JP2004170095A - Waveguide structure, its manufacturing method, and surface plasmon resonance sensor and refractive index change measurement method using the waveguide structure - Google Patents

Waveguide structure, its manufacturing method, and surface plasmon resonance sensor and refractive index change measurement method using the waveguide structure Download PDF

Info

Publication number
JP2004170095A
JP2004170095A JP2002333145A JP2002333145A JP2004170095A JP 2004170095 A JP2004170095 A JP 2004170095A JP 2002333145 A JP2002333145 A JP 2002333145A JP 2002333145 A JP2002333145 A JP 2002333145A JP 2004170095 A JP2004170095 A JP 2004170095A
Authority
JP
Japan
Prior art keywords
light
surface plasmon
refractive index
plasmon resonance
core layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002333145A
Other languages
Japanese (ja)
Other versions
JP3961405B2 (en
Inventor
Tomoko Seyama
倫子 瀬山
Gen Iwasaki
弦 岩崎
Osamu Niwa
修 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002333145A priority Critical patent/JP3961405B2/en
Publication of JP2004170095A publication Critical patent/JP2004170095A/en
Application granted granted Critical
Publication of JP3961405B2 publication Critical patent/JP3961405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waveguide structure for improving the reliability in the measurement of a change in a refractive index when a measurement target has light absorption in a surface plasmon resonance sensor, to provide a method for manufacturing the waveguide structure, the surface plasmon resonance sensor, and a method for measuring the change in the refractive index. <P>SOLUTION: In the waveguide structure, a metal thin film 2 is laminated on a waveguide core layer 1, where light for measurement enters, further a dielectric film 3 that has a higher refractive index than the waveguide core on the metal thin film, and has a thickness of 1/100 to 1/10 of the light wavelength of light for measurement entering the waveguide core layer is formed. In the surface plasmon resonance sensor, a sample layer 4 is formed on the waveguide structure. In the refractive index change measurement method, the refractive index is measured by using the sensor. In the surface plasmon resonance sensor, the reliability in the measurement of the change in the refractive index when the measurement target has light absorption can be improved. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は導波路構造及びその製造方法、並びにそれを用いた表面プラズモン共鳴センサと屈折率変化測定方法に関する。
【0002】
【発明の背景】
屈折率は、液体、気体の特性変化を反映する光学パラメータである。そのため、屈折率の変化を検知するセンサあるいはデバイスは、プロセス監視の指標として取り入れられ、また、クロマトグラフィーや電気泳動法のための検出器として用いられ、さらには、イオノフォアのようなイオン感応材料あるいは選択的な吸着を起こす有機膜材料あるいはナノメートルオーダーの空孔を利用した分子サイズ効果による選択的吸着膜などを組み合わせて構成される化学センサや、酵素反応、抗原抗体反応などと組み合わせることで生物化学センサのための変換器(トランスデューサ)としても有用である。
【0003】
本発明は、試料の屈折率測定を用いる化学センサや、生物化学センサとして、ある特定の目的物に対する検知を可能とするセンサデバイスに関するものである。特に、大気・水・土壌環境に関わる物質である花粉やハロゲン化有機化合物やBTX類や窒化物、または日常の生活空間の空気質に関わるアルデヒド類やBTXや炭化水素類や農薬類、または医療に関わる院内病原菌や抗体、血中・尿中成分をモニタリングに使われるセンサの構造およびセンサを用いた測定法に関するものである。
【0004】
【従来技術】
屈折率を測定する方法としては、以前より、滑らかに研磨されて切り出し角度が既知な形状を持つ光学プリズムを用いる手法が用いられてきた。それらの装置は、透過光の偏角を求める最小偏角型屈折計や、全反射を利用するアッベの屈折計、液浸計、プルフリヒの屈折計がある。また、前述の方法では屈折率測定が難しい形状の物質(コロイド、高分子膜など)の屈折率を決定するために開発された、標準試料と比較して屈折率を決定する、光学プリズムを用いる反射強度型示差屈折計や、透過光を用いる偏位測定型示差屈折計があった。また、全反射光の透過光強度を測定する方法もある(特開2000−146836)。
【0005】
一方、表面プラズモン共鳴法が用いられるようになってきている。金属表面と接触している誘電体の屈折率変化を測定する表面プラズモン共鳴法では、例えば、ガラスやポリマーなどの光の導波路材料の上に金属(金、銀など)薄膜を形成し、導波路から光を全反射するように入射させたとき、TM波成分だけをモニタすると、ある光の入射角度において光反射強度が極小値を示す。あるいは、ある光の波長において光反射強度が極小値を示す、ということで観測することが可能で、光反射強度の極小値に相当する光の入射角度、または、波長が、減衰する金属薄膜に対して、導波路材料と反対側に存在する誘電体の屈折率に対応する。
【0006】
したがって、表面プラズモン共鳴センサは、光の導波路に金属薄膜を形成したものと、光の全反射条件とTM波の偏光を測定する検出器への光路を組み合わせで構成できる。そのため、他の屈折計と比べても、構成が比較的単純な利点がある。例えば、”Planar Substrate Surface Plasmon Resonance Probe,”Proceedings of SPIE、2836巻、S.Yee,外2名著、p.178−185(p.181の図2)に記載の構造がある。
【0007】
さらに、表面プラズモンセンサを用いると、金属薄膜に接触する光の導波路の部分とは反対側の誘電体部の屈折率変化を検知できることから、表面プラズモン共鳴センサには、次の利点がある。化学反応あるいは生物化学反応の場と光学系と隔離されているため、化学作用が直接的に光学系へ及ぼす測定誤差が小さく抑えられ、したがって、検出器で得られる光強度変化あるいはスペクトルの変化は、金属薄膜の外部で起こる化学、生物化学反応全てを反映するものである。例えば、金の金属薄膜の外部での酵素反応(生物化学反応)を解析することができる(”Detectin of Electrochemical Enzymatic Reactions by Surface Plasmon Resonance Measurement,”Analytical Chemistry,73巻、7号、岩崎 弦、外2名著、p.1595−1598 参照)。
【0008】
さらに、金属薄膜として用いることができる金属には、金、銀、白金、パラジウムなどが利用できる。金属の種類によって、物理化学的反応や化学反応や生物化学的反応における活性度が異なる場合、金属の種類を選択して、目的の反応に合わせた、最適な表面プラズモン共鳴センサの設計・作製が可能である。また、利用する波長あるいは波長範囲を選択することで、目的の反応に合わせた、感度が高い最適な表面プラズモン共鳴センサの設計・作製が可能である。
【0009】
このように、表面プラズモン共鳴センサは、物理化学的、化学的、生物化学的反応に関わる情報を、より多く得ることが可能なトランスデューサであり、表面プラズモン共鳴を用いたセンサシステムは、米国Biaocore社やTI社、国内においては日本レーザ電子やNTT−AT社などからすでに商品化されている。
【0010】
【特許文献1】特開2000−146836公報
【特許文献2】特願2002−355353明細書
【特許文献3】特願2002−355354明細書
【特許文献4】特願2002−339895明細書
【特許文献5】特開2000−304673公報
【非特許文献1】”Planar Substrate SurfacePlasmon Resonance Probe,”Proceedings of SPIE、2836巻、S.Yee,外2名著、p.178−185(p.181の図2)
【非特許文献2】”Detectin of Electrochemical Enzymatic Reactions by Surface Plasmon Resonance Measurement,”Analytical Chemistry,73巻、7号、岩崎 弦、外2名著、p.1595−1598
【0011】
【発明が解決しようとする課題】
しかしながら、利用する光波長に対して吸収を持った物質は、従来の表面プラズモン共鳴センサのための導波路構造を適用する場合、屈折率を正確に測定できない問題があった。これは表面プラズモン共鳴が、複素屈折率の実数部と虚数部の両方に敏感だからである。
【0012】
従来の導波路構造を利用して、角度測定型の表面プラズモン共鳴センサとする場合には、測定対象物の吸収が存在しない光波長を選択し、それに対応する光源、また、利用する光の波長に合わせた光学プリズムおよび偏光子の材料を含めた光学系を再設計しなおして、光吸収のない状態での測定系を実現することで問題を解決してきた。
【0013】
しかし、光学系の変更は、光源および光学材料自身の変更が伴うため、簡単に実施することができるものではないため、表面プラズモン共鳴センサの適用できない反応系と試料物質があった。さらに、消衰係数kが未知の物質が試料として混入する場合も、従来の導波路構造では、正確な屈折率測定が不可能であった。
【0014】
そこで、表面プラズモン共鳴センサにおいて、測定対象物が光吸収を持つ場合の屈折率変化の測定の確度を向上させるデバイス構成を提案する。
【0015】
【課題を解決するための手段】
上述の課題を解決するため、本発明による導波路構造は、測定用の光を入射する導波路コア層に金属薄膜が積層され、更に金属薄膜上に前記導波路コア層より高い屈折率を持ち、かつ、前記導波路コア層に入射する測定用の光の光波長の100から10分の1の厚さを持つ誘電体膜を形成したことを特徴とする。
【0016】
さらに本発明による導波路構造の製造方法は、測定用の光を入射する導波路コア層上に金属薄膜を設け、さらに前記金属薄膜上に前記導波路コア層に入射する測定用の光の光波長の100から10分の1の厚さの誘電体膜を、出発物質の光学活性な有機低分子をプラズマプロセスによりポリマー化し形成することを特徴とする。
【0017】
また、本発明による表面プラズモン共鳴センサは、測定用の光を入射する導波路コア層に金属薄膜が積層され、更に金属薄膜上に導波路コア層より高い屈折率を持ち、かつ、前記導波路コア層に入射する測定用の光の光波長の100から10分の1の厚さを持つ誘電体膜を形成した導波路構造の前記誘電体膜上に測定用の試料を設けるためのサンプル層を形成したことを特徴とする。
【0018】
さらに本発明による屈折率変化測定方法は、測定用の光を入射する導波路コア層に金属薄膜が積層され、更に金属薄膜上に導波路コア層より高い屈折率を持ち、かつ、前記導波路コア層に入射する測定用の光の光波長の100から10分の1の厚さを持つ誘電体膜を形成した導波路構造の前記誘電体膜上に測定用の試料を設けるためのサンプル層を形成した表面プラズモン共鳴センサの前記サンプル層に試料を設け、前記導波路コア層に光を入射させて、前記導波路コア層を透過する強度の波長あるいは入射角度スペクトルを測定することにより前記試料の屈折率変化を測定することを特徴とする。
【0019】
測定対象試料は、高屈折率の絶縁体膜のさらに外側のサンプル層に設置される。
【0020】
高屈折率の絶縁体膜は、表面プラズモン共鳴センサが利用する光波長範囲(550から1000nm)の範囲において、大きな光吸収を持たないものであり、その膜の厚さは金属薄膜の表面で生じる表面プラズモンの影響がサンプル層に到達する程度に薄い。すなわち、前記絶縁体膜の厚さは、使用する測定用の光の波長の1/100〜1/10である。上記範囲を逸脱すると、表面プラズモン共鳴を生じることができないからである。また前記誘電体膜は、光の消衰係数kが0.01より小さい。0.01以上であると、表面プラズモン共鳴現象を引き起こすために金属薄膜での全反射により生じるエバネッセント光が、誘電体膜の上部のサンプル層に到達できる程度に光吸収が小さくなくなるからである。
【0021】
上記のような高屈折率の絶縁体膜は例えば、光学活性な有機低分子の有機固体材料からプラズマプロセスで形成するポリマーとして実現できる。プラズマプロセスは、有機の膜厚制御された薄膜形成法として有用であり、かつ、プラズマプロセスにおいて形成される有機薄膜は、三次元的ネットワークを持つ緻密な構造のポリマーであるため、光に対し高い屈折率を有する。また、構成物が主に炭素、水素、窒素であるため、550から1000nmの光波長範囲において、光吸収が小さい。また、絶縁性を有し、酸、アルカリに対する耐性を持つ特徴がある。
【0022】
【作用】
表面プラズモン共鳴現象を利用したセンシングにおいて、金属外部の測定対象である試料の層での光吸収による影響は、表面プラズモンの生成面、すなわち、金属薄膜と誘電体との界面から近傍で大きい。
【0023】
例えば、波長600nmの光を考えると、表面プラズモンの生成面から約10nm程度の領域においては、反射光強度に与えるk値の影響は非常に大きくなる。反対に、表面プラズモンの生成面から約10nm以上離れると、kの値が10倍程度違っていても、導波路コア層と金属薄膜界面に入射させた全反射光に対する反射光強度に与える影響はほとんど変化しない。
【0024】
そこで、kの値による影響が大きい金属薄膜の近傍面に、あらかじめ、導波路コア層より屈折率が高い誘電体膜を形成しておくことで、測定対象の試料のkが反射光強度に与える影響を小さくする。これにより、k値が大きい、すなわち、測定光に対し吸収を有する生成物の濃度変化を表面プラズモン共鳴センサにて求める際、対象物質の濃度変化による光吸収の影響を抑えて、濃度変化そのものを反映した反射光スペクトルを求めることができる。
【0025】
また、表面プラズモン共鳴を伴ったエバネッセント波の導波路コア層の外部に形成された高屈折率な誘電体層への導入により、さらに外部のサンプル層の屈折率に対応した漏洩モードの損失を同時に測定することができる。
【0026】
すなわち、本発明の導波路構造およびデバイスでは、高屈折率の絶縁体膜の外部にある試料である物質の屈折率n、物質の吸光を表す消衰係数kとして表すとき、表面プラズモン共鳴センサで検出する光反射強度の極小値に対し、kが与える影響を小さく抑えることができる。
【0027】
例えば、光反射強度の極小値に対応する波長λminが、従来のデバイスにおいては、kの値が0.01程度と比較的大きい場合、n値が0.1大きくなっても、k値の影響によりλminの長波長側へのシフトが観測されずに、表面プラズモン共鳴センサが濃度変化に対応した屈折率変化を求めることができないことを表すが、本発明のデバイスによるならば、kの値が0.005という吸収を持つ場合にも、λminの値は長波長側にシフトすることが観測され、表面プラズモン共鳴センサの検知目的である、物理化学反応あるいは生物化学反応の結果生じる生成物の濃度上昇に対応する屈折率を正確に求めることができる。
【0028】
測定領域の光を吸収してしまう物質についても、表面プラズモン共鳴を利用した屈折率変化をモニタリングすることが可能になる。表面プラズモンセンサを利用する際の、波長領域を選択して、設計を作り変えたりする必要がなくなるため、表面プラズモン共鳴センサのデバイス適用範囲が広がる。
【0029】
【実施例1】
図1の(a)および(b)に、本発明である高屈折率の絶縁体膜を被覆した導波路構造を備えた表面プラズモン共鳴センサを示している。比較のために、従来の表面プラズモン共鳴センサの構成を図9に示す。
【0030】
本発明における図1(a)に示される導波路構造では、屈折率Nwを持つガラスまたはプラスチックで作製される導波路コア層1の上に屈折率NAuを持つ金の金属薄膜2を厚さ30〜50nm程度で形成し、その金の金属薄膜2上に屈折率Nf(ただし、Nf>Nw)、厚さd[nm]を持つ誘電体膜3が形成されている。さらに前記誘電体膜3上に、試料を設置するサンプル層4を形成し、表面プラズモン共鳴センサとしている。従来の表面プラズモン共鳴センサにおいては、誘電体膜3がなく、金の金属薄膜2の上に直接、試料を設置するサンプル層4がある。
【0031】
本発明である図1の(a)の導波路構造では、導波路コア層1の上に、金の金属薄膜2および誘電体膜3を直接形成する。一方、図1の(b)の表面プラズモン共鳴センサでは、導波路コア層1と同じ材料あるいは同等の屈折率および光透過特性を持つ材料で作られる補助導波路5を利用し、この上に金の金属薄膜2および誘電体膜3を形成し、導波路コア層1と補助導波路5の間には、オプティカルカップリングを成立させるための、液体あるいはゲル状のマッチングオイルの層6をはさむ。
【0032】
光の導波路コア層1への入射光7の導入方法については、表面が光学研磨された球面型あるいは適当な角度にカットされたプリズムを介した入射、あるいはレンズにより角度が調整され集光された光の導波路コア層1への直接的な入射、あるいは光ファイバの接続技術を用いた光の導波路コア層1への直接的な入射、などが考えられる。
【0033】
出射光8の検出器への導出は、空間伝播や光ファイバによる伝播が考えられる。出射光8と検出器の間にはTM波に対して選択的に透過させる偏光子9を設置し、表面プラズモン共鳴センサ用デバイスとする。
【0034】
波長λの入射光7が入射角度θ10にて導波路コア層1と金の金属薄膜2の界面に次の全反射条件「θ>Sin−1(NAu/Nw)、ただしNAuは金の屈折率」を満たすように進入させる。表面プラズモンは、金の金属薄膜2とその上部の誘電体膜3の界面を入射光の進行方向に準じて伝播する。
【0035】
誘電体膜3の上部のサンプル層4に屈折率nで消衰係数kを持つ試料が吸着したとすると、このとき、出射光8を検出器で測定して、光反射強度の極小値を、入射角度θあるいは入射光波長λを掃引しながら求めると、サンプル層4の屈折率Nに依存して、光反射強度の極小値に対応する、λminあるいはθminを求めることができる。
【0036】
本発明の効果を、Fresnelの反射率の式を元にした計算シミュレーションにより示す。ここで用いた値は、Nwの値として1.54、高屈折率の絶縁体膜の厚さについては金の金属薄膜と同じ厚さとし、d=25nmとした。試料のnが1.34および1.35の時、光の吸収を表すkの値を0.001あるいは0.005と変化させたとき、従来の表面プラズモン共鳴センサである図8を想定して計算を行うと、図2の(a)にあるように、λminの値は、Nが1.34でkが0.008の時には、nが1.35でkが0.0005の時よりも長い波長になる。 一方、本発明による図1(a)および(b)を想定した計算では、図2の(b)にあるように、nが1.35でkが0.0005の時には、λminの値はnが1.34でkが0.008の場合よりも長い波長の値を示す。したがって、光吸収を表すkの値が変化した場合においても、本発明による表面プラズモン共鳴センサにおいては、屈折率の変化に対応するnの変化を正確に求めることができる。
【0037】
【実施例2】
上記の場合に相当する実験として、光吸収を持つ物質として色素のメチレンブルーを用い、濃度の異なるメチレンブルー水溶液を、本発明による表面プラズモン共鳴センサおよび従来の表面プラズモン共鳴センサで測定した場合を示すが、まず、本発明で用いた高屈折率の絶縁体膜の特徴について述べる。導波路構造は、特願2002−355353、特願2002−355354、特願2002−339895に記載の方法で作製した。
【0038】
高屈折率の絶縁体膜には、スパッタリング法により有機固体材料であるアミノ酸を原料とする薄膜(特開2000−304673に基づいて作製)を用いた。図3に示すように、300nmから1000nmという広い光領域において、1.65以上の屈折率を有し、さらに、500nm以上から1000nmの範囲においては、屈折率が1.65から1.7へとなだらかに変化するという屈折率の異常分散を持たない膜である。また図4に示すように、kの値は500nmでは0.04であるが、それ以上から1000nmの波長範囲においては、さらに小さな値となっていく特徴を持つ。
【0039】
このように、スパッタリング法により有機固体材料であるアミノ酸を原料とする有機絶縁体膜は、可視領域に大きな吸収がなく1.65程度の高い屈折率を持つ絶縁性材料である。一方で、アミノ酸から形成されるスパッタ有機絶縁体膜の外部雰囲気の揮発性分子の濃度変化に対応して、ガス分子の吸収・脱離が可能であることが既知であり、この現象は、図5に示すように、角度検知型の表面プラズモン共鳴センサを利用し、870nmの入射光を用いて、スライドガラス(BK7)上の金の金属薄膜上に形成されたアミノ酸を原料とするスパッタ有機絶縁体膜が、1ppmのカルボンガス雰囲気に曝された時と、0ppm(空気)に曝された時、屈折率に対応する入射角度であるθminが0.001degの増加または減少を繰り返すということで観測が可能である。また、アミノ酸から作製されるスパッタ有機絶縁体膜は、水、アルコール、ヘキサンに代表される有機溶剤に対しても溶解しない化学的安定性を有する有機絶縁体膜であることから、安定した水溶液−膜界面が形成できることが期待できる。
【0040】
このスパッタリング法により有機固体材料であるアミノ酸を原料とする有機絶縁体膜を、金の金属薄膜を形成したポリマーの導波路コア層1の上に形成した。
【0041】
光源に300から1000nmの波長の可視光を出すことができるキセノンランプを用いている。デバイスの出射光8の出てくる端面にTM波用の偏光子10を設置し、空間伝播により検出器であるCCDカメラ(波長分解能が1nm)に導いた。
【0042】
メチレンブルー水溶液について、濃度を約0.1から0.02molL−1で調整した試料を、従来のデバイスに滴下して測定した結果は図6(a)で、スパッタリング法により有機固体材料であるアミノ酸を原料とする有機絶縁体膜の上に滴下して測定したものが図6(b)である。試料濃度は、試料Iが18μmolL−1、試料IIが92μmolL−1、試料IIIが1mmolL−1である。メチレンブルーは、600nm付近から光吸収を持つ色素である。
【0043】
従来のデバイスを用いた結果である図6(a)においては、濃度が低い試料Iと濃度が高い試料IIIを測定すると、反射率スペクトルが縦軸方向にシフトするが、屈折率と対応する横軸方向へのシフトは観測されない。すなわち、λminの値はほぼ一定値となる。これは反射光強度が、サンプル層における光吸収の影響によって変動するためと考えられる。
【0044】
一方、表面プラズモン共鳴センサを用いると、図6(b)にあるように、反射率のスペクトルの形状に大きな変化がないまま、ディップの位置が長波長側へ変化し、試料Iと試料IIIではΔλminが正の12nmという結果が得られた。また、反射率スペクトルのディップの深さが、従来の表面プラズモン共鳴センサを用いた図6(a)の結果と比べて明らかに深く、このことはλminの値を求めるためのフィッティングの正確性が上がる点において重要である。
【0045】
また、本発明による表面プラズモン共鳴センサを用いると、反射率スペクトルのディップが深くなる結果、図2におけるシミュレーションの結果とも一致している。また、λminの値が、従来の表面プラズモン共鳴センサを用いた図6(a)での550nm付近に比べて長波長側である600nm付近に現れているのも、図2のシミュレーション結果と矛盾のない結果である。
【0046】
図7のグラフにあるように、メチレンブルー水溶液濃度の対数に対する反射率の極小値に対応する波長の値においては直線的な関係が現れる。すなわち、光吸収を有するメチレンブルー溶液に対して、表面プラズモン共鳴センサデバイスによって、光吸収を持つメチレンブルーの屈折率変化を求められることが示されている。このグラフから求められる検量線から、波長分解能が1nmの検出器を用いて約0.18molL−1/nmのメチレンブルー水溶液濃度変化を、屈折率をパラメータとした変化として検知できることがわかる。
【0047】
図8に、測定波長範囲において吸収を持たない過塩素酸ナトリウム水溶液の濃度を変化させたときの本発明による表面プラズモン共鳴センサによって求めた反射光スペクトルを示す。このように、0.5molL−1/nmと3.5molL−1/nmの過塩素酸ナトリウム水溶液に対して、それぞれ、591.9nm、および616.8nmにλminを持つディップが観測される。したがって、吸収を持たない物質に対しては、表面プラズモン共鳴に基づく屈折率測定が行われる。
【0048】
【発明の効果】
以上述べたように本発明によれば、
(1)表面プラズモン共鳴センサにおいて、利用する測定光に対して吸収を持つ物質を試料とした場合でも、表面プラズモン共鳴を表現する光反射率スペクトル全体が大きくシフトすることなく、試料である物質の屈折率変化に対応したλminあるいはθminを求めることができる効果が得られる。
【0049】
(2)また、有機固体材料であるアミノ酸を出発物質とするプラズマプロセスにより、550nmから1000nmの間に大きな光吸収がなく、1.65から1.7程度の高い屈折率を保有する有機絶縁体膜は、形成することができる。
【0050】
(3)測定光に対して吸収を持つ試料に対して表面プラズモン共鳴法による屈折率変化を正確に検知できるセンサデバイスは、有機固体材料であるアミノ酸からプラズマプロセスにより作製する高屈折率な有機絶縁体膜を、導波路コア層上に形成した金属薄膜上に形成して、実現することができる。その結果、測定光に吸収を持つ水溶液に対しても、表面プラズモン共鳴デバイスにより、λminの値と濃度の対数との間に直線的な関係を求めることができる。
【0051】
このように、反射スペクトルのディップが深く、しかもシャープで半値幅が小さくなるディップとして得られるようになることは、反射率の極小値を求める計算の精度が上がることとなり、したがって、表面プラズモン共鳴センサの高感度化が可能になる、という効果が得られる。また、従来品に比べて、波長依存の反射率スペクトルが、より波長範囲の狭い領域でディップとして得られることは、特定の目的物質に合わせた光学系での分解能を高めやすいという利点、あるいは、より安価な光学系を設計できる利点がある。
【0052】
上記のように、本発明による表面プラズモン共鳴センサのデバイス構成の上に形成される、イオノフォアのようなイオン感応材料あるいは選択的な吸着を起こす有機膜材料あるいはナノメートルオーダーの空孔を利用した分子サイズ効果による選択的吸着膜などのサンプル層部分で起こる、低分子量の物質により生じる屈折率変化を高感度に検知できるようになるため、従来の表面プラズモン共鳴センサデバイスでは得られなかった高感度な、酵素センサ、抗原抗体反応センサ、ガスセンサなどが、表面プラズモン共鳴を原理として実現できるようになる。
【図面の簡単な説明】
【図1】本発明によるクレッチマン型を基本とする高屈折率の絶縁体膜を有する表面プラズモン共鳴センサの構成図。
【図2】(a)は本発明の表面プラズモン共鳴センサ(高屈折率な誘電体膜あり)、(b)は従来の表面プラズモン共鳴センサ(高屈折率な誘電体膜なし)による屈折率nをもち消衰係数kを有する試料に対する反射率のシミュレーション結果を示す図。
【図3】分光エリプソメトリーによるアミノ酸を固体材料としてプラズマプロセスから形成される有機絶縁体膜の誘電体膜の波長と屈折率の関係のデータを示す図。
【図4】分光エリプソメトリーによるアミノ酸を固体材料としてプラズマプロセスから形成される有機絶縁体膜の誘電体膜の波長と消衰率の関係のデータを示す図。
【図5】870nmの入射光を用いて、スライドガラス(BK7)上の金の金属薄膜上に形成されたアミノ酸を原料とするスパッタ有機絶縁体膜膜の誘電体膜の1ppmのカルボンガスと0ppm(空気)に曝された時のθminの変化を示す図。
【図6】(a)本発明の表面プラズモン共鳴センサ(高屈折率な誘電体膜あり)、(b)従来の表面プラズモン共鳴センサ(高屈折率な誘電体膜なし)によるメチレンブルー水溶液試料の測定結果を示す図。
【図7】本発明の表面プラズモン共鳴センサ(高屈折率な誘電体膜あり)によるメチレンブルー水溶液測定の検量線を示す図。
【図8】過塩素酸ナトリウム水溶液を本発明の表面プラズモン共鳴センサ(高屈折率な誘電体膜あり)で測定した反射率スペクトルを示す図。
【図9】従来の表面プラズモン共鳴センサの構成図。
【符号の説明】
1 導波路コア層
2 金属薄膜
3 誘電体膜
4 サンプル層
5 補助導波路
6 マッチングオイルの層
7 入射光
8 出射光
9 TM波に対して選択的に透過させる偏光子
10 入射角度θ
[0001]
[Industrial applications]
The present invention relates to a waveguide structure and a manufacturing method thereof, and a surface plasmon resonance sensor and a refractive index change measuring method using the same.
[0002]
BACKGROUND OF THE INVENTION
The refractive index is an optical parameter that reflects a change in the characteristics of a liquid or gas. Therefore, sensors or devices that detect changes in the refractive index are used as indicators for process monitoring, are also used as detectors for chromatography and electrophoresis, and are also sensitive to ion-sensitive materials such as ionophores. Chemical sensors composed of organic film materials that cause selective adsorption or selective adsorption films based on molecular size effects using pores in the order of nanometers, and biological materials combined with enzyme reactions and antigen-antibody reactions It is also useful as a transducer for a chemical sensor.
[0003]
The present invention relates to a sensor device capable of detecting a specific target object as a chemical sensor using a refractive index measurement of a sample or a biochemical sensor. In particular, pollen, halogenated organic compounds, BTXs and nitrides, which are substances related to the air, water, and soil environment, or aldehydes, BTX, hydrocarbons, pesticides, and medical care related to the air quality of daily living space The present invention relates to a structure of a sensor used for monitoring in-hospital pathogens, antibodies, blood and urine components related to the above, and a measuring method using the sensor.
[0004]
[Prior art]
As a method for measuring the refractive index, a method using an optical prism having a shape that is smoothly polished and has a known cut-out angle has been used. These devices include a minimum declination type refractometer that determines the declination of transmitted light, an Abbe refractometer that utilizes total reflection, an immersion meter, and a Pulfrich refractometer. In addition, using an optical prism that determines the refractive index compared to a standard sample, which was developed to determine the refractive index of a substance (colloid, polymer film, etc.) whose shape is difficult to measure with the above-mentioned method. There are a reflection intensity type differential refractometer and a displacement measurement type differential refractometer using transmitted light. There is also a method of measuring the transmitted light intensity of total reflection light (JP-A-2000-146836).
[0005]
On the other hand, the surface plasmon resonance method has been used. In the surface plasmon resonance method for measuring a change in the refractive index of a dielectric material in contact with a metal surface, for example, a metal (gold, silver, etc.) thin film is formed on a light waveguide material such as glass or a polymer, and a conductive film is formed. When light is made to be totally reflected from the wave path and only the TM wave component is monitored, the light reflection intensity shows a minimum value at a certain light incident angle. Alternatively, it can be observed that the light reflection intensity shows a minimum value at a certain light wavelength, and the incident angle or wavelength of the light corresponding to the minimum value of the light reflection intensity can be observed on the metal thin film that attenuates. On the other hand, it corresponds to the refractive index of the dielectric existing on the opposite side of the waveguide material.
[0006]
Therefore, the surface plasmon resonance sensor can be configured by combining a light waveguide with a metal thin film formed thereon and an optical path to a detector that measures the total reflection condition of light and the polarization of TM waves. Therefore, there is an advantage that the configuration is relatively simple as compared with other refractometers. For example, "Planar Substrate Surface Plason Resonance Probe," Proceedings of SPIE, vol. Yee, 2 other authors, p. 178-185 (FIG. 2 on page 181).
[0007]
Further, when the surface plasmon sensor is used, a change in the refractive index of the dielectric portion opposite to the portion of the light waveguide that contacts the metal thin film can be detected. Therefore, the surface plasmon resonance sensor has the following advantages. The separation of the field of chemical or biochemical reaction from the optical system minimizes the measurement error that the chemical action directly exerts on the optical system, and therefore the change in light intensity or spectrum obtained by the detector is small. It reflects all chemical and biochemical reactions occurring outside the metal thin film. For example, it is possible to analyze an enzymatic reaction (biochemical reaction) outside a gold metal thin film ("Detectin of Electrochemical Enzymatic Reactions by Surface Plasmon Resonance Measurement Science, Vol. 73, Ryushu, Tohoku Ryushu, Tsukuba, Japan). 2 authors, pp. 1595-1598).
[0008]
Further, gold, silver, platinum, palladium, and the like can be used as the metal that can be used as the metal thin film. If the activity in physicochemical, chemical, or biochemical reactions differs depending on the type of metal, select the type of metal and design and manufacture an optimal surface plasmon resonance sensor tailored to the desired reaction. It is possible. In addition, by selecting a wavelength or a wavelength range to be used, it is possible to design and manufacture an optimum surface plasmon resonance sensor having high sensitivity according to a target reaction.
[0009]
As described above, the surface plasmon resonance sensor is a transducer that can obtain more information related to physicochemical, chemical, and biochemical reactions, and a sensor system using surface plasmon resonance is manufactured by Biocore Inc. of the United States. Has been commercialized by Japan Laser Electronics and NTT-AT in Japan.
[0010]
[Patent Document 1] JP-A-2000-146836
[Patent Document 2] Japanese Patent Application No. 2002-355353
[Patent Document 3] Japanese Patent Application No. 2002-355354
[Patent Document 4] Japanese Patent Application No. 2002-339895
[Patent Document 5] JP-A-2000-304673
[Non-Patent Document 1] "Planar Substrate Surface Plasmon Resonance Probe," Proceedings of SPIE, Vol. Yee, 2 other authors, p. 178-185 (FIG. 2 on p. 181)
[Non-Patent Document 2] "Detectin of Electrochemical Enzymatic Reactions by Surface Plasmon Resonance Measurement," Analytical Chemistry, Vol. 1595-1598
[0011]
[Problems to be solved by the invention]
However, in the case of applying a waveguide structure for a conventional surface plasmon resonance sensor, there is a problem that a substance having an absorption for a light wavelength to be used cannot accurately measure a refractive index. This is because surface plasmon resonance is sensitive to both the real and imaginary parts of the complex index of refraction.
[0012]
When a conventional waveguide structure is used to make an angle-measuring surface plasmon resonance sensor, a light wavelength that does not cause absorption of the object to be measured is selected, and a light source corresponding to the wavelength is used. The problem has been solved by redesigning the optical system including the materials of the optical prism and the polarizer according to the above, and realizing a measurement system without light absorption.
[0013]
However, since the change of the optical system involves the change of the light source and the optical material itself, it cannot be easily implemented. Furthermore, even when a substance whose extinction coefficient k is unknown is mixed as a sample, accurate measurement of the refractive index was impossible with the conventional waveguide structure.
[0014]
Therefore, in the surface plasmon resonance sensor, a device configuration for improving the accuracy of the measurement of the refractive index change when the object to be measured has light absorption is proposed.
[0015]
[Means for Solving the Problems]
In order to solve the above-described problem, the waveguide structure according to the present invention has a metal thin film laminated on a waveguide core layer on which light for measurement is incident, and further has a higher refractive index on the metal thin film than the waveguide core layer. Further, a dielectric film having a thickness of 100 to 1/10 of the light wavelength of the measuring light incident on the waveguide core layer is formed.
[0016]
Further, in the method for manufacturing a waveguide structure according to the present invention, a metal thin film is provided on a waveguide core layer on which measurement light is incident, and the light of measurement light incident on the waveguide core layer on the metal thin film is further provided. It is characterized in that a dielectric film having a thickness of 100 to 1/10 of the wavelength is formed by polymerizing an optically active organic low molecule as a starting material by a plasma process.
[0017]
Further, the surface plasmon resonance sensor according to the present invention is such that a metal thin film is laminated on a waveguide core layer on which light for measurement is incident, and further has a higher refractive index on the metal thin film than the waveguide core layer; A sample layer for providing a measurement sample on the dielectric film of the waveguide structure in which a dielectric film having a thickness of 100 to 1/10 of the light wavelength of the measurement light incident on the core layer is formed. Is formed.
[0018]
Further, the method of measuring a change in refractive index according to the present invention is characterized in that a metal thin film is laminated on a waveguide core layer into which light for measurement is incident, and further has a higher refractive index than the waveguide core layer on the metal thin film; A sample layer for providing a measurement sample on the dielectric film of the waveguide structure in which a dielectric film having a thickness of 100 to 1/10 of the light wavelength of the measurement light incident on the core layer is formed. A sample is provided on the sample layer of the surface plasmon resonance sensor on which the sample is formed, light is incident on the waveguide core layer, and the wavelength or the incident angle spectrum of the intensity transmitted through the waveguide core layer is measured to measure the sample. Is characterized by measuring the change in the refractive index.
[0019]
The sample to be measured is placed on a sample layer further outside the insulator film having a high refractive index.
[0020]
The high-refractive-index insulator film does not have a large light absorption in the light wavelength range (550 to 1000 nm) used by the surface plasmon resonance sensor, and the thickness of the film occurs on the surface of the metal thin film. The effect of surface plasmons is so thin that it reaches the sample layer. That is, the thickness of the insulator film is 1/100 to 1/10 of the wavelength of the measuring light used. This is because surface plasmon resonance cannot be generated if the above range is not satisfied. The dielectric film has an extinction coefficient k of less than 0.01. If it is 0.01 or more, the light absorption is not so small that evanescent light generated by total reflection on the metal thin film to cause the surface plasmon resonance phenomenon can reach the sample layer above the dielectric film.
[0021]
The insulator film having a high refractive index as described above can be realized, for example, as a polymer formed from an optically active organic low molecular organic solid material by a plasma process. The plasma process is useful as a method for forming an organic thin film with a controlled thickness, and since the organic thin film formed in the plasma process is a polymer having a three-dimensional network and a dense structure, it is highly sensitive to light. Has a refractive index. Further, since the constituents are mainly carbon, hydrogen, and nitrogen, light absorption is small in a light wavelength range of 550 to 1000 nm. Further, it has an insulating property, and has a characteristic of having resistance to acids and alkalis.
[0022]
[Action]
In sensing using the surface plasmon resonance phenomenon, the influence of light absorption in a layer of a sample to be measured outside the metal is large near the surface where the surface plasmon is generated, that is, from the interface between the metal thin film and the dielectric.
[0023]
For example, considering light having a wavelength of 600 nm, the influence of the k value on the intensity of reflected light is extremely large in a region of about 10 nm from the surface where the surface plasmon is generated. Conversely, if the distance from the surface plasmon generation surface is about 10 nm or more, even if the value of k is different by about 10 times, the influence on the reflected light intensity with respect to the total reflected light incident on the interface between the waveguide core layer and the metal thin film is not affected. Hardly change.
[0024]
Therefore, by forming in advance a dielectric film having a higher refractive index than the waveguide core layer on the vicinity of the metal thin film greatly affected by the value of k, the k of the sample to be measured gives the reflected light intensity. Reduce the effect. Accordingly, when the surface plasmon resonance sensor determines the change in the concentration of a product having a large k value, that is, the absorption of the measurement light, the effect of the light absorption due to the change in the concentration of the target substance is suppressed, and the change in the concentration itself is suppressed. The reflected reflected light spectrum can be obtained.
[0025]
In addition, by introducing evanescent waves with surface plasmon resonance into the high-refractive-index dielectric layer formed outside the waveguide core layer, the leakage mode loss corresponding to the refractive index of the external sample layer can be simultaneously reduced. Can be measured.
[0026]
That is, in the waveguide structure and device according to the present invention, the refractive index n of the sample material outside the high-refractive-index insulator film is determined.s, The extinction coefficient k representing the absorption of the substancesWhen expressed as, the minimum value of the light reflection intensity detected by the surface plasmon resonance sensor is ksCan be suppressed to a small extent.
[0027]
For example, the wavelength λ corresponding to the minimum value of the light reflection intensityminHowever, in the conventional device, when the value of k is relatively large, such as about 0.01, even if the value of n is increased by 0.1, λ is affected by the value of k.minIndicates that the surface plasmon resonance sensor cannot determine the refractive index change corresponding to the concentration change without observing the shift to the long wavelength side. However, according to the device of the present invention, the value of k is 0.1. Even if it has an absorption of 005, λminIs observed to shift to the longer wavelength side, and it is possible to accurately determine the refractive index corresponding to the increase in the concentration of the product resulting from a physicochemical reaction or biochemical reaction, which is the detection purpose of the surface plasmon resonance sensor. it can.
[0028]
Even for a substance that absorbs light in the measurement region, it becomes possible to monitor a change in the refractive index using surface plasmon resonance. When the surface plasmon sensor is used, it is not necessary to select a wavelength region and redesign, so that the device application range of the surface plasmon resonance sensor is widened.
[0029]
Embodiment 1
FIGS. 1A and 1B show a surface plasmon resonance sensor according to the present invention having a waveguide structure covered with a high-refractive-index insulating film. For comparison, a configuration of a conventional surface plasmon resonance sensor is shown in FIG.
[0030]
In the waveguide structure shown in FIG. 1A according to the present invention, a refractive index N is formed on a waveguide core layer 1 made of glass or plastic having a refractive index Nw.AuIs formed with a thickness of about 30 to 50 nm, and a dielectric film 3 having a refractive index Nf (Nf> Nw) and a thickness d [nm] is formed on the gold metal thin film 2. Is formed. Further, a sample layer 4 on which a sample is placed is formed on the dielectric film 3 to form a surface plasmon resonance sensor. In a conventional surface plasmon resonance sensor, there is no dielectric film 3 and there is a sample layer 4 on which a sample is placed directly on the gold metal thin film 2.
[0031]
In the waveguide structure of FIG. 1A according to the present invention, a gold metal thin film 2 and a dielectric film 3 are directly formed on a waveguide core layer 1. On the other hand, in the surface plasmon resonance sensor of FIG. 1B, an auxiliary waveguide 5 made of the same material as the waveguide core layer 1 or a material having the same refractive index and light transmission characteristics is used. The metal thin film 2 and the dielectric film 3 are formed, and a liquid or gel-like matching oil layer 6 for establishing an optical coupling is sandwiched between the waveguide core layer 1 and the auxiliary waveguide 5.
[0032]
Regarding the method of introducing the incident light 7 into the waveguide core layer 1 of the light, the light is incident through a spherical type whose surface is optically polished or a prism cut at an appropriate angle, or the angle is adjusted by a lens and the light is collected. It is conceivable that the incident light directly enters the waveguide core layer 1 or that the light enters the waveguide core layer 1 using an optical fiber connection technique.
[0033]
The outgoing light 8 can be led to the detector by spatial propagation or propagation by an optical fiber. A polarizer 9 for selectively transmitting the TM wave is provided between the emitted light 8 and the detector, thereby forming a device for a surface plasmon resonance sensor.
[0034]
The incident light 7 of wavelength λ is incident angle θ0At 10, the interface between the waveguide core layer 1 and the gold metal thin film 2 is subjected to the following total reflection condition “θ0> Sin-1(NAu/ Nw), where NAuIs made to satisfy the “refractive index of gold”. The surface plasmon propagates along the interface between the gold metal thin film 2 and the dielectric film 3 thereabove according to the traveling direction of the incident light.
[0035]
The sample layer 4 on the dielectric film 3 has a refractive index nsExtinction coefficient ksIn this case, the emitted light 8 is measured by a detector, and the minimum value of the light reflection intensity is determined by the incident angle θ.0Alternatively, the refractive index N of the sample layer 4 is obtained by sweeping the incident light wavelength λ.sΛ corresponding to the minimum value of the light reflection intensityminOr θminCan be requested.
[0036]
The effect of the present invention is shown by a calculation simulation based on the Fresnel reflectance formula. The value used here was 1.54 as the value of Nw, the thickness of the insulating film having a high refractive index was the same as that of the gold metal thin film, and d was 25 nm. N of the samplesIs 1.34 and 1.35, k representing light absorptionsIs changed to 0.001 or 0.005, and the calculation is performed assuming FIG. 8 which is a conventional surface plasmon resonance sensor, as shown in FIG.minIs NsIs k at 1.34sIs 0.008, then nsIs 1.35 and ksIs longer than when the wavelength is 0.0005. On the other hand, in the calculation on the assumption of FIGS. 1A and 1B according to the present invention, as shown in FIG.sIs 1.35 and ksIs 0.0005, λminIs nsIs k at 1.34sIs longer than when 0.008 is used. Therefore, k representing light absorptionsIn the surface plasmon resonance sensor according to the present invention, even when the value ofsCan be accurately determined.
[0037]
Embodiment 2
As an experiment corresponding to the above case, a case is shown in which methylene blue of a dye is used as a substance having light absorption, and aqueous solutions of methylene blue having different concentrations are measured with a surface plasmon resonance sensor according to the present invention and a conventional surface plasmon resonance sensor. First, the features of the high refractive index insulator film used in the present invention will be described. The waveguide structure was manufactured by the method described in Japanese Patent Application Nos. 2002-355353, 2002-355354, and 2002-339895.
[0038]
As the insulator film having a high refractive index, a thin film (produced based on JP-A-2000-304673) using an amino acid as an organic solid material as a raw material by a sputtering method was used. As shown in FIG. 3, in a wide light region from 300 nm to 1000 nm, it has a refractive index of 1.65 or more, and further, in a range from 500 nm to 1000 nm, the refractive index changes from 1.65 to 1.7. This film does not have anomalous dispersion of the refractive index that changes smoothly. Further, as shown in FIG. 4, the value of k is 0.04 at 500 nm, but has a feature that it becomes smaller in a wavelength range from 1000 nm to 1000 nm.
[0039]
As described above, the organic insulator film made of an amino acid as an organic solid material by sputtering is an insulating material having no high absorption in the visible region and having a high refractive index of about 1.65. On the other hand, it is known that gas molecules can be absorbed and desorbed in response to changes in the concentration of volatile molecules in the atmosphere outside the sputtered organic insulator film formed from amino acids. As shown in FIG. 5, using an angle detection type surface plasmon resonance sensor and using incident light of 870 nm, sputter organic insulation using amino acids formed on a gold metal thin film on a slide glass (BK7) as a raw material. When the body film is exposed to a 1 ppm carboxyl gas atmosphere and when exposed to 0 ppm (air), the incident angle θ corresponding to the refractive indexminCan be observed by repeating the increase or decrease of 0.001 deg. Further, a sputtered organic insulator film made of amino acids is an organic insulator film having chemical stability that does not dissolve in an organic solvent represented by water, alcohol, and hexane. It can be expected that a film interface can be formed.
[0040]
By this sputtering method, an organic insulator film using an amino acid as an organic solid material as a raw material was formed on the polymer waveguide core layer 1 on which a gold metal thin film was formed.
[0041]
A xenon lamp capable of emitting visible light having a wavelength of 300 to 1000 nm is used as a light source. A polarizer 10 for TM wave was installed on the end face of the device where the emitted light 8 emerged, and guided to a CCD camera (wavelength resolution: 1 nm) as a detector by spatial propagation.
[0042]
About the methylene blue aqueous solution, the concentration is about 0.1 to 0.02 molL.-1FIG. 6 (a) shows the result of measurement by dropping the sample prepared in step 1 onto a conventional device, and FIG. 6 (a) shows the result of measurement by dropping the sample on an organic insulator film using amino acid as an organic solid material by sputtering. FIG. 6 (b). The sample concentration was 18 μmolL for sample I.-1, Sample II is 92 μmolL-1, Sample III is 1 mmolL-1It is. Methylene blue is a dye that has light absorption from around 600 nm.
[0043]
In FIG. 6A, which is the result of using the conventional device, when the sample I having a low concentration and the sample III having a high concentration are measured, the reflectance spectrum is shifted in the vertical axis direction. No axial shift is observed. That is, λminIs almost constant. This is considered because the reflected light intensity fluctuates due to the influence of light absorption in the sample layer.
[0044]
On the other hand, when the surface plasmon resonance sensor is used, as shown in FIG. 6B, the dip position changes to the longer wavelength side without a large change in the shape of the reflectance spectrum. ΔλminWas positive 12 nm. The dip depth of the reflectance spectrum is clearly deeper than the result of FIG. 6A using the conventional surface plasmon resonance sensor.minIs important in that the accuracy of the fitting for obtaining the value of is increased.
[0045]
Further, when the surface plasmon resonance sensor according to the present invention is used, the dip in the reflectance spectrum is deepened, which is also consistent with the simulation result in FIG. Also, λmin2 appear at around 600 nm, which is on the longer wavelength side as compared with around 550 nm in FIG. 6A using the conventional surface plasmon resonance sensor, which is a result consistent with the simulation result of FIG. is there.
[0046]
As shown in the graph of FIG. 7, a linear relationship appears in the value of the wavelength corresponding to the minimum value of the reflectance with respect to the logarithm of the methylene blue aqueous solution concentration. That is, it is shown that a change in the refractive index of methylene blue having light absorption can be determined by a surface plasmon resonance sensor device for a methylene blue solution having light absorption. From the calibration curve obtained from this graph, using a detector with a wavelength resolution of 1 nm, about 0.18 molL-1It can be seen that the change in the concentration of the methylene blue aqueous solution of / m can be detected as a change using the refractive index as a parameter.
[0047]
FIG. 8 shows a reflected light spectrum obtained by the surface plasmon resonance sensor according to the present invention when the concentration of the aqueous solution of sodium perchlorate having no absorption in the measurement wavelength range is changed. Thus, 0.5 molL-1/ Nm and 3.5 molL-1/ Nm aqueous solution of sodium perchlorate at 591.9 nm and 616.8 nm, respectively.minIs observed. Therefore, a refractive index measurement based on surface plasmon resonance is performed on a substance having no absorption.
[0048]
【The invention's effect】
According to the present invention as described above,
(1) In a surface plasmon resonance sensor, even when a sample is used, which absorbs the measurement light to be used, the entire light reflectance spectrum expressing the surface plasmon resonance does not significantly shift, and Λ corresponding to refractive index changeminOr θminIs obtained.
[0049]
(2) Further, due to a plasma process using an amino acid which is an organic solid material as a starting material, an organic insulator having no high light absorption between 550 nm and 1000 nm and having a high refractive index of about 1.65 to 1.7. The film can be formed.
[0050]
(3) A sensor device that can accurately detect a change in refractive index by a surface plasmon resonance method for a sample that absorbs measurement light is a high-refractive-index organic insulating material manufactured by a plasma process from an amino acid that is an organic solid material This can be realized by forming the body film on a metal thin film formed on the waveguide core layer. As a result, even for an aqueous solution having absorption in the measurement light, the λminAnd the logarithm of the concentration can be linearly determined.
[0051]
As described above, the fact that the dip of the reflection spectrum is obtained as a deep dip that is sharp and has a small half-value width increases the accuracy of calculation for determining the minimum value of the reflectance, and therefore, the surface plasmon resonance sensor This makes it possible to obtain high sensitivity. In addition, compared to conventional products, the wavelength-dependent reflectance spectrum is obtained as a dip in a narrower wavelength range, which is advantageous in that it is easy to increase the resolution in an optical system tailored to a specific target substance, or There is an advantage that a cheaper optical system can be designed.
[0052]
As described above, an ion-sensitive material such as an ionophore, an organic film material that causes selective adsorption, or a molecule using a nanometer-order hole is formed on the device configuration of the surface plasmon resonance sensor according to the present invention. High-sensitivity detection of changes in the refractive index caused by low-molecular-weight substances, which occur in the sample layer such as the selective adsorption film due to the size effect, enables high-sensitivity detection that was not possible with conventional surface plasmon resonance sensor devices. , An enzyme sensor, an antigen-antibody reaction sensor, a gas sensor, and the like can be realized based on surface plasmon resonance.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a surface plasmon resonance sensor having a high refractive index insulator film based on the Kretschmann type according to the present invention.
FIG. 2 (a) is a surface plasmon resonance sensor of the present invention (with a high refractive index dielectric film), and FIG. 2 (b) is a refractive index n by a conventional surface plasmon resonance sensor (without a high refractive index dielectric film). The figure which shows the simulation result of the reflectance with respect to the sample which has extinction coefficient k.
FIG. 3 is a diagram showing data on the relationship between the wavelength and the refractive index of a dielectric film of an organic insulator film formed by a plasma process using an amino acid as a solid material by spectroscopic ellipsometry.
FIG. 4 is a diagram showing data on the relationship between the wavelength and the extinction rate of a dielectric film of an organic insulator film formed by a plasma process using an amino acid as a solid material by spectroscopic ellipsometry.
FIG. 5 shows 1 ppm of carboxy gas and 0 ppm of a dielectric film of a sputtered organic insulator film formed from an amino acid as a raw material formed on a gold metal thin film on a slide glass (BK7) using incident light of 870 nm. Θ when exposed to (air)minFIG.
FIG. 6 (a) Measurement of an aqueous methylene blue sample using a surface plasmon resonance sensor of the present invention (with a high refractive index dielectric film) and (b) a conventional surface plasmon resonance sensor (without a high refractive index dielectric film) The figure which shows a result.
FIG. 7 is a diagram showing a calibration curve for measuring a methylene blue aqueous solution using a surface plasmon resonance sensor (with a dielectric film having a high refractive index) of the present invention.
FIG. 8 is a view showing a reflectance spectrum of an aqueous solution of sodium perchlorate measured by a surface plasmon resonance sensor (with a dielectric film having a high refractive index) of the present invention.
FIG. 9 is a configuration diagram of a conventional surface plasmon resonance sensor.
[Explanation of symbols]
1 Waveguide core layer
2 Metal thin film
3 Dielectric film
4 Sample layer
5 Auxiliary waveguide
6 Layer of matching oil
7 Incident light
8 Outgoing light
9 Polarizer that selectively transmits TM waves
10 Incident angle θ0

Claims (14)

測定用の光を入射する導波路コア層に金属薄膜が積層され、更に金属薄膜上に前記導波路コア層より高い屈折率を持ち、かつ、前記導波路コア層に入射する測定用の光の光波長の100から10分の1の厚さを持つ誘電体膜を形成したことを特徴とする導波路構造。A metal thin film is laminated on the waveguide core layer on which the light for measurement is incident, and further has a higher refractive index than the waveguide core layer on the metal thin film, and the light for measurement incident on the waveguide core layer. A waveguide structure, wherein a dielectric film having a thickness of 100 to 1/10 of the light wavelength is formed. 前記誘電体膜は光消衰係数が0.01より小さいことを特徴とする請求項1記載の導波路構造。2. The waveguide structure according to claim 1, wherein the dielectric film has a light extinction coefficient smaller than 0.01. 前記誘電体膜は絶縁性を備えていることを特徴とする請求項1または2記載の導波路構造。3. The waveguide structure according to claim 1, wherein said dielectric film has an insulating property. 前記誘電体膜は、光学活性な有機低分子を出発材料とし、プラズマプロセスにより形成したポリマーであることを特徴とする請求項3記載の導波路構造。The waveguide structure according to claim 3, wherein the dielectric film is a polymer formed by a plasma process using an optically active low molecular organic compound as a starting material. 前記出発材料はアミノ酸であることを特徴とする請求項4記載の導波路構造。The waveguide structure according to claim 4, wherein the starting material is an amino acid. 測定用の光を入射する導波路コア層上に金属薄膜を設け、さらに前記金属薄膜上に前記導波路コア層に入射する測定用の光の光波長の100から10分の1の厚さの誘電体膜を形成することを特徴とする導波路構造の製造方法。A metal thin film is provided on a waveguide core layer on which measurement light is incident, and a thickness of 100 to 1/10 of the light wavelength of the measurement light incident on the waveguide core layer on the metal thin film. A method for manufacturing a waveguide structure, comprising forming a dielectric film. 前記誘電体膜は出発物質の光学活性な有機低分子をプラズマプロセスによりポリマー化して形成することを特徴とする請求項6記載の導波路構造の製造方法。7. The method according to claim 6, wherein the dielectric film is formed by polymerizing an optically active organic low molecule as a starting material by a plasma process. 前記出発物質がアミノ酸であることを特徴とする請求項7記載の導波路構造の製造方法。The method according to claim 7, wherein the starting material is an amino acid. 測定用の光を入射する導波路コア層に金属薄膜が積層され、更に金属薄膜上に導波路コア層より高い屈折率を持ち、かつ、前記導波路コア層に入射する測定用の光の光波長の100から10分の1の厚さを持つ誘電体膜を形成した導波路構造の前記誘電体膜上に測定用の試料を設けるためのサンプル層を形成したことを特徴とする表面プラズモン共鳴センサ。A metal thin film is laminated on a waveguide core layer on which measurement light is incident, and further has a higher refractive index than the waveguide core layer on the metal thin film, and light of measurement light incident on the waveguide core layer. Surface plasmon resonance characterized in that a sample layer for providing a sample for measurement is formed on the dielectric film of the waveguide structure in which a dielectric film having a thickness of 100 to 1/10 of the wavelength is formed. Sensors. 前記サンプル層と金属薄膜は絶縁されていることを特徴とする請求項9記載の表面プラズモン共鳴センサ。The surface plasmon resonance sensor according to claim 9, wherein the sample layer and the metal thin film are insulated. 前記誘電体膜は絶縁性を備えていることを特徴とする請求項10記載の表面プラズモン共鳴センサ。The surface plasmon resonance sensor according to claim 10, wherein the dielectric film has an insulating property. 前記誘電体膜は、光学活性な有機低分子を出発材料とし、プラズマプロセスにより形成したポリマーであることを特徴とする請求項11記載の表面プラズモン共鳴センサ。The surface plasmon resonance sensor according to claim 11, wherein the dielectric film is a polymer formed by a plasma process using an optically active organic low molecule as a starting material. 前記出発材料はアミノ酸であることを特徴とする請求項12記載の表面プラズモン共鳴センサ。The surface plasmon resonance sensor according to claim 12, wherein the starting material is an amino acid. 測定用の光を入射する導波路コア層に金属薄膜が積層され、更に金属薄膜上に導波路コア層より高い屈折率を持ち、かつ、前記導波路コア層に入射する測定用の光の光波長の100から10分の1の厚さを持つ誘電体膜を形成した導波路構造の前記誘電体膜上に測定用の試料を設けるためのサンプル層を形成した表面プラズモン共鳴センサの前記サンプル層に試料を設け、前記導波路コア層に光を入射させて、前記導波路コア層を透過する強度の波長あるいは入射角度スペクトルを測定することにより前記試料の屈折率変化を測定することを特徴とする屈折率変化測定方法。A metal thin film is laminated on a waveguide core layer on which measurement light is incident, and further has a higher refractive index than the waveguide core layer on the metal thin film, and light of measurement light incident on the waveguide core layer. The sample layer of the surface plasmon resonance sensor in which a sample layer for providing a sample for measurement is formed on the dielectric film having a waveguide structure in which a dielectric film having a thickness of 100 to 1/10 of the wavelength is formed. A sample is provided, light is incident on the waveguide core layer, and a change in the refractive index of the sample is measured by measuring a wavelength or an incident angle spectrum of an intensity transmitted through the waveguide core layer. Refractive index change measurement method.
JP2002333145A 2002-11-18 2002-11-18 Surface plasmon resonance sensor and method for measuring refractive index change Expired - Fee Related JP3961405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333145A JP3961405B2 (en) 2002-11-18 2002-11-18 Surface plasmon resonance sensor and method for measuring refractive index change

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333145A JP3961405B2 (en) 2002-11-18 2002-11-18 Surface plasmon resonance sensor and method for measuring refractive index change

Publications (2)

Publication Number Publication Date
JP2004170095A true JP2004170095A (en) 2004-06-17
JP3961405B2 JP3961405B2 (en) 2007-08-22

Family

ID=32697936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333145A Expired - Fee Related JP3961405B2 (en) 2002-11-18 2002-11-18 Surface plasmon resonance sensor and method for measuring refractive index change

Country Status (1)

Country Link
JP (1) JP3961405B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175794A (en) * 2007-01-17 2008-07-31 Tohoku Univ Reflection measuring apparatus and method
JP2009115623A (en) * 2007-11-06 2009-05-28 Sharp Corp Surface plasmon sensor
JP2009162754A (en) * 2008-01-04 2009-07-23 Rohm Co Ltd Measuring chip
JP2010509606A (en) * 2006-11-15 2010-03-25 ビオスルフィット ソシエダッド アノニマ Dynamic detection device based on surface plasmon resonance effect
WO2010087088A1 (en) * 2009-01-30 2010-08-05 独立行政法人産業技術総合研究所 Sample detection sensor and sample detection method
US8290314B2 (en) 2006-08-21 2012-10-16 National Institute Of Advanced Industrial Science And Technology Optical waveguide mode sensor having pores
CN103543128A (en) * 2012-07-10 2014-01-29 中国科学院微电子研究所 Sensor based on self-supporting grating structure and preparation method of sensor
CN105891152A (en) * 2014-10-01 2016-08-24 上海光刻电子科技有限公司 Refractive index measurement method with wide range
CN108132232A (en) * 2017-12-28 2018-06-08 中国地质大学(武汉) A kind of surface plasma resonance sensor
CN108613949A (en) * 2018-07-30 2018-10-02 兰州理工大学 The angle scanning index sensor of Medium Wave Guide is coated based on unsymmetrical metal
US10168277B2 (en) 2015-02-16 2019-01-01 National University Corporation Shizuoka University Refractive index measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102539379B (en) * 2011-12-22 2014-01-08 复旦大学 Optical fluid detection device based on inorganic oxide thin film and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8290314B2 (en) 2006-08-21 2012-10-16 National Institute Of Advanced Industrial Science And Technology Optical waveguide mode sensor having pores
JP2010509606A (en) * 2006-11-15 2010-03-25 ビオスルフィット ソシエダッド アノニマ Dynamic detection device based on surface plasmon resonance effect
JP2008175794A (en) * 2007-01-17 2008-07-31 Tohoku Univ Reflection measuring apparatus and method
JP2009115623A (en) * 2007-11-06 2009-05-28 Sharp Corp Surface plasmon sensor
JP2009162754A (en) * 2008-01-04 2009-07-23 Rohm Co Ltd Measuring chip
JP5182900B2 (en) * 2009-01-30 2013-04-17 独立行政法人産業技術総合研究所 Sample detection sensor and sample detection method
WO2010087088A1 (en) * 2009-01-30 2010-08-05 独立行政法人産業技術総合研究所 Sample detection sensor and sample detection method
CN103543128A (en) * 2012-07-10 2014-01-29 中国科学院微电子研究所 Sensor based on self-supporting grating structure and preparation method of sensor
CN105891152A (en) * 2014-10-01 2016-08-24 上海光刻电子科技有限公司 Refractive index measurement method with wide range
US10168277B2 (en) 2015-02-16 2019-01-01 National University Corporation Shizuoka University Refractive index measuring device
CN108132232A (en) * 2017-12-28 2018-06-08 中国地质大学(武汉) A kind of surface plasma resonance sensor
CN108613949A (en) * 2018-07-30 2018-10-02 兰州理工大学 The angle scanning index sensor of Medium Wave Guide is coated based on unsymmetrical metal
CN108613949B (en) * 2018-07-30 2023-11-17 兰州理工大学 Angle scanning refractive index sensor based on asymmetric metal cladding dielectric waveguide

Also Published As

Publication number Publication date
JP3961405B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
US9285534B2 (en) Fiber-optic surface plasmon resonance sensor and sensing method using the same
JP4911606B2 (en) Total reflection attenuation optical probe and aqueous solution spectrometer using the same
Potyrailo et al. Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development
US8068995B2 (en) Biosensing apparatus and system
US5082629A (en) Thin-film spectroscopic sensor
Lin et al. Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection
US7817278B2 (en) Surface plasmon resonance sensor apparatus having multiple dielectric layers
EP2264438A1 (en) A surface plasmon resonance sensing method and sensing system
WO2011147383A1 (en) Optical sensing devices and methods for detecting samples using the same
JP3961405B2 (en) Surface plasmon resonance sensor and method for measuring refractive index change
Slavík et al. Advanced biosensing using simultaneous excitation of short and long range surface plasmons
US6943887B2 (en) Surface plasmon resonance sensor having real-time referencing
US7239395B2 (en) Optical interrogation systems with reduced parasitic reflections and a method for filtering parasitic reflections
CN109115728B (en) Surface electromagnetic mode resonance hyperspectral imaging device, imaging method and application
US20090066957A1 (en) Method and Apparatus for Sensing a Target Substance by Analysing Time Series of Said Target Substance
US7831126B2 (en) Waveguide core and biosensor
JP2007271596A (en) Optical waveguide mode sensor
Jing et al. Chip-scale in situ salinity sensing based on a monolithic optoelectronic chip
CN1712931A (en) Interference SPR chemical and biological sensor and system with fibre-optical microstructure Michelson
CN101294900A (en) High-fineness cavity surface plasma resonance sensing equipment
Fallauto et al. Impact of optical fiber characteristics in SPR sensors for continuous glucose monitoring
Somarapalli et al. Demonstration of low‐cost and compact SPR optical transducer through edge light coupling
Dougherty A compact optoelectronic instrument with a disposable sensor based on surface plasmon resonance
Johnston et al. Prototype of a multi-channel planar substrate SPR probe
JP3702340B2 (en) Refractive index measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070516

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees