する方法において、上記再生設備で再生されたカチオン交換樹脂及びアニオン交換樹脂を上記脱塩塔に充填する際に、再生後のカチオン交換樹脂を第1再生塔から上記貯蔵タンクへ移送すると共に再生後のアニオン交換樹脂をこのアニオン交換樹脂の一部を残して第2再生塔から上記貯蔵タンクへ移送する工程と、上記貯蔵タンク内でカチオン交換樹脂とアニオン交換樹脂を混合する工程と、第2再生塔内に残留するアニオン交換樹脂を第2再生塔から上記脱塩塔へ移送して充填した後、混合イオン交換樹脂を上記貯蔵タンクから上記脱塩塔へ移送してアニオン交換樹脂上に積層する工程とを有することを特徴とする復水脱塩装置におけるイオン交換樹脂の充填方法。   The used cation exchange resin and anion exchange resin in the desalination tower of the condensate desalination apparatus were transferred to a regeneration facility, and the above-mentioned ion exchange resins were individually regenerated in the first and second regeneration towers of the regeneration facility. Thereafter, in the method of transferring and filling each ion-exchange resin after regeneration from the first and second regeneration towers to the desalination tower via the storage tank, the cation exchange resin and the anion exchange resin regenerated by the regeneration equipment When the resin is filled in the desalting tower, the regenerated cation exchange resin is transferred from the first regeneration tower to the storage tank, and the regenerated anion exchange resin is removed from the second regeneration tower while leaving a part of the anion exchange resin. Transferring from the regeneration tower to the storage tank, mixing the cation exchange resin and the anion exchange resin in the storage tank, and removing the anion exchange resin remaining in the second regeneration tower from the second regeneration tower. Transferring the mixed ion-exchange resin from the storage tank to the desalination tower and stacking the mixed ion-exchange resin on the anion exchange resin. Filling method of ion exchange resin. 復水脱塩装置の脱塩塔内の使用済みのカチオン交換樹脂及びアニオン交換樹脂を再生設備に移送し、この再生設備の第1、第2再生塔において上記各イオン交換樹脂を個別に再生した後、再生後の各イオン交換樹脂を第1、第2再生塔から貯蔵タンクを経由して上記脱塩塔へ移送して充填する方法において、上記再生設備で再生されたカチオン交換樹脂及びアニオン交換樹脂を上記脱塩塔に充填する際に、再生後のカチオン交換樹脂を第1再生塔から上記貯蔵タンクへ移送すると共に再生後のアニオン交換樹脂を第2再生塔から上記貯蔵タンクへ移送する工程と、上記貯蔵タンク内でカチオン交換樹脂とアニオン交換樹脂を混合した後、再度カチオン交換樹脂とアニオン交換樹脂に分離する工程と、分離後のアニオン交換樹脂の一部または全てを上記貯蔵タンクから上記脱塩塔へ移送して充填する工程と、一部のアニオン交換樹脂を移送した場合には上記貯蔵タンク内で分離後のカチオン交換樹脂と分離後の残余のアニオン交換樹脂を混合した後、上記貯蔵タンクから上記脱塩塔へ移送してアニオン交換樹脂上に積層し、全てのアニオン交換樹脂を移送した場合には上記貯蔵タンクから分離後のカチオン交換樹脂を単独で上記脱塩塔へ移送してアニオン交換樹脂上に積層する工程とを有することを特徴とする復水脱塩装置におけるイオン交換樹脂の充填方法。   The used cation exchange resin and anion exchange resin in the desalination tower of the condensate desalination apparatus were transferred to a regeneration facility, and the above-mentioned ion exchange resins were individually regenerated in the first and second regeneration towers of the regeneration facility. Thereafter, in the method of transferring and filling each ion-exchange resin after regeneration from the first and second regeneration towers to the desalination tower via the storage tank, the cation exchange resin and the anion exchange resin regenerated by the regeneration equipment Transferring the regenerated cation exchange resin from the first regeneration tower to the storage tank and transferring the regenerated anion exchange resin from the second regeneration tower to the storage tank when filling the resin into the desalination tower; And mixing the cation exchange resin and the anion exchange resin in the storage tank, and then separating the cation exchange resin and the anion exchange resin again, and part or all of the separated anion exchange resin Transferring from the storage tank to the desalination tower and filling, and when transferring some anion exchange resin, the cation exchange resin after separation and the remaining anion exchange resin after separation in the storage tank After mixing, the cation exchange resin after separation from the storage tank is transferred alone from the storage tank to the desalination tower and stacked on the anion exchange resin when all the anion exchange resins are transferred. Transferring the mixture to a desalination tower and laminating it on an anion exchange resin. 復水脱塩装置の脱塩塔内の使用済みのカチオン交換樹脂及びアニオン交換樹脂を再生設備に移送し、この再生設備の第1、第2再生塔において上記各イオン交換樹脂を個別に再生した後、再生後の各イオン交換樹脂を再生塔から直接上記脱塩塔へ移送して充填する方法において、上記再生設備で再生されたカチオン交換樹脂及びアニオン交換樹脂を上記脱塩塔に充填する際に、再生後のアニオン交換樹脂をこのアニオン交換樹脂の一部を残して第2再生塔から第1再生塔へ移送する工程と、第1再生塔内でカチオン交換樹脂と移送後のアニオン交換樹脂を混合する工程と、第2再生塔内に残留するアニオン交換樹脂を上記脱塩塔へ移送して充填した後、第1再生塔内の混合イオン交換樹脂を上記脱塩塔へ移送してアニオン交換樹脂上に積層する工程とを有することを特徴とする復水脱塩装置におけるイオン交換樹脂の充填方法。   The used cation exchange resin and anion exchange resin in the desalination tower of the condensate desalination apparatus were transferred to a regeneration facility, and the above-mentioned ion exchange resins were individually regenerated in the first and second regeneration towers of the regeneration facility. After, in the method of transferring each ion-exchange resin after regeneration from the regeneration tower directly to the desalination tower and filling the same, the cation-exchange resin and the anion-exchange resin regenerated by the regeneration equipment are charged into the desalination tower. Transferring the regenerated anion exchange resin from the second regeneration tower to the first regeneration tower while leaving a portion of the anion exchange resin; and transferring the anion exchange resin after the transfer to the cation exchange resin in the first regeneration tower. And after the anion exchange resin remaining in the second regeneration tower is transferred to the desalting tower and filled, the mixed ion exchange resin in the first regeneration tower is transferred to the desalting tower and anion exchange is performed. Laminate on exchange resin Filling method of the ion exchange resin in the condensate demineralizer apparatus characterized by a step. 復水脱塩装置の脱塩塔内の使用済みのカチオン交換樹脂及びアニオン交換樹脂を再生設備に移送し、この再生設備の第1、第2再生塔において上記各イオン交換樹脂を個別に再生した後、再生後の各イオン交換樹脂を再生塔から直接上記脱塩塔へ移送して充填する方法において、上記再生設備で再生されたカチオン交換樹脂及びアニオン交換樹脂を上記脱塩塔に充填する際に、再生後のアニオン交換樹脂を第2再生塔から第1再生塔へ移送する工程と、第1再生塔内でカチオン交換樹脂と移送後のアニオン交換樹脂を混合した後、再度カチオン交換樹脂とアニオン交換樹脂に分離する工程と、第1再生塔内のアニオン交換樹脂の一部または全てを上記脱塩塔へ移送して充填する工程と、一部のアニオン交換樹脂を移送した場合には第1再生塔内で分離後のカチオン交換樹脂と分離後の残余のアニオン交換樹脂を混合した後、第1再生塔から上記脱塩塔へ移送してアニオン交換樹脂上に積層し、全てのアニオン交換樹脂を移送した場合には第1再生塔から分離後のカチオン交換樹脂を単独で上記脱塩塔へ移送してアニオン交換樹脂上に積層する工程とを有することを特徴とする復水脱塩装置におけるイオン交換樹脂の充填方法。   The used cation exchange resin and anion exchange resin in the desalination tower of the condensate desalination apparatus were transferred to a regeneration facility, and the above-mentioned ion exchange resins were individually regenerated in the first and second regeneration towers of the regeneration facility. After, in the method of transferring each ion-exchange resin after regeneration from the regeneration tower directly to the desalination tower and filling the same, the cation-exchange resin and the anion-exchange resin regenerated by the regeneration equipment are charged into the desalination tower. Transferring the regenerated anion exchange resin from the second regeneration tower to the first regeneration tower; mixing the cation exchange resin and the transferred anion exchange resin in the first regeneration tower; A step of separating the anion exchange resin into an anion exchange resin, a step of transferring a part or all of the anion exchange resin in the first regeneration tower to the desalting tower and filling the same, and a step of transferring a part of the anion exchange resin when a part of the anion exchange resin is transferred. 1 regeneration tower After mixing the cation exchange resin after the separation and the remaining anion exchange resin after the separation, the mixture was transferred from the first regeneration tower to the desalting tower, laminated on the anion exchange resin, and all the anion exchange resins were transferred. Wherein the cation exchange resin separated from the first regeneration tower is transferred alone to the desalting tower and laminated on the anion exchange resin. Filling method. 復水脱塩装置の脱塩塔内の使用済みのカチオン交換樹脂及びアニオン交換樹脂を再生設備に移送し、この再生設備の一つの再生塔において上記各イオン交換樹脂を再生した後、再生後の各イオン交換樹脂を上記再生塔から上記脱塩塔へ移送して充填する方法において、上記再生塔内で再生されたカチオン交換樹脂及びアニオン交換樹脂を上記脱塩塔に充填する際に、上記再生塔内の再生後の分離したアニオン交換樹脂の一部または全てを上記再生塔から上記脱塩塔へ移送して充填する工程と、一部のアニオン交換樹脂を移送した場合には上記再生塔内でカチオン交換樹脂と残余のアニオン交換樹脂を混合し、この混合イオン交換樹脂を上記再生塔から上記脱塩塔へ移送してアニオン交換樹脂上に積層し、全てのアニオン交換樹脂を移送した場合には上記再生塔内のカチオン交換樹脂を上記脱塩塔へ移送してアニオン交換樹脂上に積層する工程とを有することを特徴とする復水脱塩装置におけるイオン交換樹脂の充填方法。   The used cation exchange resin and the anion exchange resin in the desalination tower of the condensate desalination apparatus are transferred to the regeneration equipment, and each of the ion exchange resins is regenerated in one regeneration tower of the regeneration equipment. In the method of transferring and filling each ion exchange resin from the regeneration tower to the desalination tower, when the cation exchange resin and the anion exchange resin regenerated in the regeneration tower are charged into the desalination tower, the regeneration is performed. A step of transferring a portion or all of the separated anion exchange resin after regeneration in the column from the regeneration column to the desalination column to fill the column, and when a part of the anion exchange resin is transferred, The cation exchange resin and the remaining anion exchange resin are mixed in, and the mixed ion exchange resin is transferred from the regeneration tower to the desalination tower, laminated on the anion exchange resin, and all the anion exchange resins are transferred. Filling method of the ion exchange resin in the condensate demineralizer, characterized in that a step of laminating a cation exchange resin in the regeneration tower on the anion exchange resin was transferred to the demineralizer for. 復水脱塩装置の脱塩塔内の使用済みのカチオン交換樹脂及びアニオン交換樹脂を再生設備に移送し、この再生設備の一つの再生塔において上記各イオン交換樹脂を分離させて個別に再生した後、再生後の各イオン交換樹脂を上記再生塔から上記脱塩塔へ移送して充填する方法において、上記再生塔内で再生されたカチオン交換樹脂及びアニオン交換樹脂を上記脱塩塔に充填する際に、上記再生塔内の再生後の分離したカチオン交換樹脂とアニオン交換樹脂を混合した後、再度カチオン交換樹脂とアニオン交換樹脂に分離する工程と、上記再生塔内の分離後のアニオン交換樹脂の一部または全てを上記再生塔から上記脱塩塔へ移送して充填する工程と、一部のアニオン交換樹脂を移送した場合には上記再生塔内でカチオン交換樹脂と残余のアニオン交換樹脂を混合し、この混合イオン交換樹脂を上記再生塔から上記脱塩塔へ移送してアニオン交換樹脂上に積層し、全てのアニオン交換樹脂を移送した場合には上記再生塔内のカチオン交換樹脂を上記脱塩塔へ移送してアニオン交換樹脂上に積層する工程とを有することを特徴とする復水脱塩装置におけるイオン交換樹脂の充填方法。   The used cation exchange resin and anion exchange resin in the desalination tower of the condensate desalination unit were transferred to a regeneration facility, and the above ion exchange resins were separated and regenerated individually in one regeneration tower of the regeneration facility. Thereafter, in the method of transferring and filling each ion exchange resin after regeneration from the regeneration tower to the desalination tower, the cation exchange resin and the anion exchange resin regenerated in the regeneration tower are filled in the desalination tower. At this time, a step of mixing the separated cation exchange resin and the anion exchange resin after regeneration in the regeneration tower, and then separating the cation exchange resin and the anion exchange resin again, and the separated anion exchange resin in the regeneration tower Transferring and filling a part or all of the anion exchange resin from the regeneration tower to the desalination tower; and, when a part of the anion exchange resin is transferred, the cation exchange resin and the remaining anion exchange resin in the regeneration tower. The ion exchange resin is mixed, and the mixed ion exchange resin is transferred from the regeneration tower to the desalting tower and stacked on the anion exchange resin. When all the anion exchange resins are transferred, the cations in the regeneration tower are transferred. Transferring the exchange resin to the desalting tower and laminating the resin on the anion exchange resin.
JP2004042209A 2004-02-19 2004-02-19 Filling method of ion exchange resin in condensate demineralizer Expired - Lifetime JP3610390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004042209A JP3610390B2 (en) 2004-02-19 2004-02-19 Filling method of ion exchange resin in condensate demineralizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004042209A JP3610390B2 (en) 2004-02-19 2004-02-19 Filling method of ion exchange resin in condensate demineralizer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11416396A Division JP3610388B2 (en) 1996-04-11 1996-04-11 Condensate demineralizer

Publications (2)

Publication Number Publication Date
JP2004223513A true JP2004223513A (en) 2004-08-12
JP3610390B2 JP3610390B2 (en) 2005-01-12

Family

ID=32906184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004042209A Expired - Lifetime JP3610390B2 (en) 2004-02-19 2004-02-19 Filling method of ion exchange resin in condensate demineralizer

Country Status (1)

Country Link
JP (1) JP3610390B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040266A1 (en) * 2005-10-06 2007-04-12 Ebara Corporation Process and equipment for demineralizing condensate
JP2008190933A (en) * 2007-02-02 2008-08-21 Japan Atom Power Co Ltd:The Method for evaluating concentration of ion impurity in secondary coolant at pwr-type nuclear power plant and method for operating secondary cooling system at pwr-type nuclear power plant using such evaluation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040266A1 (en) * 2005-10-06 2007-04-12 Ebara Corporation Process and equipment for demineralizing condensate
JP2007098328A (en) * 2005-10-06 2007-04-19 Ebara Corp Condensate demineralization method and apparatus
US8007672B2 (en) 2005-10-06 2011-08-30 Ebara Corporation Method for demineralizing condensate
JP2008190933A (en) * 2007-02-02 2008-08-21 Japan Atom Power Co Ltd:The Method for evaluating concentration of ion impurity in secondary coolant at pwr-type nuclear power plant and method for operating secondary cooling system at pwr-type nuclear power plant using such evaluation system

Also Published As

Publication number Publication date
JP3610390B2 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
JP4943378B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP3610388B2 (en) Condensate demineralizer
JP5987286B2 (en) Water treatment method
JPH1147560A (en) Secondary system line water treatment plant for pressurized water type atomic power plant
JP2011058832A (en) System and method for demineralizing condensate
JPH1164575A (en) Secondary system line water treatment device for pressurized-water nuclear power plant
JP3610390B2 (en) Filling method of ion exchange resin in condensate demineralizer
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP2007105558A (en) Method and apparatus for demineralizing recovered water
JP2004081927A (en) Method of filling condensed water desalting apparatus with ion exchange resin
JP3614995B2 (en) Condensate demineralizer
JP4367815B2 (en) Operation method of condensate demineralizer
JP4931107B2 (en) Electrodeionization device and secondary line water treatment device for pressurized water nuclear power plant using the same
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
JP4383091B2 (en) Condensate desalination method and apparatus
JPH11216372A (en) Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent
JPH09262486A (en) Regenerating method of ion exchange resin in desalting device for condensate
JP2654053B2 (en) Condensate desalination equipment
JPH11197661A (en) Condensed water desalting apparatus
JP2005296748A (en) Condensate demineralizer and its regeneration method
JP2003185786A (en) Condensate processing system and method
JPH08313692A (en) Recovery method and device for ion exchange resin in demineralizing device
JPH0271893A (en) Condensate desalter
JP2005003597A (en) Method for evaluating performance of strongly acidic positive ion exchanging resin in mixed bed condensate polisher of primary cooling water system at pressurized-water nuclear power generating plant
JP2001179249A (en) Condensed water desalting apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term