JP2004222390A - Enclosed type switchgear - Google Patents

Enclosed type switchgear Download PDF

Info

Publication number
JP2004222390A
JP2004222390A JP2003005478A JP2003005478A JP2004222390A JP 2004222390 A JP2004222390 A JP 2004222390A JP 2003005478 A JP2003005478 A JP 2003005478A JP 2003005478 A JP2003005478 A JP 2003005478A JP 2004222390 A JP2004222390 A JP 2004222390A
Authority
JP
Japan
Prior art keywords
insulating
container
gas
vacuum valve
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003005478A
Other languages
Japanese (ja)
Inventor
Shinji Sato
伸治 佐藤
Kenichi Koyama
健一 小山
Takao Tsurimoto
崇夫 釣本
Masahiro Arioka
正博 有岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003005478A priority Critical patent/JP2004222390A/en
Priority to TW092128366A priority patent/TWI228339B/en
Priority to US10/684,555 priority patent/US6865072B2/en
Priority to KR1020030077318A priority patent/KR100561113B1/en
Priority to FR0350781A priority patent/FR2846802B1/en
Priority to CNB2003101141456A priority patent/CN1322646C/en
Priority to DE10351766A priority patent/DE10351766B4/en
Publication of JP2004222390A publication Critical patent/JP2004222390A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H31/00Air-break switches for high tension without arc-extinguishing or arc-preventing means
    • H01H31/003Earthing switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6661Combination with other type of switch, e.g. for load break switches

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an enclosed type switchgear in which the cost can be reduced by decreasing the number of components while enhancing the insulation performance. <P>SOLUTION: The enclosed type switchgear comprises a disconnector 5 and a vacuum valve 3 for each phase juxtaposed to each other, an enclosed container 1 containing the disconnector 5 and the vacuum valve 3 and encapsulated with insulating gas, and insulating tubular container 2 having a substantially tubular body 2a made of an insulating material and standing on a specified supporting surface 1a in the enclosed container 1 while containing the vacuum valve 3 in the body 2a and supporting the disconnector 5 at the outside part of the body 2a, and an intermediate conductor 4 provided at the opening end part 2c on the side of the body 2a of the insulating tubular container 2 opposite to the supporting surface 1a and securing the vacuum valve 3 in the insulating tubular container 2 while being connected electrically with the first terminal conductor 3a thereof wherein the insulating tubular container 2 has a first insulating barrier part 2d formed integrally with the body 2a and standing at the opening end part 2c to surround the intermediate conductor 4 at least partially. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は例えば電力系統の絶縁母線に接続され絶縁ガスが封入された密封容器内に、各相毎の断路器及び真空バルブが収納された密閉形開閉装置に関するものである。
【0002】
【従来の技術】
絶縁ガスが封入された密封容器内に、3相交流回路の各相夫々のための3組の断路器及び真空バルブが並設された密閉形開閉装置において、絶縁性能(破壊電圧特性)を向上させる目的で、従来、絶縁バリヤを所定の位置に配設することが提案されている。この絶縁バリヤに関しては、隣り合う相の断路器間、及び隣り合う相の真空バルブ間に配設される相間絶縁バリヤ、及び、各相の断路器及び真空バルブと接地電位部位との間に配設される対地間絶縁バリヤがある。
【0003】
一般に、密閉形開閉装置内の高圧充電部位と接地電位部位との間、及び高圧充電部位の異相間は電気的に絶縁されていなければならない。このような対地間、相間の絶縁は、通常、密封容器内部の絶縁ガスによってされている。しかしながら、設計上の都合で絶縁距離を大きくとれない場合、所定の位置に絶縁バリヤを配設することがある(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2001−352624号公報
【0005】
【発明が解決しようとする課題】
しかしながら、このような構成の従来の密閉形開閉装置は、追加して設けられた絶縁バリヤによって、装置内の構造が複雑になり、部品点数が多くなってコストアップの原因となるとともに、組み立てに要する時間も増えるので問題であった。
【0006】
この発明は、上述のような課題を解決するためになされたもので、絶縁性能を向上させると同時に部品点数を減らし、コストダウンを図ることができる密閉形開閉装置を得ることを目的とする。
【0007】
【課題を解決するための手段】
この発明に係る密閉形開閉装置は、互いに並設された各相毎の断路器及び真空バルブと、断路器及び真空バルブを収納し、絶縁ガスが封入された密封容器と、絶縁材で作製され略筒状の本体を有し、密封容器内の所定の支持面に立設され、本体内部に真空バルブを収納するとともに、本体外側部に断路器を支持する絶縁筒状容器と、絶縁筒状容器の本体の支持面と反対側の開口端部に設けられ、真空バルブの第1の端子導体に電気的に接続されるとともに、真空バルブを絶縁筒状容器内に固定する中間導体とを備え、絶縁筒状容器は、中間導体の周囲の少なくとも一部を囲うように開口端部に立設され本体と一体に形成された第1の絶縁バリヤ部を有する。
【0008】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1の密閉形開閉装置の要部の断面図である。図2はこの発明の実施の形態1の密閉形開閉装置の全体を示す断面図である。図3は実施の形態1の絶縁筒状容器の斜視図である。図4は図3の絶縁筒状容器を開口端部側から見た図である。図5は3相の絶縁筒状容器が並設されている様子を示す斜視図である。
【0009】
図1及び図2において、絶縁ガスが封入された密封容器1内に絶縁筒状容器2が固定されている。絶縁筒状容器2は、例えばエポキシ樹脂等の絶縁材で作製され、概略円筒状の本体2aを有し、本体2aの一側端部にフランジ部2bが形成されている。密封容器1内のフロント側に垂直に配置された支持板1aが設けられている。支持板1aは密封容器1内の各構成部品の位置決め基準面及び支持面として設けられている。絶縁筒状容器2は、この支持板1aにフランジ部2bをボルトにて締着されて、水平方向に立設されている。尚、絶縁筒状容器2は、図5に示されるように3相の交流電源の各相毎に設けられ、図1においては紙面に垂直な方向に3本が並設されている。
【0010】
図1及び図2に戻り、各々の絶縁筒状容器2の本体2a内に真空バルブ3が収納されている。本体2aのフランジ部2bと反対側の開口端部2cに中間導体4が固定されている。中間導体4は、導体材で作製され、概略矩形板状をなし、本体2aの内部空間側に突出する把持部を有し、この把持部で真空バルブ3の第1の端子導体である固定端子3a側の端部を把持することによって、真空バルブ3を本体2a内部の開口端部2cに固定している。また、中間導体4は、中央部にて真空バルブ3の固定端子3aと電気的に接続されている。尚、中間導体4は、図3及び図4に示される4個の雌ねじ穴2fに図示しないボルトで締着されて固定されている。
【0011】
図1及び図2に戻り、絶縁筒状容器2の外側部に断路器5が支持されている。断路器5は、支点部5a、閉成側固定子5b、ブレード5c、及び接地側固定子5d(図2)から構成されている。絶縁筒状容器2の外側部に設けられた支点部5aに、ブレード5cが回動自在に枢支されている。ブレード5cは、支点部5aを支点として、先端部を閉成側固定子5b及び接地側固定子5dに対して相互に離接するように回動する。そして、断路器5は、図2に示されるように、リンク機構として接続された操作機構10によって動作され、図2に実線で示された開成位置、閉成側固定子5bと接触する閉成位置、接地側固定子5dと接触する接地位置の3位置のいずれかの位置に止められる。
【0012】
絶縁筒状容器2の側面に側面開口2eが形成されている。そして、真空バルブ3の第2の端子導体としての可動端子3bと、断路器5の支点部5aとを電気的に接続する接続導体としての可撓導体6が側面開口2eを介して両者に接続されている。可撓導体6は、可撓性を有する導電材で作製され、真空バルブ3の開閉動作に伴いフレキシブルに変形する。絶縁筒状容器2の内部には、さらに真空バルブ3の接点への開閉操作力を外部から伝達しつつ、同時に両端での電気絶縁を図る絶縁ロッド7が設置されている。
【0013】
図3及び図4に示されるように、絶縁筒状容器2の中間導体4が配置される側の開口端部2cには、中間導体4の周囲のうち3方向を囲うように、第1の絶縁バリヤ部2dが設けられている。第1の絶縁バリヤ部2dは、本体2aの開口端部2cから外方に延びて、本体2aと一体に形成されている。中間導体4は本体2aの開口端部2cから所定の長さ突出するが、この突出長さより、さらに大きく突出する第1の絶縁バリヤ部2dによって3方向を囲繞されている。第1の絶縁バリヤ部2dは、並設された各層の絶縁筒状容器2間で破壊電圧を上昇させるための水平方向バリヤ部2dと、断路器5側に設けられた垂直方向バリヤ部2dとから構成されている。尚、垂直方向バリヤ部2dと対向する側には、中間導体4に接続される後述するブスバー11が設けられるために、バリヤ部は設けられていない。
【0014】
図1に戻り、第1の絶縁バリヤ部2dの中間導体4の主面に対する延出長、すなわち、実質的なバリヤ高さをAとすると(ここで、第1の絶縁バリヤ部2dの本体2aからの延出長はAとする)、好ましくは、A>0mm、さらに好ましくは、A>40mmである。これに関しては後述する。
【0015】
図2に進み、中間導体4は、ブスバー11によって下部ブッシング12と電気的に接続されている。また、断路器5の閉成側固定子5bは、ブスバー13によって、密封容器1の上面に設けられた上部ブッシング14,15,16と電気的に接続されている。また、支持板1aのフロント側の壁面には、接地側固定子5dと電気的に接続された接地開閉器端子18が設けられている。
【0016】
図6は絶縁筒状容器2の側面開口2e付近の拡大図である。図6において、可撓導体6は断面で示されている。可撓導体6と側面開口2eとの距離Bは、好ましくはB=15〜30mmの範囲、さらに好ましくはB=23mmである。これに関しては後述する。
【0017】
尚、密封容器1内に封入されるガスは、大気、脱水処理した乾燥空気、大気に乾燥空気を混合させたガス、純窒素ガス、窒素と酸素の混合ガス、窒素と酸素とヘリウムの混合ガス、純六弗化硫黄ガス、及び六弗化硫黄ガスと窒素ガスの混合ガス、のいずれかである。
【0018】
このような構成の密閉形開閉装置においては、密封容器1は封入された絶縁ガスの圧力によってわずかに変形するが、位置決め基準面となる支持板1aに絶縁筒状容器2が立設され、この絶縁筒状容器2に真空バルブ3及び断路器5が固定されているので、真空バルブ3と断路器5との位置関係は正確に保たれる。また、絶縁材にて成形された1つの絶縁筒状容器2で、真空バルブ3と断路器5とを固定するので、絶縁性に優れた状態で両者が固定されるとともに、部品点数が削減されてコストダウンを図ることができる。さらには、絶縁筒状容器2は、例えばエポキシ樹脂等の絶縁材にて作製されるので、例えば本実施の形態のような強度的に強い円筒形のような形状を容易に形成することができる。そのため、大きな操作力がかかる真空バルブ3と断路器5を強固に支持することができる。
【0019】
そして、絶縁筒状容器2は、中間導体の周囲の少なくとも一部を囲うように開口端部2cに立設され本体2aと一体に形成された第1の絶縁バリヤ部2dを有するので、絶縁筒状容器2の一部が絶縁バリヤの機能を営むこととなり、別部材として絶縁バリヤを設ける必要がなくなるので、開閉装置内部の構造が簡略化されるとともに、部品点数を削減して、コストダウンを図ることができ、そしてさらに、中間導体4周囲の破壊電圧特性(絶縁性能)を向上させることができる。尚、水平方向バリヤ部2dは、相間(隣り合う異相電路間)および対地間(接地電位である密封容器1壁面と電路間)の絶縁破壊電圧を向上させ、一方、垂直方向バリヤ部2dは、中間導体4と閉成側固定子5bとの間の絶縁破壊電圧(断路器5のブレード5cが開、真空バルブ3が閉の場合に、断路器5極間に電圧を印加した場合の破壊電圧)を向上させる。
【0020】
上述のバリヤ高さAについて説明する。図8に示される模擬電極を用いてバリヤ高さと破壊電圧の関係について実験を行った。その結果を図7に示す。図8において、模擬電極は、絶縁材で作製された2つの基台51,52を有している。2つの基台51,52は並べて配置されている。そして、対向する2つの基台51,52の端部には、それぞれ絶縁バリヤ部51a,52aが立設され、2つの両絶縁バリヤ部51a,52aは互いに平行となるように対向している。そして、基台51上に高圧電極53が固定され、基台52上に接地電極54が固定されている。この模擬電極を密封容器内に設置し、実質バリヤ高さA(高圧電極53の主面からの高さ)及びバリヤ高さAを変化させながら破壊電圧を測定した。密封容器内に封入する気体は、大気を加圧したもの、或いは水分を除去した空気を加圧したものとし、ガス圧の範囲は0.1〜0.2MPa(絶対圧)とした。この実験において、高圧電極53は、中間導体4に相当し、接地電極54は、隣接する中間導体4に相当し、絶縁バリヤ部51a,52aは、隣り合う絶縁筒状容器2の水平方向バリヤ部2dに相当している。尚、計測する破壊電圧は、対向する絶縁バリヤ部51a,52a間の距離には依存しないことが他の実験にて解っている。
【0021】
図6において、絶縁バリヤ部51a,52aの高さが試験電極53,54の高さよりも高い場合、つまり実質バリヤ高さAがA>0mmの場合は、バリヤが無い場合(A=0mm)に比べて、破壊電圧はいずれのガス圧力においても上昇している。A=0mmでも0.15MPAの破壊電圧はA=0mmに比べると上昇しているが、その他のガス圧では上昇していない。この結果より、試験電極53,54の高さよりも絶縁バリヤ部51a,52aが低い場合でも、絶縁バリヤ部51a,52aに放電進展阻止能力があり、破壊電圧上昇効果があることが解る。しかし、図6から、A=0mmでは常に有意な破壊電圧上昇効果が得られるのもでないことも解る。このようなことから、A>0mmであれば、中間導体4と密封容器1壁面の対地間、中間導体4の異相間、および中間導体4と閉成側固定子5bとの間の破壊電圧を確実に上昇することができるという効果が得られる。これが、A>0mmが好ましいとする理由である。
【0022】
さらに図6から、破壊電圧の上昇は、0<A<40mmまでは上昇するが、A>40mmでは飽和傾向を示すことが解る。これは必要以上に絶縁バリヤの高さを高くしても、破壊電圧の上昇に寄与しないことを示している。言い換えると、A>40mmにすれば効果的に、最大の破壊電圧上昇効果を得ることができることを意味する。これが、A>40mmならさらに好ましいとする理由である。
【0023】
次に、上述の可撓導体6と絶縁筒状容器2(側面開口2e)の距離Bについて説明する。図10,11に示される模擬電極を密封容器内に設置して実験を行った。その結果を図9に示す。相間の破壊電圧を評価する場合には図10の模擬電極、対地間の破壊電圧を評価する場合には図11の模擬電極を用いて行った。図10において、高圧電極62は、可撓導体6に相当し、接地電極63は隣接する可撓導体6に相当し、間に挟まれた中間絶縁板61は、隣り合う2つの絶縁筒状容器2及びその間の空間に相当している。ここで、隣り合う2つの絶縁筒状容器2及びその間の空間として、より実物に近いように2つの導体を配置する場合と、この模擬電極のように一つの導体61を配置する場合とで、機能的及び動作的に同じであることが他の実験にて解っている。密封容器内に封入する気体は、大気を加圧したもの、または水分を除去した空気を加圧したものとし、また、ガス圧は0.15MPaとした。
【0024】
図9から、距離Bを所定の範囲で大小させた場合に、破壊電圧はこの範囲の中でピークを持っており、約B=23mmで最大の破壊電圧が得られていることが解る。距離B=0mmの場合に比べるとB=15〜30mmの範囲では対地間では明確に破壊電圧の上昇効果が認められる。相間ではもう少し広い範囲で上昇効果が認められるが、相間と対地間の両方で認められる範囲は概ねB=15〜30mmの範囲といってよい。このようなことから、距離Bを15〜30mmとすることは、可撓導体6と密封容器1壁面の対地間、可撓導体6の異相間の破壊電圧を、効果的に上昇させるに好ましい距離であることが解る。また、距離Bを23mmとすることは、同破壊電圧を最も大きく上昇させることができるという点で、さらに好ましいといえる。
【0025】
ここで、上述の実験において、破壊電圧にピークが表れる理由については、次のように考えることができる。図12は絶縁バリヤ効果のモデルである。同図では、高圧電極側に正電圧を印加し、低圧側が密封容器1壁面の場合を例としている。高圧電極に電圧が印加されると、その先端からコロナ放電が始まり、絶縁バリヤまでの空間にコロナ放電電荷が蓄積される。ただし絶縁バリヤの存在により接地電極側への放電進展は抑制され、コロナ放電で発生した電荷は棒電極軸を中心としてバリヤ表面に広がって蓄積される。バリヤ表面の電荷密度はバリヤと高圧電極の距離が適切ならある程度均一になる。この結果、バリヤ自体がひとつの平板電極のような役割を持つようになり、バリヤ−平板電極間の電界バリヤ準平等電界に近づく。同じギャップ長でも不平等電界ギャップと準平等電界ギャップでは後者のほうが破壊電圧が上昇するため、絶縁バリヤの挿入によって破壊電圧が上昇する。
【0026】
しかし、バリヤが高圧電極に接近しすぎると、バリヤ表面上に均一な電荷密度でコロナ放電電荷が広がることができなくなり、電界の不平等性が十分に緩和されない。この結果、破壊電圧の上昇が小さくなってしまい、図9のような特性が得られたと考えられる。
【0027】
以上のように、本実施の形態においては、中間導体4周辺の絶縁バリヤの実質バリヤ高さAは好ましくはA>0mm、さらに好ましくはA>40mmとし、可撓導体6と絶縁筒状容器2壁面との距離Bは好ましくはB=15〜30mm、さらに好ましくはB=23mmとすることにより、対地間および相間破壊電圧の高いガス絶縁開閉装置を、特に新たな絶縁バリヤとその支持材を用いることなく実現することができる。ここで、密封容器1に封入するガスの種類は、大気、脱水処理した乾燥空気、大気に乾燥空気を混合させたガス、純窒素ガス、窒素と酸素の混合ガス、窒素と酸素とヘリウムの混合ガス、純六弗化硫黄ガス、六弗化硫黄ガスと窒素ガスの混合ガス、のいずれかである。これらのガスでは絶縁バリヤ効果が確認されており、本実施の形態の絶縁バリヤ接地による破壊電圧の上昇が期待できる。
【0028】
実施の形態2.
図13はこの発明の実施の形態2の密閉形開閉装置の絶縁筒状容器の斜視図である。図14は絶縁筒状容器の側面開口が設けられた位置の断面図に可撓導体を加えて示すものである。本実施の形態においては、絶縁筒状容器22は、可撓導体6の周囲の少なくとも一部を囲うように側面開口2eの縁部に立設され本体2aと一体に形成された第2の絶縁バリヤ部2hを有する。
【0029】
断路器5が絶縁筒状容器2の外側部に設置されている場合において、真空バルブ3と断路器5とを電気的に接続する接続導体6を囲繞する第2の絶縁バリヤ部2hを設けることにより、接続導体6周囲の破壊電圧特性を向上させることができる。
【0030】
図14に示されるように、第2の絶縁バリヤ部2hの、絶縁筒状容器2の内側から見た高さはDである。特に可撓導体6との高さの差をDとすると、D>0mmとすることが好ましい。D>40mmならさらに好ましい。同時に、本実施の形態において、可撓導体6と第2の絶縁バリヤ部2hの最短距離Bは、B=15〜30mmの範囲に入っていることが好ましく、B=23mmならさらに好ましい。
【0031】
本実施の形態2の構造にすることによる効果は、可撓導体6の周囲にも絶縁バリヤ効果が付与される点である。絶縁バリヤ効果の実験的検討結果は図7で説明したとおりである。これが理由となり、第2の絶縁バリヤ部2hの実質高さDは、D>0mmが好ましく、さらに好ましくはD>40mmとなる。これにより、可撓導体6を起点として発生する対地間絶縁と相間絶縁の破壊電圧を上昇させることができる。
【0032】
また、可撓導体6の周囲については、図9を用いて説明したように、距離Bの変化に対して破壊電圧はピークを持つように変化する。これが理由となり、B=15〜30mmの範囲が好ましく、B=23mmがさらに好ましい。実質高さDを上述のように設定した上で、距離Bを最適化することにより、相乗効果によって同部の破壊電圧は飛躍的に上昇する。
【0033】
【発明の効果】
この発明に係る密閉形開閉装置は、互いに並設された各相毎の断路器及び真空バルブと、断路器及び真空バルブを収納し、絶縁ガスが封入された密封容器と、絶縁材で作製され略筒状の本体を有し、密封容器内の所定の支持面に立設され、本体内部に真空バルブを収納するとともに、本体外側部に断路器を支持する絶縁筒状容器と、絶縁筒状容器の本体の支持面と反対側の開口端部に設けられ、真空バルブの第1の端子導体に電気的に接続されるとともに、真空バルブを絶縁筒状容器内に固定する中間導体とを備え、絶縁筒状容器は、中間導体の周囲の少なくとも一部を囲うように開口端部に立設され本体と一体に形成された第1の絶縁バリヤ部を有する。そのため、絶縁性能を向上させると同時に部品点数を減らし、コストダウンを図ることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1の密閉形開閉装置の要部の断面図である。
【図2】この発明の実施の形態1の密閉形開閉装置の全体を示す断面図である。
【図3】この発明の実施の形態1の絶縁筒状容器の斜視図である。
【図4】図3の絶縁筒状容器を開口端部側から見た図である。
【図5】実施の形態1の3相の絶縁筒状容器が並設されている様子を示す斜視図である。
【図6】実施の形態1の絶縁筒状容器の側面開口付近の拡大図である。
【図7】実質バリヤ高さと破壊電圧の関係を示す相関関係図である。
【図8】図7の結果を得る為に使用した模擬電極を示す説明図である。
【図9】可撓導体と絶縁筒状容器の距離と破壊電圧の関係を示す相関関係図である。
【図10】図9の相間の破壊電圧に関する結果を得る為に使用した模擬電極を示す説明図である。
【図11】図9の対地間の破壊電圧に関する結果を得る為に使用した模擬電極を示す説明図である。
【図12】絶縁バリヤ効果のモデルを示す図である。
【図13】この発明の実施の形態2の密閉形開閉装置の絶縁筒状容器の斜視図である。
【図14】この発明の実施の形態2の絶縁筒状容器の側面開口が設けられた位置の断面図に可撓導体を加えて示す図である。
【符号の説明】
1 密封容器、1a 支持板(支持面)、2 絶縁筒状容器、2a 本体、2b フランジ部、2c 開口端部、2d 第1の絶縁バリヤ部、2d 水平方向バリヤ部、2d 垂直方向バリヤ部、2e 側面開口、2f 雌ねじ穴、2h 第2の絶縁バリヤ部、3 真空バルブ、3a 固定端子(第1の端子導体)、3b 可動端子(第2の端子導体)、4 中間導体、5 断路器、5a 支点部、5b 閉成側固定子、5c ブレード、5d 接地側固定子、6 可撓導体(接続導体)、7 絶縁ロッド、11 ブスバー、12 下部ブッシング、13ブスバー、14,15,16 上部ブッシング、18 接地開閉器端子、22絶縁筒状容器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a closed-type switching device in which a disconnector and a vacuum valve for each phase are housed in a sealed container connected to an insulating bus of an electric power system and filled with an insulating gas, for example.
[0002]
[Prior art]
Improving insulation performance (breakdown voltage characteristics) in a hermetically sealed switchgear with three sets of disconnectors and vacuum valves for each phase of a three-phase AC circuit in a sealed container filled with insulating gas For this purpose, it has been conventionally proposed to dispose an insulating barrier at a predetermined position. Regarding this insulating barrier, an inter-phase insulating barrier disposed between the disconnectors of adjacent phases and between the vacuum valves of adjacent phases, and between the disconnectors and vacuum valves of each phase and the ground potential portion. There is an insulation barrier to ground.
[0003]
Generally, between the high-voltage charging part and the ground potential part in the closed-type switchgear, and between different phases of the high-voltage charging part must be electrically insulated. Such insulation between the ground and the phases is usually provided by an insulating gas inside the sealed container. However, if the insulation distance cannot be increased due to design reasons, an insulation barrier may be provided at a predetermined position (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-2001-352624
[Problems to be solved by the invention]
However, in the conventional closed-type switchgear having such a configuration, the structure inside the device becomes complicated due to the additionally provided insulating barrier, the number of parts increases, and the cost increases, and the assembly is difficult to assemble. This was a problem because it took more time.
[0006]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a sealed switchgear that can improve insulation performance, reduce the number of components, and reduce costs.
[0007]
[Means for Solving the Problems]
The closed-type switchgear according to the present invention is made of an insulating material and a disconnecting container and a vacuum valve for each phase which are arranged in parallel to each other, a disconnecting container and a vacuum valve that house the disconnecting device and the vacuum valve, and in which an insulating gas is sealed. An insulating tubular container having a substantially cylindrical main body, standing upright on a predetermined support surface in a sealed container, accommodating a vacuum valve inside the main body, and supporting a disconnector on an outer portion of the main body; An intermediate conductor provided at an open end opposite to the support surface of the main body of the container, electrically connected to the first terminal conductor of the vacuum valve, and fixing the vacuum valve in the insulating cylindrical container. The insulating tubular container has a first insulating barrier portion erected at an open end so as to surround at least a part of the periphery of the intermediate conductor and formed integrally with the main body.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of a main part of a closed type switchgear according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view showing the entire closed-type switchgear according to Embodiment 1 of the present invention. FIG. 3 is a perspective view of the insulating tubular container of the first embodiment. FIG. 4 is a view of the insulating tubular container of FIG. 3 as viewed from the opening end side. FIG. 5 is a perspective view showing a state in which three-phase insulating cylindrical containers are juxtaposed.
[0009]
1 and 2, an insulating cylindrical container 2 is fixed in a sealed container 1 in which an insulating gas is sealed. The insulating cylindrical container 2 is made of an insulating material such as an epoxy resin, has a substantially cylindrical main body 2a, and has a flange 2b formed at one end of the main body 2a. A support plate 1a vertically arranged on the front side in the sealed container 1 is provided. The support plate 1 a is provided as a positioning reference surface and a support surface of each component in the sealed container 1. The insulating cylindrical container 2 has a flange portion 2b fastened to the support plate 1a with bolts, and is erected in the horizontal direction. As shown in FIG. 5, the insulating tubular containers 2 are provided for each phase of a three-phase AC power supply. In FIG. 1, three insulating cylindrical containers are arranged in a direction perpendicular to the plane of the drawing.
[0010]
Returning to FIGS. 1 and 2, a vacuum valve 3 is housed in the main body 2 a of each insulating tubular container 2. An intermediate conductor 4 is fixed to an opening end 2c of the main body 2a opposite to the flange 2b. The intermediate conductor 4 is made of a conductive material, has a substantially rectangular plate shape, and has a grip portion protruding toward the inner space side of the main body 2a. The grip portion serves as a first terminal conductor of the vacuum valve 3 as a fixed terminal. By gripping the end on the 3a side, the vacuum valve 3 is fixed to the open end 2c inside the main body 2a. The intermediate conductor 4 is electrically connected to the fixed terminal 3a of the vacuum valve 3 at the center. The intermediate conductor 4 is fixed to the four female screw holes 2f shown in FIGS. 3 and 4 by tightening with bolts (not shown).
[0011]
Returning to FIGS. 1 and 2, a disconnector 5 is supported on the outer side of the insulating tubular container 2. The disconnector 5 includes a fulcrum 5a, a closing stator 5b, a blade 5c, and a grounding stator 5d (FIG. 2). A blade 5c is pivotally supported by a fulcrum 5a provided on the outer side of the insulating cylindrical container 2. The blade 5c rotates around the fulcrum part 5a as a fulcrum so that the tip ends are separated from and contacted with the closing stator 5b and the grounding stator 5d. As shown in FIG. 2, the disconnector 5 is operated by an operating mechanism 10 connected as a link mechanism, and is in an open position indicated by a solid line in FIG. It is stopped at any one of three positions, a ground position and a ground position in contact with the ground-side stator 5d.
[0012]
A side opening 2 e is formed in a side surface of the insulating cylindrical container 2. A flexible conductor 6 as a connection conductor for electrically connecting the movable terminal 3b as the second terminal conductor of the vacuum valve 3 and the fulcrum 5a of the disconnector 5 is connected to both via a side opening 2e. Have been. The flexible conductor 6 is made of a conductive material having flexibility, and is flexibly deformed as the vacuum valve 3 opens and closes. Inside the insulating cylindrical container 2, an insulating rod 7 for transmitting electric power for opening and closing the contacts of the vacuum valve 3 from the outside and simultaneously electrically insulating both ends is installed.
[0013]
As shown in FIGS. 3 and 4, the opening end 2 c of the insulating tubular container 2 on the side where the intermediate conductor 4 is arranged is formed so as to surround the intermediate conductor 4 in three directions. An insulating barrier portion 2d is provided. The first insulating barrier portion 2d extends outward from the opening end 2c of the main body 2a and is formed integrally with the main body 2a. The intermediate conductor 4 protrudes from the opening end 2c of the main body 2a by a predetermined length. The intermediate conductor 4 is surrounded in three directions by a first insulating barrier portion 2d protruding more than the protruding length. A first insulating barrier unit 2d, juxtaposed with horizontal barrier portion 2d 1 for raising the breakdown voltage between the respective layers of the insulating tubular container 2, the vertical barrier portion 2d provided on the disconnector 5 side And 2 . Incidentally, on the side facing the vertical barrier portion 2d 2, to bus bar 11 to be described later is connected to an intermediate conductor 4 is provided, the barrier portion is not provided.
[0014]
Returning to Figure 1, extending length with respect to the main surface of the intermediate conductor 4 of the first insulating barrier portion 2d, i.e., when a substantial barrier height and A 1 (wherein, the body of the first insulation barrier portion 2d extending length from 2a is a a 2), preferably, a 1> 0 mm, more preferably a a 1> 40 mm. This will be described later.
[0015]
Proceeding to FIG. 2, the intermediate conductor 4 is electrically connected to the lower bushing 12 by a bus bar 11. The closing stator 5b of the disconnector 5 is electrically connected by a bus bar 13 to upper bushings 14, 15, 16 provided on the upper surface of the sealed container 1. In addition, a grounding switch terminal 18 that is electrically connected to the grounding-side stator 5d is provided on a front wall surface of the support plate 1a.
[0016]
FIG. 6 is an enlarged view of the vicinity of the side opening 2 e of the insulating tubular container 2. In FIG. 6, the flexible conductor 6 is shown in cross section. The distance B between the flexible conductor 6 and the side opening 2e is preferably in the range of B = 15 to 30 mm, and more preferably B = 23 mm. This will be described later.
[0017]
The gas sealed in the sealed container 1 is air, dehydrated dry air, gas mixed with dry air, pure nitrogen gas, mixed gas of nitrogen and oxygen, mixed gas of nitrogen, oxygen and helium. , Pure sulfur hexafluoride gas, or a mixed gas of sulfur hexafluoride gas and nitrogen gas.
[0018]
In the hermetically closed switchgear having such a structure, the sealed container 1 is slightly deformed by the pressure of the sealed insulating gas, but the insulating cylindrical container 2 is erected on the support plate 1a serving as a positioning reference surface. Since the vacuum valve 3 and the disconnector 5 are fixed to the insulating cylindrical container 2, the positional relationship between the vacuum valve 3 and the disconnector 5 is accurately maintained. Further, since the vacuum valve 3 and the disconnector 5 are fixed by one insulating tubular container 2 formed of an insulating material, both are fixed in a state of excellent insulation and the number of parts is reduced. Cost can be reduced. Furthermore, since the insulating cylindrical container 2 is made of an insulating material such as an epoxy resin, for example, a cylindrical shape having high strength as in the present embodiment can be easily formed. . Therefore, the vacuum valve 3 and the disconnector 5 to which a large operation force is applied can be firmly supported.
[0019]
Since the insulating tubular container 2 has the first insulating barrier portion 2d which is erected at the open end 2c so as to surround at least a part of the periphery of the intermediate conductor and is formed integrally with the main body 2a, the insulating tubular container 2 A part of the container 2 performs the function of an insulating barrier, and there is no need to provide an insulating barrier as a separate member. This simplifies the internal structure of the switchgear, reduces the number of parts, and reduces costs. The breakdown voltage characteristic (insulation performance) around the intermediate conductor 4 can be further improved. Incidentally, the horizontal barrier portion 2d 1 improves the breakdown voltage between the phases and between ground (heterophase between tracks adjacent) (between the sealed container 1 wall and path is the ground potential), whereas the vertical barrier portion 2d 2 Is the dielectric breakdown voltage between the intermediate conductor 4 and the closing stator 5b (when the voltage is applied between the poles of the disconnector 5 when the blade 5c of the disconnector 5 is open and the vacuum valve 3 is closed). Breakdown voltage).
[0020]
For barrier height A 1 described above will be described. An experiment was conducted on the relationship between barrier height and breakdown voltage using the simulated electrode shown in FIG. FIG. 7 shows the result. In FIG. 8, the simulation electrode has two bases 51 and 52 made of an insulating material. The two bases 51 and 52 are arranged side by side. Insulating barrier portions 51a and 52a are provided upright at the ends of the two opposing bases 51 and 52, and the two insulating barrier portions 51a and 52a are opposed to each other so as to be parallel to each other. The high-voltage electrode 53 is fixed on the base 51, and the ground electrode 54 is fixed on the base 52. The simulated electrode was placed in a sealed container, and the breakdown voltage was measured while changing the barrier height A 1 (the height from the main surface of the high-voltage electrode 53) and the barrier height A 2 . The gas to be sealed in the sealed container was obtained by pressurizing the atmosphere or pressurizing air from which water had been removed, and the gas pressure range was 0.1 to 0.2 MPa (absolute pressure). In this experiment, the high-voltage electrode 53 corresponds to the intermediate conductor 4, the ground electrode 54 corresponds to the adjacent intermediate conductor 4, and the insulating barrier portions 51 a and 52 a correspond to the horizontal barrier portions of the adjacent insulating cylindrical containers 2. corresponds to the 2d 1. It is known from other experiments that the measured breakdown voltage does not depend on the distance between the opposing insulating barrier portions 51a and 52a.
[0021]
6, the insulating barrier portion 51a, when the height of the 52a is higher than the height of the test electrodes 53 and 54, that is, when substantially the barrier height A 1 is A 1> 0 mm, if the barrier is not (A 1 = 0 mm), the breakdown voltage increases at any gas pressure. Even when A 1 = 0 mm, the breakdown voltage of 0.15 MPa 1 is higher than that of A 1 = 0 mm, but does not increase at other gas pressures. From this result, it can be seen that even when the insulating barrier portions 51a, 52a are lower than the heights of the test electrodes 53, 54, the insulating barrier portions 51a, 52a have a discharge progress inhibiting ability and have a breakdown voltage increasing effect. However, it can be understood from FIG. 6 that when A 1 = 0 mm, a significant breakdown voltage increasing effect is not always obtained. Thus, if A 1 > 0 mm, the breakdown voltage between the intermediate conductor 4 and the ground of the wall surface of the sealed container 1, between different phases of the intermediate conductor 4, and between the intermediate conductor 4 and the closing-side stator 5 b. Can be assuredly increased. This is the reason that A 1 > 0 mm is preferable.
[0022]
Further from Figure 6, the increase in breakdown voltage is seen to exhibit a 0 <A 1 <40Mmmadewajoshosuruga,A 1> 40 mm in saturation tendency. This indicates that increasing the height of the insulating barrier more than necessary does not contribute to an increase in breakdown voltage. In other words, if A 1 > 40 mm, the maximum breakdown voltage increasing effect can be effectively obtained. This is the reason that it is more preferable if A 1 > 40 mm.
[0023]
Next, the distance B between the above-described flexible conductor 6 and the insulating cylindrical container 2 (side opening 2e) will be described. The experiment was conducted by placing the simulated electrodes shown in FIGS. 10 and 11 in a sealed container. The result is shown in FIG. When the breakdown voltage between phases was evaluated, the simulation electrode of FIG. 10 was used, and when the breakdown voltage between grounds was evaluated, the simulation electrode of FIG. 11 was used. In FIG. 10, the high-voltage electrode 62 corresponds to the flexible conductor 6, the ground electrode 63 corresponds to the adjacent flexible conductor 6, and the intermediate insulating plate 61 sandwiched between the two insulating cylindrical containers. 2 and the space between them. Here, as two adjacent insulating cylindrical containers 2 and a space between them, two conductors are arranged so as to be closer to the real thing, and one conductor 61 is arranged like this simulated electrode. Other experiments have shown that they are functionally and operationally the same. The gas sealed in the sealed container was obtained by pressurizing the atmosphere or pressurizing air from which water had been removed, and the gas pressure was 0.15 MPa.
[0024]
FIG. 9 shows that when the distance B is increased or decreased within a predetermined range, the breakdown voltage has a peak in this range, and the maximum breakdown voltage is obtained at about B = 23 mm. Compared with the case where the distance B is 0 mm, the effect of increasing the breakdown voltage is clearly observed between the ground and the ground in the range of B = 15 to 30 mm. Although the ascending effect is observed in a slightly wider range between phases, the range observed both between the phases and the ground may be approximately B = 15 to 30 mm. For this reason, setting the distance B to 15 to 30 mm is a preferable distance for effectively increasing the breakdown voltage between the flexible conductor 6 and the ground of the wall surface of the sealed container 1 and between different phases of the flexible conductor 6. It turns out that. Further, it can be said that setting the distance B to 23 mm is more preferable in that the breakdown voltage can be increased most greatly.
[0025]
Here, the reason why a peak appears in the breakdown voltage in the above-described experiment can be considered as follows. FIG. 12 is a model of the insulation barrier effect. In the figure, a case where a positive voltage is applied to the high voltage electrode side and the low voltage side is the wall surface of the sealed container 1 is taken as an example. When a voltage is applied to the high-voltage electrode, corona discharge starts from the tip of the high-voltage electrode, and corona discharge charges are accumulated in the space up to the insulating barrier. However, due to the presence of the insulating barrier, the progress of discharge toward the ground electrode is suppressed, and the charge generated by the corona discharge spreads and accumulates on the barrier surface around the rod electrode axis. The charge density on the barrier surface will be somewhat uniform if the distance between the barrier and the high voltage electrode is appropriate. As a result, the barrier itself has a role as one plate electrode, and approaches a quasi-equivalent electric field barrier between the barrier and the plate electrode. Even if the gap length is the same, the breakdown voltage of the unequal electric field gap and the quasi-equal electric field gap increases, so that the insertion of the insulating barrier increases the breakdown voltage.
[0026]
However, if the barrier is too close to the high voltage electrode, the corona discharge charge cannot spread with a uniform charge density on the barrier surface, and the inequality of the electric field is not sufficiently reduced. As a result, it is considered that the rise of the breakdown voltage was small, and the characteristic as shown in FIG. 9 was obtained.
[0027]
As described above, in the present embodiment, the substantial barrier height A 1 of the insulating barrier around the intermediate conductor 4 is preferably A 1 > 0 mm, more preferably A 1 > 40 mm, and the flexible conductor 6 and the insulating cylinder The distance B to the wall of the container 2 is preferably B = 15 to 30 mm, and more preferably B = 23 mm, so that a gas-insulated switchgear having a high ground-to-ground and phase-to-phase breakdown voltage, particularly a new insulating barrier and its support It can be realized without using any material. Here, the type of gas sealed in the sealed container 1 is air, dehydrated dry air, gas mixed with dry air in the atmosphere, pure nitrogen gas, mixed gas of nitrogen and oxygen, and mixed gas of nitrogen, oxygen and helium. Gas, pure sulfur hexafluoride gas, or a mixed gas of sulfur hexafluoride gas and nitrogen gas. These gases have been confirmed to have an insulating barrier effect, and an increase in the breakdown voltage due to the grounding of the insulating barrier in the present embodiment can be expected.
[0028]
Embodiment 2 FIG.
FIG. 13 is a perspective view of an insulated cylindrical container of the closed type switchgear according to Embodiment 2 of the present invention. FIG. 14 shows a cross-sectional view of the insulating tubular container at a position where a side opening is provided, with a flexible conductor added. In the present embodiment, the insulating cylindrical container 22 is provided on the edge of the side opening 2e so as to surround at least a part of the periphery of the flexible conductor 6, and is formed integrally with the main body 2a. It has a barrier portion 2h.
[0029]
When the disconnecting switch 5 is installed outside the insulating tubular container 2, a second insulating barrier section 2h surrounding the connection conductor 6 for electrically connecting the vacuum valve 3 and the disconnecting switch 5 is provided. Thereby, the breakdown voltage characteristics around the connection conductor 6 can be improved.
[0030]
As shown in Figure 14, the second insulating barrier portion 2h, a height as viewed from the inside of the insulating tubular container 2 is D 2. In particular, when the difference in height between the flexible conductor 6 and D 1, it is preferable that the D 1> 0 mm. More preferably, D 1 > 40 mm. At the same time, in the present embodiment, the shortest distance B between the flexible conductor 6 and the second insulating barrier portion 2h is preferably in the range of B = 15 to 30 mm, and more preferably B = 23 mm.
[0031]
The effect of the structure of the second embodiment is that an insulating barrier effect is also provided around the flexible conductor 6. The experimental study results of the insulation barrier effect are as described in FIG. This is the reason, substantially the height D 1 of the second insulation barrier unit 2h, D 1> 0 mm are preferred, more preferably a D 1> 40 mm. As a result, the breakdown voltage of the insulation between the ground and the insulation between the phases generated from the flexible conductor 6 as a starting point can be increased.
[0032]
Further, as described with reference to FIG. 9, the breakdown voltage changes so as to have a peak around the flexible conductor 6 with respect to the change in the distance B. For this reason, B is preferably in the range of 15 to 30 mm, and more preferably B = 23 mm. Substantial height D 1 on set as described above, by optimizing the distance B, the breakdown voltage of the department by the synergistic effect is dramatically increased.
[0033]
【The invention's effect】
The closed-type switchgear according to the present invention is made of an insulating material and a disconnecting container and a vacuum valve for each phase which are arranged in parallel to each other, a disconnecting container and a vacuum valve that house the disconnecting device and the vacuum valve, and in which an insulating gas is sealed. An insulating tubular container having a substantially cylindrical main body, standing upright on a predetermined support surface in a sealed container, accommodating a vacuum valve inside the main body, and supporting a disconnector on an outer portion of the main body; An intermediate conductor provided at an open end opposite to the support surface of the main body of the container, electrically connected to the first terminal conductor of the vacuum valve, and fixing the vacuum valve in the insulating cylindrical container. The insulating tubular container has a first insulating barrier portion erected at an open end so as to surround at least a part of the periphery of the intermediate conductor and formed integrally with the main body. For this reason, it is possible to improve the insulation performance and at the same time reduce the number of components, thereby achieving cost reduction.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of a closed-type switching device according to Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view showing the entire closed-type opening / closing device according to Embodiment 1 of the present invention;
FIG. 3 is a perspective view of the insulating tubular container according to the first embodiment of the present invention.
FIG. 4 is a view of the insulating cylindrical container of FIG. 3 as viewed from an open end side.
FIG. 5 is a perspective view showing a state in which the three-phase insulating cylindrical containers of the first embodiment are juxtaposed.
FIG. 6 is an enlarged view of the vicinity of a side opening of the insulating tubular container of the first embodiment.
FIG. 7 is a correlation diagram showing a relationship between a substantial barrier height and a breakdown voltage.
FIG. 8 is an explanatory diagram showing a simulation electrode used to obtain the result of FIG. 7;
FIG. 9 is a correlation diagram showing a relationship between a distance between a flexible conductor and an insulating cylindrical container and a breakdown voltage.
FIG. 10 is an explanatory view showing a simulated electrode used for obtaining a result regarding a breakdown voltage between phases in FIG. 9;
FIG. 11 is an explanatory view showing a simulation electrode used for obtaining a result regarding a breakdown voltage between the ground and the ground in FIG. 9;
FIG. 12 is a diagram showing a model of an insulating barrier effect.
FIG. 13 is a perspective view of an insulated tubular container of the hermetically closed switchgear according to Embodiment 2 of the present invention.
FIG. 14 is a diagram showing a cross-sectional view of the insulating tubular container according to Embodiment 2 of the present invention at a position where a side opening is provided, with a flexible conductor added.
[Explanation of symbols]
Reference Signs List 1 sealed container, 1a support plate (support surface), 2 insulating tubular container, 2a main body, 2b flange portion, 2c open end portion, 2d first insulating barrier portion, 2d 1 horizontal barrier portion, 2d 2 vertical barrier Part, 2e side opening, 2f female screw hole, 2h second insulating barrier part, 3 vacuum valve, 3a fixed terminal (first terminal conductor), 3b movable terminal (second terminal conductor), 4 intermediate conductor, 5 disconnection Vessel, 5a fulcrum, 5b closing-side stator, 5c blade, 5d grounding-side stator, 6 flexible conductor (connection conductor), 7 insulating rod, 11 busbar, 12 lower bushing, 13 busbar, 14, 15, 16 Upper bushing, 18 ground switch terminal, 22 insulated cylindrical container.

Claims (5)

互いに並設された各相毎の断路器及び真空バルブと、
前記断路器及び前記真空バルブを収納し、絶縁ガスが封入された密封容器と、絶縁材で作製され略筒状の本体を有し、前記密封容器内の所定の支持面に立設され、該本体の内部に前記真空バルブを収納するとともに、該本体の外側部に前記断路器を支持する絶縁筒状容器と、
前記絶縁筒状容器の前記本体の前記支持面と反対側の開口端部に設けられ、前記真空バルブの第1の端子導体に電気的に接続されるとともに、該真空バルブを該絶縁筒状容器内に固定する中間導体とを備え、
前記絶縁筒状容器は、前記中間導体の周囲の少なくとも一部を囲うように前記開口端部に立設され前記本体と一体に形成された第1の絶縁バリヤ部を有する
ことを特徴とする密閉形開閉装置。
Disconnectors and vacuum valves for each phase, which are arranged in parallel with each other,
The disconnector and the vacuum valve are housed, a sealed container filled with an insulating gas, a substantially cylindrical body made of an insulating material, and is erected on a predetermined support surface in the sealed container. An insulating tubular container that accommodates the vacuum valve inside the main body and supports the disconnector on the outside of the main body,
The insulating tubular container is provided at an open end of the main body opposite to the support surface, is electrically connected to a first terminal conductor of the vacuum valve, and connects the vacuum valve to the insulating cylindrical container. With an intermediate conductor fixed inside,
The hermetically sealed tubular container has a first insulating barrier portion erected at the opening end so as to surround at least a part of the periphery of the intermediate conductor and integrally formed with the main body. Type switchgear.
前記絶縁筒状容器は、前記本体側面に、前記真空バルブの第2の端子導体と前記断路器とを電気的に接続する接続導体が延出する側面開口が形成され、
前記絶縁筒状容器は、前記接続導体の周囲の少なくとも一部を囲うように前記側面開口の縁部に立設され前記本体と一体に形成された第2の絶縁バリヤ部を有することを特徴とする請求項1記載の密閉形開閉装置。
The insulating tubular container has, on the side surface of the main body, a side opening through which a connection conductor that electrically connects the second terminal conductor of the vacuum valve and the disconnector is formed,
The insulating tubular container has a second insulating barrier portion which is erected on an edge of the side opening so as to surround at least a part of a periphery of the connection conductor and is formed integrally with the main body. The closed-type opening / closing device according to claim 1.
前記第1の絶縁バリヤ部の前記開口端部からの延出長さは、前記中間導体の前記開口端部からの突出長さより長い
ことを特徴とする請求項1または2記載の密閉形開閉装置。
3. The hermetic switchgear according to claim 1, wherein a length of the first insulating barrier extending from the opening end is longer than a length of the intermediate conductor projecting from the opening end. .
前記接続導体と、前記側面開口縁部との間の距離が15mmから30mmである
ことを特徴とする請求項2記載の密閉形開閉装置。
The hermetically closed switchgear according to claim 2, wherein a distance between the connection conductor and the side opening edge is 15 mm to 30 mm.
前記密封容器に封入された前記絶縁ガスは、大気、脱水処理した乾燥空気、大気に乾燥空気を混合させたガス、純窒素ガス、窒素と酸素の混合ガス、窒素と酸素とヘリウムの混合ガス、純六弗化硫黄ガス、及び六弗化硫黄ガスと窒素ガスの混合ガスのいずれかである
ことを特徴とした請求項1から4のいずれかに記載の密閉形開閉装置。
The insulating gas sealed in the sealed container is air, dehydrated dry air, a gas in which dry air is mixed with the atmosphere, pure nitrogen gas, a mixed gas of nitrogen and oxygen, a mixed gas of nitrogen, oxygen, and helium, 5. The closed-type switchgear according to claim 1, wherein the device is one of pure sulfur hexafluoride gas and a mixed gas of sulfur hexafluoride gas and nitrogen gas.
JP2003005478A 2002-11-06 2003-01-14 Enclosed type switchgear Pending JP2004222390A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003005478A JP2004222390A (en) 2003-01-14 2003-01-14 Enclosed type switchgear
TW092128366A TWI228339B (en) 2002-11-06 2003-10-14 Metal-enclosed switchgear
US10/684,555 US6865072B2 (en) 2002-11-06 2003-10-15 Metal-enclosed switchgear
KR1020030077318A KR100561113B1 (en) 2002-11-06 2003-11-03 Metal-enclosed switchgear
FR0350781A FR2846802B1 (en) 2002-11-06 2003-11-04 METALLIC ENVELOPE APPARATUS
CNB2003101141456A CN1322646C (en) 2002-11-06 2003-11-05 Metallic locking shutter
DE10351766A DE10351766B4 (en) 2002-11-06 2003-11-06 Metal-enclosed switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005478A JP2004222390A (en) 2003-01-14 2003-01-14 Enclosed type switchgear

Publications (1)

Publication Number Publication Date
JP2004222390A true JP2004222390A (en) 2004-08-05

Family

ID=32896125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005478A Pending JP2004222390A (en) 2002-11-06 2003-01-14 Enclosed type switchgear

Country Status (1)

Country Link
JP (1) JP2004222390A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028810A (en) * 2005-07-19 2007-02-01 Mitsubishi Electric Corp Gas insulated switchgear
WO2011111086A1 (en) * 2010-03-08 2011-09-15 三菱電機株式会社 Electric-power breaker
EP4024635A1 (en) * 2020-12-29 2022-07-06 Schneider Electric USA, Inc. Switching device with reduced partial discharge and improved triple point characteristics

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028810A (en) * 2005-07-19 2007-02-01 Mitsubishi Electric Corp Gas insulated switchgear
JP4578344B2 (en) * 2005-07-19 2010-11-10 三菱電機株式会社 Gas insulated switchgear
WO2011111086A1 (en) * 2010-03-08 2011-09-15 三菱電機株式会社 Electric-power breaker
JP5303065B2 (en) * 2010-03-08 2013-10-02 三菱電機株式会社 Power circuit breaker
US9082563B2 (en) 2010-03-08 2015-07-14 Mitsubishi Electric Corporation Power breaker
EP4024635A1 (en) * 2020-12-29 2022-07-06 Schneider Electric USA, Inc. Switching device with reduced partial discharge and improved triple point characteristics
US11955781B2 (en) 2020-12-29 2024-04-09 Schneider Electric USA, Inc. Switching device with reduced partial discharge and improved triple point characteristics

Similar Documents

Publication Publication Date Title
KR100561113B1 (en) Metal-enclosed switchgear
US8642912B2 (en) Vacuum circuit breaker
JP2001352623A (en) Gas-insulated switchgear
WO2000021108A1 (en) Vacuum switch and vacuum switch gear using the vacuum switch
JP2003047113A (en) Switching device
JP2002159109A (en) Gas isolation switching device
WO2001035431A1 (en) Switch gear
CN107615435A (en) Vacuum circuit breaker
JP3623333B2 (en) Substation equipment
JP2004222390A (en) Enclosed type switchgear
KR100423712B1 (en) Uacuum circuit interrupter
CN100428596C (en) Disconnecting switch assembly
US6219225B1 (en) Gas insulated switch gear and method for assembling therefor
JP2006352972A (en) Collective three-phase type gas insulated switchgear
JP2000197221A (en) Closed type gas insulated three-phase switchgear
US20070017904A1 (en) Switch assembly
KR101247538B1 (en) Solid insulated switchgear
JP4040954B2 (en) Vacuum switchgear
WO2004032169A1 (en) Vacuum beaker
JP4468768B2 (en) Sealed power switchgear
EP3906574B1 (en) Circuit breaker having internal transient recovery voltage capacitor assembly
JP2003045301A (en) Gas-insulated switching device
JP2000350318A (en) Gas insulated grounding switchgear
JP2772094B2 (en) Barrier in insulating gas
JPH1080018A (en) Drawer type high-voltage switchgear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127