JP2004212388A - Electrostatic capacity pressure sensor - Google Patents

Electrostatic capacity pressure sensor Download PDF

Info

Publication number
JP2004212388A
JP2004212388A JP2003415840A JP2003415840A JP2004212388A JP 2004212388 A JP2004212388 A JP 2004212388A JP 2003415840 A JP2003415840 A JP 2003415840A JP 2003415840 A JP2003415840 A JP 2003415840A JP 2004212388 A JP2004212388 A JP 2004212388A
Authority
JP
Japan
Prior art keywords
substrate
pressure sensor
pressure
diaphragm
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003415840A
Other languages
Japanese (ja)
Other versions
JP4414746B2 (en
Inventor
Haruzo Miyashita
治三 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP2003415840A priority Critical patent/JP4414746B2/en
Publication of JP2004212388A publication Critical patent/JP2004212388A/en
Application granted granted Critical
Publication of JP4414746B2 publication Critical patent/JP4414746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic capacity pressure sensor, which has a replacable element, suppresses changes in the electrostatic capacity due the manner of mounting, and moreover, even if the environmental temperature is changing system, suppresses output variations due to the temperature change, so as to carry out a reliable pressure measurement. <P>SOLUTION: A substrate in which a diaphragm electrode is formed is inserted between a substrate, in which a fixed electrode is formed and a substrate in which a pressure-introducing hole is formed. The pressure sensor is constituted that the electrostatic capacity type pressure sensor element is fixed on a retaining member in replaceable manner via a sealing member so that the electrodes overlap in a space. In the substrate, having the pressure introducing hole, an extended area is added, in comparison with those of other substrates, and this extended area is press-contacted with the retaining member via the sealing member by using a holding plate. Further, a shock absorber is mounted in between the holding plate and the substrate. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、静電容量型圧力センサに係り、特に、積層構造の静電容量型圧力センサ素子を着脱可能に固定した測定精度に優れた圧力センサに関する。   The present invention relates to a capacitive pressure sensor, and more particularly, to a pressure sensor excellent in measurement accuracy in which a capacitive pressure sensor element having a laminated structure is detachably fixed.

近年、半導体デバイスなどの製造技術を用いて、様々な製品開発が進められている。これは、マイクロマシン技術と呼ばれ、小型化や軽量化などを目的とし、アクチュエータ及びセンサなど多くの技術分野で利用され始めている。そのうちのひとつに、静電容量型圧力センサがある。   In recent years, various product developments have been promoted using manufacturing techniques for semiconductor devices and the like. This is called micromachine technology, and has started to be used in many technical fields such as actuators and sensors for the purpose of miniaturization and weight reduction. One of them is a capacitive pressure sensor.

従来の静電容量型圧力センサとしては、ダイヤフラム電極が形成されたシリコン基板と固定電極が形成されたガラス基板とを両電極間に気密室をつくるように接合して作製した圧力センサ素子を、圧力導入部が設けられた保持部材に接着固定した構造のものが一般に用いられてきた。この構造の圧力センサは、寿命によりセンサ素子を交換する場合保持部材ごと交換しなければならないため、著しく非経済的であるという問題があった。そこで、本発明者は、O−リング等のシール部材を介して保持部材上にセンサ素子を挟持し、センサ素子だけを交換可能とした圧力センサの検討を行った。これを図8及び図9に基づき詳細に説明する。図8及び図9は、それぞれ従来の静電型圧力センサを示す模式的断面図及び斜視図である。   As a conventional capacitive pressure sensor, a pressure sensor element produced by joining a silicon substrate on which a diaphragm electrode is formed and a glass substrate on which a fixed electrode is formed so as to form an airtight chamber between both electrodes, In general, a structure in which a pressure introducing portion is fixed to a holding member provided with a pressure introducing portion has been used. The pressure sensor of this structure has a problem that it is extremely uneconomical because the holding member must be replaced when the sensor element is replaced due to its life. Therefore, the present inventor has studied a pressure sensor in which only the sensor element can be replaced by holding the sensor element on the holding member via a sealing member such as an O-ring. This will be described in detail with reference to FIGS. 8 and 9 are a schematic cross-sectional view and a perspective view, respectively, showing a conventional electrostatic pressure sensor.

この圧力センサ素子1は、例えば、固定電極13が形成されたガラス基板10、ダイヤフラム電極15が形成されたシリコン基板11、圧力導入孔18が形成されたガラス基板12が接合された構造をなしている。固定電極13及びダイヤフラム電極15はそれぞれリード線14,14’を介して計測器(不図示)に接続されている。   The pressure sensor element 1 has a structure in which, for example, a glass substrate 10 on which a fixed electrode 13 is formed, a silicon substrate 11 on which a diaphragm electrode 15 is formed, and a glass substrate 12 on which a pressure introduction hole 18 is formed are bonded. Yes. The fixed electrode 13 and the diaphragm electrode 15 are connected to a measuring instrument (not shown) via lead wires 14 and 14 ', respectively.

ガラス基板10とシリコン基板11との間には気密室16が形成され、その内部は残留ガスを吸着する非蒸発型ゲッタ17により常に高真空に保たれている。シリコン基板11のダイヤフラム15の厚さは通常数μm〜数十μmであり、このダイヤフラムの厚さ及び大きさは測定する圧力範囲に応じて定められる。ダイヤフラムはその両側の圧力差により変形し、その変形の大きさに応じて固定電極13とダイヤフラム電極15との間の静電容量が変化することになる。静電容量と圧力との関係から、被測定空間4の圧力を求めることができる。   An airtight chamber 16 is formed between the glass substrate 10 and the silicon substrate 11, and the inside thereof is always kept at a high vacuum by a non-evaporable getter 17 that adsorbs residual gas. The thickness of the diaphragm 15 of the silicon substrate 11 is usually several μm to several tens of μm, and the thickness and size of the diaphragm are determined according to the pressure range to be measured. The diaphragm is deformed by the pressure difference between the two sides, and the capacitance between the fixed electrode 13 and the diaphragm electrode 15 changes according to the magnitude of the deformation. From the relationship between the capacitance and the pressure, the pressure of the measured space 4 can be obtained.

このセンサ素子1は、図に示したように、O−リング30を介して保持部材3上に載置され、押さえ板2によりセンサ素子1全体を押さえつけて、複数のねじ(不図示)等で固定される。この状態で、真空装置などに取り付けられ、例えば表示電源の調整用トリマによりゼロ点調整が行われた後、実際の圧力測定に用いられる。   As shown in the figure, the sensor element 1 is placed on the holding member 3 via an O-ring 30, and the entire sensor element 1 is pressed by a pressing plate 2, and a plurality of screws (not shown) are used. Fixed. In this state, it is attached to a vacuum device or the like and, for example, after zero point adjustment is performed by an adjustment trimmer for a display power supply, it is used for actual pressure measurement.

このような構成とすることにより、センサ素子1が損傷或いは劣化した場合、保持部材3はそのまま使用し、センサ素子1のみを交換すれば圧力センサとしての機能を回復することができるので、圧力センサ全体としてコスト低減を図ることができる。
特開平8−35899 特開2001−201417
By adopting such a configuration, when the sensor element 1 is damaged or deteriorated, the holding member 3 can be used as it is, and the function as the pressure sensor can be restored by replacing only the sensor element 1. The cost can be reduced as a whole.
JP-A-8-35899 JP 2001-201417 A

しかし、図8及び図9に示した構成の圧力センサは、センサ素子1の取り付け方によって圧力の指示値が変化してしまい、測定精度が低下することが分かった。即ち、真空シールを確実に行うためには、押さえ板2によりO−リング30が潰れる程度の力でセンサ素子1を押さえ込む必要があるが、押さえ板2の締め付けの程度及びその均一性に関係して測定値が変化してしまう事態が生じた。   However, in the pressure sensor having the configuration shown in FIGS. 8 and 9, it was found that the pressure indication value changes depending on how the sensor element 1 is attached, and the measurement accuracy is lowered. That is, in order to securely perform the vacuum seal, it is necessary to hold down the sensor element 1 with a force that causes the O-ring 30 to be crushed by the holding plate 2, but this is related to the degree of tightening of the holding plate 2 and its uniformity. As a result, the measured value changed.

この原因を検討したところ、上述したように、ダイヤフラム15は薄くて変形しやすい構造としているために、センサ素子1の装着方法や押さえつける力によってダイヤフラム自体に歪みが生じて静電容量の値が設計値から大きくずれてしまい、これが圧力の測定誤差となることが分かった。従って、所定の圧力範囲で正確な測定を行うには、静電容量の設計値からのずれを電気回路で補正できる範囲に収まるようにねじの締め具合を調整する必要があるが、この作業は極めて煩雑でまた熟練を要する等の問題があった。   As a result of examining the cause, as described above, since the diaphragm 15 is thin and easily deformed, the diaphragm itself is distorted by the mounting method of the sensor element 1 and the pressing force, and the capacitance value is designed. It was found that this greatly deviated from the value, and this was a pressure measurement error. Therefore, in order to perform an accurate measurement within a predetermined pressure range, it is necessary to adjust the screw tightening so that the deviation from the design value of the capacitance is within a range that can be corrected by an electric circuit. There were problems such as being extremely complicated and requiring skill.

そこで、本発明者は、以上の知見を基にダイヤフラムに歪みが発生しにくいセンサ構造及び取り付け方法を種々検討し、その結果として正確な圧力測定が可能な本発明の圧力センサを完成するに至ったものである。即ち、本発明は、静電容量型センサ素子の脱着可能な圧力センサであって、その取り付け方による静電容量の変動やバラツキを抑えた圧力センサを提供し、さらには環境温度が変化する系であっても、温度変化に伴う出力の変動を抑え信頼性のある圧力測定が可能な圧力センサを提供することを目的とする。   Accordingly, the present inventor has studied various sensor structures and mounting methods in which the diaphragm is less likely to be distorted based on the above knowledge, and as a result, has completed the pressure sensor of the present invention capable of accurate pressure measurement. It is a thing. That is, the present invention provides a pressure sensor to which a capacitance type sensor element can be attached and detached, and provides a pressure sensor that suppresses fluctuations and variations in capacitance depending on how it is attached. Even so, an object of the present invention is to provide a pressure sensor capable of suppressing pressure fluctuations due to temperature changes and performing reliable pressure measurement.

上記の目的を達成するために、本発明の静電容量型圧力センサは次のように構成される。
即ち、本発明の静電容量型圧力センサは、固定電極が形成された基板と圧力導入孔が形成された基板との間にダイヤフラム電極が形成された基板を介在させ、前記固定電極、前記ダイヤフラム電極及び前記圧力導入孔が、空間を介して重なり合うように接合された静電容量型圧力センサ素子をシール部材を介して着脱可能に保持部材に固定した圧力センサであって、前記圧力導入口が形成された基板に、前記ダイヤフラム電極が形成された基板よりも外方に延在する領域を設け、該領域に前記シール部材と当接するシール面を設け、該シール面が前記シール部材を介して前記保持部材に押接される構成としたことを特徴とする。
ここで、前記圧力導入口が形成された基板の前記外方に延在する領域を、前記シール面と反対側の面から押さえ板で押しつける構成が好ましい。
In order to achieve the above object, the capacitive pressure sensor of the present invention is configured as follows.
That is, the capacitance type pressure sensor of the present invention includes a substrate on which a diaphragm electrode is formed between a substrate on which a fixed electrode is formed and a substrate on which a pressure introduction hole is formed, and the fixed electrode, the diaphragm, and the like. A capacitive sensor in which an electrode and the pressure introduction hole are joined so as to overlap with each other through a space, and is detachably fixed to a holding member via a seal member, the pressure introduction port A region extending outward from the substrate on which the diaphragm electrode is formed is provided on the formed substrate, and a seal surface that contacts the seal member is provided in the region, and the seal surface is interposed via the seal member. It is configured to be pressed against the holding member.
Here, the structure which presses the area | region extended outward of the board | substrate in which the said pressure introduction port was formed from the surface on the opposite side to the said seal surface with a pressing plate is preferable.

このように、センサ素子全体に力を加えることなく、圧力導入孔が形成された基板のみに力を加えてセンサ素子を狭持固定する構成としたため、装着に伴うダイヤフラムの歪みが抑制されることとなる。これにより設計値通りの静電容量を得ることが可能となり、所望の圧力領域で測定精度の高い圧力測定を安定して行うことができる。   As described above, since the sensor element is sandwiched and fixed by applying force only to the substrate on which the pressure introducing hole is formed without applying force to the entire sensor element, the distortion of the diaphragm accompanying the mounting is suppressed. It becomes. This makes it possible to obtain a capacitance as designed, and to stably perform pressure measurement with high measurement accuracy in a desired pressure region.

なお、本発明において、各基板の接合には陽極接合法が好適に用いられことから、固定電極が形成された基板及び圧力導入孔が形成された基板には絶縁性基板、ダイヤフラム電極が形成された基板には導電性基板が好適に用いられる。絶縁性基板及び導電性基板の材質としては、熱膨張係数が近いパイレックス(登録商標)ガラス(コーニング社製)とシリコン基板又はFe−Ni合金との組み合わせが好適に用いられる。また、ダイヤフラムの厚さ、大きさは、測定圧力範囲に応じて適宜選択され、これに応じてダイヤフラム電極が形成された基板の大きさが定められる。さらに、圧力導入孔が形成された基板は、シール部材のシール面を形成する必要上、通常ダイヤフラム電極が形成された基板より片側3mm以上大きくするのが好ましい。また、圧力導入孔が形成された基板の厚さは1〜5mmである。   In the present invention, since the anodic bonding method is preferably used for bonding each substrate, an insulating substrate and a diaphragm electrode are formed on the substrate on which the fixed electrode is formed and the substrate on which the pressure introduction hole is formed. A conductive substrate is preferably used as the substrate. As a material of the insulating substrate and the conductive substrate, a combination of Pyrex (registered trademark) glass (manufactured by Corning) and a silicon substrate or an Fe—Ni alloy having a similar thermal expansion coefficient is preferably used. The thickness and size of the diaphragm are appropriately selected according to the measurement pressure range, and the size of the substrate on which the diaphragm electrode is formed is determined accordingly. Further, the substrate on which the pressure introducing hole is formed is preferably larger by 3 mm or more on one side than the substrate on which the diaphragm electrode is normally formed in order to form the sealing surface of the sealing member. The thickness of the substrate on which the pressure introducing hole is formed is 1 to 5 mm.

また、前記押さえ板と前記保持部材との間隔が所定の距離以下となるのを防止するガイド部材を配置するのが好ましい。これにより、ねじ等の締め付けすぎによる基板の破損を防止することができ、センサの取り付け作業をより容易かつ安全に行うことができる。   In addition, it is preferable to arrange a guide member for preventing the distance between the pressing plate and the holding member from becoming a predetermined distance or less. As a result, the substrate can be prevented from being damaged due to excessive tightening of screws or the like, and the sensor mounting operation can be performed more easily and safely.

さらに、前記押さえ板と前記領域との間に緩衝体を配置するのが好ましい。特に、シール部材として用いるO−リングを基板の上下の対称な位置に配置する構成が好ましい。このような緩衝体を配置することにより、熱膨張の違いは緩衝体に吸収され基板の歪みを緩和することから、結果として静電容量の温度特性が向上し、より高精度の圧力測定が可能となる。
本発明において、緩衝体とは、押さえ板と圧力導入孔を形成した基板との熱膨張の違いに帰因する圧力導入孔を形成した基板の歪みを緩和するものをいい、例えばゴムのような弾性体の他、剛性体であっても低摩擦係数の材料を用いることができる。
Furthermore, it is preferable to arrange a buffer between the pressing plate and the region. In particular, a configuration in which an O-ring used as a seal member is arranged at symmetrical positions on the upper and lower sides of the substrate is preferable. By arranging such a buffer, the difference in thermal expansion is absorbed by the buffer and the distortion of the substrate is alleviated. As a result, the temperature characteristics of the capacitance are improved and more accurate pressure measurement is possible. It becomes.
In the present invention, the buffer means a material that alleviates the distortion of the substrate formed with the pressure introducing hole due to the difference in thermal expansion between the holding plate and the substrate formed with the pressure introducing hole, such as rubber. In addition to the elastic body, a material having a low friction coefficient can be used even if it is a rigid body.

本発明により、即ち、固定電極が形成された基板やダイヤフラム電極が形成された基板よりも圧力導入孔が形成された基板を大きくしてその周縁部を他の基板からはみ出させ、そのはみ出た部分にシール部材(O−リング等)を当てて保持部材と真空シールさせ、かつそのO−リングシール部のみを押さえるような取り付け方法を採用することにより、圧力測定の要であるシリコン基板に不本意な応力が発生して測定誤差を生ずることなく、正確な圧力を測定することができる。
さらに、押さえ板とガラス基板との間に緩衝体を配置することにより、温度変動に伴う歪みが緩和され、その結果、温度変動する系でも信頼性の高い圧力測定可能なセンサを提供することが可能となる。
According to the present invention, that is, the substrate on which the pressure introduction hole is formed is made larger than the substrate on which the fixed electrode is formed or the substrate on which the diaphragm electrode is formed, and its peripheral portion protrudes from the other substrate, and the protruding portion Applying a seal member (O-ring, etc.) to the holding member and vacuum-sealing it, and adopting an attachment method that holds only the O-ring seal part makes it unintentional to the silicon substrate that is the key to pressure measurement An accurate pressure can be measured without generating a measurement error due to a large stress.
Furthermore, by disposing the buffer body between the press plate and the glass substrate, distortion due to temperature fluctuation is alleviated, and as a result, a sensor capable of measuring pressure with high reliability even in a system with temperature fluctuation can be provided. It becomes possible.

以下、図を参照して本発明の実施の形態について説明するが、構成及び配置関係については本発明が理解できる程度に概略的に示したものに過ぎない。また、以下、この発明が好適な構成例につき説明するが、各構成(材質)及び数値的条件などは単なる好適例に過ぎない。従って、本発明は以下の実施の形態に限定されず、特許請求の範囲の記載に基づく様々な形態に適用可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the configuration and the arrangement relation are merely schematically shown to the extent that the present invention can be understood. In the following, a preferred configuration example of the present invention will be described. However, each configuration (material), numerical conditions, and the like are merely preferred examples. Therefore, the present invention is not limited to the following embodiments, and can be applied to various forms based on the description of the scope of claims.

図1は本発明の静電容量型圧力センサの構成例を説明するための概略断面図であり、図2は分解斜視図である。
図に示したように、本実施形態の圧力センサ素子1は、固定電極13が形成されたガラス基板10と、厚さ数μm〜数十μmのダイヤフラム(電極)15が形成されたシリコン基板(例えば、ボロンドープシリコン)11と、圧力導入孔18が形成されたガラス基板12と、が接合された構造をなしている。ガラス基板12は、ガラス基板10やシリコン基板11よりも大きく、その周縁部が他の基板よりはみ出た構造になっている。
FIG. 1 is a schematic cross-sectional view for explaining a configuration example of a capacitive pressure sensor of the present invention, and FIG. 2 is an exploded perspective view.
As shown in the drawing, the pressure sensor element 1 of the present embodiment includes a glass substrate 10 on which a fixed electrode 13 is formed, and a silicon substrate on which a diaphragm (electrode) 15 having a thickness of several μm to several tens of μm is formed ( For example, a structure in which a boron-doped silicon) 11 and a glass substrate 12 in which a pressure introducing hole 18 is formed is joined is formed. The glass substrate 12 is larger than the glass substrate 10 and the silicon substrate 11, and has a structure in which the peripheral edge protrudes from other substrates.

固定電極13の電気信号は、ガラス基板10を貫通するリード線14を介して外部に取り出され、ダイヤフラム電極15の電気信号はシリコン基板11に接続されたリード線14’を介して外部に取り出される。   The electric signal of the fixed electrode 13 is taken out through the lead wire 14 penetrating the glass substrate 10, and the electric signal of the diaphragm electrode 15 is taken out through the lead wire 14 ′ connected to the silicon substrate 11. .

ガラス基板10とシリコン基板11との間には気密(真空)室16が形成され、内部は、残留ガスを吸着する非蒸発型ゲッタ17等により常に高真空に保たれている。被測定空間4と気密室16とで圧力差があると、ダイヤフラム15はその圧力差に応じて変形し、その結果容量電極13とダイヤフラム電極15との間の静電容量が変化する。従って、この静電容量を求めることにより、圧力と静電容量との関係から、被測定空間4の圧力を求めることができる。
なお、ダイヤフラムの形成方法や各基板の接合方法は、例えば特開2002−43585号公報に記載された公知の方法を用いることができる。
An airtight (vacuum) chamber 16 is formed between the glass substrate 10 and the silicon substrate 11, and the inside is always kept at a high vacuum by a non-evaporable getter 17 or the like that adsorbs residual gas. When there is a pressure difference between the measured space 4 and the hermetic chamber 16, the diaphragm 15 is deformed according to the pressure difference, and as a result, the capacitance between the capacitive electrode 13 and the diaphragm electrode 15 changes. Therefore, by obtaining this capacitance, the pressure in the measured space 4 can be obtained from the relationship between the pressure and the capacitance.
In addition, the formation method of a diaphragm and the joining method of each board | substrate can use the well-known method described in Unexamined-Japanese-Patent No. 2002-43585, for example.

次に、センサ素子1を保持部材3に装着する方法を以下に説明する。
保持部材には、例えばO−リング装着用の正方形状の溝31が形成されており、この溝の大きさは、装填されるO−リング30がガラス基板12の周辺部、即ち、ガラス基板10やシリコン基板11からはみ出た部分に接する大きさとされる。また、センサ押さえ板2はその中心部に窓21が形成され、センサ素子1を上から押さえたときにガラス基板10とシリコン基板11がその窓21内に収まるようにする。
Next, a method for mounting the sensor element 1 to the holding member 3 will be described below.
The holding member is formed with, for example, a square groove 31 for mounting an O-ring, and the size of the groove is such that the O-ring 30 to be loaded is a peripheral portion of the glass substrate 12, that is, the glass substrate 10. In addition, the size is in contact with the portion protruding from the silicon substrate 11. The sensor pressing plate 2 has a window 21 formed at the center thereof so that the glass substrate 10 and the silicon substrate 11 can be accommodated in the window 21 when the sensor element 1 is pressed from above.

このような構成とすることにより、確実な真空シールを得るためにセンサ素子1を強い力で押さえつけたとしても、また、ねじの締め付け具合にバラツキがあったとしても、ガラス基板12にのみ力が加わりシリコン基板11には力が加わることがない。即ち、ダイヤフラム15に歪みを生じることなくセンサ素子1を保持部材3にしっかりと装着することが可能となる。結果として、設計通りの静電容量が確保され、正確な圧力測定が可能となる。   With such a configuration, even if the sensor element 1 is pressed with a strong force in order to obtain a reliable vacuum seal, or even if there is a variation in the tightening condition of the screw, the force is applied only to the glass substrate 12. In addition, no force is applied to the silicon substrate 11. That is, the sensor element 1 can be securely attached to the holding member 3 without causing distortion in the diaphragm 15. As a result, the designed capacitance is ensured and accurate pressure measurement is possible.

ここで、図1及び図8に示したセンサ素子がO−リングによる応力を受けて歪む様子を解析した結果を以下に説明する。この解析は、COSMOS WORKS社の構造解析ソフトを用い、O−リングが20%潰れるように24Nの圧力を接触面に加えたときの変位量を求めた。
ここで、固定電極が形成されたガラス基板10及びダイヤフラム電極が形成された基板11は、いずれも11.6x11.6mmで、厚さはそれぞれ0.4mm及び0.8mmである。また、ダイヤフラムは4.2x4.2mmで、厚さは7μmとした。また、圧力導入孔が形成された基板12は、図1のセンサの場合は20x20x2.0mm、図8では11.6x11.6x2.0mmとした。さらに、センサの材料としては、固定電極が形成された基板及び圧力導入孔が形成された基板はパイレックス(登録商標)ガラス(コーニング社製7740)、ダイヤフラム電極が形成された基板はp型Si基板(p−Si)とし、それぞれの材料特性は表1に示す値を用いた。
Here, the result of analyzing how the sensor element shown in FIG. 1 and FIG. 8 is distorted by receiving stress due to the O-ring will be described below. In this analysis, the amount of displacement when a pressure of 24 N was applied to the contact surface so that the O-ring was crushed by 20% was obtained using structural analysis software of COSMOS WORKS.
Here, the glass substrate 10 on which the fixed electrode is formed and the substrate 11 on which the diaphragm electrode is formed are each 11.6 × 11.6 mm, and the thicknesses are 0.4 mm and 0.8 mm, respectively. The diaphragm was 4.2 × 4.2 mm and the thickness was 7 μm. Further, the substrate 12 on which the pressure introducing hole is formed is 20 × 20 × 2.0 mm in the case of the sensor of FIG. 1 and 11.6 × 11.6 × 2.0 mm in FIG. Furthermore, as a sensor material, a substrate on which a fixed electrode is formed and a substrate on which a pressure introduction hole is formed are Pyrex (registered trademark) glass (Corning 7740), and a substrate on which a diaphragm electrode is formed is a p-type Si substrate. The values shown in Table 1 were used for each material characteristic.

図1及び図8のセンサについての解析結果を、それぞれ図3及び図4に示す。図において、黒色(最も濃い色)と白色(最も薄い色)は、変位量がそれぞれ7x10−13m以上、及び3.5x10−13m以下となる領域を示している。また中間色はその間の変位量となる領域であって、濃くなるにつれて変位量が大きくなることを示している。 The analysis results for the sensors of FIGS. 1 and 8 are shown in FIGS. 3 and 4, respectively. In the figure, black (darkest color) and white (most light color) indicates a region where displacement is respectively 7x10 -13 m or more, and 3.5 × 10 -13 m or less. Further, the intermediate color is a region where the amount of displacement is between them, and indicates that the amount of displacement increases as it becomes darker.

図3及び図4から分かるように、従来のセンサ構造(図8)ではダイヤフラムが力を受け大きく歪むのに対し、本実施形態のセンサ素子1が力を受けるのはO−リング30とガラス基板12が接する部分のみであり、その他の部分は全く力を受けないことが分かる。つまり、O−リング30によってセンサ素子1の真空シールをしっかり確保するために、かなり強い力でセンサ押さえ板2がセンサ素子1を押さえるようにしても、それによってシリコン基板11のダイヤフラム15が歪むことはなく、安定して正確な圧力測定を行うことが可能となることが分かる。   As can be seen from FIGS. 3 and 4, in the conventional sensor structure (FIG. 8), the diaphragm receives a force and greatly distorts, whereas the sensor element 1 of the present embodiment receives the force by the O-ring 30 and the glass substrate. It can be seen that 12 is only the contacted portion, and the other portions are not subjected to any force. That is, even if the sensor pressing plate 2 presses the sensor element 1 with a considerably strong force in order to secure the vacuum seal of the sensor element 1 with the O-ring 30, the diaphragm 15 of the silicon substrate 11 is distorted thereby. It can be seen that it is possible to perform stable and accurate pressure measurement.

次に、本発明の圧力センサの第2の実施例を図5に示す。
図5は、図1のセンサ素子1周辺部にガイド部材32を配置したものである。このような構造とすることにより、ガラス板12に必要以上の力が加わるのを防止し、破損等を回避できることから、取り付け作業がより安全かつ容易となる。
Next, a second embodiment of the pressure sensor of the present invention is shown in FIG.
FIG. 5 shows a guide member 32 arranged around the sensor element 1 of FIG. By adopting such a structure, it is possible to prevent an unnecessary force from being applied to the glass plate 12 and to avoid breakage, etc., so that the mounting operation becomes safer and easier.

上述したように、実施例1及び2の圧力センサは、取り付け方法によるセンサ素子の歪みを抑制することができ、得られる静電容量の変動やバラツキを大きく低減することが可能となった。その一方で、実施例1及び2のセンサは、従来のセンサに比べて小さいものの、環境温度により出力が変動することが明らかになった。また、この出力変動が起こる原因の調査・検討を行う過程で、静電容量の設計値からのずれが大きいほど、この温度変化が大きくなることが分かった。   As described above, the pressure sensors of Examples 1 and 2 can suppress the distortion of the sensor element due to the mounting method, and can greatly reduce the variation and variation in the obtained capacitance. On the other hand, although the sensors of Examples 1 and 2 were smaller than the conventional sensors, it became clear that the output fluctuated depending on the environmental temperature. In the process of investigating and examining the cause of this output fluctuation, it was found that this temperature change increases as the deviation from the design value of the capacitance increases.

この理由としては、例えば次のように考えられる。即ち、押さえ板や保持部材は通常ステンレス鋼製であるため、その熱膨張係数はシリコンやパイレックス(登録商標)ガラスよりも大きく、センサ素子を押さえ板により直接固定した場合、環境温度が変化すると熱膨張率の違いにより両者間に歪みが発生し、それにより静電容量が変化するものと考えられる。さらに、取り付け時の歪みが大きい場合には、温度変化により歪みが助長されて、より大きな温度変化を示すものと考えられる。   The reason is considered as follows, for example. That is, since the holding plate and the holding member are usually made of stainless steel, the coefficient of thermal expansion thereof is larger than that of silicon or Pyrex (registered trademark) glass. It is considered that distortion occurs between the two due to the difference in the expansion coefficient, thereby changing the capacitance. Furthermore, when the strain at the time of attachment is large, it is considered that the strain is promoted by the temperature change and shows a larger temperature change.

そこで、センサ素子を固定したときの歪みをさらに低減すべくセンサ構造を種々検討し、温度に対する出力変動が極めて小さい圧力センサを考案した。これを図6に示す。
図6に示した本実施例の圧力センサは、ガラス基板12と押さえ板2の間にO−リング(緩衝体)を配置した以外は、実施例1の圧力センサと同じ構造である。
本実施例の圧力センサと実施例1の圧力センサを繰り返し真空容器に取り付け、それぞれについて静電容量の温度特性を測定した、その平均値を図7示す。図7において、縦軸は一定圧力測定時における圧力センサの静電容量変動量である。
図から明らかなように、本実施例のセンサ構造を採用することにより、静電容量の変動量を大きく低減できることが分かる。また、図には示していないが、実施例1のセンサは、ねじの締め方により温度による変動量が10〜30fF/℃と増大し且つばらつくのに対し、本実施例のセンサは1〜2fF/℃と変動量は減少しばらつきも観られなくなった。
In view of this, various sensor structures have been studied to further reduce the distortion when the sensor element is fixed, and a pressure sensor with extremely small output fluctuation with respect to temperature has been devised. This is shown in FIG.
The pressure sensor of this embodiment shown in FIG. 6 has the same structure as the pressure sensor of Embodiment 1 except that an O-ring (buffer body) is disposed between the glass substrate 12 and the pressing plate 2.
The pressure sensor of the present example and the pressure sensor of Example 1 were repeatedly attached to the vacuum vessel, and the average value of the capacitance temperature characteristics measured for each was shown in FIG. In FIG. 7, the vertical axis represents the amount of change in capacitance of the pressure sensor when measuring a constant pressure.
As can be seen from the figure, the amount of variation in capacitance can be greatly reduced by employing the sensor structure of this embodiment. Although not shown in the figure, the sensor of the first embodiment increases and varies depending on the temperature as 10 to 30 fF / ° C. depending on how the screw is tightened, whereas the sensor of the first embodiment has 1 to 2 fF. / ℃ and fluctuation amount decreased, and no variation was observed.

なお、本実施例において、緩衝体33としてシール部材30と同じO−リングを用いたがこれに限る必要はなく、押さえ板と圧力導入孔を形成した基板との熱膨張の違いに帰因する圧力導入孔を形成した基板の歪みを緩和するものであればどのような材質・形状のものでも良い。例えば、ゴムのような弾性体の他、剛性体であってもフッ素樹脂等のように摩擦係数の小さな材料を用いても良い。また、その形状もガラス基板と押さえ板の間に部分的に配置する構成としても良い。ただし、ガラス基板に対して対称な位置に同じ、シール部材と同じ材質・形状のものを配置するのが好ましく、より歪みが小さく温度に対する出力変動のより小さな圧力センサが可能となる。なお、押さえ板に保持部材と同様にO−リング溝を設けても良い。   In the present embodiment, the same O-ring as the sealing member 30 is used as the buffer 33, but it is not necessary to be limited to this, and it is attributed to the difference in thermal expansion between the pressing plate and the substrate on which the pressure introducing hole is formed. Any material and shape may be used as long as they alleviate the distortion of the substrate on which the pressure introducing hole is formed. For example, in addition to an elastic body such as rubber, a material having a small friction coefficient such as a fluororesin may be used even if it is a rigid body. Moreover, the shape is good also as a structure arrange | positioned partially between a glass substrate and a pressing board. However, it is preferable to arrange the same material and the same shape as the sealing member at positions symmetrical to the glass substrate, and a pressure sensor with smaller distortion and smaller output fluctuation with respect to temperature becomes possible. In addition, you may provide an O-ring groove | channel similarly to a holding member in a pressing plate.

実施例1の静電容量型圧力センサを示す模式的断面図である。1 is a schematic cross-sectional view showing a capacitive pressure sensor of Example 1. FIG. 図1の圧力センサの分解斜視図である。It is a disassembled perspective view of the pressure sensor of FIG. 図1に示した圧力センサのダイヤフラム等に加わる応力の分布を示す模式図である。It is a schematic diagram which shows distribution of the stress added to the diaphragm etc. of the pressure sensor shown in FIG. 図8に示した圧力センサのダイヤフラム等に加わる応力の分布を示す模式図である。It is a schematic diagram which shows distribution of the stress added to the diaphragm etc. of the pressure sensor shown in FIG. 実施例2の静電容量型圧力センサを示す模式的断面図である。6 is a schematic cross-sectional view showing a capacitance type pressure sensor of Example 2. FIG. 実施例3の静電容量型圧力センサを示す模式的断面図である。6 is a schematic cross-sectional view showing a capacitive pressure sensor of Example 3. FIG. 圧力センサの静電容量と温度との関係を示すグラフである。It is a graph which shows the relationship between the electrostatic capacitance of a pressure sensor, and temperature. 従来の着脱可能なセンサ素子を有する静電型圧力センサの一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the electrostatic pressure sensor which has a conventional sensor element which can be attached or detached. 従来の着脱可能なセンサ素子を有する静電型圧力センサの一例を示す模式的斜視図である。It is a typical perspective view which shows an example of the conventional electrostatic pressure sensor which has a sensor element which can be attached or detached.

符号の説明Explanation of symbols

1 圧力センサ素子、
2 押さえ板、
3 保持部材、
4 被測定空間、
10 ガラス基板、
11 シリコン基板、
12 ガラス基板、
13 固定電極、
14,14’リード線、
15 ダイヤフラム電極、
16 気密(真空)室、
17 非蒸発型ゲッタ、
18 圧力導入孔、
21 窓、
30 O−リング、
31 溝、
32 ガイド部材、
33 緩衝体。
1 pressure sensor element,
2 holding plate,
3 holding member,
4 Measurement space,
10 glass substrate,
11 Silicon substrate,
12 glass substrate,
13 Fixed electrode,
14, 14 'lead wire,
15 Diaphragm electrode,
16 Airtight (vacuum) chamber,
17 Non-evaporable getter,
18 pressure introducing hole,
21 windows,
30 O-ring,
31 grooves,
32 guide members,
33 Buffer.

Claims (6)

固定電極が形成された基板と圧力導入孔が形成された基板との間にダイヤフラム電極が形成された基板を介在させ、前記固定電極、前記ダイヤフラム電極及び前記圧力導入孔が、空間を介して重なり合うように接合された静電容量型圧力センサ素子をシール部材を介して着脱可能に保持部材に固定した圧力センサであって、前記圧力導入口が形成された基板に、前記ダイヤフラム電極が形成された基板よりも外方に延在する領域を設け、該領域に前記シール部材と当接するシール面を設け、該シール面が前記シール部材を介して前記保持部材に押接される構成としたことを特徴とする静電容量型圧力センサ。   A substrate on which a diaphragm electrode is formed is interposed between a substrate on which a fixed electrode is formed and a substrate on which a pressure introduction hole is formed, and the fixed electrode, the diaphragm electrode, and the pressure introduction hole overlap with each other through a space. A pressure sensor in which a capacitive pressure sensor element joined in this manner is detachably fixed to a holding member via a seal member, and the diaphragm electrode is formed on a substrate on which the pressure introduction port is formed A region extending outward from the substrate is provided, a seal surface that contacts the seal member is provided in the region, and the seal surface is configured to be pressed against the holding member via the seal member. Capacitance type pressure sensor. 前記圧力導入孔が形成された基板の前記外方に延在する領域を、前記シール面と反対側の面から押さえ板で押しつける構成としたことを特徴とする請求項1に記載の静電容量型圧力センサ。   2. The capacitance according to claim 1, wherein a region extending outward of the substrate in which the pressure introduction hole is formed is configured to be pressed by a pressing plate from a surface opposite to the sealing surface. Mold pressure sensor. 前記押さえ板と前記保持部材との間隔が所定の距離以下となるのを防止するガイド部材を配置したことを特徴とする請求項2に記載の静電容量型圧力センサ。   The capacitive pressure sensor according to claim 2, further comprising a guide member that prevents a distance between the pressing plate and the holding member from being a predetermined distance or less. 前記押さえ板と前記前記圧力導入孔が形成された基板との間に緩衝体を配置したことを特徴とする請求項2又は3に記載の静電容量型圧力センサ。   4. The capacitive pressure sensor according to claim 2, wherein a buffer is disposed between the pressing plate and the substrate on which the pressure introducing hole is formed. 前記緩衝体及び前記シール部材は、O−リングであることを特徴とする請求項4に記載の静電容量型圧力センサ。   The capacitive pressure sensor according to claim 4, wherein the buffer body and the seal member are O-rings. 前記外方に延在する領域を前記緩衝体が押接する領域と、前記シール部材が押接する領域とは、前記圧力導入孔が形成された基板に対し上下に対称であることを特徴とする請求項4又は5に記載の静電容量型圧力センサ。   The region where the buffer body is pressed against the outwardly extending region and the region where the seal member is pressed are symmetrical vertically with respect to the substrate on which the pressure introducing hole is formed. Item 6. The capacitive pressure sensor according to Item 4 or 5.
JP2003415840A 2002-12-19 2003-12-15 Capacitive pressure sensor Expired - Fee Related JP4414746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003415840A JP4414746B2 (en) 2002-12-19 2003-12-15 Capacitive pressure sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002368867 2002-12-19
JP2003415840A JP4414746B2 (en) 2002-12-19 2003-12-15 Capacitive pressure sensor

Publications (2)

Publication Number Publication Date
JP2004212388A true JP2004212388A (en) 2004-07-29
JP4414746B2 JP4414746B2 (en) 2010-02-10

Family

ID=32828815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003415840A Expired - Fee Related JP4414746B2 (en) 2002-12-19 2003-12-15 Capacitive pressure sensor

Country Status (1)

Country Link
JP (1) JP4414746B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071501A (en) * 2004-09-02 2006-03-16 Canon Anelva Technix Corp Capacitance type pressure sensor
JP2006220519A (en) * 2005-02-10 2006-08-24 Canon Anelva Technix Corp Diaphragm-type pressure sensor
JP2011506980A (en) * 2007-12-20 2011-03-03 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング Structure of diaphragm pressure measuring cell
JP2017150914A (en) * 2016-02-24 2017-08-31 株式会社フジクラ Pressure sensor module, and pressure sensor module attachment structure
WO2020009091A1 (en) * 2018-07-06 2020-01-09 北陸電気工業株式会社 Pressure sensor device
CN116429317A (en) * 2023-06-09 2023-07-14 季华实验室 Capacitive film vacuum gauge sensor, manufacturing method thereof and capacitive film vacuum gauge

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071501A (en) * 2004-09-02 2006-03-16 Canon Anelva Technix Corp Capacitance type pressure sensor
JP4542397B2 (en) * 2004-09-02 2010-09-15 キヤノンアネルバ株式会社 Manufacturing method of capacitive pressure sensor
JP2006220519A (en) * 2005-02-10 2006-08-24 Canon Anelva Technix Corp Diaphragm-type pressure sensor
JP4683618B2 (en) * 2005-02-10 2011-05-18 キヤノンアネルバ株式会社 Diaphragm type pressure sensor and manufacturing method thereof
JP2011506980A (en) * 2007-12-20 2011-03-03 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング Structure of diaphragm pressure measuring cell
JP2017150914A (en) * 2016-02-24 2017-08-31 株式会社フジクラ Pressure sensor module, and pressure sensor module attachment structure
WO2020009091A1 (en) * 2018-07-06 2020-01-09 北陸電気工業株式会社 Pressure sensor device
JPWO2020009091A1 (en) * 2018-07-06 2021-07-08 北陸電気工業株式会社 Pressure sensor device
JP7252956B2 (en) 2018-07-06 2023-04-05 北陸電気工業株式会社 pressure sensor device
CN116429317A (en) * 2023-06-09 2023-07-14 季华实验室 Capacitive film vacuum gauge sensor, manufacturing method thereof and capacitive film vacuum gauge
CN116429317B (en) * 2023-06-09 2023-08-15 季华实验室 Capacitive film vacuum gauge sensor, manufacturing method thereof and capacitive film vacuum gauge

Also Published As

Publication number Publication date
JP4414746B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
US6568274B1 (en) Capacitive based pressure sensor design
US6029525A (en) Capacitive based pressure sensor design
JP4264672B2 (en) Capacitive pressure transducer with improved electrode support
US7703329B2 (en) Pressure sensor
KR20170017801A (en) A hermetic pressure sensor
KR101588714B1 (en) Capacitive pressure sensor with improved electrode structure
US6655216B1 (en) Load transducer-type metal diaphragm pressure sensor
EP3443315B1 (en) Implantable pressure sensors with tensioned membranes for use in human body
EP1672345B1 (en) System and method for sensing pressure
JP4414746B2 (en) Capacitive pressure sensor
WO2002014821A2 (en) Capacitive based pressure sensor design
US6912910B2 (en) Capacitive pressure sensor
US10852207B2 (en) Vacuum gauge
US20220349766A1 (en) Resonant pressure sensor
JP2007171123A (en) Pressure sensor and pressure-sensitive element
WO2015076413A1 (en) Capacitive pressure sensor
JPH109979A (en) Type pressure detector
JP2006275702A (en) Diaphragm type pressure sensor
US11467051B1 (en) Method for correcting a dual capacitance pressure sensor
KR101181509B1 (en) Back touch type capacitive pressure sensor
CN116296051A (en) Capacitive vacuum gauge
WO2010137391A1 (en) Fluid pressure sensor
CN116974392A (en) Touch module assembly process, touch module and electronic equipment
JP2015102425A (en) Capacitance type pressure sensor
JP2007132907A (en) Pressure sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090727

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4414746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees