JP2004223302A - Exhaust gas treatment method and treatment apparatus therefor - Google Patents

Exhaust gas treatment method and treatment apparatus therefor Download PDF

Info

Publication number
JP2004223302A
JP2004223302A JP2002352712A JP2002352712A JP2004223302A JP 2004223302 A JP2004223302 A JP 2004223302A JP 2002352712 A JP2002352712 A JP 2002352712A JP 2002352712 A JP2002352712 A JP 2002352712A JP 2004223302 A JP2004223302 A JP 2004223302A
Authority
JP
Japan
Prior art keywords
exhaust gas
water
treatment
fluorine
containing compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002352712A
Other languages
Japanese (ja)
Other versions
JP3737082B2 (en
Inventor
Toyoji Shinohara
豊司 篠原
Yoichi Mori
洋一 森
Yasuhiko Suzuki
康彦 鈴木
Hiroshi Aono
弘 青野
Yuji Shirao
祐司 白尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002352712A priority Critical patent/JP3737082B2/en
Publication of JP2004223302A publication Critical patent/JP2004223302A/en
Application granted granted Critical
Publication of JP3737082B2 publication Critical patent/JP3737082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Separation Of Particles Using Liquids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas treatment method capable of efficiently treating a fluorine-containing compound and CO at the same time, reduced in running cost, low in the load to an apparatus material, capable of reducing an apparatus cost and discharging no harmful gas. <P>SOLUTION: At least one of a powder component, a water soluble component and a hydrolizable component contained in an exhaust gas containing at least either of the fluorine-containing compound or CO is removed and, after O<SB>2</SB>and water (H<SB>2</SB>O) are added to the exhaust gas, the exhaust gas containing O<SB>2</SB>and water is heated to decompose or oxidize at least one of the fluorine-containing compound and CO. Subsequently, the acidic gas, which is produced when the fluorine-containing compound is decomposed, is removed from the exhaust gas subjected to decomposition or oxidation treatment. The heating of the exhaust gas containing O<SB>2</SB>and water is preferably performed at 700-900°C. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は排ガスの処理方法および装置に係り、特に半導体製造工程で半導体製造装置の内面等をドライクリーニングする工程や、酸化膜等の各種成膜をエッチングする工程などで排出されるフッ素含有化合物および一酸化炭素ガス(以下、COという)を含む排ガスを、効率よく無害化処理する方法および装置に関する。
【0002】
【従来の技術】
半導体製造時のエッチング工程やCVD工程などにおいて、CHFなどのフッ化炭化水素や、CF,C,C,C,C,C,SF,NFなどのパーフルオロ化合物(以下「PFC」という)などのフッ素含有化合物が使用されている。また、COやNHやOが半導体製造装置で使用されることもある。これらフッ素含有化合物やCOやNHを使用した半導体製造装置から排出される排ガス中には、CO,NH,SiF,F,COF,C,C,NFなどの有害成分が含まれるとともに、有害ではないが地球温暖化効果のあるフッ素含有化合物が含まれている。そのため、フッ素含有化合物やCOを使用した半導体製造装置から排出される排ガスを環境中に排出する場合には、排ガス中に含まれる有害ガスの無害化および地球温暖化ガスの分解処理が必要となる。
【0003】
排ガス中のSiF,F,COF,C,C,NHなどの従来の有害ガス処理方法としては、合成ゼオライトなどの吸着剤を用いて有害成分を吸着処理する方法がある。しかしながら、COおよびPFCの除去はできないという問題がある。また、吸着剤の定期交換が必要となり、ランニングコストが高くなるという問題がある。
湿式排ガス処理装置(水洗処理)によるSiFやF,NHなどの水溶性ガスや加水分解性ガスの処理方法がある。しかしながら、COやPFCなどの水溶性以外のガスの除去はできないという問題がある。
【0004】
また、排ガス中のCOの従来の処理方法として、酸化触媒とOによりCOをCOに酸化させる方法がある。しかし、PFCの分解除去はできないという問題がある。また、SiFやFなどの酸性ガスやPFCが酸化触媒に接触すると、酸化触媒が被毒されCO酸化能力が低下し、酸化触媒の定期的な交換が必要となるという問題がある。
【0005】
排ガス中の有害ガスとCOを同時処理する従来の方法としては、上記吸着処理、水洗処理および酸化処理の組合せにより可能である。ただし、処理剤の定期交換があるためランニングコストが高くなる。また、PFCの除去はできないという問題がある。
【0006】
各種PFC分解触媒を用いた除去方法が提案されている(特許文献1,2参照)。しかしながら、触媒の劣化が進んだ場合にCOやC,Cといった有害成分がただちに流出する可能性がある。また、燃焼方式による処理方法が提案されているが、燃焼条件により副生成ガスとしてNOxやCOが発生する可能性がある。また、H,都市ガス,プロパンガスなどの燃料が必要となり、燃料を供給するための設備が必要となり、運転管理も煩雑になるという問題がある。また、加熱酸化分解により分解する方法が提案されているが、CFなどの難分解性のPFCを分解するには1400℃以上の高温にする必要があり、材料やヒータなどに対する負荷が非常に大きいという問題がある。
【0007】
また、NHもしくは低級飽和炭化水素ガスもしくは低級不飽和炭化水素ガスを添加して、遊離Oのない状態で加熱酸化分解する方法が提案されている(特許文献3,4,5参照)が、O共存下での加熱酸化分解方法は提案されていない。また、水(HO)存在下でプラズマによりPFCを分解する方法が提案されているが、PFCを分解する際にCOやHFといった有害ガスが発生し、また、サーマルNOxが発生する。そのためこれらを処理する排ガス処理装置が別途必要となる。
【0008】
【特許文献1】
特許第3217034号
【特許文献2】
特許第3237651号
【特許文献3】
特開平9−85045号
【特許文献4】
特開平11−333247号
【特許文献5】
特開平11−162335号
【0009】
【発明が解決しようとする課題】
本発明は上述した事情に鑑みて為されたもので、フッ素含有化合物およびCOを同時に且つ効率的に処理することができ、ランニングコストが廉価で、装置材料に対する負荷が低く装置コストを低減でき、且つ有害ガスの排出のない排ガスの処理方法および処理装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の排ガス処理は、フッ素含有化合物およびCOの少なくともいずれかを含む排ガス中に含まれる粉体成分および水溶性成分および加水分解性成分の少なくとも1つを除去し、ついでOおよび水(HO)を添加して加熱することにより前記フッ素含有化合物およびCOの少なくともいずれかを分解または酸化処理し、ついで前記分解または酸化処理した排ガス中よりフッ素含有化合物を分解する際に生成する酸性ガスの除去を行うことを特徴とする。ここで、前記加熱は、700〜900℃の温度で行うことが好ましい。
【0011】
上記本発明によれば、吸着処理または気液接触処理でSiFやFといった有害性ガスを許容値(TLV−TWA値)以下の濃度まで除去することが可能である。また、好ましくは700〜900℃の加熱酸化処理により、CO酸化触媒を使わずにCOをCOに酸化させ、許容値(TLV−TWA値)以下の濃度に処理可能である。また、CやCやNFなどの有害性PFCも加熱処理により許容値(TLV−TWA値)以下の濃度に完全に分解可能である。そして、フッ素含有化合物を加熱酸化分解処理によって分解する際に生じるHF等の酸性ガスは、その後の吸着処理または気液接触処理によって除去可能である。したがって、例えば1000℃以上の高温による加熱酸化分解処理を用いることなく、また触媒による処理を用いることなく、人体に有害とされる排ガス成分を無害化することができる。なお、700〜900℃の熱処理では、例えばCFなどの難分解性のPFCは分解が困難である。しかしながら、これらの成分は地球温暖化等の観点からすると問題があるが、人体に有害とされるものではなく、上記排ガスの処理方法によれば、人体に有害とされるガス成分は全て許容値以下に処理することができる。
【0012】
なお、触媒反応により600〜900℃という比較的低温度でCFなどの難分解性PFCを完全に分解することも可能である。従って、例えば加熱酸化分解処理後に触媒反応を併用することで、これらの地球温暖化の観点から処理が必要とされるガス成分も完全に分解して除去することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施形態について添付図面を参照しながら説明する。
【0014】
図1は、本発明の第1の実施形態の排ガス処理装置を示す。この排ガス処理装置は、フッ素含有化合物及びCOを含む排ガス中に含まれる粉体成分または水溶性成分または加水分解性成分を除去する前処理部1と、前処理後の排ガスの加熱酸化分解処理を行う加熱酸化分解処理部2と、上記加熱酸化分解処理によって生じたHF等の酸性ガスの後処理を行う後処理部4とを備えている。
【0015】
前処理部1として、気液接触用に例えば前処理用水スプレー塔が用いられている。このスプレー塔1には水道水もしくは工水が供給されており、水スプレーにより散水されている。フッ素含有化合物及びCOを含む排ガスは、水スプレー塔1の下部から上部に向かって流れ、水スプレーから散水された水と接触することで排ガス中の粉体成分、水溶性成分、加水分解性成分の除去を行う。なお、前処理部には水スプレー塔1以外にファンスクラバー、通気攪拌槽、ゼオライト・活性炭等の吸着剤を充填した吸着槽を設置しても同様の効果が得られる。
【0016】
前処理部として使用する装置は、処理する排ガスの成分や粉体の混入状況、また、工場設備の状況により適切な装置を選定することができる。なお、吸着剤による吸着は、水を使用しないので排水処理設備がない場合に適している。また、As(砒素)やPb(鉛)などの特別管理物質が排ガス中に含まれる場合は、水洗処理は排水にこれらの成分が混入するため好ましくないので、吸着処理が適している。また、ファンスクラバーは、低水量で高い除去率が得られる。また、粉体捕集性能も非常に優れている。また、水スプレー塔は、構造が簡単であるので高い除去性能を得るためには水量を多くする必要があるが、装置が安価になる。また、通気攪拌槽は、攪拌槽内に中和液を投入しpH調整を行うことが可能で、水洗除去しにくい成分でも高い除去率を得られる。
【0017】
前処理部では、排ガス中に含まれる粉体成分、水溶性成分、または加水分解性成分を上述したように水又は吸着剤により除去する。例えば、SiF,F等の酸性ガスは前処理部で除去される。
【0018】
前処理部を通過した排ガスは加熱酸化分解処理槽2で分解処理される。分解処理は加熱酸化分解処理槽2で行われ、反応に必要なOを供給するために空気配管5が接続されている。また、反応に必要な水配管6も接続されている。市水又は工水は加熱酸化分解処理槽2に導入される前に配管6に接続された水清浄器7により蒸留水相当に浄化される。そして、水気化器8により気化されて加熱酸化分解処理槽2に供給される。または、反応に必要な水は水気化器8により気化せず、そのままスプレーで加熱酸化分解処理槽に噴霧しても良い。そして、前記噴霧された水は加熱酸化分解処理槽にて加熱され、気化される。加熱酸化分解処理槽2には加熱手段としてセラミック製電気管状炉9が取り付けられて排ガスとOと水(HO)が混合した排ガス温度を700〜900℃に加熱する。これにより加熱酸化分解処理槽2内では以下の反応式によりCOの酸化処理および炭素数4以上のPFCおよびフッ化炭化水素およびNFの分解処理が行われる。従って、排ガス中に含まれる人体に有害とされるガス成分は全て酸化または分解処理が可能である。
【0019】
2CO + O → 2CO
CO + HO → CO +H
2H + O → 2H
+ 4HO + 3O → 5CO + 8HF
+ 4HO + 2O → 4CO + 8HF
2C + 6H0 + 5O → 8CO + 12HF
2CHF + 2HO + O → 3CO + 8HF
2NF + 3HO → NO + NO + 6HF
【0020】
酸化処理に際して、Oは、大気中の空気、O富化空気、純O等、いかなるO源から供給しても良いし、過酸化物を用いても良い。なお、酸化および分解処理に700〜900℃の温度を用いるのは、この温度で上記ガス成分の酸化および分解処理が行えると共に、1000℃以上の高温域では、空気中のN等より生じるサーマルNOの生成量が増大するという問題があるからである。また、900℃以下とすることで、槽に必要な耐火材等に経済的なものを用いることができるからである。
【0021】
後処理部4は、フッ素含有化合物を分解する際に生成するHF等の酸性ガスの後処理を行う。この実施形態においては、後処理用水スプレー塔4である。これには水道水もしくは工水が供給されており、水スプレーにより散水されている。排ガスは水スプレー塔4の下部から上部に向かって流れ、水スプレーから散水された水と接触することにより、加熱酸化分解処理槽2でPFCが分解する際に発生するHFの除去を行う。なお、後処理部には水スプレー塔4以外にファンスクラバー、通気攪拌槽、ゼオライト・活性炭等の吸着剤を充填した吸着槽を設置しても同様の効果が得られる。
【0022】
図2は、本発明の第2の実施形態の排ガス処理装置を示す。この装置においては、加熱酸化分解処理が行われた排ガスは、引き続き触媒反応部である触媒反応槽3で触媒による分解処理が行われる。なお、触媒反応槽3を設けた以外の構成は、図1に示す排ガス処理装置の構成と同様である。
【0023】
触媒反応槽3にはPFC分解触媒が充填されていて排ガスは触媒層上層から下層に向かって流れる。また触媒反応槽3には加熱手段としてセラミック製電気管状炉10が取り付けられており、触媒反応槽3の温度を600〜900℃になるように加熱している。これにより触媒反応部では炭素数3以下のPFCおよびSFと触媒が接触することで以下の反応がおこり、PFCおよびSFの分解処理が行われる。なお、分解反応に寄与するOと水(HO)は上流の加熱酸化分解処理槽2で導入されたものである。触媒としては、γアルミナ、アルミナジルコニウム複合酸化物にタングステン酸化物を担持した触媒等のフッ素含有化合物分解触媒が用いられる。これにより、加熱酸化分解処理槽2で処理しきれなかった難分解性のPFCおよびSFの分解処理が行える。従って、この触媒反応による分解処理を付加することで、人体には直接影響がないとされるが、地球温暖化等に悪影響を及ぼすとされる排ガス成分を完全に除去することができる。
【0024】
CF + 2HO → CO + 4HF
2C + 6HO + O → 4CO + 12HF
+ 4HO + O → 3CO + 8HF
2SF + 3HO + O → SO + SO + 6HF
【0025】
図3は、本発明の第3の実施形態の排ガス処理装置を示す。この排ガス処理装置は、加熱酸化分解処理部と触媒反応部と後処理部を一体にしたガス処理槽13を備えている。また、前処理部にファンスクラバー14を設置している。ファンスクラバー14には洗浄水が送水ポンプ15から供給され、この洗浄水と排ガスがファンスクラバー14内のファンの回転により接触し、排ガス中の粉体成分、水溶性成分、加水分解成分を除去する。
【0026】
加熱酸化分解処理部と触媒反応部と後処理部に相当するのがガス処理槽13で、排ガスの通過する順に加熱酸化分解部16と触媒反応部17と後処理部18が備えられている。加熱酸化分解部16と触媒反応部17と後処理部18を一体構造とすることで、装置の小型化を計っている。また、一体とすることで加熱酸化分解部16でセラミック電気管状炉19により700〜900℃に加熱した排ガスを温度低下させることなく触媒反応部17に導入することができる。従って、触媒反応部17にはヒーターなどの加熱手段を設ける必要が無く、保温材20を触媒反応部17の外周に設置するだけでよい。
【0027】
加熱酸化分解処理および触媒反応処理に必要なOはガス処理槽13の上部に接続された空気配管21から供給される。また、水(HO)は水清浄器23により蒸留水相当に浄化され、その後にガス処理槽13に導入される。その後、ガス処理槽13内部のセラミック電気管状炉19の外壁に設置された水気化配管25を通過する際に、セラミック電気管状炉19の排熱との熱交換により加熱され気化し、ガス処理槽13の上部に備えられた加熱酸化分解処理部16に導入される。ガス処理槽13の下部には水スプレー18を具備した後処理部が備えられており、水スプレー18には送水ポンプ15から洗浄水が供給される。
【0028】
処理対象の排ガスは、前処理用ファンスクラバ14を通過した後、ミストセパレータ26を通過し、ガス処理槽13に導入される。また、後処理部18でHFが除去された排ガスはミストセパレータ27を通過した後、無害化された処理済みのガスとして排気される。
【0029】
COの酸化反応やPFCの分解に水(HO)が必要であるが、この水(HO)は気化して排ガス処理系に導入する。水の中にSiやCaなどが含まれていると水(HO)を気化させる際にSiやCaが析出し(スケールが発生し)、装置内で閉塞が発生する恐れがある。また、Clなどは触媒の劣化の原因となる可能性がある。そのため供給される水(HO)は純水や蒸留水などの清浄な水である必要がある。純水や蒸留水を装置に供給するためには独立した専用の配管を施工する必要があり、さらに、別途純水製造装置や蒸留水製造装置なども必要となるため設備に関する費用負担が大きくなる。水を清浄にする水清浄器を装置に備えることで、装置に供給する水は水道水や工業用水でよくなり、配管等の設備に関する費用が軽減される。
【0030】
次に、本発明の排ガス処理方法について説明する。
フッ素含有化合物およびCOを含む排ガス中に含まれる粉体成分または水溶性成分または加水分解性成分を前処理により除去する。排ガス中に含まれる粉体成分または水溶性成分または加水分解性成分の除去を行う前処理部として、吸着剤による吸着処理を行う吸着処理槽もしくはファンスクラバーもしくは水スプレー塔もしくは通気攪拌槽等のいずれかを用いる。
【0031】
上記前処理により粉体成分または水溶性成分または加水分解性成分を除去した後のフッ素含有化合物およびCOを含む排ガスを、700〜900℃の温度でOおよび水(HO)と接触させてCOをCOに酸化させるとともに炭素数4以上のフッ素含有化合物等の分解処理を行う。加熱酸化分解処理は、上記排ガスを通気可能とする中空内部、その中空内部のガス温度を700〜900℃に加熱可能な加熱手段、被処理ガスの導入口、O導入口および水(HO)導入口を備えた加熱酸化分解処理部にて行われる。
排ガスとO,水(HO)の接触効率を高め、且つ加熱効率を高めるための接触補助手段を備えることが好ましい。排ガスは接触補助手段により乱流が起こり、排ガスとO,水(HO)との接触効率を高めるとともに、接触補助手段自体がヒータから発せられる熱を輻射により受けて高温となり、排ガスへの伝熱面積が大きくなり、加熱効率を高めることができる。これにより加熱酸化分解処理部が小型化されヒーター容量を低く抑えることができる。
【0032】
最後に、加熱酸化分解処理部でフッ素含有化合物を分解処理する際に発生する酸性ガス(HF)を除去する。このHFの除去は、後処理部として吸着剤による吸着処理を行う吸着処理槽もしくはファンスクラバーもしくは水スプレーもしくは通気攪拌槽等を用いて行う。以上で、排ガス中の人体に有害とされるガス成分の処理が全て完了する。
【0033】
さらに、地球温暖化の観点から問題となるガス成分を除去するためには、加熱酸化分解処理後に触媒による分解処理を行う。即ち、触媒反応部で600〜900℃の温度でフッ素含有化合物分解触媒とOおよび水(HO)を接触させることで炭素数3以下のフッ素含有化合物およびSFの分解処理を行うことができる。触媒反応部では、フッ素含有化合物の分解触媒を充填することができ、触媒層温度を600〜900℃に加熱する加熱手段もしくは前段の加熱酸化分解処理部で700〜900℃に加熱したガスを600〜900℃の温度に保つ保温手段を備える。
【0034】
なお、排ガス処理に使用する水(HO)を清浄にするための純水発生装置もしくは蒸留装置もしくはフィルタ機構を備えてもよい。液体で供給される水(HO)を加熱酸化分解処理部もしくは触媒反応部の排熱と熱交換することで気化させる機構を備えることが好ましい。これにより、排熱を利用するため水(HO)を気化させるための特別な熱源を必要としない。
【0035】
また、触媒層の下流側にセラミック製の充填物を備えることが好ましい。後処理部に水スプレーを採用して触媒反応部と後処理部を一体構造とした場合に、充填物を備えていると、水スプレーの水が触媒層へ到達するのを防ぎ、触媒の劣化を防止することができる。また、充填物の間隙に水が保持されることでPFC分解時に発生するHFと水との接触効率があがり、HF除去効率が高くなるとともに、排ガスの冷却効果も向上する。
【0036】
次に、図3に示す排ガス処理装置と同等の試験装置で行った排ガス処理の試験結果について説明する。各種の処理対象ガスを混合したNガスを試験装置に投入して、各部のガス成分濃度(ppm)を測定している。
【表1】

Figure 2004223302
【0037】
流入条件として、SiF:60mL/min、CHF:180mL/min、C:60mL/min、C:10mL/min、CO:1200mL/min、C:10mL/min、NF:120mL/min 、SF:120 mL/min、CF:450mL/min、の処理対象となるガスをNガス:120L/min中に混合して投入している。そして、酸化用O源として空気3.0L/minを加熱酸化部に導入し、同様に酸化・分解用として純水5mL/minを加熱酸化部に導入している。入口、前処理部出口、加熱酸化部出口、後処理部出口におけるそれぞれのガス成分の濃度は表1に示すとおりである。
【0038】
上記表1に示す試験結果から、前処理部によりSiF、HFが検出されず、前処理部で酸性ガスが良好に処理されていることが判る。そして、加熱酸化部でCO、C、C、C、CHF、NFが検出されず、加熱酸化部でこれらのガス成分が良好に処理されていることが判る。さらに、加熱酸化部出口に存在していたCF、SFが後処理部出口で検出されず、触媒反応部および後処理部で良好に処理されていることが判る。また、後処理部出口においてHFが検出されず、触媒反応部でHFが発生しても後処理部で良好に処理されていることが判る。
【0039】
図4は本発明の排ガス処理装置の外観を示し、この装置は前処理部、加熱酸化分解処理部、触媒反応部、後処理部をすべて搭載することが可能で、PFC,COとともに酸性ガスやNHなどの水溶性成分、加水分解成分や粉体成分を低コストで高効率に除去することが可能である。従って、この装置は、半導体製造装置等から排出される反応性成分および有害成分の高い除去能力を備えている。また、この装置は、コンパクトな構造であり、据付面積が小さく、またメンテナンススペースも小さくできる。更に、例えばサーマルNOx等を排出することなく、基本的コンセプトとして万全の安全性を確立したものであり、機器として優れた安全性を有する。
なお、本実施例においては、前処理部前処理部、加熱酸化分解処理部、触媒反応部、後処理部をすべて搭載しているが、前処理部および後処理部は装置外に別途設置するようにしても良い。さらに、工場内にて複数の排ガス処理装置から出る排ガス中の酸性ガスを1ヶ所にて一括処理するような後処理部を含むシステムにしても良い。
【0040】
なお、本発明の排ガスの処理方法および装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更を加えうることは勿論である。
【0041】
【発明の効果】
上述したように、本発明によれば、半導体製造装置等から排出されるフッ素含有化合物及びCOを含む排ガスを効率よく経済的に無害化処理することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の排ガス処理装置を示すブロック図である。
【図2】本発明の第2の実施形態の排ガス処理装置を示すブロック図である。
【図3】本発明の第3の実施形態の排ガス処理装置を示すブロック図である。
【図4】図1乃至図3の排ガス処理装置の外観図である。
【符号の説明】
1 前処理部(前処理用水スプレー塔)
2 加熱酸化分解処理部(加熱酸化分解処理槽)
3 触媒反応分解処理部(触媒反応槽)
4 後処理部(後処理用水スプレー塔)
5,21 空気配管
6 水配管
7,23 水清浄器
8 水気化器
9,10,19 セラミック電気管状路
13 ガス処理槽
14 前処理部(前処理用ファンスクラバ)
15 送水ポンプ
15a 循環タンク
16 加熱酸化部
17 触媒反応部
18 後処理部
20 保温材
25 水気化配管
26,27 ミストセパレータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for treating exhaust gas, and in particular, a fluorine-containing compound discharged in a step of dry cleaning an inner surface of a semiconductor manufacturing apparatus in a semiconductor manufacturing process, a step of etching various film formation such as an oxide film, and the like The present invention relates to a method and apparatus for efficiently detoxifying exhaust gas containing carbon monoxide gas (hereinafter referred to as CO).
[0002]
[Prior art]
Fluorohydrocarbons such as CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , C 4 F 8 , C 5 F 8 , C 4 F 6 , Fluorine-containing compounds such as perfluoro compounds (hereinafter referred to as “PFC”) such as SF 6 and NF 3 are used. In addition, CO, NH 3 and O 2 may be used in a semiconductor manufacturing apparatus. In the exhaust gas discharged from the semiconductor manufacturing apparatus using these fluorine-containing compounds and CO or NH 3 , CO, NH 3 , SiF 4 , F 2 , COF 2 , C 5 F 8 , C 4 F 6 , NF 3 are contained. And fluorine-containing compounds that are not harmful but have a global warming effect. Therefore, when exhaust gas discharged from semiconductor manufacturing equipment using fluorine-containing compounds or CO is discharged into the environment, detoxification of harmful gases contained in the exhaust gas and decomposition treatment of global warming gas are required. .
[0003]
As a conventional harmful gas treatment method such as SiF 4 , F 2 , COF 2 , C 5 F 8 , C 4 F 6 , NH 3 in the exhaust gas, a harmful component is adsorbed using an adsorbent such as synthetic zeolite. There is a way. However, there is a problem that CO and PFC cannot be removed. In addition, periodic replacement of the adsorbent is necessary, and there is a problem that running cost increases.
There are treatment methods for water-soluble gases such as SiF 4 , F 2 , and NH 3 and hydrolyzable gases using a wet exhaust gas treatment device (water washing treatment). However, there is a problem that gases other than water-soluble such as CO and PFC cannot be removed.
[0004]
Further, as a conventional method for treating CO in exhaust gas, there is a method of oxidizing CO to CO 2 using an oxidation catalyst and O 2 . However, there is a problem that the PFC cannot be decomposed and removed. In addition, when an acidic gas such as SiF 4 or F 2 or PFC comes into contact with the oxidation catalyst, there is a problem that the oxidation catalyst is poisoned, the CO oxidation ability is lowered, and the oxidation catalyst needs to be periodically replaced.
[0005]
As a conventional method for simultaneously treating harmful gas and CO in exhaust gas, a combination of the above-described adsorption treatment, water washing treatment and oxidation treatment is possible. However, since there is a periodic replacement of the treatment agent, the running cost becomes high. There is also a problem that PFC cannot be removed.
[0006]
Removal methods using various PFC decomposition catalysts have been proposed (see Patent Documents 1 and 2). However, when the catalyst deteriorates, harmful components such as CO, C 5 F 8 , and C 4 F 6 may flow out immediately. Moreover, although the processing method by a combustion system is proposed, NOx and CO may generate | occur | produce as a by-product gas by combustion conditions. Further, there is a problem that fuel such as H 2 , city gas, and propane gas is required, equipment for supplying the fuel is required, and operation management becomes complicated. In addition, although a method of decomposing by heat oxidative decomposition has been proposed, in order to decompose a hardly decomposable PFC such as CF 4 , a high temperature of 1400 ° C. or higher is required, and the load on materials and heaters is extremely high. There is a problem of being big.
[0007]
In addition, there has been proposed a method in which NH 3 or a lower saturated hydrocarbon gas or a lower unsaturated hydrocarbon gas is added to perform thermal oxidative decomposition without free O 2 (see Patent Documents 3, 4, and 5). No method has been proposed for heat oxidation decomposition in the presence of O 2 . Further, a method for decomposing PFC by plasma in the presence of water (H 2 O) has been proposed, but when decomposing PFC, harmful gases such as CO and HF are generated, and thermal NOx is generated. Therefore, an exhaust gas treatment apparatus for treating these is separately required.
[0008]
[Patent Document 1]
Japanese Patent No. 3217034 [Patent Document 2]
Japanese Patent No. 3237651 [Patent Document 3]
JP-A-9-85045 [Patent Document 4]
Japanese Patent Laid-Open No. 11-333247 [Patent Document 5]
JP-A-11-162335
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned circumstances, can treat fluorine-containing compounds and CO simultaneously and efficiently, has a low running cost, has a low load on apparatus materials, and can reduce apparatus costs. An object of the present invention is to provide an exhaust gas treatment method and a treatment apparatus that do not emit harmful gases.
[0010]
[Means for Solving the Problems]
The exhaust gas treatment of the present invention removes at least one of a powder component, a water-soluble component and a hydrolyzable component contained in the exhaust gas containing at least one of a fluorine-containing compound and CO, and then removes O 2 and water (H 2 O) is added and heated to decompose or oxidize at least one of the fluorine-containing compound and CO, and then the acidic gas generated when the fluorine-containing compound is decomposed from the decomposed or oxidized exhaust gas It is characterized by carrying out the removal. Here, it is preferable to perform the said heating at the temperature of 700-900 degreeC.
[0011]
According to the present invention, it is possible to remove harmful gases such as SiF 4 and F 2 to a concentration equal to or lower than an allowable value (TLV-TWA value) by adsorption treatment or gas-liquid contact treatment. Further, it is possible to oxidize CO to CO 2 without using a CO oxidation catalyst, preferably by heat oxidation treatment at 700 to 900 ° C., and to treat it at a concentration below an allowable value (TLV-TWA value). In addition, harmful PFCs such as C 4 F 6 , C 5 F 8, and NF 3 can be completely decomposed to a concentration below an allowable value (TLV-TWA value) by heat treatment. And acidic gas, such as HF which arises when decomposing | disassembling a fluorine-containing compound by heat | fever oxidative decomposition process, can be removed by a subsequent adsorption process or a gas-liquid contact process. Therefore, for example, exhaust gas components that are harmful to the human body can be rendered harmless without using heat oxidative decomposition at a high temperature of 1000 ° C. or higher and without using a catalyst. In the heat treatment at 700 to 900 ° C., for example, a hardly decomposable PFC such as CF 4 is difficult to decompose. However, these components are problematic from the viewpoint of global warming and the like, but are not harmful to the human body, and according to the exhaust gas treatment method, all the gas components that are harmful to the human body are allowable values. The following can be processed.
[0012]
It is also possible to completely decompose hardly decomposable PFC such as CF 4 at a relatively low temperature of 600 to 900 ° C. by catalytic reaction. Therefore, for example, by using a catalytic reaction in combination after the heat oxidative decomposition treatment, these gas components that require treatment from the viewpoint of global warming can be completely decomposed and removed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0014]
FIG. 1 shows an exhaust gas treatment apparatus according to a first embodiment of the present invention. This exhaust gas treatment apparatus includes a pretreatment unit 1 that removes a powder component, a water-soluble component, or a hydrolyzable component contained in an exhaust gas containing a fluorine-containing compound and CO, and a heat oxidative decomposition treatment of the exhaust gas after the pretreatment. A heating oxidative decomposition processing unit 2 to be performed and a post-processing unit 4 to perform a post-processing of an acidic gas such as HF generated by the above-mentioned thermal oxidative decomposition processing are provided.
[0015]
As the pretreatment unit 1, for example, a pretreatment water spray tower is used for gas-liquid contact. The spray tower 1 is supplied with tap water or industrial water, and is sprayed with water spray. Exhaust gas containing fluorine-containing compound and CO flows from the lower part to the upper part of the water spray tower 1 and comes into contact with water sprinkled from the water spray, thereby causing powder components, water-soluble components, and hydrolyzable components in the exhaust gas. Remove. In addition to the water spray tower 1, a similar effect can be obtained even if an adsorption tank filled with an adsorbent such as a zeolite / activated carbon is installed in the pretreatment section.
[0016]
As an apparatus used as the pretreatment unit, an appropriate apparatus can be selected depending on the components of exhaust gas to be treated, the state of mixing powder, and the state of factory equipment. Adsorption with an adsorbent is suitable when there is no wastewater treatment facility because water is not used. In addition, when a special management substance such as As (arsenic) or Pb (lead) is contained in the exhaust gas, the washing process is not preferable because these components are mixed in the waste water, and therefore the adsorption process is suitable. Further, the fan scrubber can obtain a high removal rate with a low amount of water. In addition, the powder collection performance is also excellent. Further, since the water spray tower has a simple structure, it is necessary to increase the amount of water in order to obtain a high removal performance, but the apparatus becomes inexpensive. Further, the aeration and stirring tank can be adjusted in pH by introducing a neutralizing solution into the stirring tank, and a high removal rate can be obtained even for components that are difficult to remove by washing with water.
[0017]
In the pretreatment section, the powder component, water-soluble component, or hydrolyzable component contained in the exhaust gas is removed with water or an adsorbent as described above. For example, acidic gases such as SiF 4 and F 2 are removed by the pretreatment unit.
[0018]
The exhaust gas that has passed through the pretreatment section is decomposed in the heat oxidation decomposition treatment tank 2. The decomposition treatment is performed in the heat oxidation decomposition treatment tank 2 and an air pipe 5 is connected to supply O 2 necessary for the reaction. A water pipe 6 necessary for the reaction is also connected. The city water or industrial water is purified to the equivalent of distilled water by the water purifier 7 connected to the pipe 6 before being introduced into the heating oxidative decomposition treatment tank 2. Then, it is vaporized by the water vaporizer 8 and supplied to the heating oxidative decomposition treatment tank 2. Alternatively, the water necessary for the reaction may be sprayed as it is on the heat oxidation decomposition treatment tank without spraying by the water vaporizer 8 as it is. Then, the sprayed water is heated and vaporized in a heating oxidative decomposition treatment tank. A ceramic electric tubular furnace 9 is attached to the heating oxidative decomposition treatment tank 2 as a heating means, and the exhaust gas temperature in which exhaust gas, O 2 and water (H 2 O) are mixed is heated to 700 to 900 ° C. As a result, in the heat oxidative decomposition treatment tank 2, the oxidation treatment of CO and the decomposition treatment of PFC, fluorinated hydrocarbon and NF 3 having 4 or more carbon atoms are performed by the following reaction formula. Therefore, all the gas components harmful to the human body contained in the exhaust gas can be oxidized or decomposed.
[0019]
2CO + O 2 → 2CO 2
CO + H 2 O → CO 2 + H 2
2H 2 + O 2 → 2H 2 O
C 5 F 8 + 4H 2 O + 3O 2 → 5CO 2 + 8HF
C 4 F 8 + 4H 2 O + 2O 2 → 4CO 2 + 8HF
2C 4 F 6 + 6H 2 0 + 5O 2 → 8CO 2 + 12HF
2CHF 3 + 2H 2 O + O 2 → 3CO 2 + 8HF
2NF 3 + 3H 2 O → NO + NO 2 + 6HF
[0020]
In the oxidation treatment, O 2 may be supplied from any O 2 source such as air in the atmosphere, O 2 enriched air, pure O 2, or a peroxide. Note that the temperature of 700 to 900 ° C. is used for the oxidation and decomposition treatment, and the gas component can be oxidized and decomposed at this temperature, and in the high temperature range of 1000 ° C. or higher, the thermal generated from N 2 or the like in the air. This is because there is a problem that the amount of NO X generated increases. Moreover, it is because an economical thing can be used for a fireproof material etc. which are required for a tank by setting it as 900 degrees C or less.
[0021]
The post-processing unit 4 performs post-processing of an acidic gas such as HF that is generated when the fluorine-containing compound is decomposed. In this embodiment, it is a post-treatment water spray tower 4. This is supplied with tap water or industrial water and is sprayed with water spray. The exhaust gas flows from the lower part to the upper part of the water spray tower 4 and comes into contact with the water sprayed from the water spray, thereby removing HF generated when the PFC is decomposed in the heated oxidative decomposition treatment tank 2. In addition to the water spray tower 4, a post scrubber, an aeration and stirring tank, and an adsorption tank filled with an adsorbent such as zeolite / activated carbon can be used to obtain the same effect.
[0022]
FIG. 2 shows an exhaust gas treatment apparatus according to a second embodiment of the present invention. In this apparatus, the exhaust gas that has been subjected to the thermal oxidative decomposition process is subsequently decomposed by a catalyst in the catalytic reaction tank 3 that is a catalytic reaction unit. The configuration other than the provision of the catalyst reaction tank 3 is the same as the configuration of the exhaust gas treatment apparatus shown in FIG.
[0023]
The catalytic reaction tank 3 is filled with a PFC decomposition catalyst, and the exhaust gas flows from the upper layer of the catalyst layer toward the lower layer. Moreover, the ceramic reaction tubular furnace 10 is attached to the catalyst reaction tank 3 as a heating means, and the temperature of the catalyst reaction tank 3 is heated to 600 to 900 ° C. Thus the catalytic reaction section occurs following reactions by contacting the PFC and SF 6 and the catalyst of 3 or less carbon atoms, decomposition treatment of PFC and SF 6 are performed. Note that O 2 and water (H 2 O) contributing to the decomposition reaction are introduced in the upstream heat oxidation decomposition treatment tank 2. As the catalyst, a fluorine-containing compound decomposition catalyst such as a catalyst in which tungsten oxide is supported on γ-alumina or alumina-zirconium composite oxide is used. Thereby, the decomposition process of the hardly decomposable PFC and SF 6 which could not be processed in the heating oxidative decomposition treatment tank 2 can be performed. Therefore, by adding the decomposition treatment by the catalytic reaction, it is considered that there is no direct influence on the human body, but exhaust gas components that are considered to have an adverse effect on global warming and the like can be completely removed.
[0024]
CF 4 + 2H 2 O → CO 2 + 4HF
2C 2 F 6 + 6H 2 O + O 2 → 4CO 2 + 12HF
C 3 F 8 + 4H 2 O + O 2 → 3CO 2 + 8HF
2SF 6 + 3H 2 O + O 2 → SO 2 + SO 3 + 6HF
[0025]
FIG. 3 shows an exhaust gas treatment apparatus according to a third embodiment of the present invention. This exhaust gas treatment apparatus includes a gas treatment tank 13 in which a heat oxidative decomposition treatment unit, a catalyst reaction unit, and a post-treatment unit are integrated. In addition, a fan scrubber 14 is installed in the pretreatment unit. The cleaning water is supplied to the fan scrubber 14 from the water pump 15, and the cleaning water and the exhaust gas come into contact with the rotation of the fan in the fan scrubber 14 to remove the powder component, water-soluble component, and hydrolysis component in the exhaust gas. .
[0026]
A gas treatment tank 13 corresponds to a heat oxidative decomposition treatment section, a catalyst reaction section, and a post-treatment section, and is provided with a heat oxidative decomposition section 16, a catalyst reaction section 17, and a post-treatment section 18 in the order in which exhaust gas passes. By making the heating oxidative decomposition unit 16, the catalytic reaction unit 17, and the post-processing unit 18 into an integral structure, the apparatus is downsized. Further, by integrating, the exhaust gas heated to 700 to 900 ° C. by the ceramic electric tubular furnace 19 in the heating oxidative decomposition unit 16 can be introduced into the catalyst reaction unit 17 without lowering the temperature. Therefore, it is not necessary to provide heating means such as a heater in the catalyst reaction unit 17, and it is only necessary to install the heat insulating material 20 on the outer periphery of the catalyst reaction unit 17.
[0027]
O 2 required for the heat oxidative decomposition process and the catalytic reaction process is supplied from an air pipe 21 connected to the upper part of the gas processing tank 13. Further, water (H 2 O) is purified to be equivalent to distilled water by the water purifier 23 and then introduced into the gas treatment tank 13. After that, when passing through the water vaporization pipe 25 installed on the outer wall of the ceramic electric tubular furnace 19 inside the gas treatment tank 13, the gas treatment tank is heated and vaporized by heat exchange with the exhaust heat of the ceramic electric tubular furnace 19. 13 is introduced into the heat oxidative decomposition processing unit 16 provided at the upper part of 13. A lower portion of the gas treatment tank 13 is provided with a post-treatment unit having a water spray 18, and cleaning water is supplied to the water spray 18 from a water supply pump 15.
[0028]
The exhaust gas to be treated passes through the pretreatment fan scrubber 14, then passes through the mist separator 26, and is introduced into the gas treatment tank 13. Further, the exhaust gas from which HF has been removed by the post-processing unit 18 passes through the mist separator 27 and is then exhausted as a harmless treated gas.
[0029]
Water (H 2 O) is required for the CO oxidation reaction and PFC decomposition, and this water (H 2 O) is vaporized and introduced into the exhaust gas treatment system. If Si or Ca is contained in the water, Si or Ca is deposited (scale is generated) when water (H 2 O) is vaporized, and there is a possibility that clogging occurs in the apparatus. Further, Cl and the like may cause deterioration of the catalyst. Therefore, the supplied water (H 2 O) needs to be clean water such as pure water or distilled water. In order to supply pure water or distilled water to the equipment, it is necessary to construct an independent dedicated pipe. Furthermore, a separate pure water production equipment or distilled water production equipment is required, which increases the cost burden on the equipment. . By providing the apparatus with a water purifier that purifies water, the water supplied to the apparatus may be tap water or industrial water, and the costs related to equipment such as piping can be reduced.
[0030]
Next, the exhaust gas treatment method of the present invention will be described.
The powder component, water-soluble component, or hydrolyzable component contained in the exhaust gas containing the fluorine-containing compound and CO is removed by pretreatment. As a pretreatment part that removes the powder component, water-soluble component or hydrolyzable component contained in the exhaust gas, any of an adsorption treatment tank, a fan scrubber, a water spray tower, an aeration stirring tank, etc. that performs an adsorption treatment with an adsorbent Is used.
[0031]
The exhaust gas containing the fluorine-containing compound and CO after removing the powder component, water-soluble component or hydrolyzable component by the pretreatment is brought into contact with O 2 and water (H 2 O) at a temperature of 700 to 900 ° C. In this way, CO is oxidized to CO 2 and a fluorine-containing compound having 4 or more carbon atoms is decomposed. The heat oxidative decomposition treatment includes a hollow interior in which the exhaust gas can be vented, a heating means capable of heating the gas temperature in the hollow to 700 to 900 ° C., a gas inlet, an O 2 inlet, and water (H 2). O) It is carried out in a heat oxidative decomposition treatment section provided with an inlet.
It is preferable to provide a contact assisting means for increasing the contact efficiency between the exhaust gas, O 2 and water (H 2 O) and increasing the heating efficiency. The exhaust gas is turbulent by the contact assisting means to increase the contact efficiency between the exhaust gas and O 2 , water (H 2 O), and the contact assisting means itself receives heat generated from the heater by radiation and becomes a high temperature. The heat transfer area becomes larger and the heating efficiency can be increased. As a result, the heat oxidative decomposition treatment unit can be miniaturized and the heater capacity can be kept low.
[0032]
Finally, the acidic gas (HF) generated when the fluorine-containing compound is decomposed in the heating oxidative decomposition processing section is removed. The removal of HF is performed using an adsorption treatment tank, a fan scrubber, a water spray, an aeration stirring tank, or the like that performs an adsorption treatment with an adsorbent as a post-processing section. This completes the processing of all gas components that are harmful to the human body in the exhaust gas.
[0033]
Furthermore, in order to remove a gas component which is a problem from the viewpoint of global warming, a decomposition treatment with a catalyst is performed after the heat oxidative decomposition treatment. That is, the fluorine-containing compound decomposition catalyst, O 2 and water (H 2 O) are brought into contact with each other at a temperature of 600 to 900 ° C. in the catalytic reaction section to decompose the fluorine-containing compound having 3 or less carbon atoms and SF 6. Can do. In the catalytic reaction section, the decomposition catalyst for the fluorine-containing compound can be filled, and the heating means for heating the catalyst layer temperature to 600 to 900 ° C. or the gas heated to 700 to 900 ° C. in the heating oxidative decomposition processing section in the previous stage is 600. A heat retaining means for maintaining the temperature at ˜900 ° C. is provided.
[0034]
It is also provided with a pure water generator or distillation apparatus or filter arrangement for water used for the exhaust gas treatment (H 2 O) clean. It is preferable to provide a mechanism for vaporizing water (H 2 O) supplied as a liquid by exchanging heat with exhaust heat from the heat oxidation decomposition treatment unit or the catalytic reaction unit. Thus, without requiring a special heat source for vaporizing water (H 2 O) to utilize the exhaust heat.
[0035]
Moreover, it is preferable to provide a ceramic filler on the downstream side of the catalyst layer. When a water spray is used for the post-processing unit and the catalyst reaction unit and the post-processing unit are integrated, the provision of a filler prevents water from the water spray from reaching the catalyst layer and causes catalyst deterioration. Can be prevented. In addition, since water is retained in the gap between the packings, the contact efficiency between HF and water generated during PFC decomposition is increased, the HF removal efficiency is increased, and the exhaust gas cooling effect is also improved.
[0036]
Next, the test result of the exhaust gas treatment performed by a test device equivalent to the exhaust gas treatment device shown in FIG. 3 will be described. N 2 gas mixed with various kinds of gas to be treated is introduced into the test apparatus, and the gas component concentration (ppm) of each part is measured.
[Table 1]
Figure 2004223302
[0037]
As inflow conditions, SiF 4 : 60 mL / min, CHF 3 : 180 mL / min, C 4 F 8 : 60 mL / min, C 4 F 6 : 10 mL / min, CO: 1200 mL / min, C 5 F 8 : 10 mL / min , NF 3 : 120 mL / min, SF 6 : 120 mL / min, CF 4 : 450 mL / min, a gas to be treated is mixed and introduced into N 2 gas: 120 L / min. Then, 3.0 L / min of air as an O 2 source for oxidation is introduced into the heating oxidation section, and similarly 5 mL / min of pure water is introduced into the heating oxidation section for oxidation and decomposition. Table 1 shows the concentration of each gas component at the inlet, the pretreatment section outlet, the heating oxidation section outlet, and the posttreatment section outlet.
[0038]
From the test results shown in Table 1, it can be seen that SiF 4 and HF are not detected by the pretreatment unit, and that the acid gas is well treated in the pretreatment unit. Then, CO in thermal oxidation unit, C 4 F 8, C 5 F 8, C 4 F 6, CHF 3, NF 3 is not detected, that these gas components are well treated with thermal oxidation unit I understand. Further, it can be seen that CF 4 and SF 6 present at the heating oxidation section outlet are not detected at the post-processing section outlet, and are well processed at the catalytic reaction section and the post-processing section. In addition, it can be seen that HF is not detected at the outlet of the post-processing section, and even if HF is generated in the catalytic reaction section, the post-processing section is well processed.
[0039]
FIG. 4 shows the external appearance of the exhaust gas treatment apparatus of the present invention. This apparatus can be equipped with a pretreatment part, a heat oxidation decomposition treatment part, a catalytic reaction part, and a posttreatment part. It is possible to remove water-soluble components such as NH 3 , hydrolysis components and powder components with low cost and high efficiency. Therefore, this apparatus has a high removal capability of reactive components and harmful components discharged from a semiconductor manufacturing apparatus or the like. In addition, this apparatus has a compact structure, requires a small installation area, and can reduce a maintenance space. Furthermore, for example, the safety is established as a basic concept without discharging thermal NOx or the like, and has excellent safety as a device.
In this embodiment, the pre-processing unit pre-processing unit, the thermal oxidative decomposition processing unit, the catalytic reaction unit, and the post-processing unit are all mounted, but the pre-processing unit and the post-processing unit are separately installed outside the apparatus. You may do it. Furthermore, a system including a post-processing unit that collectively processes acidic gas in exhaust gas from a plurality of exhaust gas processing apparatuses in a factory may be used.
[0040]
It should be noted that the exhaust gas treatment method and apparatus of the present invention are not limited to the illustrated examples described above, and it goes without saying that various changes can be made without departing from the scope of the present invention.
[0041]
【The invention's effect】
As described above, according to the present invention, it is possible to efficiently and economically detoxify the exhaust gas containing a fluorine-containing compound and CO discharged from a semiconductor manufacturing apparatus or the like.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an exhaust gas treatment apparatus according to a first embodiment of the present invention.
FIG. 2 is a block diagram showing an exhaust gas treatment apparatus according to a second embodiment of the present invention.
FIG. 3 is a block diagram showing an exhaust gas treatment apparatus according to a third embodiment of the present invention.
4 is an external view of the exhaust gas treatment apparatus of FIGS. 1 to 3. FIG.
[Explanation of symbols]
1 Pretreatment section (Pretreatment water spray tower)
2 Heating oxidative decomposition treatment section (heated oxidative decomposition treatment tank)
3 Catalytic reaction decomposition treatment section (catalytic reaction tank)
4 Post-processing section (post-treatment water spray tower)
5, 21 Air piping 6 Water piping 7, 23 Water purifier 8 Water vaporizer 9, 10, 19 Ceramic electric tubular passage 13 Gas treatment tank 14 Pretreatment section (fan scrubber for pretreatment)
15 Water Pump 15a Circulation Tank 16 Heating Oxidation Unit 17 Catalytic Reaction Unit 18 Post-Processing Unit 20 Heat Insulating Material 25 Water Vaporization Pipe 26, 27 Mist Separator

Claims (8)

フッ素含有化合物およびCOの少なくともいずれかを含む排ガス中に含まれる粉体成分および水溶性成分および加水分解性成分の少なくとも1つを除去し、ついでOおよび水(HO)を添加して加熱することにより前記フッ素含有化合物およびCOの少なくともいずれかを分解または酸化処理し、ついで前記分解または酸化処理した排ガス中よりフッ素含有化合物を分解する際に生成する酸性ガスの除去を行うことを特徴とする排ガスの処理方法。Removing at least one of the powder component, the water-soluble component and the hydrolyzable component contained in the exhaust gas containing at least one of the fluorine-containing compound and CO, and then adding O 2 and water (H 2 O) Heating decomposes or oxidizes at least one of the fluorine-containing compound and CO, and then removes the acidic gas generated when the fluorine-containing compound is decomposed from the decomposed or oxidized exhaust gas. An exhaust gas treatment method. 前記処理に加え、さらに触媒反応により分解処理を行うことを特徴とする請求項1記載の排ガスの処理方法。The exhaust gas treatment method according to claim 1, wherein in addition to the treatment, a decomposition treatment is further performed by a catalytic reaction. 前記粉体成分および水溶性成分および加水分解性成分の少なくとも1つを、吸着剤による吸着処理、または気液接触処理により除去することを特徴とする請求項1記載の排ガスの処理方法。The exhaust gas treatment method according to claim 1, wherein at least one of the powder component, the water-soluble component, and the hydrolyzable component is removed by adsorption treatment with an adsorbent or gas-liquid contact treatment. 前記酸性ガスの除去を、吸着剤による吸着処理、または気液接触処理により行うことを特徴とする請求項1記載の排ガスの処理方法。The exhaust gas treatment method according to claim 1, wherein the acid gas is removed by adsorption treatment with an adsorbent or gas-liquid contact treatment. 前記加熱は、700〜900℃の温度で行うことを特徴とする請求項1記載の排ガスの処理方法。The exhaust gas treatment method according to claim 1, wherein the heating is performed at a temperature of 700 to 900 ° C. フッ素含有化合物およびCOの少なくともいずれかを含む排ガスに、Oおよび水(HO)を添加して700〜900℃に加熱することで、CO、炭素数4以上のフッ素含有化合物、フッ化炭化水素、NFの少なくとも1つを無害化することを特徴とする排ガスの処理方法。By adding O 2 and water (H 2 O) to an exhaust gas containing at least one of a fluorine-containing compound and CO and heating to 700 to 900 ° C., CO, a fluorine-containing compound having 4 or more carbon atoms, fluoride An exhaust gas treatment method comprising detoxifying at least one of hydrocarbon and NF 3 . フッ素含有化合物およびCOの少なくともいずれかを含む排ガス中に含まれる粉体成分および水溶性成分および加水分解性成分の少なくとも1つを除去する処理部と、フッ素含有化合物およびCOの少なくともいずれかの加熱酸化分解処理を行い無害化する加熱酸化分解処理部と、該加熱酸化分解処理部にOおよび水(HO)を供給する供給部と、該酸化分解処理後の排ガス中の酸性ガスを除去する除去部とを備えたことを特徴とする排ガスの処理装置。A processing section for removing at least one of a powder component, a water-soluble component, and a hydrolyzable component contained in an exhaust gas containing at least one of a fluorine-containing compound and CO, and heating of at least one of the fluorine-containing compound and CO A heat oxidative decomposition treatment unit that performs oxidative decomposition treatment to render it harmless, a supply unit that supplies O 2 and water (H 2 O) to the heat oxidative decomposition treatment unit, and an acidic gas in the exhaust gas after the oxidative decomposition treatment An exhaust gas treatment apparatus comprising a removal unit for removal. 触媒反応により分解処理する触媒反応分解処理部を更に備えたことを特徴とする請求項7記載の排ガスの処理装置。8. The exhaust gas processing apparatus according to claim 7, further comprising a catalytic reaction decomposition processing section for performing a decomposition process by a catalytic reaction.
JP2002352712A 2001-12-04 2002-12-04 Exhaust gas treatment method and apparatus Expired - Lifetime JP3737082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352712A JP3737082B2 (en) 2001-12-04 2002-12-04 Exhaust gas treatment method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001370656 2001-12-04
JP2002341500 2002-11-25
JP2002352712A JP3737082B2 (en) 2001-12-04 2002-12-04 Exhaust gas treatment method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005275283A Division JP4350081B2 (en) 2001-12-04 2005-09-22 Exhaust gas treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2004223302A true JP2004223302A (en) 2004-08-12
JP3737082B2 JP3737082B2 (en) 2006-01-18

Family

ID=36155724

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2002352712A Expired - Lifetime JP3737082B2 (en) 2001-12-04 2002-12-04 Exhaust gas treatment method and apparatus
JP2005275283A Expired - Lifetime JP4350081B2 (en) 2001-12-04 2005-09-22 Exhaust gas treatment method and apparatus
JP2007017535A Pending JP2007203290A (en) 2001-12-04 2007-01-29 Method for treating exhaust gas

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2005275283A Expired - Lifetime JP4350081B2 (en) 2001-12-04 2005-09-22 Exhaust gas treatment method and apparatus
JP2007017535A Pending JP2007203290A (en) 2001-12-04 2007-01-29 Method for treating exhaust gas

Country Status (1)

Country Link
JP (3) JP3737082B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175317A (en) * 2004-12-21 2006-07-06 Rohm Co Ltd Treatment apparatus of exhaust gas from semiconductor manufacturing process
JP2006521925A (en) * 2003-04-01 2006-09-28 株式会社荏原製作所 Exhaust gas treatment method and apparatus
JP2007196204A (en) * 2006-01-26 2007-08-09 Kocat Inc Apparatus and method for treating exhaust gas generated from semiconductor manufacturing process
JP2008000728A (en) * 2006-06-26 2008-01-10 Hitachi Ltd Treatment method and treatment apparatus for perfluoride
KR100969702B1 (en) * 2009-06-05 2010-07-14 주식회사 에스알앤씨 Device for making recycled oil from waste plastics and method for making recycled oil from waste plastics
JP2014180633A (en) * 2013-03-19 2014-09-29 Showa Denko Kk Apparatus and method for treatment of perfluoride

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100766749B1 (en) 2006-08-16 2007-10-12 주식회사 에코프로 An apparatus and method for treatment waste gas contains perfluoro compounds
JP5346482B2 (en) * 2008-04-01 2013-11-20 岩谷産業株式会社 Fluorine recovery method and calcium fluoride purification method
JP5476043B2 (en) * 2009-06-03 2014-04-23 株式会社荏原製作所 Method and apparatus for treating exhaust gas containing fluorine compound
CN104174286B (en) * 2013-05-27 2018-08-17 上海元清环保科技有限公司 A kind of exhaust gas electrolytic processing method and equipment
KR101635388B1 (en) * 2013-09-23 2016-07-08 주식회사 지앤비에스엔지니어링 Scrubber for treating processing waste gas
JP7068101B2 (en) 2018-08-22 2022-05-16 キオクシア株式会社 Fan scrubber and fan scrubber control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204022A (en) * 1985-02-12 1986-09-10 Taiyo Sanso Kk Method and apparatus for removing acid content contained in gas
JP3269456B2 (en) * 1997-06-20 2002-03-25 株式会社日立製作所 Method for decomposing fluorine-containing compound, catalyst and decomposition apparatus
JP3936455B2 (en) * 1997-12-09 2007-06-27 カンケンテクノ株式会社 High temperature corrosive gas body abatement apparatus and method
KR100644994B1 (en) * 1998-12-01 2006-11-10 가부시키가이샤 에바라 세이사꾸쇼 Exhaust gas treating device
JP3976459B2 (en) * 1999-11-18 2007-09-19 株式会社荏原製作所 Method and apparatus for treating exhaust gas containing fluorine-containing compound
JP2001293335A (en) * 2000-04-12 2001-10-23 Ebara Corp Method for treating waste gas containing fluoride

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521925A (en) * 2003-04-01 2006-09-28 株式会社荏原製作所 Exhaust gas treatment method and apparatus
JP2006175317A (en) * 2004-12-21 2006-07-06 Rohm Co Ltd Treatment apparatus of exhaust gas from semiconductor manufacturing process
JP4594065B2 (en) * 2004-12-21 2010-12-08 ローム株式会社 Apparatus and method for treating fluorine compound contained in exhaust gas from semiconductor manufacturing process
JP2007196204A (en) * 2006-01-26 2007-08-09 Kocat Inc Apparatus and method for treating exhaust gas generated from semiconductor manufacturing process
JP2008000728A (en) * 2006-06-26 2008-01-10 Hitachi Ltd Treatment method and treatment apparatus for perfluoride
KR100969702B1 (en) * 2009-06-05 2010-07-14 주식회사 에스알앤씨 Device for making recycled oil from waste plastics and method for making recycled oil from waste plastics
JP2014180633A (en) * 2013-03-19 2014-09-29 Showa Denko Kk Apparatus and method for treatment of perfluoride

Also Published As

Publication number Publication date
JP4350081B2 (en) 2009-10-21
JP2006075832A (en) 2006-03-23
JP2007203290A (en) 2007-08-16
JP3737082B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP4350081B2 (en) Exhaust gas treatment method and apparatus
US7972582B2 (en) Method and apparatus for treating exhaust gas
JP4616497B2 (en) Desulfurization apparatus and desulfurization method
JP4629031B2 (en) Exhaust gas treatment method and apparatus
CN109414647B (en) Method for low-temperature gas cleaning and catalyst used for method
JP2004218996A (en) Ammonia-containing waste gas treating device and method
JP4629967B2 (en) Method and apparatus for treating N2O-containing exhaust gas
JP6379339B2 (en) Gas purification method
JP3252669B2 (en) Exhaust gas treatment equipment
KR100927327B1 (en) Nitrogen oxide reduction device and method for exhaust gas
JP4459648B2 (en) Method and apparatus for treating gas containing fluorine-containing compound
JPH04290523A (en) Method and device for treating waste nf3 gas
JPH08963A (en) Cleaing equipment for organohalogen compound-polluted material
JPH1147550A (en) Exhaust gas treatment method
JP3987896B2 (en) Method and apparatus for purifying ammonia-containing wastewater
JP2004209442A (en) Exhaust gas treatment device
JP2004188308A (en) Method and equipment for cleaning ammonia-containing waste water
JP2000202244A (en) Treatment of nitrogen monoxide-containing waste gas and apparatus therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051025

R150 Certificate of patent or registration of utility model

Ref document number: 3737082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term