JP2004167632A - Manufacturing method for micro-grinding tool, and micro-grinding tool - Google Patents
Manufacturing method for micro-grinding tool, and micro-grinding tool Download PDFInfo
- Publication number
- JP2004167632A JP2004167632A JP2002336428A JP2002336428A JP2004167632A JP 2004167632 A JP2004167632 A JP 2004167632A JP 2002336428 A JP2002336428 A JP 2002336428A JP 2002336428 A JP2002336428 A JP 2002336428A JP 2004167632 A JP2004167632 A JP 2004167632A
- Authority
- JP
- Japan
- Prior art keywords
- tool
- grinding tool
- micro
- electrode
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 20
- 238000003754 machining Methods 0.000 claims abstract description 18
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 9
- 239000010432 diamond Substances 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 17
- 230000015572 biosynthetic process Effects 0.000 abstract 2
- 230000002349 favourable effect Effects 0.000 abstract 1
- 238000007599 discharging Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、マイクロレンズアレイなどの光学素子の加工に使用されるマイクロ研削工具の作製方法及びマイクロ研削工具に関するものである。
【0002】
【従来の技術】
マイクロレンズアレイなどの微細な光学デバイス金型加工においては、その加工対象から使用する工具は直径が300μm以下で、且つ、3次元曲面形状を加工するため工具先端に1μm以下の形状精度を有する球面、或いは、非球面形状を有する工具が求められている。
【0003】
従来の研削工具の作製方法としては、放電ツルーイングなどが採用されている。
【0004】
この放電ツルーイング方法は、例えば、特許文献1に開示されているように、機上で工具電極を作製することにより工具形状の高精度化を図ることができるというものである。
【0005】
【特許文献1】
特開昭63−283861号公報
【0006】
【発明が解決しようとする課題】
しかしながら、工具電極を機上で加工することは難しく、加えて工具電極は放電加工時の消耗が小さいことが求められるが、純タングステン材料などの電極消耗の小さい材料は硬度が高いため高精度に加工し難いため、高精度なマイクロ研削工具の作製方法としては問題が生じることになる。また、工具電極を個別に作製し加工機へ装着した場合には、作製する研削工具と放電加工電極の相対位置決め誤差により、成形する工具に形状誤差を生じるという問題も生じる可能性がある。
【0007】
更に、直径が1mm以下の微細な工具の作製方法としては、研削加工や図5に示すような放電加工が用いられている。放電加工においては、研削工具11を回転させながらブロック電極10へ逆極性で放電させながら送り込むことにより微細な工具を形成することができる。しかし、いずれの加工においても微細工具へ刃を形成することが難しく、形状としては、単純な円柱形状であり研削工具としては、加工能力が低いという問題があった。
【0008】
前述するような、このように従来工法は、ツルーイング用電極を高精度に作製することが難しく、ツルーイング用電極の装着誤差、または、研削能力が低いといった課題があり、マイクロ研削工具を作製する方法としては問題が多い。
【0009】
本発明は、上記従来の問題点に鑑み、先端に高精度な球面あるいは非球面を有し、且つ、加工能力に優れたマイクロ研削工具及びその作製方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明のマイクロ研削工具の作製方法は、加工機上に設置された工具成形用電極保持台にV溝を加工し、所定の径に成形された工具成形用電極を前記V溝に設置した後、研削工具材料を前記工具成形用電極上に微細放電加工しながら走査させ、前記研削工具に成形することを特徴とするものである。
【0011】
上記方法によれば、微細放電加工などで高精度に作製された純タングステンなどの低電極消耗材料を、加工機との軸ずれなく高精度に設置することができ、仮に作製する工具径が微小であったとしても、高精度に作製することが可能となる。
【0012】
また、工具の加工能力が低い場合には、加工機上に設置された溝形成用薄板電極に、所定の径に成形された研削工具を前記溝形成用電極に送り込む際、前記研削工具の底面或いは側面を回転させずに放電させながら行い微細溝を形成することにより、工具の加工能力を向上させることが可能となる。
【0013】
また、工具材料として焼結ダイヤモンドを用いることで、工具材料の高耐摩耗性の特徴により、超硬合金などの高硬度材料に対しても工具摩耗の極めて小さいマイクロ研削工具を得ることができる。
【0014】
【発明の実施の形態】
図1〜図3を参照しながら本発明の実施形態を説明する。
【0015】
(第1の実施形態)
図1は、本発明の第1の実施形態に係るマイクロ研削工具の作製方法を示す断面図でである。図1において、1は研削工具,2は工具成形用電極,3は電極保持台,4はマンドレル,5はZステージ,6はXYステージ,7は放電発生回路である。
【0016】
同図において、研削工具1は、モーターによって回転されるマンドレル4に固定されており、Zステージ5を用いて回転軸方向に位置決めすることができる。工具成形用電極2は、XYステージ6上に設置された電極保持台3に形成されたV溝上に固定されている。
【0017】
電極保持台3のV溝は、図3に示すように、研削工具1の代わりに円錐形状に成形された焼結ダイヤモンド工具9を回転させながら電極保持台へ切り込み、水平方向に走査することにより加工することができる。このように機上で加工されたV溝へ工具成形用電極2を設置することにより、工具成形上電極の位置決めが容易となり、工具成形用電極と加工機との軸ずれを極めて小さくすることができる。
【0018】
また、研削工具1と電極保持台3の間には、微小エネルギーの放電パルスの発生が可能なRC回路で構成される放電発生回路7が電気的に接続されており、研削工具1と工具成形用電極2との間で微細放電加工を実施できる構成となっている。
【0019】
以上のような装置構成により、研削工具1を回転させながら所定の放電ギャップを保つように工具成形用電極2上を円周運動させながら放電ツルーイングすることにより、研削工具1の先端に高精度な球形状を作製することができる。
【0020】
電極保持台材料として真鍮を用い、電極保持台へのV溝加工として、頂角90°に成形した焼結ダイヤモンド工具を3000rpmで回転させながら切り込み量1μmで電極保持台上を20μm/secで走査して、深さ450μmとしたV溝を加工し、その溝上へ工具成形用電極材料として直径950μmのタングステンを設置した。
【0021】
研削工具材料としては、直径100μmの焼結ダイヤモンドを用いた。放電加工の条件としては、工具回転数を3000rpm、コンデンサ容量10pF、電圧70V、加工雰囲気は放電加工油中とし、電極頂点での放電検出点から1回の切り込み量を0.5μmとし、電極上部を30μm/secの速度で放電させながら走査した結果、工具先端にR=50μmの球形状を有するマイクロ研削工具が得られた。
【0022】
(第2の実施形態)
図2は、第2の実施形態に係る研削性を向上させるマイクロ研削工具の作製方法を模式的に示すものである。図2において、薄板電極8は加工機Z軸に対して垂直に設置されており、薄板電極と工具材料は放電回路が接続されている。また、工具材料を所定の位置に位置決めし、回転させずに放電させながら薄板電極へ送り込むことで、微細な溝を加工することができる。工具材料と薄板電極の位置決めは、工具側面と薄板電極との導通検出により可能である。
【0023】
薄板電極材料としては、板厚30μmのステンレス鋼、研削工具材料としては、直径100μmの焼結ダイヤモンド工具を用い、放電条件をコンデンサ容量100pF、電圧80Vとし、放電させながら研削工具を薄板電極材料へ送り込む加工を、工具を直角に回転させ2回繰り返すことにより、図4に示すような、幅30μm、深さ20μmの微細な溝を加工することができた。
【0024】
【発明の効果】
本発明によれば、直径が1mm以下で、且つ、先端が球面或いは非球面形状を有する高精度、且つ、研削性に優れたマイクロ研削工具の作製方法及びマイクロ研削工具を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係るマイクロ研削工具の加工方法を示す断面図
【図2】本発明の第2の実施形態に係るマイクロ研削工具への微細溝加工方法を示す断面図
【図3】本発明の第1の実施形態に係るV溝加工方法を示す断面図
【図4】本発明の第2の実施形態に係るマイクロ研削工具を示す図
【図5】従来の研削工具の加工法を示す断面図
【符号の説明】
1 研削工具
2 工具成形用電極
3 電極保持台
4 マンドレル
5 Zステージ
6 XYステージ
7 放電発生回路
8 溝形成用電極
9 円錐形焼結ダイヤモンド工具
10 ブロック電極
11 研削工具[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a micro-grinding tool used for processing an optical element such as a micro-lens array, and a micro-grinding tool.
[0002]
[Prior art]
In the processing of a mold for a micro optical device such as a micro lens array, a tool used from the processing object has a diameter of 300 μm or less, and a spherical surface having a shape accuracy of 1 μm or less at a tool tip for processing a three-dimensional curved surface shape. Alternatively, a tool having an aspherical shape is required.
[0003]
As a conventional method for producing a grinding tool, discharge truing or the like is employed.
[0004]
According to this discharge truing method, for example, as disclosed in
[0005]
[Patent Document 1]
JP-A-63-283861
[Problems to be solved by the invention]
However, it is difficult to machine the tool electrode on the machine.In addition, the tool electrode is required to have low wear during electric discharge machining.However, materials with low electrode consumption such as pure tungsten material have high hardness and high precision. Since it is difficult to process, a problem arises as a method for manufacturing a highly accurate micro-grinding tool. Further, when the tool electrodes are individually manufactured and mounted on a machining machine, there is a possibility that a problem occurs in that a shape error occurs in a tool to be formed due to a relative positioning error between a grinding tool to be manufactured and an electric discharge machining electrode.
[0007]
Further, as a method for producing a fine tool having a diameter of 1 mm or less, grinding or electric discharge machining as shown in FIG. 5 is used. In the electric discharge machining, a fine tool can be formed by rotating the
[0008]
As described above, as described above, the conventional method has a problem that it is difficult to manufacture a truing electrode with high accuracy, there is a problem that a mounting error of the truing electrode is low, or a grinding ability is low. There are many problems.
[0009]
An object of the present invention is to provide a micro-grinding tool having a high-precision spherical surface or aspherical surface at its tip and excellent in machining ability, and a method of manufacturing the same, in view of the above conventional problems.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing a micro-grinding tool according to the present invention is characterized in that a V-groove is formed on a tool-forming electrode holding table installed on a processing machine, and a tool-forming electrode formed into a predetermined diameter. After being set in the V-groove, a grinding tool material is scanned on the tool-forming electrode while performing fine electrical discharge machining, and is formed into the grinding tool.
[0011]
According to the above method, a low-electrode consumable material such as pure tungsten produced with high precision by micro electric discharge machining or the like can be installed with high precision without misalignment with a processing machine. Even if it is, it can be manufactured with high accuracy.
[0012]
Further, when the processing capability of the tool is low, when feeding the grinding tool formed to a predetermined diameter into the groove forming electrode installed on the processing machine into the groove forming electrode, the bottom surface of the grinding tool Alternatively, it is possible to improve the machining ability of the tool by forming a fine groove while performing discharge without rotating the side surface.
[0013]
Further, by using sintered diamond as a tool material, a micro-grinding tool with extremely small tool wear can be obtained even for a high-hardness material such as a cemented carbide due to the high wear resistance characteristics of the tool material.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
[0015]
(1st Embodiment)
FIG. 1 is a cross-sectional view illustrating a method for manufacturing a micro-grinding tool according to the first embodiment of the present invention. In FIG. 1, 1 is a grinding tool, 2 is a tool forming electrode, 3 is an electrode holder, 4 is a mandrel, 5 is a Z stage, 6 is an XY stage, and 7 is a discharge generating circuit.
[0016]
In the figure, a
[0017]
As shown in FIG. 3, the V-groove of the
[0018]
Further, between the
[0019]
With the above-described apparatus configuration, discharge truing is performed while rotating the
[0020]
Brass is used as the electrode holder material, and as a V-groove processing on the electrode holder, a sintered diamond tool formed at a vertical angle of 90 ° is rotated at 3000 rpm, and the electrode holder is scanned at 20 μm / sec at a cutting depth of 1 μm. Then, a V-groove having a depth of 450 μm was machined, and tungsten having a diameter of 950 μm was placed on the groove as a tool-forming electrode material.
[0021]
As a grinding tool material, a sintered diamond having a diameter of 100 μm was used. The conditions of the electric discharge machining were as follows: the tool rotation speed was 3000 rpm, the capacitance of the capacitor was 10 pF, the voltage was 70 V, the machining atmosphere was electric discharge machining oil, the amount of one cut from the electric discharge detection point at the top of the electrode was 0.5 μm, Was scanned while discharging at a speed of 30 μm / sec. As a result, a micro-grinding tool having a spherical shape with R = 50 μm at the tool tip was obtained.
[0022]
(Second embodiment)
FIG. 2 schematically shows a method for manufacturing a micro-grinding tool for improving the grindability according to the second embodiment. In FIG. 2, the
[0023]
A stainless steel tool with a thickness of 30 μm was used as the thin plate electrode material, and a sintered diamond tool with a diameter of 100 μm was used as the grinding tool material. By repeating the feeding process twice by rotating the tool at right angles, a fine groove having a width of 30 μm and a depth of 20 μm as shown in FIG. 4 could be formed.
[0024]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, it is possible to provide a method for manufacturing a micro-grinding tool having a diameter of 1 mm or less, a tip having a spherical or aspherical shape, high precision, and excellent grindability, and a micro-grinding tool. Become.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a method of processing a micro-grinding tool according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view illustrating a method of processing a fine groove on a micro-grinding tool according to a second embodiment of the present invention. FIG. 3 is a sectional view showing a V-groove machining method according to the first embodiment of the present invention. FIG. 4 is a view showing a micro-grinding tool according to a second embodiment of the present invention. Sectional view showing the tool machining method [Description of reference numerals]
DESCRIPTION OF
Claims (5)
を特徴とするマイクロ研削工具の作製方法。A V-groove is machined on a tool-forming electrode holding table installed on a processing machine, and a tool-forming electrode formed into a predetermined diameter is installed in the V-groove. Then, a grinding tool material is placed on the tool-forming electrode. A method for producing a micro-grinding tool, wherein the micro-grinding tool is scanned while being subjected to fine electric discharge machining to form the grinding tool.
を特徴とするマイクロ研削工具の加工方法。When a grinding tool formed to a predetermined diameter is fed into the groove forming electrode into the groove forming thin plate electrode installed on the processing machine, the grinding tool is discharged without rotating the bottom surface or the side surface of the grinding tool while rotating. A method for processing a micro-grinding tool, comprising forming a groove.
前記マイクロ研削工具の直径が300μm以下であること
を特徴とするマイクロ研削工具。A V-groove is machined on a tool-forming electrode holding table installed on a processing machine, and a tool-forming electrode formed into a predetermined diameter is installed in the V-groove. Then, a grinding tool material is placed on the tool-forming electrode. A micro-grinding tool produced by scanning while micro-discharge machining,
A micro-grinding tool, wherein the diameter of the micro-grinding tool is 300 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002336428A JP4218322B2 (en) | 2002-11-20 | 2002-11-20 | Manufacturing method of grinding tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002336428A JP4218322B2 (en) | 2002-11-20 | 2002-11-20 | Manufacturing method of grinding tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004167632A true JP2004167632A (en) | 2004-06-17 |
JP4218322B2 JP4218322B2 (en) | 2009-02-04 |
Family
ID=32700272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002336428A Expired - Fee Related JP4218322B2 (en) | 2002-11-20 | 2002-11-20 | Manufacturing method of grinding tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4218322B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010105060A (en) * | 2008-10-28 | 2010-05-13 | Osaka Prefecture | Super abrasive grain wheel and discharge truing method or truing-dressing method for super abrasive grain wheel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102554379B (en) * | 2012-01-09 | 2013-12-11 | 清华大学 | Electric spark machining device for superhard cutting tools and operation method |
-
2002
- 2002-11-20 JP JP2002336428A patent/JP4218322B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010105060A (en) * | 2008-10-28 | 2010-05-13 | Osaka Prefecture | Super abrasive grain wheel and discharge truing method or truing-dressing method for super abrasive grain wheel |
Also Published As
Publication number | Publication date |
---|---|
JP4218322B2 (en) | 2009-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Egashira et al. | Ultrasonic vibration drilling of microholes in glass | |
Gautam et al. | Experimental investigations into ECSD process using various tool kinematics | |
Morgan et al. | Micro-machining and micro-grinding with tools fabricated by micro electro-discharge machining | |
TWI586615B (en) | Engraving wheel, retainer unit, scribing device and marking wheel manufacturing method | |
Yan et al. | Fabrication of micro end mills by wire EDM and some micro cutting tests | |
JP2006205351A (en) | Electrical discharge machining method for turbine blade, and electrical discharge machining device for turbine blade used therein | |
Sun et al. | A comprehensive review on fabrication of ultra small micro tools via electrical discharge machining-based methods | |
KR102380301B1 (en) | Cutter wheel | |
Arrabiyeh et al. | Optimization of micropencil grinding tools via electrical discharge machining | |
JP4218322B2 (en) | Manufacturing method of grinding tool | |
Yukui et al. | Complex rotary structures machined by micro-WEDM | |
Wada et al. | Development of micro grinding process using micro EDM trued diamond tools | |
JP5114701B2 (en) | Micro tool grinding apparatus and method | |
CN1781638A (en) | Tool set for microfabrication, manufacturing method thereof, and microfabrication method | |
Zhao et al. | Study on block electrode discharge grinding of micro rods | |
Fonda et al. | The application of diamond-based electrodes for efficient EDMing of silicon wafers for freeform MEMS device fabrication | |
JP5075184B2 (en) | Scribing wheel | |
JP2011093189A (en) | Scribing wheel and method for producing the same | |
JP2015209350A (en) | Method for manufacturing scribing tool, scribing tool, scribing apparatus and scribing method | |
JP2011093191A (en) | Scribing wheel | |
JP2002361510A (en) | Milling method of fine recessed surface and its device | |
CN108145265B (en) | Processing method and device for micro grinding head for microarray structure processing | |
KR20040081878A (en) | A Cone Type PCD Scriber Glove Making Apparatus and Making Method Of Scriber | |
Lu et al. | Dry electrical discharge dressing and truing of diamond grinding wheel V-tip for micro-grinding | |
JP2020093307A (en) | Fine Kenzan manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051110 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20051213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081021 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20081103 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20111121 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20111121 |
|
LAPS | Cancellation because of no payment of annual fees |