JP2004174369A - ガス処理方法とそのシステム - Google Patents

ガス処理方法とそのシステム Download PDF

Info

Publication number
JP2004174369A
JP2004174369A JP2002343508A JP2002343508A JP2004174369A JP 2004174369 A JP2004174369 A JP 2004174369A JP 2002343508 A JP2002343508 A JP 2002343508A JP 2002343508 A JP2002343508 A JP 2002343508A JP 2004174369 A JP2004174369 A JP 2004174369A
Authority
JP
Japan
Prior art keywords
gas
cathode
aqueous solution
carbon dioxide
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002343508A
Other languages
English (en)
Inventor
Kazushiro Oishi
和城 大石
Satoshi Seike
聡 清家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2002343508A priority Critical patent/JP2004174369A/ja
Publication of JP2004174369A publication Critical patent/JP2004174369A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Gas Separation By Absorption (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Treating Waste Gases (AREA)

Abstract

【課題】より低廉かつ効率的さらに安定した二酸化炭素の除去を実現すると共に、除去した二酸化炭素成分を有効的に利用する。
【解決手段】ナトリウムイオンを透過する電解質膜10と、ナトリウム化合物の水溶液が供されるアノード11と、被処理ガスが供されるカソード12と、を備え、この両極間に直流電圧を印加してカソード12側においてガス中の二酸化炭素を炭酸塩の形態で分離除去するガス処理装置1と、ナトリウムイオンを透過する電解質膜を設置してアノード室とカソード室を形成すると共に、アノード室に前記炭酸塩の水溶液を供給する経路と、カソード室に水を供給する経路と、を備え、前記両室の液相間に直流電圧を印加してカソード室において水酸化ナトリウムを生成する再生槽5と、前記カソード室で生成した水酸化ナトリウムの水溶液をガス処理装置1に供給する経路と、を具備する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、ガス処理方法とそのシステム、特に、ガス中の二酸化炭素の除去を低廉かつ効率的に行い、さらには除去した二酸化炭素成分を有効するものに関する。
【0002】
【従来の技術】
1998年12月、京都市で、2000年以降における地球温暖化防止のための新たな国際的枠組みを決定する気候変動枠条約第3回締約国会議(地球温暖化防止会議、COP3)が開催された。京都会議では、先進国全体の温室効果ガスを2008〜2012年において1990年比5%強削減する数値目標などを含む「京都議定書」が採択され、この中で我が国についての数値目標は1990年比6%削減とされている。
【0003】
温室効果ガスの人為的排出の多くを占めるのが、エネルギーの燃焼に伴って発生する二酸化炭素(CO)である。我が国は、石油危機以降積極的な省エネルギー努力を行った結果、産業部門のエネルギー利用効率は世界最高水準にあり、GDP当りの一次エネルギー消費も米国の約3分の1、ドイツの約2分の1と他の先進国と比較して低い水準にある。
【0004】
しかし、近年の運輸、民生部門を中心としたエネルギー消費の著しい伸びに伴い、エネルギー起因の二酸化炭素排出量は1995年度には1990比8%強の大幅な増加となっている。このことから、京都議定書の目標の達成に向けては、直ちに最大限の対策に着手していく必要がある。
【0005】
京都議定書において、温室効果ガスは二酸化炭素(CO)、メタンガス(CH)、亜酸化窒素(NO)、ハイドロフルオロカーボン(HFC)、パーフルオロカーボン(PFC)、六フッ化硫黄(SF)の6種類とされているが、我が国における温室効果ガスの排出量は1995年度において1990年度比8.6%増加している。このうち、全体の9割近くを占めるとともに、経済社会活動全体と密接な関わりを持つのがエネルギーの燃焼に伴って発生する二酸化炭素である。
【0006】
我が国におけるこれらのエネルギー起因の二酸化炭素排出量は1980年代後半から急激な増加傾向にあり、特に近年は運輸、民生部門の伸びが著しく、1995年度には1990年度比8.1%の大幅な増加となっている。したがって、我が国で今後国内の温室効果ガス対策を考える際の中心的課題となるのが、運輸、民生部門での対策強化をはじめとしたエネルギー起因の二酸化炭素削減対策である。
【0007】
尚、二酸化炭素については、正確な量の把握は難しいものの森林等の働きによって吸収されるといわれており、また二酸化炭素固定技術に関する研究開発も進められている。さらに、代替フロン類(HFC,PFC及びSF)については半導体洗浄や製品の中の冷媒として使われ、市中に残存しているものを回収し、分解するための技術開発等が進められている。
【0008】
このように、温室効果ガス対策の全体において、ガスの排出削減対策を進める一方で、森林・農地の保全・整備や代替フロン類の回収に係るシステム創りなど、ガスの吸収・固定や回収・分離等に係る各種の対策を進めることも極めて重要である。
【0009】
排ガスのCO排出濃度としては、排ガス中でディーゼルエンジンが約10%、ボイラーで約13%、下水処理場、食品工場の消化ガスで約40%である。
【0010】
現在、多くの分野で二酸化炭素を分解・回収するための方法及び装置等の開発が進められている。特に、室温付近においてはゼオライト触媒などを用いて吸着・脱着する圧力スイング法、高分子膜を用いた膜分離法、水及びアルカリ水溶液などへ溶解する方法などが開発され、これらが主流となっている。また、一酸化炭素については、触媒を用いて二酸化炭素に変化させる方法も開発されている。
【0011】
圧力スイング法は、ゼオライトなどの二酸化炭素吸着性物質を充填し、二酸化炭素を吸着させている。そして、吸着が飽和した後は、低圧若しくは高温状態に保持し、吸着した二酸化炭素を放出している。しかしながら、この方法を用いる場合、二酸化炭素以外に水成分も吸着されるため、前段に脱水装置を設ける必要がある。また、連続処理が不可能であり、処理塔を最低2つ必要、加温設備、真空装置設備などの付加設備が必要で大規模な設備となる。
【0012】
高分子膜を用いた膜分離法は、二酸化炭素選択透過性の膜(ポリ([1−トリメチルシリル])プロピレン、ポリジメチルシロキサン等)の一方に加圧ガスを導入し、二酸化炭素を選択的に透過させ、二酸化炭素濃度を高める方法である。しかしながら、かかる方法では、膜自身に受けるガス圧力・二酸化炭素透過性を最適化するのが難しく高価となる。また、一般に、二酸化炭素の他に窒素、酸素などの気体も透過するため、完全な分離は困難となる。さらに、ガス加圧装置などの付加設備も大型となる。
【0013】
水及びアルカリ水溶液などへ溶解する方法は、大きく二つの方法がある。第一の方法は、水酸化ナトリウム水溶液に二酸化炭素を吸収させて炭酸塩(NaCO)となる現象を用いたものである。
【0014】
2NaOH + CO → NaCO + H
かかる手段は非常に簡単な方法であるが、生成した炭酸塩(NaCO)の後処理が困難であり(塩酸による中和)、これまでは加熱・乾燥後廃棄処分されているのが現状である。
【0015】
また、第二の方法は、炭酸水素ナトリウム(NaHCO)の熱分解・吸収法を利用している。
【0016】
2NaHCO → NaCO + CO + HO (65℃以上)
NaCO + CO + HO → 2NaHCO (室温〜50℃)
かかる方法では、炭酸水素ナトリウムの二酸化炭素に対する吸収量及び吸収速度が水酸化ナトリウム水溶液に対して非常に遅いため非効率となる。
【0017】
そこで、発明者らは、特許文献2に記載の二酸化炭素の除去方法を創出している。この方法は、正極(アノード)と負極(カソード)とを設けた固体電解質の正極(アノード)に、イオン供給源物質を接触させ、かつ、固定電解質の負極(カソード)に、二酸化炭素及び酸素を含有したガスを接触すると共に、正負極間に電圧を印加することにより、負極側にガス中の二酸化炭素を炭酸塩として分離固定している。
【0018】
【非特許文献1】
長倉三郎他編「理化学辞典」、岩波書店
【0019】
【特許文献1】
特許第2521884号公報(第2〜4頁)
【0020】
【非特許文献2】
化学大辞典編集委員会編「化学大辞典」、共立出版
【0021】
【特許文献2】
特開平2002−239373号(第2〜4頁、図1)
【0022】
【発明が解決しようとする課題】
特許文献2において、カソード側から二酸化炭素吸蔵によって排出される炭酸塩(主に炭酸水素ナトリウム)は室温の下においては約1mol/l程度しか水に溶解しない。このため、排出された炭酸塩の水溶液は、水分を蒸発させてもアノード側に用いる水酸化ナトリウム水溶液の濃度まで濃縮できない。したがって、これをそのままイオン供給源物質として利用すると、アノード側におけるナトリウムイオン濃度が低下してしまう。このことは、結果として、高濃度ナトリウム源の投入量が増加することになる。さらには、炭酸塩が溶けきれずに沈殿して配管を詰まらせる原因となり得る。これらのことは、二酸化炭素除去機能の安定性を欠くことととなる。
【0023】
また、二酸化炭素の除去に伴い、吸蔵した炭酸塩は増えていくが、この炭酸成分をどのように取り扱うかが問題となる。
【0024】
本発明は、かかる事情に鑑みなされたもので、その目的は、より低廉かつ効率的さらに安定した二酸化炭素の除去を実現すると共に、除去した二酸化炭素成分を有効的に利用できるガス処理方法とそのシステムの提供にある。
【0025】
【課題を解決するための手段】
前記課題を解決するために、本発明は以下のことを特徴とする。
【0026】
請求項1記載の発明は、ガス処理方法であって、ナトリウムイオンを透過する電解質膜にアノードとカソードとを設け、アノードにはナトリウム化合物の水溶液を接触すると共に、カソードには被処理ガスを供し、この両極間に直流電圧を印加することにより、カソード側において前記ガス中の二酸化炭素を炭酸塩の形態で分離除去する工程と、
ナトリウムイオンを透過する電解質膜を介してアノード液相とカソード液相を形成し、アノード液相には前記炭酸塩の水溶液を供給すると共にカソード液相には水を供給し、この液相間に直流電圧を印加することにより、カソード液相において水酸化ナトリウムと水素ガスを生成する工程と、
この工程で得た水酸化ナトリウムの水溶液を前記ナトリウム化合物の水溶液として利用に供する工程とを有することを特徴とする。
【0027】
請求項2記載の発明は、ガス処理方法であって、
ナトリウムイオンを透過する電解質膜にアノードとカソードとを設け、アノードにはナトリウム化合物の水溶液を接触すると共に、カソードには被処理ガスを供し、この両極間に直流電圧を印加することにより、カソード側において前記ガス中の二酸化炭素を炭酸塩の形態で分離除去する工程と、
前記炭酸塩を塩酸水溶液と反応させて、炭酸塩を二酸化炭素として遊離して系外に移送する工程と、
ナトリウムイオンを透過する電解質膜を介してアノード液相とカソード液相を形成し、アノード液相には炭酸塩と塩酸水溶液との反応によって生じた塩の水溶液を供給すると共にカソード液相には水を供給し、この液相間に直流電圧を印加することにより、カソード液相において水酸化ナトリウムを生成する工程と、
この工程で得た水酸化ナトリウムの水溶液を前記ナトリウム化合物の水溶液として利用に供する工程とを有することを特徴とする。
【0028】
請求項3記載の発明は、ガス処理方法であって、
ナトリウムイオンを透過する電解質膜を介してアノード液相とカソード液相とを形成し、カソード液相には被処理ガスとを供し、前記液相間に直流電圧を印加することにより、カソード液相において被処理ガスに含まれる二酸化炭素成分を炭酸塩の形態で分離する工程と、
前記カソード液相の一部を前記アノード液相に循環供給する工程とを有することを特徴とする。
【0029】
請求項4記載の発明は、ガス処理方法であって、
被処理ガスをナトリウム化合物の水溶液に注入してガス中に含まれる二酸化炭素成分をナトリウムの炭酸塩の形態で分離する工程と、
ナトリウムイオンを透過する電解質膜にアノードとカソードとを設け、アノードには前記炭酸塩の水溶液を供すると共に、カソードには水を供し、この両極間に直流電圧を印加することにより、カソード側において水酸化ナトリウムを生成する工程と、
この工程で得た水酸化ナトリウムの水溶液を前記二酸化炭素の分離工程に供する工程とを有することを特徴とする。
【0030】
請求項5記載の発明は、請求項1から4項に記載のガス処理方法において、被処理ガスを、スクラバーにおいて水若しくは水酸化ナトリウム水溶液の液滴と接触させた後に、前記カソードに供することを特徴とする。
【0031】
請求項6記載の発明は、請求項1から5項に記載のガス処理方法において、カソード側から排出された炭酸塩の水溶液を水処理の硝化工程におけるpH調整剤として用いることを特徴とする。
【0032】
請求項7記載の発明は、ガス処理システムであって、
ナトリウムイオンを透過する電解質膜と、前記電解質膜に設けられナトリウム化合物の水溶液が供されるアノードと、前記電解質膜に設けられ被処理ガスが供されるカソードと、を備え、この両極間に直流電圧を印加してカソード側においてガス中の二酸化炭素を炭酸塩の形態で分離除去するガス処理装置と、
ナトリウムイオンを透過する電解質膜を設置してアノード室とカソード室を形成すると共に、アノード室に前記炭酸塩の水溶液を供給する経路と、カソード室に水を供給する経路と、を備え、前記両室の液相間に直流電圧を印加してカソード室において水酸化ナトリウムを生成する再生槽と、
前記カソード室で生成した水酸化ナトリウムの水溶液を前記ガス処理装置に供給する経路と、を具備したことを特徴とする。
【0033】
請求項8記載の発明は、ガス処理システムであって、
ナトリウムイオンを透過する電解質膜と、前記電解質膜に設けられナトリウム化合物の水溶液が供されるアノードと、前記電解質膜に設けられ被処理ガスが供されるカソードと、を備え、この両極間に直流電圧を印加してカソード側においてガス中の二酸化炭素を炭酸塩の形態で分離除去するガス処理装置と、
前記カソードで生成した炭酸塩に強酸の水溶液を供する酸供給経路と、
ナトリウムイオンを透過する電解質膜を設置してアノード室とカソード室を形成すると共に、アノード室に炭酸塩と塩酸水溶液との反応によって生じた塩の水溶液を供給する経路と、カソード室に水を供給する経路と、を備え、前記両室の液相間に直流電圧を印加してカソード室において水酸化ナトリウムを生成する再生槽と、
前記カソード室で生成した水酸化ナトリウムの水溶液を前記ガス処理装置に供給する経路と、を具備したことを特徴とする。
【0034】
請求項9記載の発明は、ガス処理システムであって、炭酸塩水溶液を滞留させる槽にナトリウムイオンを透過する電解質膜を設置してアノード室とカソード室を形成し、前記カソード室に被処理ガスを供給する経路を備え、前記両室の液相間に直流電圧を印加して被処理ガスに含まれる二酸化炭素成分を炭酸塩の形態で分離するガス処理装置に、アノード室内の液相をカソード室に移送する経路と、カソード室内の液相をアノード室に移送する経路とを設けたことを特徴とする。
【0035】
請求項10記載の発明は、ガス処理システムであって、
被処理ガスとナトリウム化合物の水溶液とが供給され、これらを一定時間のもとで滞留させて該ガスに含まれる二酸化炭素成分を炭酸塩の形態で分離する炭酸ガス吸収槽と、
前記炭酸ガス吸収槽内の液相が導入される槽に、ナトリウムイオンと水素イオンを透過する電解質膜を設置してアノード室とカソード室を形成し、カソード室に水を供給する経路を備え、前記両室の液相間に直流電圧を印加してカソード室において水酸化ナトリウムを生成する再生槽と、
前記カソード室で生成した水酸化ナトリウムの水溶液を前記炭酸ガス吸収槽に供給する経路とを備えたことを特徴とする。
【0036】
請求項11記載の発明は、請求項10記載のガス処理システムにおける炭酸ガス吸収槽において、水酸化ナトリウム水溶液用の吐出配管を被処理ガス用の吐出配管内に設け、各吐出配管はノズル状に形成したことを特徴とする。
【0037】
請求項12記載の発明は、請求項7から9のいずれか1項に記載のガス処理システムにおいて、ガス処理装置に供される被処理ガスを水若しくは水酸化ナトリウム水溶液の液滴と接触させるスクラバーを備えたことを特徴とする。
【0038】
請求項13記載の発明は、請求項7から12のいずれか1項に記載のガス処理システムにおいて、ガス処理装置または炭酸ガス吸収槽から排出された炭酸塩水溶液をpH調整剤として水処理システムにおける硝化工程に供することを特徴とする。
【0039】
請求項14記載の発明は、請求項1から13のいずれか1項に記載のガス処理方法とそのシステムにおいて、被処理ガスは汚泥消化ガスであることを特徴とする。
【0040】
請求項1から14記載の発明は、二酸化炭素成分の除去に伴い吸蔵した炭酸塩を水酸化ナトリウムの水溶液に変換し、これを二酸化炭素除去に供するナトリウム化合物水溶液として利用しているので、大幅なランニングコストの削減が可能となる。
【0041】
また、請求項5及び12記載の発明のように、被処理ガスをアソードに供する前に、スクラバーにおいて、水若しくは水酸化ナトリウム水溶液の液滴と接触させてやれば、ガス中のおおまかな二酸化炭素成分は前記微細液体粒子に捕捉されるので、カソードに対する負荷が軽減され、二酸化炭素除去時及び水素ガス生成時の省電力化及び装置システムの小型化が図れる。そして、スクラバーから供給された被処理ガスはより水分を含んでいるので、より多くの水素ガスの生成が可能となると同時に、吸蔵させた炭酸塩を容易に水溶液化させることができる。このことは、連続的な二酸化炭素の除去及び水素ガスの生成も可能となる。
【0042】
さらに、前記炭酸塩はpH調整剤として使用できるので、請求項6及び13記載の発明のように水処理システムに供すれば、同システムにおける硝化脱窒作用を安定させることができる。
【0043】
そして、請求項14記載の発明のように、汚泥消化ガスを被処理ガスとすれば、ガス中のメタンガスを高濃度に濃縮できるので、水処理システム等から排出された汚泥消化化ガスを燃料電池、ガスタービン等の燃料や、燃料として売却するなどの有効利用に供することができる。
【0044】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0045】
(実施形態1)
図1は、本実施形態のガス処理処理システムの概略図である。
【0046】
ガス処理装置1は、ナトリウム化合物水溶液(図おいてはNa源と呼称)が供給されるアノード11と被処理ガスが供給されるカソード12とを設けた電解質膜10と、この両極間に直流電圧を印加する電源13と、を備えている。
【0047】
電解質膜10は、ナトリウムイオンの導電体からなるものが用いられる。ナトリウムイオン導電体には、例えばナトリウムイオン交換機能を有するポリマー製電解質膜が採用される。前記電解質膜としては、フッ素樹脂または塩化ビニル樹脂を基材とするものがある。さらには、スチレンとジビニルベンゼンの共重合物を母体とするスルホン酸樹脂、パーフルオロカーボンスルホン酸樹脂、ポリトリフルオロスチレンスルホン酸樹脂、ポリスチレンスルホン酸樹脂、またはフェノールスルホン酸樹脂等を含ませて形成したものがある。
【0048】
ナトリウム化合物水溶液には、水酸化ナトリウム(NaOH)水溶液、炭酸ナトリウム(NaCO)水溶液または炭酸水素ナトリウム(NaHCO)水溶液等が採用される。
【0049】
アノード11とカソード12としては、Pt、Au、Cr、Cu及びNi、若しくはこれらの酸化物等が例示され、多孔質性の電極が用いられる。当該電極は、電解質膜10において、スクリーン印刷、はけ塗り、蒸着、溶射、ディップコーティング等によって形成される。
【0050】
電源13は、直流電圧を印加する機能を有するものが採用され、既知のものでよい。電圧を印加するための電源は、一般の定電位電源(ポテンションスタット等)を用いることができるが、電流密度が可変であるものを用いるとよい。尚、電流密度を調節する一つの手段として、印加電圧の調整がある。
【0051】
ここで、図3及び図4にガス処理装置1の実施形態例を示した。
【0052】
図3(a)に示したガス処理装置は、アノード11とカソード12を備えた電解質膜10を、アノード側枠体31とカソード側枠体32とで挟み込んで構成されるセル30となっている。このとき、アノード側枠体31には、ナトリウム化合物水溶液(図においてはNa源と呼称)を一時的に滞留させる流路が設けられ、この水溶液を供給するための供給管311と、この水溶液を排出するための排出管312と、が接続される。同様に、カソード側枠体32には、被処理ガスを一時的に滞留させる流路が設けられ、被処理ガスを供給するための供給管321と、処理ガスを排出するための排出管322と、が接続される。また、アノード側枠体51及びカソード側枠体32の流路において、迂流板323が設けられている。図3(a)に開示されたカソード側枠体においては、迂流板323は一枚設置されているが、これに限定されず、図3(b)に示した枠体31,32のように、複数備えてもよい。かかる構成により、被処理ガス及びナトリウム化合物水溶液を電解質膜10のアノード面及びカソード面に対し均一に供給することができるので、二酸化炭素除去効率が高まる。
【0053】
また、セル構造を成したガス処理装置は、図3(c)に示したように、被処理ガスの負荷量等に応じて複数設置される。当該形態に係るガス処理装置は、セル30が3枚設置された構成となっている。このとき、装置の側面には、マニホールド33,34,35,36が設置される。マニホールド33には、被処理ガスを供給するための供給管121が接続されている。マニホールド34には、処理ガスを排出するための排出管122が接続されている。マニホールド35には、ナトリウム化合物水溶液を供給するための供給管111が接続されている。マニホールド36には、ナトリウム化合物水溶液を排出するための排出管121が接続されている。
【0054】
図4(a)は、二枚の電解質膜10を積層した場合の構成例である。積層枚数は被処理ガスの負荷量等によって定まる。図示されたように、2枚の電解質膜10が、セパレータ42を介して、積層され、上下からそれぞれプレート41,43が設けられている。このとき、プレート41には、ナトリウム化合物水溶液(図においてはNa源)の流路が設けられている。セパレータ42の上面には、被処理ガスの流路が設けられ、また下面には、ナトリウム化合物水溶液の流路が設けられている。セパレータ43には、被処理ガスの流路が設けられている。そして、図4(c)に示されたように、被処理ガスの流入側には供給管121を設けたマニホールド44が、処理ガスの排出側には排出管122を設けたマニホールド45が設置される。また、ナトリウム化合物水溶液の流入側には、流入管111を設けたマニホールド46が、さらに排出側には、排出管112を設けたマニホールドが設置される。尚、図4(b)に示したように、プレート41,43及びセパレータ42に設けられた流路には、複数の仕切板421を設けるとよい。かかる構成により、被処理ガス及びナトリウム化合物水溶液を電解質膜10のアノード面及びカソード面に対し均一に供給することができるので、二酸化炭素除去効率が高まる。
【0055】
図1においては、ナトリウム化合物水溶液(Na源)は、調整槽4から循環ポンプによって経路142を介して供給管111から供給される。余剰のナトリウム化合物水溶液は、排出管112から経路140を介して返送される。
【0056】
調整槽4は、アノード11に供給するためのナトリウム化合物水溶液を一時的に貯留するためのタンク14を備える。このとき、タンク14内液相のナトリウムイオン濃度は一定に調整される。そのために、調整槽4は、ナトリウムイオン濃度を測定するためのイオン濃度測定手段143と、高濃度ナトリウムイオン源や水を供給するための経路141とを備え、さらに、経路141には、タンク14内液相のイオン濃度に基づき開閉動作するバルブ手段を設けている。イオン濃度測定手段としては、例えば、pH測定機能を備え、pH値に基づきナトリウムイオンの濃度を算出している。
【0057】
被処理ガスは、図示省略されたブロアーまたはファン等の移送手段によって経路100を介して供給管121からガス処理装置1内に供給される。二酸化炭素が除去されたガスは、排出管122から経路31を介して気液分離槽3を経た後、経路32を介して系外移送される。気液分離槽3は、炭酸塩の水溶液を滞留させて導入したガスを洗浄する。
【0058】
また、本実施形態では、経路100に、被処理ガスに水(水蒸気でもよい)を供給する水供給手段2を具備させている。水供給手段2は、被処理ガスに水分を供給できるものであれば既知のものよい。例えば、スプレー式のもの等が採用される。水供給手段2によって、カソード12で生成した炭酸塩を容易に水溶液化させることができるので、炭酸塩を系外除去しやすくなり、連続的な二酸化炭素の除去ができる。炭酸塩水溶液は、気液分離槽3に捕集され、ナトリウムイオン源として再利用できる。
【0059】
さらに、本実施形態においては、吸蔵させた炭酸塩から水酸化ナトリウムの水溶液を得るための再生槽5を具備している。
【0060】
再生槽5の実施形態例の概略を図5に示した。図5(a)は炭酸塩水溶液が供された場合、図5(b)は炭酸水素水溶液が供された場合の形態例である。
【0061】
再生槽5は、炭酸塩水溶液が供給される槽50がイオン導電体54で仕切られた2槽構造となっている。そして、炭酸塩水溶液が供給される槽には直流電源53の陽極と導通可能なアノード51が設置され、また他方の槽には、純水が供給され、同電源63の陰極と導通可能なカソード52が設置されている。イオン導電体54は、ナトリウムイオンと水素イオンとを通過させることができるものであれば公知のものでよい。また、イオン導電体54は、ナトリウムイオン(Na)と水素イオン(H)が同時に透過するものまたはそれぞれイオンが透過する2つのイオン導電体の組み合わせたものが採用される。イオン導電体としては、例えば、NASICON、β−アルミナなどの、ナトリウムイオン導電性セラミックや、ナフィオンに代表されるナトリウムイオン透過性の電解質膜がある。また、その他の電解質膜としては、先で述べたフッ素樹脂、塩化ビニル樹脂またはスルホン酸樹脂等を含ませて形成したものがある。
【0062】
次に、図1及び図5を参照しながら、本実施形態のガス処理システムの動作例について説明する。ここでは、ナトリウムイオン源が水酸化ナトリウム水溶液(以下、NaOH水溶液)で、被処理ガスがCHとCOとを含んだガスである場合について述べる。
【0063】
当該ガス処理システムにおける二酸化炭素ガス除去は、アノード11とカソード12のと間に直流電圧を印加することによって行われる。
【0064】
すなわち、図1において、アノード11側には供給管111からNaOH水溶液が供給され、アノード11はこのナトリウムイオン源によって浸漬された状態となる。また、カソード12側には、供給管121から被処理ガスが供給される。ここでは、被処理ガスには、水供給手段2から水または水蒸気が注入される。そして、アノード11とカソード12の両極間には電源13から直流電圧が印加される。このとき、先ずNaOHが接触したアノード11表面においては、以下の反応が起こる。
【0065】
NaOH → Na+OH …(1)
2OH → 1/2O +HO+ 2e …(2)
そして、ナトリウムイオン(Na)は、アノード11を通過し、電解質膜10を泳動し、カソード12に達する。一方、アノード11側で遊離した電子(e)は、電源13を経由して、カソード12に達する。
【0066】
ここで、気相中の二酸化炭素(CO)及び水分(HO)がカソード12表面に接触すると、以下の反応が起こる。
【0067】
Na+e+CO+HO → NaHCO + 1/2H …(3)
2Na+CO+HO+2e → NaCO + H …(4)
このようにして、被処理ガス中に含まれる二酸化炭素は、炭酸塩の形態でカソード12表面に固定されることで、分離除去される。そして、この反応に伴い水素ガスが生成される。このとき、生成した炭酸塩は、水に溶けた状態で存在し、生成と同時に電極表面から洗い落とされる。そして、生成した炭酸塩水溶液は気液分離槽3にてガスと分離される。このようにして、二酸化炭素の除去を連続的に行うことができる。
【0068】
ここで、図示されたように、経路100には、被処理ガスに液滴を接触させるスクラバー15を備えるとなおよい。スクレバー15は、例えばスプレー方式を採用している。液滴となる洗浄水としては、水または水酸化ナトリウム水溶液等がある。
【0069】
被処理ガスをスクラバー15に供すると、ガス中の二酸化炭素成分は、液滴と接触し、これに捕捉される。これにより、被処理ガス中のおおまかな二酸化炭素成分が除去される。また、これに伴い、ガス中に含まれたその他の成分、例えば硫化水素や硫黄酸化物または微細なホコリ成分等が除去されるので、被処理ガスがガス処理装置1に導入されたとき、二酸化炭素成分とカソード12との接触効率が高まる。スクラバー15を通過したガスは、直ちにガス処理装置1に供され、残留した二酸化炭素成分が除去される。スクラバー15にて処理されたガスは水成分をより含んでいるので、カソード12で生じた炭酸塩を容易に水溶液化させると共に、前記(3)及び(4)の反応を促進させることができる。このように、スクラバー15を設けることで、ガス処理装置1に対する二酸化炭素負荷量が軽減されるばかりか、より効率的に二酸炭素を除去できるばかりでなく、水素も生成させることができる。
【0070】
一方、炭酸塩水溶液は、再生槽5に供されると、図5(a)及び図5(b)に示したように、水酸化ナトリウム水溶液に変換される。
【0071】
炭酸ナトリウムが供された場合、図5(a)に示したように、ナトリウムイオン(Na+)と炭酸イオン(CO 2−)に、水は若干の水素イオン(H)と水酸化物イオン(OH)に電離している。この状態で、炭酸ナトリウム水溶液側をアノード(+)、純水側をカソード(−)として電位をかけると、ナトリウムイオンと水素イオンはイオン導電体膜を透過していく。このとき、アノード(+)側では、炭酸イオンと水酸化物イオンが平衡分圧・電位の影響により電子を放出して、炭酸イオンが二酸化炭素と酸素に、水酸化物イオンは酸素となって、大気中に放出される。反対に、カソード(−)側へ透過したナトリウムイオンは電極から電子を受け取り金属ナトリウムとなるが、水(HO)と作用し、NaOHとHが生成される。透過した水素イオンも電極から電子を受け取り水素ガスとなる。そして、十分時間が透過した後の、カソード(−)側は高濃度の水酸化ナトリウム水溶液となっており、炭酸ナトリウム水溶液を水酸化ナトリウム水溶液として分離・回収できる。また、この方式は水の電気分解も兼ね備えているため、水素の供給源としても利用できる。このようにして得られた水酸化ナトリウム溶液は、図示省略されたポンプ等の移送手段によって、調整槽4に供給され、ナトリウムイオンの濃度が所定濃度(例えば5〜10mol/l)に調整された後に、ガス処理装置1のアノード11に適宜供給される。NaOH再生に係る反応を以下にまとめた。
【0072】
Figure 2004174369
2Naと2Hは、イオン導電体64を介してカソード側へ移動する。
【0073】
Figure 2004174369
また、ガス処理装置1のカソード12において、十分な水(HO)が存在した場合、温度が低いときは完全に炭酸ナトリウム水溶液とならず、炭酸水素ナトリウム水溶液となる場合がある。
【0074】
図5(b)は、この炭酸水素ナトリウムから水酸化ナトリウム水溶液を再生する場合の実施形態である。水酸化ナトリウム水溶液の再生の原理は図5(a)と同様である。すなわち、アノード51側の炭酸水素ナトリウム水溶液はナトリウムイオンと炭酸イオンとに電離し電極へ電子を放出して二酸化炭素及び酸素を放出する。分離したナトリウムイオンと水素イオンは、イオン導電体54を通って、カソード52側に移動し、水と反応して水素を発生しながら、水酸化ナトリウムとなる。得られた水素ガスは燃料ガスとして利用できる。このようにして得られた水酸化ナトリウム水溶液は、調整槽4に供給され、ナトリウムイオンの濃度が所定濃度(例えば5〜10mol/l)に調整された後に、ガス処理装置1のアノード11に適宜供給される。NaOH再生に係る反応を以下にまとめた。
【0075】
Figure 2004174369
2Naと2Hは、イオン導電体64を介してカソード側へ移動する。
【0076】
Figure 2004174369
以上のように、本実施形態に係るガス処理システムによれば、ナトリウムイオン源の回収・再利用を行え、低廉に二酸化炭素を除去することができる。
【0077】
また、被処理ガスがメタンを含んだガス例えば汚泥消化ガスのようなガスである場合、このガスを本実施形態のガス処理システムに供することで、効率的に濃縮メタンガスを得ることができる。この濃縮メタンガスは、燃料電池やガスタービン等の燃料またはその他の燃料として売却するなどの有効利用が可能となる。
【0078】
下水処理場で発生する汚泥の消化ガスや家畜糞尿設備で発生するバイオガスは有用なエネルギー源として活用が可能であるが、従来の技術においては特に中小容量の処理場において熱源としての用途しか見出すことができなかった。その一つの理由としては、メタンガス濃度が低いことが挙げられる。そこで、汚泥消化ガス中の二酸化炭素成分を前記ガス処理システムで除去することで、前記ガス中のメタンガス濃度を高めることができ、汚泥消化ガスを高発熱量ガスに転換させることができる。
【0079】
そして、特に図2に示した実施形態例のような下水処理システムにおいて、本発明のガス処理システムを具備させれば、汚泥消化ガスを有効利用することができる共に、水処理システムにおける硝化脱窒機能を安定化させることができる。
【0080】
図2に示された水処理システムは、汚泥消化ガスが得られる設備は主に下水処理施設で硝化工程さらには脱窒工程を有する。硝化工程及び脱窒工程の液相は最終沈殿池にて固液分離処理される。最終沈殿池で得られた上澄水は、さらに高度処理に供されるか若しくは放流される。ここで、最終沈殿池にて分離された汚泥の一部は活性汚泥として再利用するために硝化工程に返送される一方で、一部の汚泥は消化させるために汚泥消化工程に供される。汚泥消化工程では、汚泥を好気的または嫌気的に処理している。特に、嫌気処理の過程において、メタンガスを含んだガスが発生する。
【0081】
一般的な下水処理では先ず、硝化工程で下水中の窒素化合物(アンモニア性窒素)を硝化菌の作用で硝酸イオンなど(NO 、NO )に変換し、次いで脱窒工程で脱窒菌の作用により窒素ガス(N)へ還元する必要がある。硝化工程における下水のpHは8〜9の範囲であるが、硝化反応が進行していくとアルカリ度が消費されてpH値が低下する。pH値の低下が生じると処理効率が低下する落ちるばかりでなく、硝化菌が死滅する恐れがある。したがって、pH値を8〜9に調整するために、消石灰(Ca(OH))、ソーダ灰(NaCo)、水酸化ナトリウム(NaOH)といったアルカリ剤(pH調整剤)を投入しなければならない。
【0082】
前述のガス処理装置1のカソード12側から排出される炭酸塩水溶液(廃液)は、そのpH値は8〜10程度であり(尚、二酸化炭素を完全に吸収していない場合は、NaOH成分が高くなるためそれ以上のpH値となる)、アルカリ剤として利用できる。そこで、ガス処理装置1を備えたガス処理システムを下水処理システムに具備させることで、高発熱量ガスの生産と下水処理における硝化脱窒機能を安定化させることができる。
【0083】
以下に、本実施形態におけるガス処理システムの実施例を示した。
【0084】
図12は、電流密度と二酸化炭素濃度及び水素濃度との関係を示した特性図である。
【0085】
当該実験に係るガス処理システムは、図1記載のシステムにおいて図4記載のガス処理装置を用いたものを採用した。ここでは、セルサイズ200mm×200mmの電解質を二枚積層(有効電極面積:600cm)したガス処理装置に、被処理ガス(ガス成分 二酸化炭素:40%、窒素:60%)を1l/minの流量で供給した。このとき、被処理ガスはスクラバーを介さないでガス処理装置のカソードに供給したまた、印加直流電圧は2.5Vに設定した。さらに、電解質はフッ素樹脂系のものを、ナトリウム化合物の水溶液には水酸化ナトリウム水溶液を、電極にはニッケルからなるものを採用した。
【0086】
図示された結果から明らかなように、電流密度の上昇に伴い、二酸化炭素濃度が減少していくことが確認できる。また、当該実施例においては、電流密度100mA/cm時において二酸化炭素は完全に除去できたことも確認された。
【0087】
ここで、当該実施例の結果に基づき算出した二酸化炭素除去に必要な電力、使用電力による二酸化炭素発生量(1分間)、二酸化炭素固定量(1分間)、水素発生量(1分間)を以下に示した。
【0088】
二酸化炭素除去に必要な電力:2.5[V]×60[A]=150[W]
使用電力による二酸化炭素発生量(1分間):150×1/1000×1/60×0.12/44=0.007[mol] 尚、0.12は、石油火力を電源として用いた時の二酸化炭素排出量を示す。
【0089】
二酸化炭素固定量(1分間):0.4[l/分]×1[分]/22.4[l]=0.018[mol]
水素発生量(1分間):0.018[mol]
かかる計算結果から明らかなように、わずかな電力で二酸化炭素を効率的に除去でき、かつ固定した二酸化炭素と等モルの水素が発生することが確認できる。
【0090】
また、表1に、被処理ガスをスクラバーに供した後にガス処理装置に供給した場合の各処理工程から排出されたガス、すなわちスクラバーを通過したガス(以下、第一処理ガス)及びガス処理装置から排出されたガス(以下、第二処理ガス)の組成を被処理ガスのガス組成と共に開示した。ここでは、被処理ガスの組成をメタン:二酸化炭素=60:40としたこと以外は図5記載の実施例と同様の条件でガスを処理した。
【0091】
【表1】
Figure 2004174369
【0092】
表に示された通り、第一処理ガスのメタンガス濃度は85%、また二酸化炭素濃度は15%となっていることが確認された。さらに、第二処理ガスにおいては、二酸化炭素が検出されず、可燃性ガスの濃度は100%となっていることが確認された。このことは、スクラバーを本発明のガス処理装置と組み合わせることで、ガス処理装置に対する二酸化炭素負荷量が軽減され、二酸化炭素除去における省電力化及び装置システムの小型化が図れることを示唆するものである。尚、第二処理ガスは、そのメタンガス濃度から明らかなように、燃料電池、ガスタービン等の燃料や、燃料として売却するなどの有効利用に供することができるがわかる。
【0093】
図13は、本発明の実施例によるI−V特性を示した特性図である。
【0094】
実施例1に係るガス処理装置は電解質に塩化ビニル系の樹脂からなる電解質膜を、比較例に係るガス処理装置はセラミックス系の電解質を採用した。実施例1及び比較例は、ナトリウム化合物水溶液に5mol/lの水酸化ナトリウム水溶液を採用し、動作温度は室温の20℃とした。図示された結果から明らかなように、電解質に塩化ビニル系樹脂の電解質膜を採用した実施例1においては、反応が始まってから電流の立ち上がりがよくなり、セラミックス系の電解質よりも、大幅な省電力化が可能であることが確認できる。
【0095】
ここで、図14に実施例1による二酸化炭素の除去特性を示した。当該特性試験は、100mA/cmの定格電流方式で行った。電極面積は300cmに設定した。図から明らかなように、初期濃度約20%の二酸化炭素は電流が流れ始めると同時に除去が始まり、約20分で0.6%程度までに低減させることができることが確認できる。このとき、電流を停止すると、二酸化炭素濃度は上昇し始めることが確認された。そして、当該試験においては、二酸化炭素の除去率は97%となることが確認された。また、二酸化炭素の除去率は電流が流れている間はほぼ一定に保持することも確認された。さらに、ナトリウムイオン供給源を供給続ければ、連続的に二酸化炭素を吸蔵することも確認されている。
【0096】
図15は、本発明の実施例によるI−V特性を示した特性図である。
【0097】
実施例2に係るガス処理装置は電解質にフッ素樹脂系の電解質膜を、比較例に係るガス処理装置はセラミックス系の電解質を採用した。実施例2及び比較例は、ナトリウム化合物水溶液に5mol/lの水酸化ナトリウム水溶液を採用し、動作温度は86℃とした。図示された結果から明らかなように、電解質にフッ素樹脂系電解質膜を採用した実施例2においては、反応が始まってから電流の立ち上がりがよくなり、セラミックス系の電解質よりも、大幅な省電力化が可能であることが確認できる。
【0098】
(実施形態2)
図6(a)は、本実施形態のガス処理システムを示した概略図である。また、図6(b)は、当該システムが備えた再生槽6の概略構成図である。
【0099】
本実施形態に係るガス処理システムは、二酸化炭素除去する工程でカソード12に吸蔵した二酸化炭素成分を強酸によって遊離し放出する工程と、この工程で生成した塩から水酸化ナトリウムを再生する工程とを有する。強酸としては例えば塩酸が用いられる。
【0100】
ガス処理装置1は、実施形態1に係るガス処理装置と同様の構成である。その構成の説明は当該実施形態に譲る。本実施形態においては、被処理ガスを導入するための経路には、三方バルブV1(以下V1とする)を介して、強酸水溶液を供給するための経路が接続されている。また、ガス処理装置1と気液分離槽3とを連絡する経路には、三方バルブV2(以下V2とする)を介して、カソード12側で生成した塩化ナトリウム水溶液を再生槽6に移送するための経路が接続されている。
【0101】
再生槽6は、図8(b)に示されたように、塩化ナトリウム水溶液が供給される槽60がイオン導電体64で仕切られた2槽構造となっている。そして、塩化ナトリウム水溶液が供給される槽には直流電源63の陽極と導通可能なアノード61が設置され、また他方の槽には、水が供給され、同電源63の陰極と導通可能なカソード62が設置されている。ナトリウムイオンを通過させることができるものであれば公知のものでよい。例えば、実施形態1で述べたフッ素樹脂、塩化ビニル樹脂またはスルホン酸樹脂等を含ませて形成した電解質膜がある。
【0102】
本実施形態のガス処理システムの動作例について図6及び図7に基づき説明する。
【0103】
二酸化炭素除去工程においては、図7(a)に示されたように、V1は、被処理ガスをガス処理装置1に供給するように制御される。V2は、処理ガスを気液分離槽3に供給するように制御される。当該工程におけるカソード12での作用の説明は実施形態1に譲る。
【0104】
二酸化炭素放出工程においては、図7(b)に示されたように、V1は、強酸水溶液をガス処理装置1に供給するように制御される。V2は、処理ガスを気液分離槽3に供給するように制御される。当該工程は、二酸化炭素除去工程において被処理ガス中に含まれる二酸化炭素成分を捕獲して得た炭酸ナトリウムは弱酸と強塩基の化合物であることに着目し、弱酸の二酸化炭素の取出しを行っている。すなわち、当該炭酸塩に強酸ここでは塩酸水溶液を噴霧することで以下の反応を起こさせ、二酸化炭素の取出し系外に移送させている。
【0105】
NaCO + 2HCl → 2NaCl + HO + CO
また、炭酸水素ナトリウムを得ている場合には、これに強酸(例えば塩酸水溶液等)を噴霧することで以下の反応を起こさせ、二酸化炭素を取り出し系外に移送させる。
【0106】
NaHCO + HCl → NaCl + HO + CO
かかる反応により上記炭酸塩は直ちに分解し、二酸化炭素が遊離される。このとき、副生されたナトリウム塩であるところの塩化ナトリウム水溶液はナトリウムイオン源再生工程に供される。図16に本実施形態における二酸化炭素の吸蔵と放出示した実験結果例を開示した。該図によると、二酸化炭素の吸蔵量と放出量が一致していない。これは、二酸化炭素除去工程においてカソード12表面に得られた化合物が、炭酸ナトリウムではなく、炭酸水素ナトリウムであり、これが水溶液の形態で洗い流されているためであると考えられる。
【0107】
次いで、水酸化ナトリウムの再生工程では、図6(b)に示したように、アノード61には直流電源63の陽極が導通し、カソード62には同電源63の陰極と導通し、直流電圧が印加される。このとき、電気分解が進行し、カソード62側の液相において水成分は水酸化物イオンと水素ガスに分解される。ここで、副生された水素ガスは、燃料ガスとして利用が可能となるばかりでなく、共に生成した塩素ガス共に塩酸の原料となり得るので、系外に移送され二酸化炭素放出工程に用いられる塩酸の生成に供することができる。一方、ナトリウムイオンはイオン導電体64を経て、カソード52側の水槽に移行し、該水槽内の液相は水酸化ナトリウムの水溶液となる。このようにして得られた水酸化ナトリウム水溶液は、適時濃度調整(例えば5〜10mol/lに調整)された後、ガス処理装置1のアノード11に適時供給される。当該工程における反応を以下にまとめた。
【0108】
Figure 2004174369
【0109】
Figure 2004174369
尚、本実施形態において、ガス処理装置1への被処理ガス供給ラインには、実施形態1と同様の趣旨で、被処理ガスに液滴を接触させるスクラバー15を備えるとなおよい。さらに、実施形態1と同様に、下水処理システムにおいて、本実施形態のガス処理システムを具備させれば、汚泥消化ガスを有効利用することができる共に、炭酸塩水溶液をpH調整剤して水処理システムに供してやれば、水処理における硝化脱窒機能を安定化させることができる。
【0110】
(実施形態3)
図8は、本実施形態のガス処理システムを示した概略図である。
【0111】
本実施形態のガス処理システムは、ガス処理装置7と再生槽5とを備え、実施形態1と同様に、二酸化炭素除去工程と、二酸化炭素放出工程と、水酸ナトリウム再生工程を有する。ガス処理装置7と再生槽5は、経路703,704を介し、連絡される。尚、経路703,704には、それぞれポンプ等の移送手段P2,P3が適宜設置される。また、本実施形態では、ガス処理装置7における被処理ガスの供給路には、該ガスを供給するためのポンプやファン等の移送手段P1が具備され、さらに水蒸気発生器75が設置されている。
【0112】
ガス処理装置7は、槽70がプレート状に形成されたイオン電導体74によって、2槽構造となっている。本実施形態においてイオン導電体74は直流電源73と導通可能なアノード71とカソード72とを備えている。イオン導電体74は、実施形態1及び2におけるイオン導電体と同様のものが採用される。そして、カソード側の槽(以下、カソード室と称する)は、水を滞留させている。また、この槽には、水蒸気(水)を含んだ被処理ガスを導入するための経路と、この槽内の液相から放出されたメタンや水素に富むガスを系外に移送するための経路とを付帯している。一方、アノード側の槽(以下、アノード室と称する)は水酸化ナトリウム水溶液を滞留させている。そして、この槽には、槽内の液相から放出された二酸化炭素に富むガスを系外に移送するための経路を付帯している。尚、当該装置における二酸化炭素除去のメカニズムの説明は、前述の図2に係る二酸化炭素除去の原理と同様であるので、省略する。
【0113】
水蒸気発生器75は、被処理ガスに水蒸気を導入させるための設備であり、被処理ガスが供給される槽に、水蒸気を発生させるためのヒーターを付帯させている。被処理ガスはブロワーやファン等の移送手段P1によって当該槽に導入される。当該槽内には、水蒸気を発生するために、水を滞留させている。水は適宜補充される。ヒーターは、任意に温度調整が可能で、温度測定手段によって監視されながら、槽内温度雰囲気を一定に保持させている。
【0114】
本実施形態において、ガス処理装置7から排出される廃液は炭酸ナトリウムまたは炭酸水素ナトリウムの水溶液となっている。ここで、この廃液を再生槽5に供して水酸化ナトリウム水溶液を再生している。
【0115】
再生槽5は、図5(a)(b)と同様の構成をなし、炭酸塩水溶液が供給される槽がイオン導電体で仕切られた2槽構造となっている。ここで、ガス処理装置7から経路703を介し炭酸塩水溶液が供給される一方の槽には、直流電源の陽極と導通可能なアノードが設置され、また他方の槽には、水が供給され、同電源の陰極と導通可能なカソードが設置されている(図5参照)。再生槽5で得られた水酸化ナトリウム水溶液は経路704を介しガス処理装置7のアノード室に供給される。
【0116】
回収された水酸化ナトリウム水溶液は再びガス処理装置7のアノード室へ返流させているので、被処理ガス中の二酸化炭素の分離除去を連続的に可能とさせている。また、前記実施形態と同様に、得られた水素ガスは濃縮されたメタンガスと共に燃料ガスとして利用が可能となる。
【0117】
尚、本実施形態において、ガス処理装置1への被処理ガス供給ラインには、実施形態1と同様の趣旨で、被処理ガスに液滴を接触させるスクラバー15を備えるとなおよい。さらに、実施形態1と同様に、下水処理システムにおいて、本実施形態のガス処理システムを具備させれば、汚泥消化ガスを有効利用することができる共に、炭酸塩水溶液をpH調整剤して水処理システムに供してやれば、水処理における硝化脱窒機能を安定化させることができる。
【0118】
(実施形態4)
図9は、本実施形態のガス処理システムを示した概略図である。
【0119】
本実施形態におけるガス処理装置は、ナトリウム化合物水溶液が充填された槽70がプレート状に形成されたイオン導電体74によって仕切られ2槽構造となっている。ここでは、炭酸水素ナトリウム水溶液が用いられているが、実施形態1と同様に、水酸化ナトリウム(NaOH)水溶液や炭酸水素ナトリウム(NaHCO)水溶液等を用いてよい。イオン導電体74としては、前述した、例えば、NASICON、β−アルミナなどの、ナトリウムイオン導電性セラミックや、ナフィオンに代表されるナトリウム透過性の電解質膜がある。また、その他の電解質膜としては、実施形態1で述べたフッ素樹脂、塩化ビニル樹脂またはスルホン酸樹脂等を含ませて形成したものがある。
【0120】
図示されたように、槽70にイオン導電体74が設けられてなる一方の槽には、被処理ガスを導入するための経路と、この槽内の液相から放出されたメタンや水素に富むガスを系外に移送するための経路が、具備され、さらに、電源(直流)73の陰極と導通可能なカソード72が設置される(以下、この槽をカソード室と称する)。また、他方の槽には、この槽内の液相から放出された二酸化炭素や酸素に富むガスを系外に移送するための経路が、具備され、さらに、電源73の陽極と導通可能なアノード71が設置される(以下、この槽をアノード室と称する)。
【0121】
そして、アノード室とカソード室は、経路701,702を介して、連絡可能としている。経路701は、カソード室内の液相をアノード室に移送するための経路で、ポンプ等の移送手段P0とバルブ手段V5が設置される。経路702は、アノード室の液相を適宜にカソード室に導入するための経路で、図示省略されたバルブ等の移送手段が設置される。
【0122】
本実施形態のガス処理システムの動作例について説明する。ここでは、電解液に炭酸ナトリウム(NaCO)水溶液を採用した場合について述べる。
【0123】
アノード室及びカソード室において、各槽内の液相はP0によって循環されている。液相温度は室温でよい。このとき、該液相はそれぞれナトリウムイオンと炭酸イオンとに電離した状態になっている。ここで、カソード室に被処理ガスを供給し、アノード71とカソード72と間に電界を印加すると、アノード71側の上流側(炭酸ナトリウム水溶液導入口付近)で、ナトリウムイオンがイオン導電体74を透過してカソード72側へ移動し、炭酸イオンは電子を放出して二酸化炭素と酸素となって放出される。また、水成分もナトリウムイオンの作用によって電離しているため、酸素ガスが発生するが、下流側にはナトリウムイオンがほとんど滞留していないため、未反応の水素イオンが残存した状態の水成分(HO)となる(尚、水素イオン導電体膜を複合的に用いた場合は水素イオンが残存せず、HOのみとなる)。ここで、経路702を介しアノード室で残った水成分をカソード室に導入し、二酸化炭素を含んだ被処理ガス(例えば、消化ガス)を吹き込むと、液相内のナトリウムイオンは水及び二酸化炭素との反応し、炭酸ナトリウムが生成される。このとき、副反応として水素イオンにより水素ガスが発生する。このようにして、カソード室内において、ほぼ完全に反応が完了し、炭酸ナトリウム水溶液として取り出すことができる。この炭酸ナトリウム水溶液は経路701を介しポンプによって再びアノード室へ移送される。尚、水の電気分解により水成分が消費され、液位・濃度を維持できなくなる場合はバルブ手段V4を介し新たに水が適宜補給される。また、最初に充填するナトリウムイオン源は炭酸ナトリウム水溶液に限定されず、例えば、水酸化ナトリウムや炭酸水素ナトリウム等の水溶液を用いることができる。
【0124】
以上のように、当該実施形態に係るシステムによれば、ナトリウムイオン源の回収・再利用を行いながら連続的に二酸化炭素を除去することができる。特に、被処理ガス中の二酸化炭素成分は室温のもとで簡単に除去できる。また、単一ユニットで、被処理ガスに対しナトリウムイオン源を循環供給しながら、二酸化炭素の連続除去が可能となるので、装置の簡略化が可能となる。
【0125】
尚、本実施形態において、ガス処理装置1への被処理ガス供給ラインには、実施形態1と同様の趣旨で、被処理ガスに液滴を接触させるスクラバー15を備えるとなおよい。さらに、実施形態1と同様に、下水処理システムにおいて、本実施形態のガス処理システムを具備させれば、汚泥消化ガスを有効利用することができる共に、炭酸塩水溶液をpH調整剤して水処理システムに供してやれば、水処理における硝化脱窒機能を安定化させることができる。
【0126】
(実施形態5)
図10及び11は、本実施形態のガス処理システムの概略構成を示した図である。
【0127】
本実施形態のガス処理システムは、炭酸ガス吸収槽8と、再生槽6とを備える。ここで、両者は、炭酸ガス吸収槽8内の液相を再生槽6に供給するための経路801と、ナトリウムイオン源再生槽6で得た水酸化ナトリウム水溶液を炭酸ガス吸収槽8に返流するための経路802とによって連絡されている。経路801,802には、ポンプやバルブ等の移送手段P4が適宜設置される場合がある。
【0128】
炭酸ガス吸収槽8は、二酸化炭素成分を含んだガスをアルカリ水溶液に注入して、該ガスに含まれる二酸化炭素成分をアルカリ成分によって吸収するための設備である。ここでは、アルカリ水溶液を滞留させた水槽80に、被処理ガスを導入するための経路81と、水槽80内の液相から放出さらた処理ガスを系外に移送するための経路82とを具備させている。また、被処理ガスと槽80内液相との接触効率を考慮し、経路81が槽80内において底部付近までに達するように引き込まれたり、また攪拌手段が付帯されたりする場合がある。さらに、水槽81の容積は、被処理ガスの負荷量に応じて適宜設定される。アルカリ水溶液としては例えば水酸化ナトリウム水溶液等があり、その濃度は二酸化炭素を吸収するに十分な程に調整される。
【0129】
また、被処理ガスと水酸化ナトリウム水溶液は、炭酸ガス吸収槽8において、ノズル形式に導入してもよい。図11はその一例で、ここでの炭酸ガス吸収槽9は、炭酸塩水溶液(例えば、炭酸ナトリウム水溶液)を滞留させた槽90に、被処理ガスを供給するためのノズル配管91と、水酸化ナトリウム水溶液を供給するためのノズル配管92とが具備される。このとき、水酸化ナトリウム水溶液は、再生槽6で再生されたものを供給している。該図においては、槽90内において配管92が配管91内に同軸状に配置されているが、配管91,92の導入形態はこれに限定されない。このように、被処理ガスと水酸化ナトリウム水溶液とを反応させながら槽90内に導入することで、二酸化炭素成分とアルカリ成分との反応速度を高めることができ、二酸化炭素成分の効率的な除去が可能となる。
【0130】
再生槽6は、図5に示したものと同様の構成で、炭酸塩水溶液が供給される槽がイオン導電体で仕切られた2槽構造となっている。ここでは、直流電源63と導通可能なアノード61とカソード63とを備えたプレート状のイオン導電体64によって仕切られている。そして、アノード61が設置された槽(アノード室)には経路801を介し炭酸塩水溶液が供給され、カソード62が設置された槽(カソード室)には、純水が供給される。再生槽6で得られた水酸化ナトリウム水溶液は経路802を介し炭酸ガス吸収槽8に返送している。
【0131】
本実施形態のガス処理システムの動作例について説明する。
【0132】
炭酸酸ガス吸収槽8に水酸化ナトリウム水溶液を滞留させておき、これに被処理ガス(例えば、汚泥消化ガス)をバブリング法によって注入する。この場合、液相温度は室温のままでよい。このとき、水酸化ナトリウム水溶液に対する二酸化炭素の溶解度はメタン溶解度より高いので(約100倍程度)、二酸化炭素だけが水酸化ナトリウムに吸収され、高純度のメタンガスとして取り戻すことができる。
【0133】
二酸化炭素を十分吸収した水溶液(炭酸ナトリウム水溶液や炭酸水素ナトリウム水溶液)は、経路801を介し、再生槽6へ移行し、実施形態1における再生槽の説明で示した反応によって、アノード室からは混合ガス(二酸化炭素、酸素)が、カソード室からは水素ガス、水酸化ナトリウム水溶液が分離される。ここで、分離された水素ガスは燃料として使用できるため、高純度水素ガスとして若しくはメタンガスと混合させたガスとして利用できる。また、水酸化ナトリウム水溶液は経路802を介して二酸化炭素吸収槽8に返流させているので、連続的な二酸化炭素の除去が可能となる。
【0134】
以上のように、本実施形態のガス処理システムによれば、ナトリウムイオン源の回収・再利用を行いながら連続的に二酸化炭素を除去することができる。特に、被処理ガス中の二酸化炭素成分は室温のもとで簡単に除去できる。
【0135】
尚、本実施形態において、ガス処理装置1への被処理ガス供給ラインには、実施形態1と同様の趣旨で、被処理ガスに液滴を接触させるスクラバー15を備えるとなおよい。さらに、実施形態1と同様に、下水処理システムにおいて、本実施形態のガス処理システムを具備させれば、汚泥消化ガスを有効利用することができる共に、炭酸塩水溶液をpH調整剤して水処理システムに供してやれば、水処理における硝化脱窒機能を安定化させることができる。
【0136】
【発明の効果】
以上の説明から明らかなように、本発明の請求項記載のガス処理方法とそのシステムによれば、より低廉かつ効率的さらに安定した二酸化炭素の除去を実現すると共に、除去した二酸化炭素成分を有効的に利用できる。
【0137】
特に、本発明においては、二酸化炭素成分の除去に伴い吸蔵した炭酸塩を水酸化ナトリウムの水溶液に変換し、これを二酸化炭素除去に供するナトリウム化合物水溶液として利用しているので、大幅なランニングコストの削減が可能となる。
【0138】
また、被処理ガスをアソードに供する前に、スクラバーにおいて、水若しくは水酸化ナトリウム水溶液の液滴と接触させることで、ガス中のおおまかな二酸化炭素成分は前記微細液体粒子に捕捉されるので、カソードに対する負荷が軽減され、二酸化炭素除去時及び水素ガス生成時の省電力化が可能となり、これにより装置システムの小型化が図れる。さらに、スクラバーから供給された被処理ガスはより水分を含んでいるので、より多くの水素ガスの生成が可能となると同時に、吸蔵させた炭酸塩を容易に水溶液化させることができるので、連続的な二酸化炭素の除去及び水素ガスの生成も可能となる。
【0139】
そして、本発明から排出された炭酸塩水溶液は、pH調整剤として使用できるので、水処理システムに供することで、このシステムにおける硝化脱窒作用を安定させることができる。
【0140】
また、被処理ガスが例えば汚泥消化ガスのようなメタンを含んだガスである場合には、本発明によって、該ガスから効率的に濃縮メタンガス(高熱量ガス)を生産することができ、このガスは燃料電池やガスタービンまたはその他の燃料として売却及び利用ができるので、温室効果ガスの有効利用が図れる。
【図面の簡単な説明】
【図1】本発明のガス処理システムの実施形態例を示す概略図。
【図2】本発明のガス処理システムの実施形態例を示す概略図。
【図3】ガス処理装置の実施形態例を示す概略図。
【図4】ガス処理装置の実施形態例を示す概略図。
【図5】(a)炭酸ナトリウム水溶液が供給される再生槽の概略説明図、(b)炭酸水素ナトリウム水溶液が供給される再生槽の概略説明図。
【図6】(a)本発明に係るガス処理システムの実施形態例を示す概略図、(b)塩化ナトリウム水溶液が供給される再生槽の概略説明図。
【図7】(a)二酸化炭素除去工程の概略説明図、(b)二酸化炭素放出の概略説明図。
【図8】本発明のガス処理システムの実施形態例を示す概略図。
【図9】本発明のガス処理システムの実施形態例を示す概略図。
【図10】本発明のガス処理システムの実施形態例を示す概略図。
【図11】本発明のガス処理システムの実施形態例を示す概略図。
【図12】電流密度と二酸化炭素濃度及び水素濃度との関係を示した特性図。
【図13】本発明(実施例1)と比較例におけるI−V特性図。
【図14】本発明による二酸化炭素の除去特性図。
【図15】本発明(実施例2)と比較例におけるI−V特性図。
【図16】二酸化炭素の吸蔵と放出を示した実験結果例。
【符号の説明】
1…ガス処理装置、10…電解質膜、11…アノード、12…カソード、13…電源、
15…スクラバー
2…水供給手段
3…気液分離槽
4…調整槽
5,6…再生槽
7…ガス処理装置
50,60,70…槽、51,61,71…アノード、52,62,72…カソード、53,63,73…電源、54,64,74…イオン導電体
8,9…炭酸ガス吸収槽

Claims (14)

  1. ナトリウムイオンを透過する電解質膜にアノードとカソードとを設け、アノードにはナトリウム化合物の水溶液を接触すると共に、カソードには被処理ガスを供し、この両極間に直流電圧を印加することにより、カソード側において前記ガス中の二酸化炭素を炭酸塩の形態で分離除去する工程と、
    ナトリウムイオンを透過する電解質膜を介してアノード液相とカソード液相を形成し、アノード液相には前記炭酸塩の水溶液を供給すると共にカソード液相には水を供給し、この液相間に直流電圧を印加することにより、カソード液相において水酸化ナトリウムと水素ガスを生成する工程と、
    この工程で得た水酸化ナトリウムの水溶液を前記ナトリウム化合物の水溶液として利用に供する工程とを有すること
    を特徴とするガス処理方法。
  2. ナトリウムイオンを透過する電解質膜にアノードとカソードとを設け、アノードにはナトリウム化合物の水溶液を接触すると共に、カソードには被処理ガスを供し、この両極間に直流電圧を印加することにより、カソード側において前記ガス中の二酸化炭素を炭酸塩の形態で分離除去する工程と、
    前記炭酸塩を塩酸水溶液と反応させて、炭酸塩を二酸化炭素として遊離して系外に移送する工程と、
    ナトリウムイオンを透過する電解質膜を介してアノード液相とカソード液相を形成し、アノード液相には炭酸塩と塩酸水溶液との反応によって生じた塩の水溶液を供給すると共にカソード液相には水を供給し、この液相間に直流電圧を印加することにより、カソード液相において水酸化ナトリウムを生成する工程と、
    この工程で得た水酸化ナトリウムの水溶液を前記ナトリウム化合物の水溶液として利用に供する工程とを有すること
    を特徴とするガス処理方法。
  3. ナトリウムイオンを透過する電解質膜を介してアノード液相とカソード液相とを形成し、カソード液相には被処理ガスとを供し、前記液相間に直流電圧を印加することにより、カソード液相において被処理ガスに含まれる二酸化炭素成分を炭酸塩の形態で分離する工程と、
    前記カソード液相の一部を前記アノード液相に循環供給する工程とを有することを特徴とするガス処理方法。
  4. 被処理ガスをナトリウム化合物の水溶液に注入してガス中に含まれる二酸化炭素成分をナトリウムの炭酸塩の形態で分離する工程と、
    ナトリウムイオンを透過する電解質膜にアノードとカソードとを設け、アノードには前記炭酸塩の水溶液を供すると共に、カソードには水を供し、この両極間に直流電圧を印加することにより、カソード側において水酸化ナトリウムを生成する工程と、
    この工程で得た水酸化ナトリウムの水溶液を前記二酸化炭素の分離工程に供する工程とを有すること
    を特徴とするガス処理方法。
  5. 被処理ガスを、スクラバーにおいて水若しくは水酸化ナトリウム水溶液の液滴と接触させた後に、前記カソードに供すること
    を特徴とする請求項1から4項に記載のガス処理方法。
  6. カソード側から排出された炭酸塩の水溶液を水処理の硝化工程におけるpH調整剤として用いること
    を特徴とする請求項1から5項に記載のガス処理方法。
  7. ナトリウムイオンを透過する電解質膜と、前記電解質膜に設けられナトリウム化合物の水溶液が供されるアノードと、前記電解質膜に設けられ被処理ガスが供されるカソードと、を備え、この両極間に直流電圧を印加してカソード側においてガス中の二酸化炭素を炭酸塩の形態で分離除去するガス処理装置と、
    ナトリウムイオンを透過する電解質膜を設置してアノード室とカソード室を形成すると共に、アノード室に前記炭酸塩の水溶液を供給する経路と、カソード室に水を供給する経路と、を備え、前記両室の液相間に直流電圧を印加してカソード室において水酸化ナトリウムを生成する再生槽と、
    前記カソード室で生成した水酸化ナトリウムの水溶液を前記ガス処理装置に供給する経路と、を具備したこと
    を特徴とするガス処理システム。
  8. ナトリウムイオンを透過する電解質膜と、前記電解質膜に設けられナトリウム化合物の水溶液が供されるアノードと、前記電解質膜に設けられ被処理ガスが供されるカソードと、を備え、この両極間に直流電圧を印加してカソード側においてガス中の二酸化炭素を炭酸塩の形態で分離除去するガス処理装置と、
    前記カソードで生成した炭酸塩に強酸の水溶液を供する酸供給経路と、
    ナトリウムイオンを透過する電解質膜を設置してアノード室とカソード室を形成すると共に、アノード室に炭酸塩と塩酸水溶液との反応によって生じた塩の水溶液を供給する経路と、カソード室に水を供給する経路と、を備え、前記両室の液相間に直流電圧を印加してカソード室において水酸化ナトリウムを生成する再生槽と、
    前記カソード室で生成した水酸化ナトリウムの水溶液を前記ガス処理装置に供給する経路と、を具備したこと
    を特徴とするガス処理システム。
  9. 炭酸塩水溶液を滞留させる槽にナトリウムイオンを透過する電解質膜を設置してアノード室とカソード室を形成し、前記カソード室に被処理ガスを供給する経路を備え、前記両室の液相間に直流電圧を印加して被処理ガスに含まれる二酸化炭素成分を炭酸塩の形態で分離するガス処理装置に、
    アノード室内の液相をカソード室に移送する経路と、カソード室内の液相をアノード室に移送する経路とを設けたこと
    を特徴とするガス処理システム。
  10. 被処理ガスとナトリウム化合物の水溶液とが供給され、これらを一定時間のもとで滞留させて該ガスに含まれる二酸化炭素成分を炭酸塩の形態で分離する炭酸ガス吸収槽と、
    前記炭酸ガス吸収槽内の液相が導入される槽に、ナトリウムイオンと水素イオンを透過する電解質膜を設置してアノード室とカソード室を形成し、カソード室に水を供給する経路を備え、前記両室の液相間に直流電圧を印加してカソード室において水酸化ナトリウムを生成する再生槽と、
    前記カソード室で生成した水酸化ナトリウムの水溶液を前記炭酸ガス吸収槽に供給する経路とを備えたこと
    を特徴とするガス処理システム。
  11. 炭酸ガス吸収槽において、水酸化ナトリウム水溶液用の吐出配管を被処理ガス用の吐出配管内に設け、各吐出配管はノズル状に形成したことを特徴とする請求項10記載のガス処理システム。
  12. ガス処理装置に供される被処理ガスを水若しくは水酸化ナトリウム水溶液の液滴と接触させるスクラバーを備えたこと
    を特徴とする請求項7から9のいずれか1項に記載のガス処理システム。
  13. ガス処理装置または炭酸ガス吸収槽から排出された炭酸塩水溶液をpH調整剤として水処理システムにおける硝化工程に供すること
    を特徴とする請求項7から12のいずれか1項に記載のガス処理システム。
  14. 被処理ガスは汚泥消化ガスであること
    を特徴とする請求項1から13のいずれか1項に記載のガス処理方法とそのシステム。
JP2002343508A 2002-11-27 2002-11-27 ガス処理方法とそのシステム Pending JP2004174369A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343508A JP2004174369A (ja) 2002-11-27 2002-11-27 ガス処理方法とそのシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343508A JP2004174369A (ja) 2002-11-27 2002-11-27 ガス処理方法とそのシステム

Publications (1)

Publication Number Publication Date
JP2004174369A true JP2004174369A (ja) 2004-06-24

Family

ID=32705268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343508A Pending JP2004174369A (ja) 2002-11-27 2002-11-27 ガス処理方法とそのシステム

Country Status (1)

Country Link
JP (1) JP2004174369A (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006034339A1 (en) * 2004-09-23 2006-03-30 Joe David Jones Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
WO2007116734A1 (ja) * 2006-03-28 2007-10-18 Mitsubishi Heavy Industries, Ltd. エネルギー供給システム及び水素生成物質
WO2007094939A3 (en) * 2006-01-23 2007-10-18 Univ California Process and system for removing carbon dioxide from combustion gas and other gas mixtures
JP2007297605A (ja) * 2006-04-04 2007-11-15 Taiyo Nippon Sanso Corp メタン分離方法、メタン分離装置及びメタン利用システム
WO2011062338A1 (ko) * 2009-11-17 2011-05-26 한국에너지기술연구원 암모니아수를 이용한 이산화탄소 포집 공정에서 배출되는 가스 내의 미량 암모니아를 제거하는 장치
KR101144820B1 (ko) 2009-10-21 2012-05-11 한국에너지기술연구원 이산화탄소 분리 장치 및 방법
RU2477168C2 (ru) * 2007-09-20 2013-03-10 Скайоник Корпорейшн Удаление диоксида углерода из потоков отходящего газа посредством совместного образования карбонатных и/или бикарбонатных минералов
CN103205770A (zh) * 2013-04-09 2013-07-17 浙江大学 一种含二氧化碳废气吸收与浓缩的装置及其方法
US8795508B2 (en) 2009-12-18 2014-08-05 Skyonic Corporation Carbon dioxide sequestration through formation of group-2 carbonates and silicon dioxide
WO2014138272A1 (en) * 2013-03-06 2014-09-12 Ceramatec, Inc. Production of valuable chemicals by electroreduction of carbon dioxide in a nasicon cell
US9359221B2 (en) 2010-07-08 2016-06-07 Skyonic Corporation Carbon dioxide sequestration involving two-salt-based thermolytic processes
US9968883B2 (en) 2014-01-17 2018-05-15 Carbonfree Chemicals Holdings, Llc Systems and methods for acid gas removal from a gaseous stream
KR101900752B1 (ko) 2015-08-20 2018-09-21 한국에너지기술연구원 실내 이산화탄소 처리 장치 및 방법
US10583394B2 (en) 2015-02-23 2020-03-10 Carbonfree Chemicals Holdings, Llc Carbon dioxide sequestration with magnesium hydroxide and regeneration of magnesium hydroxide
WO2021001787A1 (en) * 2019-07-03 2021-01-07 8 Rivers Capital, Llc Alkali -based removal of 002 from gas streams with co-generation of chemicals
US11097221B2 (en) 2018-10-05 2021-08-24 8 Rivers Capital, Llc Direct gas capture systems and methods of use thereof

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048281B1 (ko) * 2004-09-23 2011-07-13 조 데이비드 존스 탄산염 및/또는 중탄산염 무기물의 동시 생성을 통한 폐기물 스트림으로부터의 이산화탄소의 제거
US20140328743A1 (en) * 2004-09-23 2014-11-06 Skyonic Corporation Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
CN104069726A (zh) * 2004-09-23 2014-10-01 乔·大卫·琼斯 通过碳酸盐和/或碳酸氢盐无机物的共同产生从废弃流中除去二氧化碳
WO2006034339A1 (en) * 2004-09-23 2006-03-30 Joe David Jones Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
US7727374B2 (en) 2004-09-23 2010-06-01 Skyonic Corporation Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
US8741244B2 (en) 2004-09-23 2014-06-03 Skyonic Corporation Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
AU2005286729B2 (en) * 2004-09-23 2011-01-27 Joe David Jones Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
AU2010212414B2 (en) * 2004-09-23 2013-01-17 Joe David Jones Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
US7828883B2 (en) 2006-01-23 2010-11-09 Lawrence Livermore National Security, Llc Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures
US8808433B2 (en) 2006-01-23 2014-08-19 Lawrence Livermore National Security, Llc Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures
WO2007094939A3 (en) * 2006-01-23 2007-10-18 Univ California Process and system for removing carbon dioxide from combustion gas and other gas mixtures
WO2007116734A1 (ja) * 2006-03-28 2007-10-18 Mitsubishi Heavy Industries, Ltd. エネルギー供給システム及び水素生成物質
JP5010583B2 (ja) * 2006-03-28 2012-08-29 三菱重工業株式会社 エネルギー供給システム及び水素生成物質
JP2007297605A (ja) * 2006-04-04 2007-11-15 Taiyo Nippon Sanso Corp メタン分離方法、メタン分離装置及びメタン利用システム
US9205375B2 (en) 2007-09-20 2015-12-08 Skyonic Corporation Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
RU2477168C2 (ru) * 2007-09-20 2013-03-10 Скайоник Корпорейшн Удаление диоксида углерода из потоков отходящего газа посредством совместного образования карбонатных и/или бикарбонатных минералов
KR101144820B1 (ko) 2009-10-21 2012-05-11 한국에너지기술연구원 이산화탄소 분리 장치 및 방법
US8999041B2 (en) 2009-10-21 2015-04-07 Korea Institute Of Energy Research Carbon dioxide isolating device and method
WO2011062338A1 (ko) * 2009-11-17 2011-05-26 한국에너지기술연구원 암모니아수를 이용한 이산화탄소 포집 공정에서 배출되는 가스 내의 미량 암모니아를 제거하는 장치
CN102612401A (zh) * 2009-11-17 2012-07-25 韩国能量技术研究院 去除在利用氨水的二氧化碳捕集工序中排放的气体内的微量氨的装置
CN102612401B (zh) * 2009-11-17 2015-04-22 韩国能量技术研究院 去除在利用氨水的二氧化碳捕集工序中排放的气体内的微量氨的装置
US8795508B2 (en) 2009-12-18 2014-08-05 Skyonic Corporation Carbon dioxide sequestration through formation of group-2 carbonates and silicon dioxide
US9359221B2 (en) 2010-07-08 2016-06-07 Skyonic Corporation Carbon dioxide sequestration involving two-salt-based thermolytic processes
WO2014138272A1 (en) * 2013-03-06 2014-09-12 Ceramatec, Inc. Production of valuable chemicals by electroreduction of carbon dioxide in a nasicon cell
US9689078B2 (en) 2013-03-06 2017-06-27 Ceramatec, Inc. Production of valuable chemicals by electroreduction of carbon dioxide in a NaSICON cell
CN103205770B (zh) * 2013-04-09 2015-08-19 浙江大学 一种含二氧化碳废气吸收与浓缩的装置及其方法
CN103205770A (zh) * 2013-04-09 2013-07-17 浙江大学 一种含二氧化碳废气吸收与浓缩的装置及其方法
US9968883B2 (en) 2014-01-17 2018-05-15 Carbonfree Chemicals Holdings, Llc Systems and methods for acid gas removal from a gaseous stream
US10583394B2 (en) 2015-02-23 2020-03-10 Carbonfree Chemicals Holdings, Llc Carbon dioxide sequestration with magnesium hydroxide and regeneration of magnesium hydroxide
US11498029B2 (en) 2015-02-23 2022-11-15 Carbonfree Chemicals Holdings, Llc Carbon dioxide sequestration with magnesium hydroxide and regeneration of magnesium hydroxide
US11772046B2 (en) 2015-02-23 2023-10-03 Carbonfree Chemicals Holdings, Llc Carbon dioxide sequestration with magnesium hydroxide and regeneration of magnesium hydroxide
KR101900752B1 (ko) 2015-08-20 2018-09-21 한국에너지기술연구원 실내 이산화탄소 처리 장치 및 방법
US11097221B2 (en) 2018-10-05 2021-08-24 8 Rivers Capital, Llc Direct gas capture systems and methods of use thereof
WO2021001787A1 (en) * 2019-07-03 2021-01-07 8 Rivers Capital, Llc Alkali -based removal of 002 from gas streams with co-generation of chemicals
US11229879B2 (en) 2019-07-03 2022-01-25 8 Rivers Capital, Llc Alkali-based removal of chemical moieties from gas streams with chemical co-generation
US11559766B2 (en) 2019-07-03 2023-01-24 8 Rivers Capital, Llc Alkali-based removal of chemical moieties from gas streams with chemical co-generation

Similar Documents

Publication Publication Date Title
JP5750220B2 (ja) 水系炭酸塩煙道ガス捕獲および高効率バイポーラー膜電気透析によりco2を回収するためのシステムおよび方法
JP5932764B2 (ja) 尿素の電解による選択触媒還元
JP2004174369A (ja) ガス処理方法とそのシステム
JP2004174370A (ja) ガス処理方法とその装置及びシステム
CN104722177B (zh) 一种浓缩变换和电解再生的二氧化碳捕集系统
JP2004261757A (ja) 環境浄化循環型水電解装置
JP2013541662A (ja) 尿素の電気分解による選択的触媒還元
KR101767894B1 (ko) 질소 순환형 질소산화물 처리 시스템 및 방법
JP7305356B2 (ja) H2発生との統合による空気からのco2の省エネルギー除去
JP2008100211A (ja) 混合ガス分離方法およびシステム
JP2005052762A (ja) ガス処理方法とそのシステム
CN103230734A (zh) 联合脱除烟气中二氧化硫和氮氧化物的方法
JP2007054767A (ja) アンモニアの回収方法及びアンモニアの利用方法
KR20170138364A (ko) 이산화탄소의 분리 방법 및 이산화탄소 분리 시스템
JP2004174371A (ja) ガス処理方法とそのシステム
JP2004176622A (ja) ガスタービン発電システム
US20240141510A1 (en) Carbon Capture Using Electrochemically-Produced Acid and Base
Mohammadpour et al. Simple energy-efficient electrochemically-driven CO2 scrubbing for biogas upgrading
JP3744389B2 (ja) 炭酸ガス除去方法とその装置及びシステム
JP4003422B2 (ja) ガスタービン発電システム
JP4052166B2 (ja) ガス処理方法とそのシステム
Littau et al. System and method for recovery of CO2 by aqueous carbonate flue gas capture and high efficiency bipolar membrane electrodialysis
JP5292865B2 (ja) 燃料電池発電装置の水回収方法及び燃料電池発電装置
JP2002246056A (ja) 燃料電池発電システム
EP4238630A1 (en) Electrolytic regeneration of co2 rich alkaline absorbent for co2 recovery