JP2004167080A - Oxygen saturation degree measuring instrument - Google Patents

Oxygen saturation degree measuring instrument Download PDF

Info

Publication number
JP2004167080A
JP2004167080A JP2002338314A JP2002338314A JP2004167080A JP 2004167080 A JP2004167080 A JP 2004167080A JP 2002338314 A JP2002338314 A JP 2002338314A JP 2002338314 A JP2002338314 A JP 2002338314A JP 2004167080 A JP2004167080 A JP 2004167080A
Authority
JP
Japan
Prior art keywords
light
oxygen saturation
absorption coefficient
hemoglobin
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002338314A
Other languages
Japanese (ja)
Other versions
JP3471788B1 (en
Inventor
Koji Obayashi
康二 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002338314A priority Critical patent/JP3471788B1/en
Application granted granted Critical
Publication of JP3471788B1 publication Critical patent/JP3471788B1/en
Publication of JP2004167080A publication Critical patent/JP2004167080A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen saturation degree measuring method and an oxygen saturation degree measuring instrument for dividing tissue containing blood components into micro regions and determining the oxygen saturation degree of the divided micro regions. <P>SOLUTION: This oxygen saturation degree measuring instrument is composed of a frequency variable coherent light source 1, a partial reflecting mirror 11, a reference mirror 12, an optical scanning system 2, a detector 3, an amplifier 4, an analog-to-digital converter 5, a data analysis system 6 and a sample 7 to be measured. The data analysis system 6 determines a light absorption coefficient in the micro regions along the beams of measuring light 14 by making a Fourier analysis of the accumulated data. Further, the light absorption coefficient is one-dimensionally computed while gradually increasing the depth in the beam direction along the beams of the measuring light 14, and then one-dimensional computation is repeated to perform two-dimensional computation to acquire a tomographic image on the amount of oxygenated hemoglobin, the amount of reduced hemoglobin, the total amount of hemoglobin and the degree of oxygen saturation. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、生体組織の酸素化ヘモグロビン量、還元(遊離)ヘモグロビン量、総ヘモグロビン量、および酸素飽和度を、生体組織の微小領域毎に測定する酸素飽和度測定方法及び酸素飽和度測定装置に関する。
【0002】
【従来の技術】
生体組織に含まれる血液成分の酸素飽和度は、生体組織の活性を測定するための重要な情報であるため、従来から、多くの測定方法が試みられてきている。例えば、酸素化ヘモグロビンと還元ヘモグロビンとでは、光の吸収の度合いである光吸収係数が光の波長に依存して異なることを利用した方法が挙げられる。
【0003】
図8は、光の波長に対する酸素化ヘモグロビンと還元ヘモグロビンの光吸収係数の変化を示す図である。
【0004】
図8に示すように、紫外から、可視光、赤外に至る領域の酸素化ヘモグロビンと還元ヘモグロビンの光吸収係数(モル光吸収係数)の波長依存性には差が見られる。この光吸収係数の波長依存性の差を利用して、複数の波長を用いた光学測定によって、非侵襲的に酸素飽和度を求める方法がいくつか提案されている。
【0005】
このような、光吸収係数の波長依存性の差を利用して、複数の波長を用いた光学測定によって、非侵襲的に酸素飽和度を求める方法において、組織の光散乱能が弱ければ、光は吸収を受けながら直線的に伝播する場合は、入射光に対する透過光の減衰率から光路長当りの光吸収係数を求めることができる。
【0006】
しかし、一般的に、生体組織は光散乱の度合いが強く、光は多重散乱を繰り返しながら広がって全体としては拡散的に生体中を伝播する。このため、検出器で検出される光が経過する光路長は、単一ではなく広がって分布するため、入射光に対する透過光の減衰率から光路長当りの光吸収係数を求めることは困難になる。
【0007】
また、生体組織は光散乱能が強いため、生体組織中を伝播した光の減衰は、光吸収だけでなく、光散乱の寄与も無視できない。散乱による減衰も受けながら、拡散的伝播する光の減衰から、どのように正確に生体組織中の血液成分による光吸収係数を導き出すかが問題となる。
【0008】
一方、光の散乱能は、波長の4乗に逆比例して弱くなる。従って、上記の散乱の影響を少なくするためには、長波長の光が有利である。しかし、波長が約800nmよりも長くなるに従って、生体組織中に含まれる水による光吸収が増大する(図9参照)。
【0009】
そこで、光吸収係数の波長依存性の差を利用して、複数の波長を用いた光学測定によって、非侵襲的に酸素飽和度を求める方法では、波長が約800 nmにおける酸素化ヘモグロビンと還元ヘモグロビンの光吸収係数の交差(図8参照)を利用し、600 nmから1000 nmの、赤から赤外にいたる波長領域が多く使われている。ただし、眼の場合は、透明体に近く散乱能が比較的弱いため、赤外に加えて可視光も使われてきている。
【0010】
光吸収係数の波長依存性の差を利用して、複数の波長を用いた光学測定によって、非侵襲的に酸素飽和度を求める方法の1つとして、パルスオキシメトリーがある。
【0011】
図10(a)は、パルスオキシメトリーの原理図である。
【0012】
パルスオキシメトリーは、動脈の拍動効果を利用し、動脈血の光吸収への寄与を、他の寄与から分離することで、動脈血の光吸収係数を計測するものである。
【0013】
図10(a)に示すように、光源81と検出器の間に指を挟み、光源81から指に光を当て、その透過光を検出器83で検出すると、透過光の強度は図11に示すように、脈拍に対応して少し変動する成分を持つ。この変動成分(AC成分)は、心拍による血圧の増減により血管が膨張収縮することに起因しているので、動脈中の血球による光の吸収度を検出したことになり、他の部分の光の吸収と区別することができる。
【0014】
ここで、図8の光吸収係数の波長依存性を考慮し、光源に、赤色(例えば660nm程度)と赤外(例えば940nm)の2色を使用し、血液中の酸素化ヘモグロビンと遊離(還元)ヘモグロビンとでの各波長の光源における光吸収係数の差を利用すれば、動脈血の、酸素飽和度を求めることができる。パルスオキシメトリーは正確な測定ができる優れた方法であるが、対象が動脈流に限られるという制限がある。
【0015】
光吸収係数の波長依存性の差を利用して、複数の波長を用いた光学測定によって、非侵襲的に酸素飽和度を求める他の1つの方法として、経皮的酸素飽和度濃度測定装置がある、
図10(b)は経皮的酸素飽和度濃度測定装置の原理図である。
【0016】
経皮的酸素飽和度濃度測定装置は、図10(b)に示すように、対象とする生体組織82の測定部位(例えば脳)を定め、光源として2波長(例えば750nmと830nm)を用い、光源81と検出器83からなるプローブ80の構造を測定部位に応じていつも同じにし、プローブ80を皮膚に密着して測定を行い、あらかじめ行っておいた校正値と比較して酸素飽和度を決定する方法である。
【0017】
経皮的酸素飽和度濃度測定装置は、特に脳を対象とする場合は、比侵襲式脳血流酸素飽和度モニターとも呼ばれている。この方法も実際の診断において実用化されている。拡散的な透過光を用いるので、光が拡散する領域の平均値は求められるが、測定部位を細かく区分して、各区分それぞれの値を求めることはできない。
【0018】
光吸収係数の波長依存性の差を利用して、複数の波長を用いた光学測定によって、非侵襲的に酸素飽和度を求めるさらに他の1つの方法として、レーザー走査法が研究室レベルでは行われている。
【0019】
レーザー走査法は、眼底網膜を対象として、波長の異なる複数のレーザー光線を照射し、共役光学系を用いて後方散乱光を検出し、レーザー光線に沿った光路でおきる各波長における光の減衰から、酸素飽和度を求める方法である。
【0020】
ここでは、レ−ザー光線を眼底網膜上で走査し、測定を行う。上記の2つの方法に比べ、測定部位は入射光と略垂直な平面において精確に決められるが、入射光路に沿った組織の奥行き方向を微小領域に区分して、それら各区分それぞれの値を求めることはできない。
【0021】
【特許文献1】
特開2002−303576号公報
【0022】
【特許文献2】
特開2002−224088号公報
【0023】
【特許文献3】
特開平11−244268号公報
【0024】
【発明が解決しようとする課題】
上記のように、従来技術において、パルスオキシメトリーの場合は光が照射された指の部分全体、経皮的酸素飽和度濃度測定装置では光が拡散して伝播し検出器に到達する全領域、レーザー走査法では奥行き方向についてすべての組織からの寄与が全て測定されてしまう。従って、従来の技術では、生体組織内部の、1000μm以下の例えば数μmから数十μm程度の各微小領域において、酸素飽和度を決定することができなかった。
【0025】
本発明は上記課題に鑑みてなされたものであり、血液成分を有する組織を1000μm以下の例えば数μmから数十μm程度の小さな領域に区分して、区分された微小領域の酸素化ヘモグロビン濃度、還元ヘモグロビン濃度、酸素飽和度を決定する酸素飽和度測定方法及び酸素飽和度測定装置の提供を目的とする。
【0026】
【課題を解決するための手段】
本発明に係る酸素飽和度測定方法及び酸素飽和度測定装置は、相異なる2つ以上の波長領域の光線を血液成分を有する組織に照射し、光線に沿った領域において、照射した光線の後方散乱光(屈折率の急激な変化のために後方に反射的に散乱される場合も含む)の強度を光線方向に1〜1000ミクロン程度の微小領域に弁別して計測するステップと、前記相異なる2つ以上の波長領域の光線について計測した、光線方向における前記微小領域の前後の微小領域からの後方散乱光の強度から、前記微小領域における光の吸収係数を各波長領域毎に求めるステップと、前記微小領域における光吸収係数値から、酸素化ヘモグロビンと還元ヘモグロビンとでは光吸収係数の波長依存性が異なることを利用し、前記微小領域における酸素化ヘモグロビン量、還元ヘモグロビン量、総ヘモグロビン量又は酸素飽和度の少なくとも1つを求めるステップと、を有することを特徴とする
このように、本発明に係る酸素飽和度測定方法及び酸素飽和度測定装置によれば、血液成分を有する組織を微小領域に弁別して、2つ以上の波長領域で後方散乱光強度の測定を行うので、複数の光の波長領域で各微小領域の光吸収係数を求めることが出来る。そして、これらの光吸収係数と酸素化ヘモグロビンと還元ヘモグロビンの光吸収係数の波長依存性の差とを対応させることで、当該組織内の各微小領域における酸素化ヘモグロビン、還元ヘモグロビン、総ヘモグロビン量及び酸化飽和度を決定することができる。
【0027】
【発明の実施の形態】
〔発明の原理〕
光線を被測定体に入射し、入射した光に沿った奥行き方向の近接した2つの領域(または複数の領域を用いる場合も含める)からの後方散乱光強度を散乱を受けた場所を弁別して計測する。そして、これらの計測データから、計測した領域間にある微小領域の血液成分による光吸収の影響を評価することで、他の領域の組織の影響をほとんど受けることなく、正確にこの微小領域の血液の光吸収係数を求めることができる。これを、2波長以上の波長を利用して行い、当該微小領域の血液による光吸収係数を求めれば、複数の光の波長で光吸収係数が求まったことになる。これらの光吸収係数と、図8に示す酸素化ヘモグロビンと還元ヘモグロビンの光吸収係数の波長依存性の差とを対応させれば、酸素化ヘモグロビンおよび還元ヘモグロビン各々の量が求められ、酸化飽和度が微小領域に対して決定できる。
【0028】
ここでは、入射した光の光線に沿った数ミクロンから数十ミクロンの領域から後方散乱された光を、後方散乱を受けた場所を弁別して計測する手段として、オプティカル・コヒーレンス・トモグラフィー(以下OCTと記す)技術を用いることとする。
【0029】
OCTは、後方散乱された光のうち、入射した光と干渉する成分のみ測定する。したがって、拡散的に伝播する多重散乱では光の同位相面が乱れるので干渉が弱まり、多重散乱の影響はほとんどないか、無視できる。このためOCTにおける試料中の光の経路は直線とみなしてよい。以下では、多重散乱成分は干渉に寄与していないものとする。
【0030】
また、OCTでは、波長領域が広がりのある光源を利用するため、光学特性において、厳密には、波長の広がりを考慮しなければならない。しかし、中心波長に比べ波長の広がりの幅は1割程度以下なので、以下の説明においては、中心波長で代表する。
【0031】
図12は、微小領域における光吸収係数の計測原理を示す図である。
【0032】
図12において、測定用の中心波長λの光線が、奥行き方向のZ軸に沿って入射した場合を考える。OCTでは、Z軸上で数ミクロンから数十ミクロンの間隔で、入射光路に沿って入射光線と反対方向に後方散乱される光を計測する。一つの測定点をzとし、これからわずかな距離Δz奥行き方向にある測定点をz+Δzとする。ここで、両点において散乱能が同じであり、光の減衰がヘモグロビンによる吸収のみによって起こっているものとする。
【0033】
入射光線の光線(Z軸)に沿って位置zからz+Δzの微小な領域における光吸収係数を位置zと上記中心波長λの関数としてμ(z,λ)で表すと、位置zでの計測光強度I(z)と、位置z+Δzでの計測光強度I(z+Δz)との比は、光吸収のベア・ランバートの法則によりI(z)/I(z+Δz)=exp[2μ(z,λ)Δz]で表される。ここで、係数2は光がこの経路を往復することによる。この対数を求め2Δzで割り算すれば、微小な領域zからz+Δzの範囲の波長λにおける光吸収係数μ(z、λ)が求められる。
【0034】
従来、OCTは1つの中心波長で行われているが、この発明では、2つ以上の複数の中心波長λ、λ、λ、・・・・で行う。波長の種類を増すと決定できるパラメータの数が増し、精度を上げることができるが、ここでは簡単のため、λとλの2波長で計測する場合を説明する。酸素化ヘモグロビンと還元ヘモグロビンとでは、光吸収係数の波長依存性が図8のように異なる。例えば、λ=750nm、λ=850 nmとすると、λ=750nmでは還元ヘモグロビンの光吸収係数の方が大きく、ほぼ800 nm で一致し、λ=850 nmでは酸素化ヘモグロビンの光吸収係数の方が大きい。
【0035】
Z軸上の位置zにおける酸素化ヘモグロビンと還元ヘモグロビンの濃度をそれぞれ計算で求めるべき未知数としてCHbO(z)、CHb(z)で表す。波長λとλでの酸素化ヘモグロビンと還元ヘモグロビンの光吸収係数は図8に与えられており、それぞれ、μHbO (λ)、μHb (λ) μHbO (λ)、μHb (λ)、で表す。これらの濃度や光吸収係数と、上記実測された光吸収係数μ(z、λ)、μ(z、λ)との間には以下の関係式が成り立つ、
μHbO (λ)・CHbO(z)+μHb (λ)・CHb (z)=μ(z、λ) (1)
μHbO (λ)・CHbO(z)+μHb (λ)・CHb (z)=μ(z、λ) (2)
この連立方程式を解いて位置zでの微小領域の酸素化ヘモグロビン濃度CHbO(z)、還元ヘモグロビン濃度CHb(z)がそれぞれもとまり、それらの和から総ヘモグロビン量 [CHbO (z)+CHb (z)] が求まり、酸素飽和度も式、(酸素飽和度)=(酸素化ヘモグロビン量)/[(酸素化ヘモグロビン量)+(還元ヘモグロビン量)]=CHbO (z)/[CHbO (z)+CHb (z)] より求められる。 この方法では、組織内の位置zにおける数ミクロンから数十ミクロンの狭い領域Δzの範囲について、その直前・直後の後方散乱光の強度に基づいて光吸収係数を求め、それらの値から酸素飽和度を決定するため、酸素飽和度の極めて詳細で正確な測定ができる。
【0036】
このようにして、従来技術であるパルスオキシメトリー、経皮的酸素飽和度濃度測定装置、レーザー走査法では不可能であった生体組織内部の微小領域の酸素飽和度の測定が可能となる。
【0037】
例えば、組織の表面近くにある静脈と、組織の奥に存在する動脈とを区別してその血管一本一本における酸素飽和度等を測定することができる。
【0038】
入射光線の光線(Z軸)に沿ってzの値を漸次増加させながら1次元計測(Aスキャンと呼ぶ)を行い、入射光線を走査して次々に1次元計測を繰り返して2次元計測(Bスキャンと呼ぶ)を行えば、酸素化ヘモグロビン量、還元ヘモグロビン量、総ヘモグロビン量、および酸素飽和度についての断層像が得られる。また、2次元計測を走査して複数撮像し、並べて表示すれば、3次元の断層像を立体的に得ることができる。2次元や3次元の断層像の表示は、組織内部の生体活性の解明にとって有用である。
【0039】
以上、吸収が支配的で、散乱による光の減衰が無視でき、散乱強度が一定の組織に対し、2波長の計測を利用する場合について波長を例示して説明したが、血液以外の組織による光吸収の量が無視できない場合や、光散乱による光の減衰が無視できない場合や、後方散乱能が場所によって異なる場合などでは、決定すべきパラメータの数が増える。このような場合は、それらのパラメータを決定するために、測定する波長の種類を増やせば良い。
また、4波長(例えば775nm、810nm、870nm、904nm)を用いて、還元ヘモグロビンと酸素化ヘモグロビンに加えて、チトクロームc・オキシダーゼ(cyt−aa3)の量を同時に決定するアルゴリズムを採用してチトクロ−ムの影響を評価することも出来る。
【0040】
なお、ここでは現在技術が確立されているOCTを例にして発明の原理を説明したが、本発明は、より一般的に光学的断層像を計測する技術に適用可能でありOCTを用いたものに限定されるものではない。
【0041】
また、ここで具体的な波長の値を用いて2つの波長で計測した場合を示したが、これは説明を簡単にするための例示であって、発明の範囲を限定するものではない。
【0042】
さらに、測定を行わず、すでに他で得られている光学的断層画像データを解析することによっても上記と同様な結果が得られる。
次に、本発明の一実施の形態について図1乃至図7を参照して詳細に説明する。
【0043】
本発明の実施は、光学的に、1次元、2次元または3次元で断層的に生体組織を計測する装置すべてで適用可能である。これらの様々な光学的断層像撮像法の中でも、OCTは特に本発明の実施に適した方法であるので、OCTを用いた実施の形態について以下に説明する。
【0044】
〔第1の実施の形態〕
OCTには、主として、i)オプティカル・フリーケンシー・ドメイン・リフレクトメトリ法(OFDR)、ii)オプティカル・コヒーレンス・ドメイン・リフレクトメトリ法(OCDR法)、iii)スペクトラル・インターフェロメータ法(SI法)の3つの方法がある。
【0045】
第1の実施の形態は、光学的に、1次元、2次元または3次元で断層的に生体組織を計測する装置として、上記3つの方法の内からOFDR法(Optical Frequency Domain Reflectometry法)を用いる方法である。
【0046】
図1は第1の実施の形態における酸素飽和度測定装置の原理図である。
【0047】
図1に示すように、本実施の形態の酸素飽和度測定装置は、光合分波器としてマイケルソン干渉計を用いたものであり、周波数可変コヒーレント光源1、部分反射ミラー11、参照用ミラー12、光走査系2、検出器3、増幅器4、A/D変換器5、データ解析系6及び計測の対象となる試料7とからなる。
【0048】
周波数可変コヒーレント光源1は、干渉性のある光を発振し、発振した光の波長を離散的あるいは連続的に時間的に変化させることができる。この場合、光の干渉長は、測定する試料全体の長さより長くなければならない。
【0049】
部分反射ミラー11は、光合波手段としての機能を持つ。すなわち、周波数可変コヒーレント光源1から出た光は、部分反射ミラー11により、部分反射ミラー11で反射された参照光13と部分反射ミラー11を透過した測定光14とに分けられる。参照光13は参照用ミラー12で反射され部分反射ミラー11に戻る。測定光14は、光走査系2を経由して試料7に入射され、試料7において入射光の光線上のあらゆる場所で後方散乱された光は逆の経路をたどって部分反射ミラー11に戻る。戻ってきた後方散乱光と参照用ミラー12で反射された参照光13は、部分反射ミラー11で合波され、合波された信号は干渉信号として検出器3に入力される。
【0050】
光走査系2は、試料7に入射した測定光14の光線が一定の面をなすように、少しずつ方向をずらして測定光14を試料7に入射させるものである。このように光走査系2により測定光14の試料7への入射方向を少しずつずらし、各方向毎に入射した光線に沿った後方散乱光のデータを取得することで、試料7の酸素飽和度等についての断層像を得るためのデータを得る。
【0051】
ここで、周波数可変コヒーレント光源1から部分反射ミラー11により反射され、さらに参照用ミラー12に反射されて再び部分反射ミラー11を経由して検出器3に入力されるまでの光路を参照光路といい、周波数可変コヒーレント光源1から部分反射ミラー11を透過し、光走査系2を経由して試料7に入射され、試料7で後方散乱され逆の経路をたどって部分反射ミラー11に戻り、部分反射ミラー11を経由して検出器3に入力されるまでの光路を試料光路という。
【0052】
参照光路及び試料光路を通って部分反射ミラー11で合波された干渉信号は検出器3で検出され、増幅器4で増幅され、A/D変換器5でデジタル信号化され、デジタル化された信号は、データとしてデータ解析系6に遂次蓄積される。
【0053】
データ解析系6は信号解析手段としての機能を持つ。すなわち、蓄積されたデータをフーリエ解析することにより、試料の奥行き方向の深さに対応した形で、試料7からの後方散乱光の強度を試料7に入射した測定光14の光線方向の深さの関数として求める。このようにして求めた後方散乱光の強度から試料7に入射した測定光14の光線に沿った微小領域における光吸収係数を求める。さらに、試料7への測定光14の入射方向を順次変えて得たデータに基づき各方向における測定光14の光線に沿った微小領域における光吸収係数を求め、これらのデータを蓄積することにより、試料7の所定の断面の各微小領域における光吸収係数のデータを得る。
【0054】
さらに、データ解析系6は、2以上の波長領域で得られた上記微小領域における光吸収係数のデータから、前述の発明の原理で述べた方法で、酸素化ヘモグロビン量、還元ヘモグロビン量、総ヘモグロビン量、および酸素飽和度についての断層像を得る。また、試料7の計測断面を少しずつずらしながら2次元計測を繰り返し、並べて表示すれば、3次元の断層像を立体的に得ることができる。
【0055】
次に、データ解析系6において、試料7からの後方散乱光の強度と、試料7に入射した測定光14の光線方向の深さ及び測定光14の波長との関係を求める方法について説明する。
【0056】
説明を簡略にするために、光源の波長の逆数が時系列的に等間隔で、同じ光強度で1/λから1/λまで変化させ測定する場合を考える。このとき中心波長はλ=|λ+λ|/2となる。
【0057】
ここで、部分反射ミラー11から参照用ミラー12までの光学距離と、部分反射ミラー11から観測する試料における任意の計測位置までの光学距離との差をZとする。参照用ミラー12の位置は、計測の基準点を定める機能を持つので、例えば、ここで参照用ミラー12の位置を調整すれば、Zは、試料7に測定光14を入射した場合、入射した点から後方散乱させた微小領域までの光学距離とみなすことができる。
【0058】
周波数可変コヒーレント光源1から出力された光の波長がλのときに、試料7において測定光14が入射した点から距離Zにおける後方散乱光と、参照用ミラー12から反射された参照光とが合波されできた干渉信号の強度(以下計測光強度と称す)をAsとするとAsはλとZの関数となり、
As∝cos(4πZ/λ) (3)
で表される。
ここで、周波数可変コヒーレント光源1から出力された光の波長λを、同じ光強度で1/λから1/λまで変化させ測定するので、図2(a)に示すように、検出器3は計測光強度を光源λの逆数の関数として計測することができる。
【0059】
ただし、実際に検出器3が計測するのは、測定光14の光線に沿ったあらゆる点からの計測光強度、すなわち式(3)においてZを奥行き方向に連続的に変化させて得た値、を重畳したものとなる。つまり、検出器3により直接計測さ
れる信号には、試料7の奥行き方向の距離Zに関する情報は表面に現れてこない。
【0060】
そこで、試料7からの後方散乱光の強度と試料7に入射した測定光14の光線方向の深さとの関係を求めるため、まず、上記検出器3により計測されたデータに基づき計測光強度Asにcos(4πX/λ)を乗じて(1/λ)について積分すると、X=ZのところでAsに比例した強度のフーリエ成分As’が得られる。これは、試料7の奥行き方向の距離ZがXのときの計測光強度As’と考えて良い。
【0061】
ここで、Xの値を変えて上記積分を行えば、試料7の光線に沿った奥行き方向のあらゆる位置での計測光強度As’が得られることとなる。
【0062】
ただし、ここで得られた値には、測定光14の波長λに関する情報は表面に現れてこない。しかし、ここでは、光の波長λを、同じ光強度で1/λから1/λまで変化させ測定した値について、(1/λ)について積分したものであるから、ここで得られた計測光強度As’は、1/λと1/λの中心となる値1/λにおける計測光強度As’と考えて良い。
【0063】
このようにして、組織による後方散乱について、入射光線の光線(Z軸)に沿ってzの値を漸次増加させながら計測光強度As’(λ、z)を1次元的に算定することができ、1次元方向の断層信号が中心波長λで得られる。
【0064】
ここで得られたAs’(λ,z)は、測定光14の波長が中心波長λの場合の光線上の位置zにおける試料7からの後方散乱強度と考えて良いので、ここでは、試料7に照射した測定光14の後方散乱光の強度を光線方向に微小領域に弁別して計測したことになる。
【0065】
こうして得られたAs’(λ,z)から、前述の発明の原理で述べた手順に従って、zでのAs’(λ,z)と、z+ΔzでのAs’(λ,z+Δz))との比から、光吸収のベア・ランバートの法則により、位置z、幅Δzの領域の、波長λにおける光吸収係数μ(λ,z)が求められる。
【0066】
酸素飽和度を光吸収係数から求めるためには、2波長以上の複数の波長領域で光吸収係数を求める必要がある。ここでは、一続きの測定の波長領域を分けて解析する。本実施の形態においては、図2(a)及び(b)に示すように、周波数可変コヒーレント光源1から出力される測定光14の波長領域が800 nmの前後に及んでいる場合に、一つの領域はλからλse(<800 nm)までで、中心波長はλc1=(λse―λ)/2、もう一つはλes(>800 nm)からλで、中心波長λc2=(λ−λes)/2とする。それぞれの波長領域を分けて解析を行えば、それぞれの波長領域における試料7の位置zでの光吸収係数が得られる。これら2つの波長領域における光吸収係数の測定値と図8に示した光吸収係数の波長依存性から、前述の発明の原理で述べたとおりの手順で、位置zにおける酸素化ヘモグロビン量、還元ヘモグロビン量、酸素飽和度が求められる。
【0067】
なお、ここでは、800nm付近の光源を用い、波長領域を2つに分けて解析する例を示したが、本発明は、波長領域を紫外から赤外に及ぶどの波長領域で行う場合も含み、また、波長領域の分割の数も、3つ以上の全ての数の場合を含む。
【0068】
また、図1において、参照光路は部分反射ミラー11で、試料光路と分けているが、参照光路の長さと試料光路の長さが異なっていてもよいため、図3に示すように、参照光路を試料光路と分離せず、試料光路の中に部分反射ミラー13を置いても良い。また、図3から反射ミラー13を取り去り、特に反射ミラー13を用いずに、試料の一部の強い反射光を参照光としても良い。あるいは、試料の各部分からの後方散乱光の相互干渉を用いても良い。
【0069】
さらに、別の方法として、図4のように、マッハツェンダー型干渉計を用いることもできる。
【0070】
本実施の形態を構成する光経路及び光学部品は、図1ではそれぞれの部品の機能がわかりやすいように、空気中を光線が伝播し、空気中に配置した光学素子を利用する場合を示しているが、より安定した光学系を組むためには、光ファイバー光学系の方が適している。したがって、図1において、一部または全部に光ファイバー光学系を用いても良いことはいうまでもない。
【0071】
周波数可変コヒーレント光源1としては、外部共振の半導体レーザーや、スーパールミネッセント・ダイオードのような幅広いスペクトルの光源から各種光学フィルターを用いて干渉性のよい光を取り出すなど、様々な光源が利用できる。本実施の形態においては、これらの光源、あるいはこれらを組み合わせた光源の場合など、光源の種類にはよらずに、これら全ての場合を含む。
【0072】
また、周波数可変コヒーレント光源1からの光の照射方法と検出の方法として、細い光線を試料7に照射して、1点の検出器3で受光し1次元計測し、深さ方向の1次元断層像を得、次に光線を走査して次々に1次元断層像を得て、これらを合わせて2次元断層像を得ているが、図5に示すように、光を試料に平面的に照射し、2次元検出器で受光し、2次元の検出器の各ピクセルの受光強度をそれぞれ解析し、3次元の断層像を得ても良い。
【0073】
なお、OFDR法OCT技術に関する文献としては、”Handbook of Optical Coherence Tomography” edited by B. E. Bouma and G. J. Tearney , pp. 359−384などが存在している。
【0074】
このように第1の実施の形態によれば、測定光14の光線に沿った奥行き方向の近接した2つの微小領域(または複数の微小領域を用いる場合も含める)からの後方散乱光強度を散乱を受けた場所を弁別して計測する。そして、これらの計測データから、計測した領域間にある微小領域の血液成分による光吸収の影響を評価するので、他の領域の組織の影響をほとんど受けることなく、正確にこの微小領域の血液の光吸収係数を求めることができる。
【0075】
そして、2以上の波長領域を利用して測定を行い、当該微小領域の血液による光吸収係数を求めるので、複数の波長領域で光吸収係数が求めることができ、これらの光吸収係数と、図8に示す酸素化ヘモグロビンと還元ヘモグロビンの光吸収係数の波長依存性の差とを対応させることで、当該組織内の各微小領域における酸素化ヘモグロビン、還元ヘモグロビン、総ヘモグロビン量及び酸化飽和度を決定することができる。またその結果を、断層像として表示することができる。
【0076】
さらに、周波数可変コヒーレント光源1から出る光の周波数を走査して計測を行うので、本発明の実施に適した波長領域を選んで光を発振させ、発明の最適な実施を行うことができる。
【0077】
また、フーリエ解析の技法を用いて、光線上の特定の位置からの後方散乱光の強度を測定するので、参照用ミラー12を固定して計測することができ、機械的可動部を必要としないので、容易に精密な計測が可能となる。
【0078】
〔第2の実施の形態〕
第2の実施の形態は、光学的に、1次元、2次元または3次元で断層的に生体組織を計測する装置として、OCDR法(Optical Coherence Domain Reflectometery法)を用いる方法である。
【0079】
図6は第2の実施の形態における酸素飽和度測定装置の原理図である。
【0080】
図6に示すように、本実施の形態の酸素飽和度測定装置は、光経路及び光学部品として光ファイバーを用いた用いたものであり、短コヒーレント長光源61、光合分波器64、参照用ミラー12、光走査系62、検出器63、増幅器65、A/D変換器66、データ解析系67及び計測の対象となる試料7とからなる。
【0081】
短コヒーレント長光源61は、短いコヒーレント長(数μmから数十μm)の光を発振する。この場合、光のコヒーレント長は、短いほど計測光の分解能が高まる。
【0082】
すなわち、第2の実施の形態における酸素飽和度測定装置は、短コヒーレント長光源1から光合分波器64により分離され、さらに参照用ミラー12に反射されて再び光合分波器64を経由して検出器63に入力されるまでの参照光路の長さと、短コヒーレント長光源61から光合分波器64を透過し、光走査系62を経由して試料7に入射され、試料7で後方散乱され逆の経路をたどって光合分波器64に戻り、合波されて検出器63に入力されるまでの測定光路の長さとが一致したとき、強く光の干渉が起こるので、光合分波器64で合波された光に施されている強度変調の程度が大きくなることを利用したものである。
【0083】
つまり、参照用ミラー12の位置を変えれば、参照光路の長さが変わるので、試料7の、参照用ミラー12の変化後の位置に対応した特定の位置から後方散乱された光に対して施される変調強度の程度が大きくなる。このようにして、他の位置からの後方散乱光と弁別することができる。また、参照用ミラー12の位置を漸次移動させることにより、試料7の光線方向に沿ったあらゆる位置での後方散乱光の強度を計測することができる。
【0084】
短コヒーレント長光源61から出た光は、光合分波器64に導入され、光合分波器64により参照光13と測定光14とに分離される。参照光13は、試料の測定範囲に応じた距離範囲を参照光の光線方向に前後運動している参照用ミラー12で反射され光合分波器64に戻る。測定光14は、光走査系2を経由して試料7に入射され、試料7において入射光の光線上のあらゆる場所で後方散乱された光は逆の経路をたどって光合分波器64に戻る。戻ってきた後方散乱光と参照用ミラー12で反射された参照光13は、光合分波器64で合波され、合波された信号は干渉信号として検出器63に入力される。
【0085】
ここで、参照用ミラー12の運動パターンとしては、解析系における処理を容易なものにするために、当該距離範囲の始点から終点までを一定速度で運動した後、始点まで高速に戻るといったように、反射器が一定速度で運動する時間帯が存在するパターン(鋸歯状、三角状パターン)を用いる。
【0086】
光走査系62は、試料7に入射した測定光14の光線が一定の面をなすように、少しずつ方向をずらして測定光14を試料7に入射させるものである。このように光走査系62により測定光14の試料7への入射方向を少しずつずらし、各方向毎に入射した光線に沿った後方散乱光のデータを取得することで、取得したデータから試料7の酸素飽和度等についての断層像を得ることが出来る。
【0087】
参照光路及び試料光路を通って光合分波器64で合波された信号は検出器63で検出され、増幅器65で増幅され、A/D変換器66でデジタル信号化され、デジタル化された信号は、データとしてデータ解析系67に入力される。
【0088】
データ解析系67は、光合分波器64で合波された光に施されている強度変調の程度と参照用ミラー12の位置との対応関係を求める処理(測定光が導入されている部分の、光線方向の深さが異なるいくつかの箇所における光学特性データを求める処理)を行い、試料7の光線方向の深さに対応した形で、試料7からの後方散乱光の強度と、光線方向の深さとの関係を求める。このようにして求めた後方散乱光の強度から試料7に入射した測定光14の光線に沿った微小領域における光吸収係数を求め、その結果を記憶する。
【0089】
このように、参照用ミラー12を移動させることによって測定光14の光線に沿って後方散乱光の計測点の位置を光線方向に漸次増加させながら1次元計測を行い、入射光線を走査して、すなわち入射方向を順次変えて、得られた微小領域における光吸収係数のデータから、光吸収係数の断層像を得る。また、試料7の計測断面を少しずつずらしながら2次元計測を繰り返し、並べて表示すれば、3次元の断層像を立体的に得ることができる。
【0090】
さらに、データ解析系67は、2つの中心波長で測定を行い、各波長で試料内部の各微小領域における光吸収係数を求め、前記発明の原理で述べたとおりの手順で、この微小領域おける酸素化ヘモグロビン量、還元ヘモグロビン量、総ヘモグロビン量及び酸素飽和度を決定する。
【0091】
第2の実施の形態においては、短コヒーレント長光を出す光源が使用されるが、この光源のスペクトルは、中心波長λの約1割近くのスペクトル幅を持っており、スペクトル幅が広いほど、分解能が向上する。本実施の形態においては、例えば800nmよりも短波長(λ )と長波長(λ )の2つの中心波長で測定を行い、各波長で試料内部の各微小領域における光吸収係数を求め、この微小領域おける酸素化ヘモグロビン量、還元ヘモグロビン量、総ヘモグロビン量及び酸素飽和度を決定する。
【0092】
本実施の形態においては、互いに異なる波長を中心波長とする複数の装置で、それぞれ取得したデータに基づき、微小領域における酸素化ヘモグロビン量、還元ヘモグロビン量、総ヘモグロビン量及び酸素飽和度を求めても良い。
【0093】
また、装置は1台ではあるが、2以上の異なる中心波長を発生する光源を使用し、光源を順次変化して交互に行って微小領域における酸素化ヘモグロビン量、還元ヘモグロビン量、総ヘモグロビン量及び酸素飽和度を求めても良い。
【0094】
さらに、1台の装置で、複数の中心波長において短コヒーレント長光を同時に発生する光源を用いて、変調周波数の違いを利用して検出系で分離して同時に計測し、微小領域における酸素化ヘモグロビン量、還元ヘモグロビン量、総ヘモグロビン量及び酸素飽和度を求めても良い。
【0095】
また、本実施の形態においても、図6に示したファイバー光学を用いた方法以外に、第1の実施の形態における図1と類似のバルクオプチックスを用いる方法、図4と類似のマッハツェンダー干渉計を用いる方法、図5と類似の2次元検出器を用いる方法などが可能であることはいうまでもない。
【0096】
なお、OCDR法OCTに関する文献としては、D. Huang et al.,“Optical Coherence Tomography”、Science 1991、254、pp.1178−1181などが存在している。
【0097】
このように第2の実施の形態によれば、測定光14の光線に沿った奥行き方向の近接した2つの微小領域(または複数の微小領域を用いる場合も含める)からの後方散乱光強度を散乱を受けた場所を弁別して計測する。そして、これらの計測データから、計測した領域間にある微小領域の血液成分による光吸収の影響を評価するので、他の領域の組織の影響をほとんど受けることなく、正確にこの微小領域の血液の光吸収係数を求めることができる。
【0098】
そして、2以上の波長領域を利用して測定を行い、当該微小領域の血液による光吸収係数を求めるので、複数の波長領域で光吸収係数が求めることができ、これらの光吸収係数と、図8に示す酸素化ヘモグロビンと還元ヘモグロビンの光吸収係数の波長依存性の差とを対応させることで、当該組織内の各微小領域における酸素化ヘモグロビン、還元ヘモグロビン、総ヘモグロビン量及び酸化飽和度を決定することができる。またその結果を、断層像として表示することができる。
【0099】
さらに、短コヒーレント長光源を用いるので、光源の選択範囲が広がる。また、コヒーレント長を短くすることで分解能を上げることができる。
【0100】
〔第3の実施の形態〕
第3の実施の形態は、光学的に、1次元、2次元または3次元で断層的に生体組織を計測する装置として、SI(Spectral Interferometer)法を用いる方法である。
【0101】
図7は第3の実施の形態における酸素飽和度測定装置の原理図である。
【0102】
図7に示すように、本実施の形態の酸素飽和度測定装置は、短コヒーレント長光源71、部分反射ミラー11、光走査系72、分光系73、アレイ検出器74、増幅器75、A/D変換器76、データ解析系77及び計測の対象となる試料7とからなる。
【0103】
光源には第2の実施例と同様に短コヒーレント長光源71を用いる。短コヒーレント長光源71から出た光は、部分反射ミラー11を透過して、測定光14として光走査系72を経由して試料7に入射される。測定光14は、試料7において入射光の光線上のあらゆる場所で後方散乱され、逆の経路をたどって部分反射ミラー11に戻る。戻ってきた後方散乱光は部分反射ミラー11で反射され、分光系73に入力される。
【0104】
光走査系72は、試料7に入射した測定光14の光線が一定の面をなすように、少しずつ方向をずらして測定光14を試料7に入射させるものである。このように光走査系2により測定光14の試料7への入射方向を少しずつずらし、各方向毎に入射した光線に沿った後方散乱光のデータを取得するこので、取得したデータから試料7の酸素飽和度等についての断層像を得ることが出来る。
【0105】
短コヒーレント長光は、波長の広がりを持った光であるので、分光系73にて分光すると帯状のスペクトルが観測できる。分光系73で分光された光をアレイ検出器74に当て、同時にスペクトルの全体を計測する。アレイ検出器74の各素子の受光した信号を増幅器75、A/D変換器76を経由してデータ解析系77に転送する。
【0106】
データ解析系77は、第1の実施の形態と同様の手順で、得られたデータをフーリエ解析し、試料7に入射した測定光14の光線に沿った微小領域における光吸収係数の断層像を得る。
【0107】
さらに、2波長以上の波長領域で測定を行い。次々に1次元計測を繰り返して2次元計測を行うことにより、酸素化ヘモグロビン量、還元ヘモグロビン量、総ヘモグロビン量及び酸素飽和度についての断層像を得る。また、試料7の計測断面を少しずつずらしながら2次元計測を繰り返し、並べて表示すれば、3次元の断層像を立体的に得ることができる。
【0108】
なお、図7に点線で示すように、参照用ミラー12を追加し参照光路を用い、ヘテロダイン効果によって信号強度を向上してもよい。
【0109】
また、OFDR法OCT技術に関する文献としては、”Handbook of Optical Coherence Tomography” edited by B. E. Bouma and G. J. Tearney , pp. 359−384などが存在している。
【0110】
このように第3の実施の形態によれば、測定光14の光線に沿った奥行き方向の近接した2つの微小領域(または複数の微小領域を用いる場合も含める)からの後方散乱光強度を散乱を受けた場所を弁別して計測する。そして、これらの計測データから、計測した領域間にある微小領域の血液成分による光吸収の影響を評価するので、他の領域の組織の影響をほとんど受けることなく、正確にこの微小領域の血液の光吸収係数を求めることができる。
【0111】
そして、2以上の波長領域を利用して測定を行い、当該微小領域の血液による光吸収係数を求めるので、複数の波長領域で光吸収係数が求めることができ、これらの光吸収係数と、図8に示す酸素化ヘモグロビンと還元ヘモグロビンの光吸収係数の波長依存性の差とを対応させることで、当該組織内の各微小領域における酸素化ヘモグロビン、還元ヘモグロビン、総ヘモグロビン量及び酸化飽和度を決定することができる。またその結果を、断層像として表示することができる。
【0112】
さらに、異なる複数の中心波長を持つ短コヒーレント長光源から同時に発生される光は、すべて分光系で同時分解できるため、異なる波長での奥行き方向の断層像が、同時に測定できる。
【0113】
【発明の効果】
上記のように、本発明に係る酸素飽和度測定方法及び酸素飽和度測定装置によれば、測定する組織を1000μm以下の例えば数μmから数十μm程度の小さな領域に区分して、区分された微小領域の酸素化ヘモグロビン濃度、還元ヘモグロビン濃度、酸素飽和度を決定することが出来る。
【図面の簡単な説明】
【図1】第1の実施の形態における酸素飽和度測定装置の原理図である。
【図2】図2(a)は、測定光の周波数を変えて得た後方散乱光強度のデータを示す図である。図2(b)は、これをフーリエ解析して得た後方散乱光強度のデータを示す図である。
【図3】試料光路の中に部分反射ミラー13を置いた酸素飽和度測定装置の原理図である。
【図4】マッハツェンダー型干渉計を用いた酸素飽和度測定装置の原理図である。
【図5】光を試料に平面的に照射する酸素飽和度測定装置の原理図である。
【図6】第2の実施の形態における酸素飽和度測定装置の原理図である。
【図7】第1の実施の形態における酸素飽和度測定装置の原理図である。
【図8】光の波長に対する酸素化ヘモグロビンと還元ヘモグロビンの光吸収係数との関係を示す図である。
【図9】生体組織中に含まれる水による光吸収係数を表す図である。
【図10】図10(b)は経皮的酸素飽和度濃度測定装置の原理図である。図10(a)は、パルスオキシメトリーの原理図である。
【図11】パルスオキシメトリーで計測したときの計測データの一例である。
【図12】微小領域における光吸収係数の計測原理を示す図である。
【符号の説明】
1 周波数可変コヒーレント光源
2 光走査系
3 検出器
4 増幅器
5 A/D変換器
6 データ解析系
7 試料
11 部分反射ミラー
12 参照用ミラー12
13 参照光
14 測定光
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an oxygen saturation measuring method and an oxygen saturation measuring device for measuring the amount of oxygenated hemoglobin, the amount of reduced (free) hemoglobin, the amount of total hemoglobin, and the oxygen saturation of a living tissue for each minute region of the living tissue. .
[0002]
[Prior art]
Since the oxygen saturation of the blood component contained in the living tissue is important information for measuring the activity of the living tissue, many measuring methods have been tried in the past. For example, a method utilizing the fact that the light absorption coefficient, which is the degree of light absorption, depending on the wavelength of light differs between oxygenated hemoglobin and reduced hemoglobin.
[0003]
FIG. 8 is a graph showing changes in the light absorption coefficient of oxygenated hemoglobin and reduced hemoglobin with respect to the wavelength of light.
[0004]
As shown in FIG. 8, there is a difference in the wavelength dependence of the light absorption coefficient (molar light absorption coefficient) of oxygenated hemoglobin and reduced hemoglobin in the region from ultraviolet to visible light and infrared light. Several methods have been proposed for non-invasively determining the oxygen saturation by optical measurement using a plurality of wavelengths by utilizing the difference in the wavelength dependence of the light absorption coefficient.
[0005]
In such a method of non-invasively determining the oxygen saturation by optical measurement using a plurality of wavelengths using the difference in the wavelength dependence of the light absorption coefficient, if the light scattering ability of the tissue is weak, When the light propagates linearly while being absorbed, the light absorption coefficient per optical path length can be obtained from the attenuation rate of the transmitted light with respect to the incident light.
[0006]
However, in general, a living tissue has a high degree of light scattering, and light spreads while repeating multiple scattering, and propagates diffusely throughout the living body as a whole. For this reason, since the optical path length through which the light detected by the detector passes is not single but spreads out, it is difficult to obtain the light absorption coefficient per optical path length from the attenuation rate of the transmitted light with respect to the incident light. .
[0007]
In addition, since living tissue has strong light scattering ability, attenuation of light propagating through living tissue cannot be ignored not only in light absorption but also in light scattering. The problem is how to accurately derive the light absorption coefficient due to the blood component in the living tissue from the attenuation of the light that diffusely propagates while being attenuated by scattering.
[0008]
On the other hand, the light scattering ability decreases in inverse proportion to the fourth power of the wavelength. Therefore, in order to reduce the influence of the scattering, light having a long wavelength is advantageous. However, as the wavelength becomes longer than about 800 nm, light absorption by water contained in the living tissue increases (see FIG. 9).
[0009]
Therefore, in a method of non-invasively determining the oxygen saturation by optical measurement using a plurality of wavelengths using the difference in the wavelength dependence of the light absorption coefficient, oxygenated hemoglobin and reduced hemoglobin at a wavelength of about 800 nm are used. Utilizing the intersection of the light absorption coefficients (see FIG. 8), a wavelength range from 600 nm to 1000 nm from red to infrared is often used. However, in the case of eyes, visible light has been used in addition to infrared light because of its relatively weak scattering ability, which is close to that of a transparent body.
[0010]
Pulse oximetry is one of the methods for non-invasively determining the oxygen saturation by optical measurement using a plurality of wavelengths using the difference in the wavelength dependence of the light absorption coefficient.
[0011]
FIG. 10A is a principle diagram of pulse oximetry.
[0012]
Pulse oximetry measures the light absorption coefficient of arterial blood by separating the contribution of arterial blood to light absorption from other contributions using the pulsating effect of arteries.
[0013]
As shown in FIG. 10A, when a finger is interposed between the light source 81 and the detector, light is applied to the finger from the light source 81, and the transmitted light is detected by the detector 83, the intensity of the transmitted light becomes as shown in FIG. As shown, it has a component that varies slightly in response to the pulse. Since this fluctuation component (AC component) is caused by the blood vessel expanding and contracting due to the increase and decrease of the blood pressure due to the heartbeat, the degree of light absorption by the blood cells in the artery is detected, and the light of other parts is detected. Can be distinguished from absorption.
[0014]
Here, in consideration of the wavelength dependence of the light absorption coefficient in FIG. 8, two colors of red (for example, about 660 nm) and infrared (for example, 940 nm) are used as a light source, and oxygenated hemoglobin in blood and free (reduced) If the difference between the light absorption coefficient of each wavelength light source and hemoglobin is used, the oxygen saturation of arterial blood can be obtained. Although pulse oximetry is an excellent method for accurate measurements, it has the limitation that the subject is limited to arterial flow.
[0015]
As another method of non-invasively obtaining the oxygen saturation by optical measurement using a plurality of wavelengths using the difference in the wavelength dependence of the light absorption coefficient, a transcutaneous oxygen saturation concentration measurement device is used. is there,
FIG. 10B is a principle diagram of a transcutaneous oxygen saturation concentration measuring device.
[0016]
As shown in FIG. 10 (b), the transcutaneous oxygen saturation concentration measuring device determines a measurement site (for example, brain) of a target living tissue 82, uses two wavelengths (for example, 750 nm and 830 nm) as a light source, The structure of the probe 80 consisting of the light source 81 and the detector 83 is always the same according to the measurement site, the probe 80 is brought into close contact with the skin, the measurement is performed, and the oxygen saturation is determined by comparing with the calibration value which has been performed in advance. How to
[0017]
The transcutaneous oxygen saturation concentration measuring device is also called a non-invasive cerebral blood flow oxygen saturation monitor, particularly when the brain is targeted. This method has also been put to practical use in actual diagnosis. Since diffused transmitted light is used, the average value of the region where light is diffused can be obtained, but it is not possible to finely divide the measurement site and obtain the value of each section.
[0018]
As another method for non-invasively obtaining oxygen saturation by optical measurement using a plurality of wavelengths using the difference in wavelength dependence of the light absorption coefficient, a laser scanning method is used at a laboratory level. Has been done.
[0019]
The laser scanning method irradiates the fundus retina with a plurality of laser beams having different wavelengths, detects backscattered light using a conjugate optical system, and detects oxygen scattered at each wavelength along an optical path along the laser beam. This is a method for determining the degree of saturation.
[0020]
Here, measurement is performed by scanning the laser beam on the retina of the fundus. Compared to the above two methods, the measurement site is determined more accurately on a plane substantially perpendicular to the incident light, but the depth direction of the tissue along the incident light path is divided into minute regions, and the value of each of these divisions is obtained. It is not possible.
[0021]
[Patent Document 1]
JP-A-2002-303576
[0022]
[Patent Document 2]
JP-A-2002-2224088
[0023]
[Patent Document 3]
JP-A-11-244268
[0024]
[Problems to be solved by the invention]
As described above, in the prior art, in the case of pulse oximetry, the entire part of the finger irradiated with light, the entire region where light diffuses and propagates and reaches the detector in the transcutaneous oxygen saturation concentration measurement device, In the laser scanning method, all contributions from all tissues in the depth direction are measured. Therefore, according to the conventional technique, it is not possible to determine the oxygen saturation in each minute region of 1000 μm or less, for example, several μm to several tens μm inside the living tissue.
[0025]
The present invention has been made in view of the above problems, the tissue having a blood component is divided into small regions of about 1000 μm or less, for example, several μm to several tens μm, oxygenated hemoglobin concentration of the divided small regions, It is an object of the present invention to provide an oxygen saturation measurement method and an oxygen saturation measurement device for determining reduced hemoglobin concentration and oxygen saturation.
[0026]
[Means for Solving the Problems]
The oxygen saturation measurement method and the oxygen saturation measurement device according to the present invention irradiate light having two or more different wavelength regions to a tissue having a blood component, and in the region along the light beams, the backscattering of the irradiated light is performed. Measuring the intensity of light (including the case where it is reflected and scattered backward due to a rapid change in the refractive index) by discriminating in the light beam direction into a minute area of about 1 to 1000 μm; Determining the light absorption coefficient of the light in the minute region for each wavelength region from the intensity of the backscattered light from the minute region before and after the minute region in the light beam direction, which is measured for the light in the above wavelength region; From the light absorption coefficient value in the region, utilizing the fact that the wavelength dependence of the light absorption coefficient differs between oxygenated hemoglobin and reduced hemoglobin, the oxygenated hemoglobin in the minute region is used. Down amount, reduced hemoglobin, and having the steps of: determining at least one of total hemoglobin or oxygen saturation
As described above, according to the oxygen saturation measurement method and the oxygen saturation measurement apparatus according to the present invention, the tissue having the blood component is discriminated into the minute regions, and the backscattered light intensity is measured in two or more wavelength regions. Therefore, the light absorption coefficient of each minute region can be obtained in a plurality of light wavelength regions. Then, by associating these light absorption coefficients with the difference in wavelength dependence of the light absorption coefficients of oxygenated hemoglobin and reduced hemoglobin, oxygenated hemoglobin, reduced hemoglobin, total hemoglobin amount and Oxidation saturation can be determined.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
[Principle of the invention]
A beam of light is incident on the object to be measured, and the intensity of backscattered light from two adjacent regions in the depth direction along the incident light (or a case where a plurality of regions are used is included) is measured by discriminating a place where the light is scattered. I do. Then, by evaluating the influence of light absorption by the blood component in the minute region between the measured regions from these measurement data, the blood in the minute region can be accurately detected without being affected by the tissue in other regions. Can be obtained. If this is performed using two or more wavelengths and the light absorption coefficient of the minute area due to blood is determined, the light absorption coefficient is determined at a plurality of light wavelengths. By associating these light absorption coefficients with the differences in the wavelength dependence of the light absorption coefficients of oxygenated hemoglobin and reduced hemoglobin shown in FIG. 8, the amounts of oxygenated hemoglobin and reduced hemoglobin can be determined, and the oxidation saturation Can be determined for a minute area.
[0028]
Here, optical coherence tomography (hereinafter referred to as OCT) is used as a means for measuring the light backscattered from a region of several microns to several tens of microns along the ray of incident light by discriminating the place where the light is backscattered. To use) technology.
[0029]
OCT measures only a component of the backscattered light that interferes with the incident light. Therefore, in the multiple scattering that propagates in a diffuse manner, the in-phase plane of light is disturbed, so that the interference is weakened, and the influence of the multiple scattering is almost negligible or can be ignored. Therefore, the light path in the sample in OCT may be regarded as a straight line. Hereinafter, it is assumed that the multiple scattering component does not contribute to the interference.
[0030]
In OCT, a light source having a wide wavelength range is used. Therefore, strictly speaking, it is necessary to consider the wavelength spread in the optical characteristics. However, since the width of the spread of the wavelength is less than about 10% of the central wavelength, the central wavelength is represented in the following description.
[0031]
FIG. 12 is a diagram showing a principle of measuring a light absorption coefficient in a minute region.
[0032]
In FIG. 12, it is assumed that a light beam having a center wavelength λ for measurement is incident along the Z axis in the depth direction. OCT measures light that is backscattered in the opposite direction to the incident light along the incident light path at intervals of several microns to several tens of microns on the Z axis. One measurement point is z, and a measurement point in the depth direction of a small distance Δz from this is z + Δz. Here, it is assumed that the scattering power is the same at both points, and the light is attenuated only by the absorption by hemoglobin.
[0033]
If the light absorption coefficient in a minute area from position z to z + Δz along the ray of the incident light (Z axis) is represented by μ (z, λ) as a function of the position z and the center wavelength λ, the measurement light at the position z The ratio between the intensity I (z) and the measured light intensity I (z + Δz) at the position z + Δz is I (z) / I (z + Δz) = exp [2μ (z, λ) according to the Beer-Lambert law of light absorption. Δz]. Here, the coefficient 2 is due to light reciprocating on this path. If this logarithm is obtained and divided by 2Δz, the light absorption coefficient μ (z, λ) at the wavelength λ in the range of z + Δz from the minute area z is obtained.
[0034]
Conventionally, OCT is performed at one center wavelength, but in the present invention, two or more center wavelengths λ1, Λ2, Λ3, ... Increasing the number of wavelength types increases the number of parameters that can be determined and increases accuracy, but here, for simplicity, λ1And λ2The case of measurement at two wavelengths will be described. The wavelength dependence of the light absorption coefficient differs between oxygenated hemoglobin and reduced hemoglobin as shown in FIG. For example, λ1= 750 nm, λ2= 850 nm, λ1= 750 nm, the reduced hemoglobin has a larger light absorption coefficient, which is almost identical at 800 nm, and2At = 850 nm, oxygenated hemoglobin has a larger light absorption coefficient.
[0035]
The concentrations of oxygenated hemoglobin and reduced hemoglobin at the position z on the Z-axis are represented by CHbO(Z), CHb(Z). Wavelength λ1And λ2The light absorption coefficients of oxygenated hemoglobin and reduced hemoglobin at the above are given in FIG.HbO  (Λ1), ΜHb1) ΜHbO  (Λ2), ΜHb 2). The concentration and light absorption coefficient are compared with the actually measured light absorption coefficient μ (z, λ1), Μ (z, λ2) And the following relational expression holds.
μHbO  (Λ1) ・ CHbO(Z) + μHb1) ・ CHb(Z) = μ (z, λ1(1)
μHbO  (Λ2) ・ CHbO(Z) + μHb2) ・ CHb(Z) = μ (z, λ2(2)
By solving this simultaneous equation, the oxygenated hemoglobin concentration C in the minute region at the position zHbO(Z), reduced hemoglobin concentration CHb(Z) are obtained, and the total hemoglobin amount [CHbO  (Z) + CHb(Z)] is obtained, and the oxygen saturation is also expressed by the formula: (oxygen saturation) = (oxygenated hemoglobin amount) / [(oxygenated hemoglobin amount) + (reduced hemoglobin amount)] = CHbO  (Z) / [CHbO  (Z) + CHb(Z)]. In this method, a light absorption coefficient is obtained based on the intensity of the backscattered light immediately before and immediately after the narrow range Δz of several microns to several tens of microns at the position z in the tissue, and the oxygen saturation is determined from these values. , A very detailed and accurate measurement of oxygen saturation can be made.
[0036]
In this way, it is possible to measure the oxygen saturation of a minute region inside the living tissue, which was impossible with the pulse oximetry, the transcutaneous oxygen saturation concentration measuring device, and the laser scanning method, which are conventional techniques.
[0037]
For example, a vein near the surface of a tissue can be distinguished from an artery located deep in the tissue, and the oxygen saturation and the like of each blood vessel can be measured.
[0038]
One-dimensional measurement (referred to as A-scan) is performed while gradually increasing the value of z along the ray (Z-axis) of the incident light, and the incident light is scanned and one-dimensional measurement is repeated one after another to perform two-dimensional measurement (B (Referred to as scanning), a tomographic image of the amount of oxygenated hemoglobin, the amount of reduced hemoglobin, the total amount of hemoglobin, and the oxygen saturation is obtained. If a plurality of two-dimensional measurements are taken by scanning and displayed side by side, a three-dimensional tomographic image can be obtained three-dimensionally. Displaying a two-dimensional or three-dimensional tomographic image is useful for elucidating the biological activity inside a tissue.
[0039]
Above, the absorption was dominant, the attenuation of light due to scattering was negligible, and the scattering intensity was constant. For the case of using the measurement of two wavelengths for the tissue, the wavelength was described as an example. If the amount of absorption is not negligible, if the attenuation of light due to light scattering is not negligible, or if the backscattering power varies from place to place, the number of parameters to be determined increases. In such a case, the number of wavelengths to be measured may be increased to determine those parameters.
In addition, using four wavelengths (for example, 775 nm, 810 nm, 870 nm, and 904 nm), an algorithm for simultaneously determining the amount of cytochrome c / oxidase (cyt-aa3) in addition to reduced hemoglobin and oxygenated hemoglobin is adopted. The impact of the system can also be evaluated.
[0040]
Here, the principle of the present invention has been described by taking OCT, for example, in which the technology is currently established, but the present invention is more generally applicable to a technology for measuring an optical tomographic image, and is a device using OCT. However, the present invention is not limited to this.
[0041]
Also, a case where measurement is performed at two wavelengths using specific wavelength values is shown here, but this is an example for simplifying the description, and does not limit the scope of the invention.
[0042]
Furthermore, the same result as described above can be obtained by analyzing optical tomographic image data already obtained elsewhere without performing measurement.
Next, an embodiment of the present invention will be described in detail with reference to FIGS.
[0043]
The embodiment of the present invention can be applied to any apparatus that optically measures living tissue in one-dimensional, two-dimensional, or three-dimensional tomographic manner. Among these various optical tomographic imaging methods, OCT is a method particularly suitable for implementing the present invention, and an embodiment using OCT will be described below.
[0044]
[First Embodiment]
OCT mainly includes i) optical frequency domain reflectometry (OFDR), ii) optical coherence domain reflectometry (OCDR), iii) spectral interferometer (SI) ) There are three methods.
[0045]
In the first embodiment, an OFDR method (Optical Frequency Domain Reflectometry method) is used from among the above three methods as an apparatus that optically measures a biological tissue in one-dimensional, two-dimensional, or three-dimensional tomography. Is the way.
[0046]
FIG. 1 is a principle diagram of the oxygen saturation measuring device according to the first embodiment.
[0047]
As shown in FIG. 1, the oxygen saturation measuring apparatus of the present embodiment uses a Michelson interferometer as an optical multiplexer / demultiplexer, and includes a frequency-variable coherent light source 1, a partial reflection mirror 11, and a reference mirror 12 , An optical scanning system 2, a detector 3, an amplifier 4, an A / D converter 5, a data analysis system 6, and a sample 7 to be measured.
[0048]
The variable frequency coherent light source 1 can oscillate light having coherence and change the wavelength of the oscillated light discretely or continuously over time. In this case, the light interference length must be longer than the entire length of the sample to be measured.
[0049]
The partial reflection mirror 11 has a function as an optical multiplexing unit. That is, the light emitted from the variable frequency coherent light source 1 is divided by the partial reflection mirror 11 into the reference light 13 reflected by the partial reflection mirror 11 and the measurement light 14 transmitted through the partial reflection mirror 11. The reference light 13 is reflected by the reference mirror 12 and returns to the partial reflection mirror 11. The measurement light 14 is incident on the sample 7 via the optical scanning system 2, and the light backscattered everywhere on the light beam of the incident light in the sample 7 returns to the partial reflection mirror 11 along an opposite path. The returned backscattered light and the reference light 13 reflected by the reference mirror 12 are combined by the partial reflection mirror 11, and the combined signal is input to the detector 3 as an interference signal.
[0050]
The optical scanning system 2 causes the measurement light 14 to enter the sample 7 while being slightly shifted in direction so that the light beam of the measurement light 14 incident on the sample 7 forms a constant surface. As described above, the direction of incidence of the measurement light 14 on the sample 7 is slightly shifted by the optical scanning system 2, and the data of the backscattered light along the light beam incident on each direction is acquired. Data for obtaining a tomographic image of the image data.
[0051]
Here, the optical path from the frequency-variable coherent light source 1 reflected by the partial reflection mirror 11, further reflected by the reference mirror 12, and input again to the detector 3 via the partial reflection mirror 11 is referred to as a reference optical path. The light passes through the partial reflection mirror 11 from the variable frequency coherent light source 1, is incident on the sample 7 via the optical scanning system 2, is scattered back by the sample 7, returns to the partial reflection mirror 11, returns to the partial reflection mirror 11, and is partially reflected. The optical path up to the input to the detector 3 via the mirror 11 is called a sample optical path.
[0052]
The interference signal multiplexed by the partial reflection mirror 11 through the reference optical path and the sample optical path is detected by the detector 3, amplified by the amplifier 4, digitized by the A / D converter 5, and digitized. Are successively accumulated in the data analysis system 6 as data.
[0053]
The data analysis system 6 has a function as signal analysis means. That is, by performing Fourier analysis on the accumulated data, the intensity of the backscattered light from the sample 7 in the form corresponding to the depth in the depth direction of the sample 7 is determined by the depth in the light direction of the measurement light 14 incident on the sample 7. As a function of From the intensity of the backscattered light obtained in this way, the light absorption coefficient in a minute area along the light beam of the measurement light 14 incident on the sample 7 is obtained. Further, based on data obtained by sequentially changing the direction of incidence of the measurement light 14 on the sample 7, the light absorption coefficient in a small area along the light beam of the measurement light 14 in each direction is obtained, and these data are accumulated. Data of the light absorption coefficient in each minute region of the predetermined cross section of the sample 7 is obtained.
[0054]
Further, the data analysis system 6 calculates the amount of oxygenated hemoglobin, the amount of reduced hemoglobin, and the amount of total hemoglobin from the data of the light absorption coefficient in the minute region obtained in two or more wavelength regions by the method described in the principle of the invention. Obtain tomographic images for the amount and oxygen saturation. Further, if two-dimensional measurement is repeated while shifting the measurement cross section of the sample 7 little by little and displayed side by side, a three-dimensional tomographic image can be obtained three-dimensionally.
[0055]
Next, a method for determining the relationship between the intensity of the backscattered light from the sample 7 and the depth of the measurement light 14 incident on the sample 7 in the light beam direction and the wavelength of the measurement light 14 in the data analysis system 6 will be described.
[0056]
For simplicity, the reciprocal of the wavelength of the light source is 1 / λsFrom 1 / λeLet's consider a case where measurement is performed by changing the value to At this time, the center wavelength is λc= | Λs+ Λe| / 2.
[0057]
Here, the difference between the optical distance from the partial reflection mirror 11 to the reference mirror 12 and the optical distance from the partial reflection mirror 11 to an arbitrary measurement position on the sample to be observed is Z. Since the position of the reference mirror 12 has a function of determining the measurement reference point, for example, if the position of the reference mirror 12 is adjusted here, when the measurement light 14 is incident on the sample 7, Z is incident. It can be regarded as an optical distance from a point to a minute area scattered backward.
[0058]
When the wavelength of the light output from the frequency variable coherent light source 1 is λ, the backscattered light at a distance Z from the point where the measurement light 14 is incident on the sample 7 and the reference light reflected from the reference mirror 12 are combined. Assuming that the intensity of the waved interference signal (hereinafter referred to as measurement light intensity) is As, As is a function of λ and Z,
As∝cos (4πZ / λ) (3)
Is represented by
Here, the wavelength λ of the light output from the frequency-variable coherent light source 1 is 1 / λ at the same light intensity.sFrom 1 / λe2A, the detector 3 can measure the measurement light intensity as a function of the reciprocal of the light source λ, as shown in FIG.
[0059]
However, what is actually measured by the detector 3 is the measurement light intensity from all points along the light beam of the measurement light 14, that is, the value obtained by continuously changing Z in the depth direction in Expression (3), Are superimposed. That is, it is measured directly by the detector 3.
The information on the distance Z in the depth direction of the sample 7 does not appear on the surface of the signal.
[0060]
Therefore, in order to determine the relationship between the intensity of the backscattered light from the sample 7 and the depth of the measurement light 14 incident on the sample 7 in the light beam direction, first, the measurement light intensity As is calculated based on the data measured by the detector 3. By multiplying by cos (4πX / λ) and integrating with respect to (1 / λ), a Fourier component As ′ having an intensity proportional to As at X = Z is obtained. This may be considered as the measured light intensity As' when the distance Z in the depth direction of the sample 7 is X.
[0061]
Here, if the above integration is performed while changing the value of X, the measured light intensity As' at any position in the depth direction along the light beam of the sample 7 can be obtained.
[0062]
However, information on the wavelength λ of the measurement light 14 does not appear on the surface in the value obtained here. However, here, the wavelength λ of light is 1 / λ at the same light intensity.sFrom 1 / λeThe measured light intensity As' obtained here is obtained by integrating (1 / λ) with respect to the value measured and changed to 1 / λ.sAnd 1 / λeThe central value of 1 / λcMay be considered as the measurement light intensity As'.
[0063]
In this way, for the backscattering by the tissue, the measurement light intensity As' ([lambda]) while gradually increasing the value of z along the ray of the incident light (Z-axis).c, Z) can be calculated one-dimensionally, and the tomographic signal in the one-dimensional direction has a center wavelength λ.cIs obtained.
[0064]
The obtained As ′ (λc, Z) indicates that the wavelength of the measuring light 14 is the center wavelength λ.cIn this case, it can be considered as the backscattering intensity from the sample 7 at the position z on the light beam. In this case, the intensity of the backscattering light of the measuring light 14 irradiating the sample 7 was measured by discriminating it into a minute area in the beam direction. Will be.
[0065]
The thus obtained As ′ (λc, Z), As ′ (λ at z) according to the procedure described in the principle of the invention described above.c, Z) and As ′ (λ at z + Δz)c, Z + Δz)), the wavelength λ in the region of position z and width Δz according to the Beer-Lambert law of light absorption.cLight absorption coefficient μ (λc, Z) are required.
[0066]
In order to determine the oxygen saturation from the light absorption coefficient, it is necessary to determine the light absorption coefficient in a plurality of wavelength regions of two or more wavelengths. Here, analysis is performed by dividing the wavelength range of a series of measurements. In the present embodiment, as shown in FIGS. 2A and 2B, when the wavelength range of the measurement light 14 output from the frequency-variable coherent light source 1 extends around 800 nm, one The area is λsTo λse(<800 nm) and the center wavelength is λc1= (Λse―Λs) / 2 and the other is λes(> 800 nm) to λeAnd the center wavelength λc2= (Λe−λes) / 2. If the analysis is performed separately for each wavelength region, the light absorption coefficient at the position z of the sample 7 in each wavelength region can be obtained. From the measured value of the light absorption coefficient in these two wavelength regions and the wavelength dependence of the light absorption coefficient shown in FIG. 8, the amount of oxygenated hemoglobin at the position z and the reduced hemoglobin at the position z are determined in the same manner as described in the principle of the invention. The amount and oxygen saturation are determined.
[0067]
Note that, here, an example in which a light source near 800 nm is used and the wavelength region is divided into two regions for analysis has been described, but the present invention includes a case where the wavelength region is performed in any wavelength region from ultraviolet to infrared, Also, the number of divisions of the wavelength region includes the case of all three or more.
[0068]
In FIG. 1, the reference light path is separated from the sample light path by the partial reflection mirror 11, but since the length of the reference light path and the length of the sample light path may be different, as shown in FIG. May not be separated from the sample optical path, and the partial reflection mirror 13 may be placed in the sample optical path. In addition, the reflection mirror 13 may be removed from FIG. 3, and the strong reflection light of a part of the sample may be used as the reference light without using the reflection mirror 13. Alternatively, mutual interference of backscattered light from each part of the sample may be used.
[0069]
Further, as another method, a Mach-Zehnder interferometer can be used as shown in FIG.
[0070]
FIG. 1 shows a case in which light rays propagate in the air and optical elements arranged in the air are used for the optical paths and the optical components constituting the present embodiment so that the functions of the respective components can be easily understood. However, in order to form a more stable optical system, an optical fiber optical system is more suitable. Therefore, it is needless to say that the optical fiber optical system may be partially or entirely used in FIG.
[0071]
As the frequency-variable coherent light source 1, various light sources can be used, such as taking out light with good coherence using various optical filters from a light source having a wide spectrum such as a semiconductor laser having an external resonance or a superluminescent diode. . In the present embodiment, all these cases are included irrespective of the type of the light source, such as the case of these light sources or the light source combining them.
[0072]
In addition, as a method of irradiating and detecting light from the frequency-variable coherent light source 1, a thin light beam is irradiated on the sample 7, received by the detector 3 at one point, measured one-dimensionally, and subjected to one-dimensional tomography in the depth direction. An image is obtained, then a light beam is scanned to obtain one-dimensional tomographic images one after another, and these are combined to obtain a two-dimensional tomographic image. As shown in FIG. Alternatively, the light may be received by a two-dimensional detector, and the received light intensity of each pixel of the two-dimensional detector may be analyzed to obtain a three-dimensional tomographic image.
[0073]
References relating to the OFDR method OCT technology include “Handbook of Optical Coherence Tomography” edited by B.C. E. FIG. Bouma and G .; J. Tearney, pp. 359-384 and the like.
[0074]
As described above, according to the first embodiment, the backscattered light intensity is scattered from two adjacent minute regions (or including a case where a plurality of minute regions are used) in the depth direction along the measurement light 14. Measure the location where it was received. Then, based on these measurement data, the influence of light absorption by the blood component in the minute region between the measured regions is evaluated, so that the blood in the minute region is accurately measured with little influence from the tissue in other regions. The light absorption coefficient can be determined.
[0075]
Then, the measurement is performed using two or more wavelength regions, and the light absorption coefficient of blood in the minute region is obtained. Therefore, the light absorption coefficient can be obtained in a plurality of wavelength regions. The oxygenated hemoglobin, reduced hemoglobin, total hemoglobin amount, and oxidative saturation in each microregion in the tissue are determined by associating the difference in the wavelength dependence of the light absorption coefficient between oxygenated hemoglobin and reduced hemoglobin shown in FIG. can do. Further, the result can be displayed as a tomographic image.
[0076]
Further, since the measurement is performed by scanning the frequency of the light emitted from the variable frequency coherent light source 1, it is possible to oscillate the light by selecting a wavelength region suitable for carrying out the present invention, and to carry out the present invention optimally.
[0077]
In addition, since the intensity of the backscattered light from a specific position on the light beam is measured by using the Fourier analysis technique, the measurement can be performed with the reference mirror 12 fixed, and no mechanical movable part is required. Therefore, precise measurement can be easily performed.
[0078]
[Second embodiment]
The second embodiment is a method that uses an OCDR (Optical Coherence Domain Reflectometry) method as an apparatus that optically measures a biological tissue in one-dimensional, two-dimensional, or three-dimensional tomography.
[0079]
FIG. 6 is a principle diagram of the oxygen saturation measuring device according to the second embodiment.
[0080]
As shown in FIG. 6, the oxygen saturation measuring apparatus of the present embodiment uses an optical fiber as an optical path and an optical component, and includes a short coherent long light source 61, an optical multiplexer / demultiplexer 64, and a reference mirror. 12, an optical scanning system 62, a detector 63, an amplifier 65, an A / D converter 66, a data analysis system 67, and a sample 7 to be measured.
[0081]
The short coherent length light source 61 oscillates light having a short coherent length (several μm to several tens μm). In this case, the shorter the coherent length of the light, the higher the resolution of the measurement light.
[0082]
That is, the oxygen saturation measuring apparatus according to the second embodiment is separated from the short coherent long light source 1 by the optical multiplexer / demultiplexer 64, further reflected by the reference mirror 12, and passed through the optical multiplexer / demultiplexer 64 again. The length of the reference optical path up to the input to the detector 63 and the light transmitted through the optical multiplexer / demultiplexer 64 from the short coherent length light source 61, are incident on the sample 7 via the optical scanning system 62, and are backscattered by the sample 7. The optical multiplexer / demultiplexer 64 returns to the optical multiplexer / demultiplexer 64 by following the reverse path, and when the length of the measurement optical path from the time when the light is multiplexed to the time when it is input to the detector 63 coincides, strong optical interference occurs. This utilizes the fact that the degree of intensity modulation applied to the multiplexed light is increased.
[0083]
In other words, if the position of the reference mirror 12 is changed, the length of the reference optical path is changed. Therefore, the light is backscattered from a specific position of the sample 7 corresponding to the position after the change of the reference mirror 12. The degree of modulation intensity to be performed becomes large. In this way, it can be distinguished from the backscattered light from other positions. In addition, by gradually moving the position of the reference mirror 12, it is possible to measure the intensity of the backscattered light at any position along the light ray direction of the sample 7.
[0084]
The light emitted from the short coherent long light source 61 is introduced into an optical multiplexer / demultiplexer 64, and is separated into the reference light 13 and the measurement light 14 by the optical multiplexer / demultiplexer 64. The reference light 13 is reflected by the reference mirror 12 that moves back and forth in the light beam direction of the reference light in the distance range according to the measurement range of the sample, and returns to the optical multiplexer / demultiplexer 64. The measurement light 14 is incident on the sample 7 via the optical scanning system 2, and the light backscattered at any place on the light beam of the incident light in the sample 7 returns to the optical multiplexer / demultiplexer 64 along the reverse path. . The returned backscattered light and the reference light 13 reflected by the reference mirror 12 are multiplexed by an optical multiplexer / demultiplexer 64, and the multiplexed signal is input to a detector 63 as an interference signal.
[0085]
Here, as a movement pattern of the reference mirror 12, in order to facilitate processing in the analysis system, the movement from the start point to the end point of the distance range is performed at a constant speed, and then the speed is returned to the start point at a high speed. A pattern (sawtooth, triangular pattern) having a time zone in which the reflector moves at a constant speed is used.
[0086]
The optical scanning system 62 causes the measuring light 14 to enter the sample 7 while being slightly shifted in direction so that the light beam of the measuring light 14 incident on the sample 7 forms a constant surface. As described above, the direction in which the measurement light 14 is incident on the sample 7 is slightly shifted by the optical scanning system 62, and the data of the backscattered light along the light beam incident in each direction is acquired. A tomographic image of the oxygen saturation and the like can be obtained.
[0087]
The signal multiplexed by the optical multiplexer / demultiplexer 64 through the reference optical path and the sample optical path is detected by the detector 63, amplified by the amplifier 65, digitized by the A / D converter 66, and digitized. Is input to the data analysis system 67 as data.
[0088]
The data analysis system 67 determines the correspondence between the degree of intensity modulation applied to the light multiplexed by the optical multiplexer / demultiplexer 64 and the position of the reference mirror 12 (for the portion where the measurement light is introduced). A process of obtaining optical characteristic data at several places having different depths in the light beam direction) to obtain the intensity of the backscattered light from the sample 7 and the light direction Seek relationship with depth. From the intensity of the backscattered light obtained in this way, a light absorption coefficient in a minute area along the light beam of the measurement light 14 incident on the sample 7 is obtained, and the result is stored.
[0089]
In this way, by moving the reference mirror 12, the position of the measurement point of the backscattered light is gradually increased along the light beam of the measurement light 14 in the light beam direction, and one-dimensional measurement is performed. That is, the tomographic image of the light absorption coefficient is obtained from the obtained data of the light absorption coefficient in the minute area by sequentially changing the incident direction. Further, if two-dimensional measurement is repeated while shifting the measurement cross section of the sample 7 little by little and displayed side by side, a three-dimensional tomographic image can be obtained three-dimensionally.
[0090]
Further, the data analysis system 67 performs measurement at two center wavelengths, obtains a light absorption coefficient in each minute region inside the sample at each wavelength, and performs oxygen absorption in this minute region by the procedure described in the principle of the present invention. The amount of modified hemoglobin, the amount of reduced hemoglobin, the amount of total hemoglobin, and the oxygen saturation are determined.
[0091]
In the second embodiment, a light source that emits short coherent long light is used. The spectrum of this light source has a center wavelength λ.cThe spectrum width is about 10% of the above, and the resolution increases as the spectrum width increases. In the present embodiment, for example, a wavelength shorter than 800 nm (λc 1) And long wavelength (λc 2) Is measured at the two central wavelengths, the light absorption coefficient in each minute region inside the sample is determined at each wavelength, and the amount of oxygenated hemoglobin, the amount of reduced hemoglobin, the amount of total hemoglobin, and the oxygen saturation in this minute region are determined. .
[0092]
In the present embodiment, a plurality of devices having different wavelengths as center wavelengths may be used to determine the amount of oxygenated hemoglobin, the amount of reduced hemoglobin, the amount of total hemoglobin, and the degree of oxygen saturation in the minute region based on the acquired data. good.
[0093]
In addition, although there is only one apparatus, a light source that generates two or more different center wavelengths is used, and the light source is sequentially changed and alternately performed to perform oxygenated hemoglobin amount, reduced hemoglobin amount, total hemoglobin amount, and The oxygen saturation may be determined.
[0094]
Furthermore, a single device uses a light source that simultaneously generates short coherent long light at a plurality of center wavelengths, separates and simultaneously measures with a detection system using a difference in modulation frequency, and oxygenates hemoglobin in a minute area. The amount, reduced hemoglobin amount, total hemoglobin amount and oxygen saturation may be determined.
[0095]
Also in this embodiment, in addition to the method using fiber optics shown in FIG. 6, a method using bulk optics similar to FIG. 1 in the first embodiment, and a Mach-Zehnder interference similar to FIG. Needless to say, a method using a meter, a method using a two-dimensional detector similar to FIG. 5, and the like are possible.
[0096]
References regarding the OCDR method OCT include D.C. Huang et al. , "Optical Coherence Tomography", Science 1991, 254, pp. 146-64. 1178-1181 and the like.
[0097]
As described above, according to the second embodiment, the backscattered light intensity is scattered from two adjacent minute regions (or including a case where a plurality of minute regions are used) in the depth direction along the light beam of the measurement light 14. Measure the location where it was received. Then, based on these measurement data, the influence of light absorption by the blood component in the minute region between the measured regions is evaluated, so that the blood in the minute region is accurately measured with little influence from the tissue in other regions. The light absorption coefficient can be determined.
[0098]
Then, the measurement is performed using two or more wavelength regions, and the light absorption coefficient of blood in the minute region is obtained. Therefore, the light absorption coefficient can be obtained in a plurality of wavelength regions. The oxygenated hemoglobin, reduced hemoglobin, total hemoglobin amount, and oxidative saturation in each microregion in the tissue are determined by associating the difference in the wavelength dependence of the light absorption coefficient between oxygenated hemoglobin and reduced hemoglobin shown in FIG. can do. Further, the result can be displayed as a tomographic image.
[0099]
Further, since a short coherent long light source is used, the range of light source selection is widened. Further, the resolution can be increased by shortening the coherent length.
[0100]
[Third Embodiment]
The third embodiment is a method using an SI (Spectral Interferometer) method as an apparatus for optically measuring a biological tissue in one-dimensional, two-dimensional, or three-dimensional tomography.
[0101]
FIG. 7 is a principle diagram of the oxygen saturation measuring device according to the third embodiment.
[0102]
As shown in FIG. 7, the oxygen saturation measuring apparatus according to the present embodiment includes a short coherent long light source 71, a partial reflection mirror 11, an optical scanning system 72, a spectral system 73, an array detector 74, an amplifier 75, an A / D. It comprises a converter 76, a data analysis system 77 and a sample 7 to be measured.
[0103]
As the light source, a short coherent long light source 71 is used as in the second embodiment. Light emitted from the short coherent long light source 71 passes through the partial reflection mirror 11 and is incident on the sample 7 as the measurement light 14 via the optical scanning system 72. The measuring light 14 is backscattered everywhere on the light beam of the incident light in the sample 7 and returns to the partially reflecting mirror 11 along the reverse path. The returned backscattered light is reflected by the partial reflection mirror 11 and is input to the spectroscopy system 73.
[0104]
The optical scanning system 72 shifts the direction of the measurement light 14 little by little so that the light beam of the measurement light 14 incident on the sample 7 forms a constant surface, and causes the measurement light 14 to enter the sample 7. In this way, the direction of incidence of the measurement light 14 on the sample 7 is slightly shifted by the optical scanning system 2 to acquire data of backscattered light along rays incident on each direction. A tomographic image of the oxygen saturation and the like can be obtained.
[0105]
Since the short coherent long light is light having a spread in wavelength, a band-like spectrum can be observed when the light is separated by the spectroscopic system 73. The light split by the spectroscopy system 73 is applied to the array detector 74, and the entire spectrum is simultaneously measured. The signal received by each element of the array detector 74 is transferred to the data analysis system 77 via the amplifier 75 and the A / D converter 76.
[0106]
The data analysis system 77 performs a Fourier analysis on the obtained data in the same procedure as in the first embodiment, and generates a tomographic image of the light absorption coefficient in a minute area along the light beam of the measurement light 14 incident on the sample 7. obtain.
[0107]
Furthermore, measurement was performed in a wavelength region of two or more wavelengths. One-dimensional measurement is repeated one after another to perform two-dimensional measurement, thereby obtaining a tomographic image of the amount of oxygenated hemoglobin, the amount of reduced hemoglobin, the total amount of hemoglobin, and the oxygen saturation. Further, if two-dimensional measurement is repeated while shifting the measurement cross section of the sample 7 little by little and displayed side by side, a three-dimensional tomographic image can be obtained three-dimensionally.
[0108]
As shown by a dotted line in FIG. 7, the signal strength may be improved by a heterodyne effect by using a reference optical path by adding a reference mirror 12.
[0109]
References relating to the OFDR method OCT technology include “Handbook of Optical Coherence Tomography” edited by B.C. E. FIG. Bouma and G .; J. Tearney, pp. 359-384 and the like.
[0110]
As described above, according to the third embodiment, the backscattered light intensity is scattered from two adjacent minute regions (or including a case where a plurality of minute regions are used) in the depth direction along the light beam of the measurement light 14. Measure the location where it was received. Then, based on these measurement data, the influence of light absorption by the blood component in the minute region between the measured regions is evaluated, so that the blood in the minute region is accurately measured with little influence from the tissue in other regions. The light absorption coefficient can be determined.
[0111]
Then, the measurement is performed using two or more wavelength regions, and the light absorption coefficient of blood in the minute region is obtained. Therefore, the light absorption coefficient can be obtained in a plurality of wavelength regions. The oxygenated hemoglobin, reduced hemoglobin, total hemoglobin amount, and oxidative saturation in each microregion in the tissue are determined by associating the difference in the wavelength dependence of the light absorption coefficient between oxygenated hemoglobin and reduced hemoglobin shown in FIG. can do. Further, the result can be displayed as a tomographic image.
[0112]
Furthermore, since the light generated simultaneously from the short coherent long light sources having a plurality of different center wavelengths can be simultaneously decomposed by the spectroscopic system, tomographic images in the depth direction at different wavelengths can be simultaneously measured.
[0113]
【The invention's effect】
As described above, according to the oxygen saturation measurement method and the oxygen saturation measurement apparatus according to the present invention, the tissue to be measured is divided into small regions of 1000 μm or less, for example, several μm to several tens μm, and the tissue is divided. The oxygenated hemoglobin concentration, the reduced hemoglobin concentration, and the oxygen saturation of the minute region can be determined.
[Brief description of the drawings]
FIG. 1 is a principle diagram of an oxygen saturation measuring apparatus according to a first embodiment.
FIG. 2A is a diagram showing data of backscattered light intensity obtained by changing the frequency of measurement light. FIG. 2B is a diagram showing data of the backscattered light intensity obtained by performing a Fourier analysis on this.
FIG. 3 is a principle diagram of an oxygen saturation measuring device in which a partial reflection mirror 13 is placed in a sample optical path.
FIG. 4 is a principle diagram of an oxygen saturation measuring device using a Mach-Zehnder interferometer.
FIG. 5 is a principle diagram of an oxygen saturation measuring device that irradiates a sample with light in a plane.
FIG. 6 is a principle diagram of an oxygen saturation measuring apparatus according to a second embodiment.
FIG. 7 is a principle diagram of the oxygen saturation measuring apparatus according to the first embodiment.
FIG. 8 is a diagram showing the relationship between the light absorption coefficient of oxygenated hemoglobin and reduced hemoglobin with respect to the wavelength of light.
FIG. 9 is a diagram showing a light absorption coefficient by water contained in a living tissue.
FIG. 10 (b) is a principle diagram of a transcutaneous oxygen saturation concentration measuring device. FIG. 10A is a principle diagram of pulse oximetry.
FIG. 11 is an example of measurement data measured by pulse oximetry.
FIG. 12 is a diagram showing a principle of measuring a light absorption coefficient in a minute region.
[Explanation of symbols]
1. Variable frequency coherent light source
2 Optical scanning system
3 Detector
4 Amplifier
5 A / D converter
6 Data analysis system
7 samples
11 Partial reflection mirror
12 Reference mirror 12
13 Reference light
14 Measurement light

Claims (6)

相異なる2つ以上の波長領域の光線を血液成分を有する組織に照射し、光線に沿った領域において、照射した光線の後方散乱光の強度を光線方向に1〜1000ミクロン程度の微小領域に弁別して計測するステップと、
前記相異なる2つ以上の波長領域の光線について計測した、光線方向における前記微小領域の前後の微小領域からの後方散乱光の強度から、前記微小領域における光の吸収係数を各波長領域毎に求めるステップと、
前記微小領域における光吸収係数値から、酸素化ヘモグロビンと還元ヘモグロビンとでは光吸収係数の波長依存性が異なることを利用し、前記微小領域における酸素化ヘモグロビン量、還元ヘモグロビン量、総ヘモグロビン量又は酸素飽和度の少なくとも1つを求めるステップと、
を有することを特徴とする酸素飽和度測定方法。
A tissue having blood components is irradiated with light beams of two or more different wavelength regions, and in the region along the light beam, the intensity of the backscattered light of the irradiated light beam is reduced to a minute region of about 1 to 1000 microns in the light beam direction. Measuring separately; and
The absorption coefficient of light in the minute region is determined for each wavelength region from the intensity of the backscattered light from the minute region before and after the minute region in the light beam direction, measured for the light beams in the two or more different wavelength regions. Steps and
From the light absorption coefficient value in the minute region, utilizing the fact that the wavelength dependence of the light absorption coefficient differs between oxygenated hemoglobin and reduced hemoglobin, the amount of oxygenated hemoglobin, the amount of reduced hemoglobin, the amount of total hemoglobin, or the amount of oxygen in the minute region Determining at least one of the degrees of saturation;
A method for measuring oxygen saturation.
相異なる2つ以上の波長領域の光線を用いて、各波長領域ごとに個別に得られた血液成分を有する組織の断層画像データを解析し、前記血液成分を有する組織の特定の微小領域の光線方向における前後の微小領域からの後方散乱光の強度から、前記微小領域における光の吸収係数を各波長領域毎に求めるステップと、
前記微小領域における光吸収係数値から、酸素化ヘモグロビンと還元ヘモグロビンとでは光吸収係数の波長依存性が異なることを利用し、前記微小領域における酸素化ヘモグロビン量、還元ヘモグロビン量、総ヘモグロビン量又は酸素飽和度の少なくとも1つを求めるステップと、
を有することを特徴とする酸素飽和度測定方法。
Using light beams of two or more different wavelength regions, tomographic image data of a tissue having a blood component obtained separately for each wavelength region is analyzed, and a light beam of a specific minute region of the tissue having the blood component is analyzed. From the intensity of the backscattered light from the front and rear minute regions in the direction, the step of determining the light absorption coefficient in the minute region for each wavelength region,
From the light absorption coefficient value in the minute region, utilizing the fact that the wavelength dependence of the light absorption coefficient differs between oxygenated hemoglobin and reduced hemoglobin, the amount of oxygenated hemoglobin, the amount of reduced hemoglobin, the amount of total hemoglobin, or the amount of oxygen in the minute region Determining at least one of the degrees of saturation;
A method for measuring oxygen saturation.
相異なる2つ以上の波長領域の光線を血液成分を有する組織に照射し、光線に沿った領域において、照射した光線の後方散乱光の強度を光線方向に1〜1000ミクロン程度の微小領域に弁別して計測する後方散乱光強度計測手段と、
前記反射光強度計測手段により相異なる2つ以上の波長領域の光線について計測した、光線方向における前記微小領域の前後の微小領域からの後方散乱光の強度から、前記微小領域における光の吸収係数を各波長領域毎に求める光吸収係数算出手段と、
前記光吸収係数算出手段により求めた前記微小領域における光吸収係数値から、酸素化ヘモグロビンと還元ヘモグロビンとでは光吸収係数の波長依存性が異なることを利用し、前記微小領域における酸素化ヘモグロビン量、還元ヘモグロビン量、総ヘモグロビン量又は酸素飽和度の少なくとも1つを算出する酸素飽和度等算出手段と、
を有することを特徴とする酸素飽和度測定装置。
A tissue having blood components is irradiated with light beams of two or more different wavelength regions, and in the region along the light beam, the intensity of the backscattered light of the irradiated light beam is reduced to a minute region of about 1 to 1000 microns in the light beam direction. Backscattered light intensity measuring means for separately measuring;
The absorption coefficient of light in the minute region is measured from the intensity of backscattered light from the minute region before and after the minute region in the light beam direction, which is measured for light beams in two or more different wavelength regions by the reflected light intensity measuring means. Light absorption coefficient calculating means to be obtained for each wavelength region,
From the light absorption coefficient value in the micro area determined by the light absorption coefficient calculation means, utilizing that the wavelength dependence of the light absorption coefficient is different between oxygenated hemoglobin and reduced hemoglobin, the amount of oxygenated hemoglobin in the micro area, Oxygen saturation or the like calculating means for calculating at least one of reduced hemoglobin amount, total hemoglobin amount or oxygen saturation,
An oxygen saturation measuring device comprising:
前記酸素飽和度等算出手段により求めた酸素化ヘモグロビン量、還元ヘモグロビン量、総ヘモグロビン量又は酸素飽和度の少なくとも1つを、前記血液成分を有する組織における断層像として表示する断層像表示手段を有することを特徴とする請求項3に記載の酸素飽和度測定装置。A tomographic image display means for displaying at least one of the oxygenated hemoglobin amount, the reduced hemoglobin amount, the total hemoglobin amount or the oxygen saturation determined by the oxygen saturation etc. calculating means as a tomographic image in the tissue having the blood component; The oxygen saturation measuring device according to claim 3, wherein: 測定する試料の光線方向の長さに比べて長いコヒーレント長を有する光を発生し、その波長を連続的または離散的に変化させる手段を有する光発生手段と、
前記光発生手段からの光を導く光路長の異なる参照光路と試料光路の2つの光路と、
前記参照光路を経由した光と前記試料光路におかれた試料から散乱された光とを合波する光合波手段と、
前記光合波手段によって合波された光の強度を検出する光強度検出手段と、
前記光強度検出手段により得られた光強度信号を解析し当該試料光路におかれた試料の光線上の微小領域毎に光吸収係数を得る信号解析手段と、
を用いることを特徴とする請求項1または請求項2に記載の酸素飽和度測定方法。
Light generation means having means for generating light having a coherent length longer than the length in the light beam direction of the sample to be measured, and means for continuously or discretely changing the wavelength thereof,
Two optical paths of a reference optical path and a sample optical path having different optical path lengths for guiding light from the light generating means,
Light combining means for combining light passing through the reference light path and light scattered from the sample placed in the sample light path,
Light intensity detecting means for detecting the intensity of the light multiplexed by the optical multiplexing means,
A signal analysis unit that analyzes the light intensity signal obtained by the light intensity detection unit and obtains a light absorption coefficient for each minute area on the light beam of the sample placed in the sample optical path;
3. The method for measuring oxygen saturation according to claim 1 or 2, wherein:
測定する試料の光線方向の長さに比べて長いコヒーレント長を有する光を発生し、その波長を連続的または離散的に変化させる手段を有する光発生手段と、
前記光発生手段からの光を導く光路長の異なる参照光路と試料光路の2つの光路と、
前記参照光路を経由した光と前記試料光路におかれた試料から散乱された光とを合波する光合波手段と、
前記光合波手段によって合波された光の強度を検出する光強度検出手段と、
前記光強度検出手段により得られた光強度信号を解析し当該試料光路におかれた試料の光線上の微小領域毎に光吸収係数を得る信号解析手段と、
を用いることを特徴とする請求項3または請求項4に記載の酸素飽和度測定装置。
Light generation means having means for generating light having a coherent length longer than the length in the light beam direction of the sample to be measured, and means for continuously or discretely changing the wavelength thereof,
Two optical paths of a reference optical path and a sample optical path having different optical path lengths for guiding light from the light generating means,
Light combining means for combining light passing through the reference light path and light scattered from the sample placed in the sample light path,
Light intensity detecting means for detecting the intensity of the light multiplexed by the optical multiplexing means,
A signal analysis unit that analyzes the light intensity signal obtained by the light intensity detection unit and obtains a light absorption coefficient for each minute area on the light beam of the sample placed in the sample optical path;
The oxygen saturation measuring device according to claim 3 or 4, wherein:
JP2002338314A 2002-11-21 2002-11-21 Oxygen saturation meter Expired - Lifetime JP3471788B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002338314A JP3471788B1 (en) 2002-11-21 2002-11-21 Oxygen saturation meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002338314A JP3471788B1 (en) 2002-11-21 2002-11-21 Oxygen saturation meter

Publications (2)

Publication Number Publication Date
JP3471788B1 JP3471788B1 (en) 2003-12-02
JP2004167080A true JP2004167080A (en) 2004-06-17

Family

ID=29774701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002338314A Expired - Lifetime JP3471788B1 (en) 2002-11-21 2002-11-21 Oxygen saturation meter

Country Status (1)

Country Link
JP (1) JP3471788B1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022342A1 (en) * 2004-08-26 2006-03-02 Nippon Telegraph And Telephone Corporation Tissue measuring optical interference tomography-use light producing device and tissue measuring optical interference tomography device
JP2006116028A (en) * 2004-10-20 2006-05-11 Univ Of Tsukuba Line focusing type fourier domain interference profile measuring apparatus
WO2006077921A1 (en) * 2005-01-21 2006-07-27 Scool Juridical Person Kitasato Gakuen Optical coherent tomography device
JP2007010589A (en) * 2005-07-01 2007-01-18 Nidek Co Ltd Object measuring apparatus
JP2007085931A (en) * 2005-09-22 2007-04-05 Fujinon Corp Optical tomographic imaging system
JP2007117164A (en) * 2005-10-25 2007-05-17 Spectratech Inc Functional confocal image display device
JP2007127425A (en) * 2005-10-31 2007-05-24 Univ Of Tsukuba Correction method in optical tomographic imaging method
WO2007060973A1 (en) * 2005-11-22 2007-05-31 Shofu Inc. Dental optical coherence tomograph
JP2007225349A (en) * 2006-02-21 2007-09-06 Univ Of Tsukuba Image processing method for three-dimensional optical tomography image
JP2007225392A (en) * 2006-02-22 2007-09-06 Spectratech Inc Optical interference device
JP2008508068A (en) * 2004-08-03 2008-03-21 カール ツァイス メディテック アクチエンゲゼルシャフト Eye Fourier domain OCT ray tracing method
JP2009119153A (en) * 2007-11-16 2009-06-04 Panasonic Electric Works Co Ltd Optical coherent tomography system
JP2014533567A (en) * 2011-11-23 2014-12-15 インストゥルメンタシオン イ オフタルモロヒア(インソフト,エセ.エレ.) Method and apparatus for measuring hemoglobin
US9044164B2 (en) 2008-12-23 2015-06-02 Carl Zeiss Meditec Ag Device for swept source optical coherence domain reflectometry
JP2018068484A (en) * 2016-10-26 2018-05-10 エムテックスマツムラ株式会社 Oxygen saturation degree measuring device
JP2018512204A (en) * 2015-03-16 2018-05-17 マジック リープ, インコーポレイテッドMagic Leap,Inc. Augmented reality pulse oximetry
US10653328B2 (en) 2016-06-30 2020-05-19 Panasonic Intellectual Property Management Co., Ltd. Biological information detection device using second light from target onto which dots formed by first light are projected

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047264A (en) * 2004-07-09 2006-02-16 Nippon Telegr & Teleph Corp <Ntt> Optical coherent tomographic unit, variable-wavelength light generator used therefor, and variable-wavelength light-emitting light source

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508068A (en) * 2004-08-03 2008-03-21 カール ツァイス メディテック アクチエンゲゼルシャフト Eye Fourier domain OCT ray tracing method
JP4734326B2 (en) * 2004-08-03 2011-07-27 カール ツァイス メディテック アクチエンゲゼルシャフト Eye Fourier domain OCT ray tracing method
WO2006022342A1 (en) * 2004-08-26 2006-03-02 Nippon Telegraph And Telephone Corporation Tissue measuring optical interference tomography-use light producing device and tissue measuring optical interference tomography device
JPWO2006022342A1 (en) * 2004-08-26 2008-05-08 日本電信電話株式会社 Optical interference tomography light generator for biological tissue measurement and optical interference tomography device for biological tissue measurement
JP4654357B2 (en) * 2004-08-26 2011-03-16 日本電信電話株式会社 Optical interference tomography light generator for biological tissue measurement and optical interference tomography device for biological tissue measurement
JP2006116028A (en) * 2004-10-20 2006-05-11 Univ Of Tsukuba Line focusing type fourier domain interference profile measuring apparatus
JP4512822B2 (en) * 2004-10-20 2010-07-28 国立大学法人 筑波大学 Line condensing type Fourier domain interference shape measuring device
WO2006077921A1 (en) * 2005-01-21 2006-07-27 Scool Juridical Person Kitasato Gakuen Optical coherent tomography device
JP2007010589A (en) * 2005-07-01 2007-01-18 Nidek Co Ltd Object measuring apparatus
JP2007085931A (en) * 2005-09-22 2007-04-05 Fujinon Corp Optical tomographic imaging system
JP4594208B2 (en) * 2005-10-25 2010-12-08 株式会社スペクトラテック Functional confocal image display device
JP2007117164A (en) * 2005-10-25 2007-05-17 Spectratech Inc Functional confocal image display device
JP2007127425A (en) * 2005-10-31 2007-05-24 Univ Of Tsukuba Correction method in optical tomographic imaging method
US7823782B2 (en) 2005-11-22 2010-11-02 Shofu Inc. Dental optical coherence tomograph
WO2007060973A1 (en) * 2005-11-22 2007-05-31 Shofu Inc. Dental optical coherence tomograph
JP4822454B2 (en) * 2005-11-22 2011-11-24 株式会社松風 Dental optical coherence tomography system
JP2007225349A (en) * 2006-02-21 2007-09-06 Univ Of Tsukuba Image processing method for three-dimensional optical tomography image
JP2007225392A (en) * 2006-02-22 2007-09-06 Spectratech Inc Optical interference device
JP2009119153A (en) * 2007-11-16 2009-06-04 Panasonic Electric Works Co Ltd Optical coherent tomography system
US9044164B2 (en) 2008-12-23 2015-06-02 Carl Zeiss Meditec Ag Device for swept source optical coherence domain reflectometry
JP2014533567A (en) * 2011-11-23 2014-12-15 インストゥルメンタシオン イ オフタルモロヒア(インソフト,エセ.エレ.) Method and apparatus for measuring hemoglobin
JP2018512204A (en) * 2015-03-16 2018-05-17 マジック リープ, インコーポレイテッドMagic Leap,Inc. Augmented reality pulse oximetry
JP2021041244A (en) * 2015-03-16 2021-03-18 マジック リープ, インコーポレイテッドMagic Leap,Inc. Augmented reality pulse oximetry
US11022797B2 (en) 2015-03-16 2021-06-01 Magic Leap, Inc. Augmented reality pulse oximetry
US11644674B2 (en) 2015-03-16 2023-05-09 Magic Leap, Inc. Augmented reality pulse oximetry
US10653328B2 (en) 2016-06-30 2020-05-19 Panasonic Intellectual Property Management Co., Ltd. Biological information detection device using second light from target onto which dots formed by first light are projected
US10959628B2 (en) 2016-06-30 2021-03-30 Panasonic Intellectual Property Management Co., Ltd. Biological information detection device using second light from target onto which dots formed by first light are projected
US11730383B2 (en) 2016-06-30 2023-08-22 Panasonic Intellectual Property Management Co., Ltd. Method and system using biological information detection device using second light from target onto which dots formed by first light are projected to detect status of living body
JP2018068484A (en) * 2016-10-26 2018-05-10 エムテックスマツムラ株式会社 Oxygen saturation degree measuring device

Also Published As

Publication number Publication date
JP3471788B1 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
US7551950B2 (en) Optical apparatus and method of use for non-invasive tomographic scan of biological tissues
US8036727B2 (en) Methods for noninvasively measuring analyte levels in a subject
JP3433534B2 (en) Method and apparatus for measuring scattering and absorption characteristics in scattering medium
JP3471788B1 (en) Oxygen saturation meter
US7356365B2 (en) Method and apparatus for tissue oximetry
JP4490587B2 (en) Device for noninvasive detection of oxygen metabolism in tissues
JP3577335B2 (en) Scattering absorber measurement method and device
JP5197779B2 (en) Biological information imaging apparatus, biological information analysis method, and biological information imaging method
JP5186044B2 (en) Blood glucose level estimation device
US20120209094A1 (en) Monitoring blood constituent levels in biological tissue
JP2006521869A (en) Photoacoustic analysis evaluation method and apparatus
US10925525B2 (en) Combined pulse oximetry and diffusing wave spectroscopy system and control method therefor
JP2009520548A (en) Noninvasive measurement system for blood glucose concentration
JP2008203234A (en) Blood component concentration analysis method and device
JP2013052227A (en) Apparatus and method for acquiring information on subject
US9259486B2 (en) Method and system for calculating a quantification indicator for quantifying a dermal reaction on the skin of a living being
EP1136811B1 (en) Method and device for measuring internal information of scattering absorber
JP6461288B2 (en) Biological information imaging apparatus, biological information analysis method, and biological information imaging method
JP3425674B2 (en) Component concentration measuring apparatus and method
JP5652599B2 (en) Concentration determination apparatus, concentration determination method and program
JPH08103434A (en) Device and method for measuring living body light
JP3876322B2 (en) Non-invasive brain activity measurement method
JPH07120384A (en) Method and apparatus for optical measurement
John et al. Glucose sensing in ex-vivo human gingival tissue with enhanced sensitivity in combination band
US20230119416A1 (en) Self-compensated functional photoacoustic microscopy

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3471788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term