JP2004222419A - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP2004222419A
JP2004222419A JP2003007163A JP2003007163A JP2004222419A JP 2004222419 A JP2004222419 A JP 2004222419A JP 2003007163 A JP2003007163 A JP 2003007163A JP 2003007163 A JP2003007163 A JP 2003007163A JP 2004222419 A JP2004222419 A JP 2004222419A
Authority
JP
Japan
Prior art keywords
magnets
linear motor
yoke
coil
yokes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003007163A
Other languages
Japanese (ja)
Inventor
Yuichiro Sadanaga
雄一郎 定永
Kenichi Watanabe
健一 渡邉
Masayuki Morioka
正之 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003007163A priority Critical patent/JP2004222419A/en
Publication of JP2004222419A publication Critical patent/JP2004222419A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear motor wherein effective stroke length can be taken long, deterioration of thrust force in stroke end is eliminated, a coil is not damaged, and a member is not dispersed. <P>SOLUTION: The linear motor comprises back yokes 1 which face each other; magnets 2 stuck with inner surfaces of the back yokes 1; multiple phase coils 4 which face the magnets 2, and are wound in a flat shape and arranged and held in side-by-side in a moving direction; and side yokes 6 which magnetically couple both end portions of the back yokes 1. The magnets 2 are arranged alternately in such a manner that facing surfaces become different polarities of a single pole and adjacent magnets become different polarities. Air gap portions 7 for preventing magnetic leakage are arranged between the side yokes 6 and the magnets 2 at both ends. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は対向する磁石間にコイルを備えた多相リニアモータに関するものである。
【0002】
【従来の技術】
リニアモータは、ダイレクトドライブであるため、機械的な減速機構を持たず高速走行が容易で信頼性が高く、また、高精度軸受の使用により高精度化が容易であるなどの特徴を持っており、FA分野の駆動用モータとして注目されている。
【0003】
従来のリニアモータの構造例について説明する。図5において、バックヨーク51には磁石52がN極、S極の交互に取付けられ、複数のコアレスコイル53は対向する磁石52間に配設され、非磁性の保持板54により固定されている。この保持板54はコアレスコイル53の中心孔と同じ孔部55を備えており、コアレスコイル53の熱放散を促進させている(例えば、特許文献1の参照)。
【0004】
【特許文献1】
特開2002−51530号公報
【0005】
【発明が解決しようとする課題】
しかし、上記従来のリニアモータはストロークが有限長となる構造のため、端部効果によりストローク端部で推力低下が起こっていた。これは、ストローク両端部に有る磁石から発生する磁束量が減少することに起因する。
【0006】
一方、ストローク方向の両端部に支持材を設けると、コアレスコイルを固定している保持板と支持材とが衝突して保持板が飛散したり、コイルが損傷するなどの課題があった。
【0007】
このため、所定の推力を発生することができる有効ストローク長を、機構的に可能なストローク長より短く設定していた。
【0008】
本発明は、上記従来の課題を解決するものであり、有効ストローク長が長くとれてストローク端部での推力低下がなく、コイルが損傷したり部材が飛散することのないリニアモータを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の課題を解決するため本発明のリニアモータは、対向するバックヨークと、前記バックヨークの内面に固着した磁石と、前記磁石と対向し、扁平形状に巻回され移動方向に横並びに配列保持した多相コイルと、前記バックヨークの両端部を磁気連結するサイドヨークとを備え、前記磁石は対向面同士が単一極の異極および隣接した磁石同士が異極になるように交互に配列し、前記サイドヨークと両端の磁石との間に磁気漏洩を防止する空隙部を設けたもので、ストローク端部での推力低下を防止できる。
【0010】
【発明の実施の形態】
上記の課題を解決するため請求項1記載のリニアモータは、対向するバックヨークと、前記バックヨークの内面に固着した磁石と、前記磁石と対向し、扁平形状に巻回され移動方向に横並びに配列保持した多相コイルと、前記バックヨークの両端部を磁気連結するサイドヨークとを備え、前記磁石は対向面同士が単一極の異極および隣接した磁石同士が異極になるように交互に配列し、前記サイドヨークと両端の磁石との間に磁気漏洩を防止する空隙部を設けたもので、サイドヨークおよび空隙部を設けることでストローク端部での推力低下を防止できる。
【0011】
また、請求項2記載のリニアモータは、請求項1記載の内容に加えて、空隙部あるいはサイドヨーク内面に非磁性の弾性体を装着したもので、仮に多相コイル部がサイドヨークに衝突しても弾性体により多相コイルを保護できる。
【0012】
さらに請求項3記載のリニアモータは、請求項1記載の内容に加えて、サイドヨークのストローク方向に設けた凹部に弾性体を装着したもので、凹部と弾性体により有効ストローク長が長くとれるとともに多相コイルを保護できる。
【0013】
【実施例】
以下、図面を参照しながら説明する。
【0014】
(実施例1)
図1において、1は対向したバックヨーク、2は磁石、3はギャップ、4は多相コイル、5は多相コイルを保持する保持枠、6はサイドヨーク、7は空隙部、8は取付台である。
【0015】
対向するバックヨーク1の内面には、対向面同士が単一極の異極および隣接した磁石同士が異極になるように磁石2の磁極が交互になるように固着する。また、バックヨーク1は断面がコ字状の非磁性の取付台8に固定しており、対向する磁石2の吸引力でお互いが吸着しないようにしている。
【0016】
一方、バックヨーク1の両端部はサイドヨーク6により磁気連結するとともに、サイドヨーク6と両端部の磁石2の間に空隙部7を設けて磁気漏洩を防止する。
【0017】
また、図2に示したように、扁平形状に巻回され移動方向に横並びに配列した多相コイル4は、保持枠5により固定されている。この保持枠5を図示しないガイド機構によって、磁石2とのギャップ3を保持する。そして多相コイル4に通電することによってストローク方向に移動可能にしている。
【0018】
実施例1では、両端部にある磁石2の磁束の一部をサイドヨーク6に還流させ、空隙部7を設けることで磁石2の表面から直接サイドヨーク6へ磁束が漏れるのを抑制できる。また、空隙部7を設けることで多相コイル4を保持する保持枠5のストローク方向の逃げ部としても機能する。
【0019】
したがって、ストローク端部での端効果による推力低下を防止でき、全ストロークで磁束を有効利用できるためフラットな推力を得ることができる。
【0020】
(実施例2)
実施例2は実施例1の空隙部に非磁性の弾性体を配置したものである。図3において、サイドヨーク36と両端の磁石32間の空隙部に、非磁性の弾性体としてのゴム39を装着している(サイドヨーク36にゴム39を接着してもよい)。
【0021】
このため、実施例1の効果に加えて、仮にサイドヨーク36と保持枠35とが衝突しても、ゴム39が緩衝材として働くため保持枠35と多相コイルを保護できる。
【0022】
(実施例3)
実施例3は、サイドヨークに凹部を設けたもので、図4に示すように、サイドヨーク46の断面を円弧状にしてストローク方向に凹部を形成する。これで空隙部47を確保した上で、サイドヨーク46の凹部に弾性体49を装着できる。
【0023】
これにより、両端部の磁石42の表面から直接サイドヨーク46に磁束が漏れるのを抑制できるとともに、弾性体49により多相コイルと保持枠を保護しながらストローク長を長くできる。
【0024】
なお、実施例3の弾性体はゴムでなくてもよく非磁性体のコイルバネや板バネでもよく、またサイドヨーク46の断面形状に関しても円弧状に限るものではない。上記の実施例は一例であって、本発明の技術的範囲を限定するものではない。
【0025】
【発明の効果】
上記の実施例から明らかなように請求項1記載の発明によれば、端効果による推力低下を防ぐことができ、全ストロークでフラットな推力を得ることができるとともに、機構的に可能なストローク長を有効に利用できる。
【0026】
また、請求項2記載の発明によれば、推力低下を防止し、多相コイルと保持枠を保護できる。
【0027】
さらに、請求項3記載の発明によれば、推力低下を防止し、有効ストローク長を長くできるとともに多相コイルを保護できる。
【0028】
このように、端効果による推力低下を防ぐことができ、全ストロークで安定した推力が得られ有効ストローク長を長くできるとともに多相コイルを保護できる安全なリニアモータが得られる。
【図面の簡単な説明】
【図1】本発明の実施例1におけるリニアモータの断面図
【図2】本発明の実施例1における多相コイルの斜視図
【図3】本発明の実施例2におけるリニアモータの断面図
【図4】本発明の実施例3におけるリニアモータの断面図
【図5】従来のリニアモータの斜視図
【符号の説明】
1 バックヨーク
2 磁石
4 多相コイル
5 保持枠
6 サイドヨーク
7 空隙部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polyphase linear motor having a coil between opposed magnets.
[0002]
[Prior art]
Since the linear motor is a direct drive, it has features such as easy running at high speed without mechanical deceleration mechanism and high reliability, and high accuracy by using high precision bearings. , As a driving motor in the FA field.
[0003]
An example of the structure of a conventional linear motor will be described. In FIG. 5, magnets 52 are alternately mounted on the back yoke 51 with N poles and S poles. A plurality of coreless coils 53 are disposed between the facing magnets 52 and fixed by a non-magnetic holding plate 54. . The holding plate 54 has a hole 55 which is the same as the center hole of the coreless coil 53, and promotes heat dissipation of the coreless coil 53 (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-2002-51530
[Problems to be solved by the invention]
However, since the conventional linear motor has a structure in which the stroke has a finite length, the thrust is reduced at the end of the stroke due to the end effect. This is because the amount of magnetic flux generated from the magnets at both ends of the stroke is reduced.
[0006]
On the other hand, if the support members are provided at both ends in the stroke direction, there is a problem in that the support plate that fixes the coreless coil collides with the support member and the holding plate is scattered or the coil is damaged.
[0007]
For this reason, the effective stroke length capable of generating a predetermined thrust has been set shorter than the mechanically possible stroke length.
[0008]
An object of the present invention is to solve the above-mentioned conventional problems, and to provide a linear motor in which an effective stroke length is long, a thrust at a stroke end is not reduced, and a coil is not damaged and members are not scattered. With the goal.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a linear motor according to the present invention includes a back yoke, a magnet fixed to an inner surface of the back yoke, and a flat shape which is opposed to the magnet, is wound in a flat shape, and is arranged side by side in the moving direction. And a side yoke for magnetically connecting both ends of the back yoke, wherein the magnets are alternately arranged such that opposing surfaces have a single pole different pole and adjacent magnets have different poles. In addition, since a gap is provided between the side yoke and the magnets at both ends to prevent magnetic leakage, a decrease in thrust at the stroke end can be prevented.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve the above-described problem, the linear motor according to claim 1 includes a back yoke opposed to the magnet, a magnet fixed to an inner surface of the back yoke, and a flat shape wound facing the magnet and arranged side by side in the movement direction. A multi-phase coil having an array and a side yoke for magnetically connecting both ends of the back yoke are provided, and the magnets are alternately arranged so that opposing surfaces have different polarities of a single pole and adjacent magnets have different polarities. And a gap is provided between the side yoke and the magnets at both ends to prevent magnetic leakage. By providing the side yoke and the gap, a decrease in thrust at the stroke end can be prevented.
[0011]
In addition, the linear motor according to the present invention has a structure in which a non-magnetic elastic body is attached to the gap or the inner surface of the side yoke. The polyphase coil can be protected by the elastic body.
[0012]
Further, in the linear motor according to the third aspect, in addition to the contents described in the first aspect, the elastic body is attached to the concave portion provided in the stroke direction of the side yoke, so that the effective stroke length can be increased by the concave portion and the elastic body. Polyphase coil can be protected.
[0013]
【Example】
This will be described below with reference to the drawings.
[0014]
(Example 1)
In FIG. 1, reference numeral 1 denotes a back yoke, 2 denotes a magnet, 3 denotes a gap, 4 denotes a polyphase coil, 5 denotes a holding frame for holding the polyphase coil, 6 denotes a side yoke, 7 denotes a gap, and 8 denotes a mounting base. It is.
[0015]
The magnetic poles of the magnets 2 are fixed to the inner surface of the back yoke 1 so that the magnetic poles of the magnets 2 are alternately arranged such that the opposing surfaces have a single pole and the adjacent magnets have a different polarity. Further, the back yoke 1 is fixed to a non-magnetic mounting base 8 having a U-shaped cross section so that the back yoke 1 does not attract each other due to the attraction force of the magnets 2 facing each other.
[0016]
On the other hand, both ends of the back yoke 1 are magnetically connected by side yokes 6, and a gap 7 is provided between the side yoke 6 and the magnets 2 at both ends to prevent magnetic leakage.
[0017]
As shown in FIG. 2, the polyphase coils 4 wound in a flat shape and arranged side by side in the moving direction are fixed by a holding frame 5. The gap 3 between the holding frame 5 and the magnet 2 is held by a guide mechanism (not shown). When the multi-phase coil 4 is energized, it can be moved in the stroke direction.
[0018]
In the first embodiment, a part of the magnetic flux of the magnet 2 at both ends is returned to the side yoke 6 and the gap 7 is provided, so that the magnetic flux can be prevented from leaking directly from the surface of the magnet 2 to the side yoke 6. In addition, the provision of the gap 7 functions as a relief in the stroke direction of the holding frame 5 that holds the polyphase coil 4.
[0019]
Therefore, a decrease in thrust due to the end effect at the end of the stroke can be prevented, and a flat thrust can be obtained because the magnetic flux can be effectively used in the entire stroke.
[0020]
(Example 2)
The second embodiment is different from the first embodiment in that a nonmagnetic elastic body is disposed in the gap. In FIG. 3, rubber 39 as a non-magnetic elastic body is mounted in a gap between the side yoke 36 and the magnets 32 at both ends (the rubber 39 may be bonded to the side yoke 36).
[0021]
For this reason, in addition to the effects of the first embodiment, even if the side yoke 36 and the holding frame 35 collide with each other, the holding frame 35 and the polyphase coil can be protected because the rubber 39 functions as a cushioning material.
[0022]
(Example 3)
In the third embodiment, a concave portion is provided in the side yoke. As shown in FIG. 4, the cross section of the side yoke 46 is formed in an arc shape, and the concave portion is formed in the stroke direction. Thus, the elastic body 49 can be attached to the concave portion of the side yoke 46 while the gap 47 is secured.
[0023]
Accordingly, it is possible to prevent the magnetic flux from leaking directly from the surfaces of the magnets 42 at both ends to the side yoke 46, and it is possible to increase the stroke length while protecting the polyphase coil and the holding frame by the elastic body 49.
[0024]
The elastic body of the third embodiment is not limited to rubber, but may be a nonmagnetic coil spring or leaf spring. The cross-sectional shape of the side yoke 46 is not limited to an arc. The above embodiment is an example, and does not limit the technical scope of the present invention.
[0025]
【The invention's effect】
As is apparent from the above embodiment, according to the first aspect of the present invention, it is possible to prevent a reduction in thrust due to the end effect, to obtain a flat thrust over the entire stroke, and to achieve a stroke length mechanically possible. Can be used effectively.
[0026]
Further, according to the second aspect of the present invention, it is possible to prevent a reduction in thrust and protect the polyphase coil and the holding frame.
[0027]
Further, according to the third aspect of the present invention, it is possible to prevent a reduction in thrust, to increase the effective stroke length, and to protect the polyphase coil.
[0028]
In this manner, a thrust reduction due to the end effect can be prevented, a stable thrust can be obtained over the entire stroke, an effective stroke length can be increased, and a safe linear motor that can protect the polyphase coil can be obtained.
[Brief description of the drawings]
1 is a cross-sectional view of a linear motor according to a first embodiment of the present invention; FIG. 2 is a perspective view of a polyphase coil according to a first embodiment of the present invention; FIG. 3 is a cross-sectional view of a linear motor according to a second embodiment of the present invention; FIG. 4 is a sectional view of a linear motor according to a third embodiment of the present invention. FIG. 5 is a perspective view of a conventional linear motor.
DESCRIPTION OF SYMBOLS 1 Back yoke 2 Magnet 4 Polyphase coil 5 Holding frame 6 Side yoke 7 Void

Claims (3)

対向するバックヨークと、前記バックヨークの内面に固着した磁石と、前記磁石と対向し、扁平形状に巻回され移動方向に横並びに配列保持した多相コイルと、前記バックヨークの両端部を磁気連結するサイドヨークとを備え、前記磁石は対向面同士が単一極の異極および隣接した磁石同士が異極になるように交互に配列し、前記サイドヨークと両端の磁石との間に磁気漏洩を防止する空隙部を設けたリニアモータ。An opposing back yoke, a magnet fixed to the inner surface of the back yoke, a polyphase coil opposing the magnet, wound in a flat shape and held side by side in the moving direction; A side yoke to be connected, the magnets are alternately arranged so that opposing surfaces have a single pole of different polarity and adjacent magnets have different poles, and a magnet is provided between the side yoke and magnets at both ends. Linear motor with air gap to prevent leakage. 空隙部あるいはサイドヨーク内面に非磁性の弾性体を装着した請求項1記載のリニアモータ。2. The linear motor according to claim 1, wherein a non-magnetic elastic body is attached to the gap or the inner surface of the side yoke. サイドヨークのストローク方向に設けた凹部に弾性体を装着した請求項1記載のリニアモータ。2. The linear motor according to claim 1, wherein an elastic body is mounted in a recess provided in a stroke direction of the side yoke.
JP2003007163A 2003-01-15 2003-01-15 Linear motor Pending JP2004222419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007163A JP2004222419A (en) 2003-01-15 2003-01-15 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007163A JP2004222419A (en) 2003-01-15 2003-01-15 Linear motor

Publications (1)

Publication Number Publication Date
JP2004222419A true JP2004222419A (en) 2004-08-05

Family

ID=32897340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007163A Pending JP2004222419A (en) 2003-01-15 2003-01-15 Linear motor

Country Status (1)

Country Link
JP (1) JP2004222419A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304438A (en) * 2005-04-19 2006-11-02 Iai:Kk Linear motor
JP2009170527A (en) * 2008-01-11 2009-07-30 Yamaha Motor Co Ltd Component recognizing device, component mounting device and component test device
JP2012147517A (en) * 2011-01-07 2012-08-02 Toshiba Mach Co Ltd Linear motor device and linear motor
WO2014132587A1 (en) * 2013-02-27 2014-09-04 住友重機械工業株式会社 Linear motor
JP2014166111A (en) * 2013-02-27 2014-09-08 Sumitomo Heavy Ind Ltd Linear motor
JP2014171281A (en) * 2013-03-01 2014-09-18 Sumitomo Heavy Ind Ltd Linear motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304438A (en) * 2005-04-19 2006-11-02 Iai:Kk Linear motor
JP2009170527A (en) * 2008-01-11 2009-07-30 Yamaha Motor Co Ltd Component recognizing device, component mounting device and component test device
JP2012147517A (en) * 2011-01-07 2012-08-02 Toshiba Mach Co Ltd Linear motor device and linear motor
WO2014132587A1 (en) * 2013-02-27 2014-09-04 住友重機械工業株式会社 Linear motor
JP2014166111A (en) * 2013-02-27 2014-09-08 Sumitomo Heavy Ind Ltd Linear motor
US9887611B2 (en) 2013-02-27 2018-02-06 Sumitomo Heavy Industries, Ltd. Linear motor
JP2014171281A (en) * 2013-03-01 2014-09-18 Sumitomo Heavy Ind Ltd Linear motor

Similar Documents

Publication Publication Date Title
JP5240543B2 (en) Assembly method of moving coil type linear motor
KR101497216B1 (en) Linear motor
WO2021000093A1 (en) Motor
JP2004222419A (en) Linear motor
US7482716B2 (en) Linear motor with claw-pole armature units
JP5113436B2 (en) Linear motor drive shaft feeder
US20070278863A1 (en) Moving Magnet Type Linear Actuator
JP5589507B2 (en) Mover and stator of linear drive unit
US10811950B2 (en) Linear motor and device provided with linear motor
JP2003010783A (en) Linear vibration motor (2)
JP2004336842A (en) Linear motor
JPH02246762A (en) Linear motor
JP2005065425A (en) Magnetic attraction offset type linear motor
JP5874246B2 (en) Linear drive mover
JP2013225985A (en) Linear slider
JP5379458B2 (en) Coreless linear motor
JPH10285898A (en) Linear actuator
JP7444550B2 (en) Vibration actuators and haptic devices
JP2004289895A (en) Linear motor
JP3458922B2 (en) Voice coil type linear motor
JP2004056872A (en) Linear motor with hall sensor
JP2013038825A (en) Armature of linear motor and linear motor
JP2004343874A (en) Linear motor type uniaxial robot
JPH10127037A (en) Movable coil linear motor
JPS6268058A (en) Voice coil type linear motor