JP2004160328A - Oil mist separator element - Google Patents

Oil mist separator element Download PDF

Info

Publication number
JP2004160328A
JP2004160328A JP2002327878A JP2002327878A JP2004160328A JP 2004160328 A JP2004160328 A JP 2004160328A JP 2002327878 A JP2002327878 A JP 2002327878A JP 2002327878 A JP2002327878 A JP 2002327878A JP 2004160328 A JP2004160328 A JP 2004160328A
Authority
JP
Japan
Prior art keywords
oil mist
separator element
layer
fibers
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002327878A
Other languages
Japanese (ja)
Other versions
JP4048924B2 (en
Inventor
Osamu Nakamura
修 中村
Takeshi Takanashi
剛 高梨
Osamu Yamaguchi
修 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Fibers Corp
Original Assignee
Chisso Polypro Fiber Co Ltd
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Polypro Fiber Co Ltd, Chisso Corp filed Critical Chisso Polypro Fiber Co Ltd
Priority to JP2002327878A priority Critical patent/JP4048924B2/en
Publication of JP2004160328A publication Critical patent/JP2004160328A/en
Application granted granted Critical
Publication of JP4048924B2 publication Critical patent/JP4048924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil mist separator element which hardly causes positional variation of fibers due to the influence of gas flow, density irregularity of fiber layers due to mutual adhesion among fibers, the opening among fibers or the like, stabilizes the efficiency of oil mist separation and hardly deteriorates the efficiency over a long period. <P>SOLUTION: The tubular oil mist separator element has a three-layered structure comprising at least an upper stream layer, a middle stream layer and a down stream layer. Therein, the upper stream layer is composed of nonwoven fabric made of polyester composite fibers in which the connection points of the fibers are thermally bonded, the succeeding middle layer is composed of glass fiber assembly and the down stream layer is composed of the nonwoven fabric made of the polyester composite fibers. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンのベンチレータ等に用いられるオイルミストセパレータエレメントに関する。
【0002】
【従来の技術】
エンジンでは、クランクケース内へ燃焼室より流出するブローバイガスを大気中に放出せずに燃焼させるために、PCV(Positive Crankcase Ventilation)システムによりブローバイガスをクランクケースから吸気系統に戻し、ブローバイガスの還元再燃焼が行なわれていることが多い。この時、クランクケース内にはオイルが微小な粒状(オイルミスト)になって存在し、このままではブローバイガスの再燃焼には不都合であり、大気汚染の原因ともなり、かつ、オイルの消費量も増す。このため、吸気系統にブローバイガスを還元する前に、オイルミストをブローバイガスより分離してクランクケース内に戻す液滴分離が行なわれている。オイルミストの分離手段としては、遠心分離や目の粗い濾網トラップ等により比較的大きな液滴を分離し、それらの分離機構を通過したブローバイガスに浮遊する比較的小さなオイルミストをセパレータエレメントによって分離する方法が知られている(例えば、特許文献1参照)。また、このようなセパレータエレメントとしては、ガラス繊維を主成分とし、パンチングメタル等の通気性ケーシング内に収容保持し、ベンチレータに設置できるものが知られている(例えば、特許文献2参照)。
【0003】
【特許文献1】
特開2001−336413号公報
【特許文献2】
特許第3278453号公報
【0004】
しかしながら、前記セパレータエレメントに用いられるガラス繊維は、ガス流の影響により繊維の位置関係が激しく変動し、繊維同士の密着や繊維間の目開き等の原因により繊維層に密度むらが発生することがある。そのためセパレータのオイルミスト分離効率が時間と共に極度に低下していくという問題があった。
【0005】
【発明が解決しようとする課題】
本発明は、前記問題点を解決し、ガス流の影響により繊維の位置が変動したり、繊維同士の密着や繊維間の目開き等による繊維層の密度むらが発生しにくく、オイルミスト分離効率が長時間にわたって安定して低下しにくいオイルミストセパレータエレメントを提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、上流層と下流層を繊維接点が熱接合されたポリエステル複合繊維からなる不織布で構成し、中流層をガラス繊維集合体で構成した少なくとも3層からなる筒状セパレータエレメントを用いることで、前記課題を解決し優れた分離性能を持つオイルミストセパレータエレメントが得られることを見出し、その知見に基づいて本発明を完成するに至った。
【0007】
本発明は、次の構成を有する。
(1)少なくとも上流層、中流層及び下流層からなる3層構造を有する筒状オイルミストセパレータエレメントであって、上流層は、繊維接点が熱接合されたポリエステル複合繊維からなる不織布で構成され、続く中流層はガラス繊維集合体で構成され、下流層は前記ポリエステル複合繊維からなる不織布で構成されたことを特徴とするオイルミストセパレータエレメント。
【0008】
(2)ポリエステル複合繊維からなる不織布が、捲縮を有する短繊維からなる不織布である、前記(1)項記載のオイルミストセパレータエレメント。
【0009】
(3)ポリエステル複合繊維が、芯成分にポリエチレンテレフタレートを、鞘成分に芯成分より融点が10℃以上低い共重合ポリエステルを用いた鞘芯型の複合繊維である前記(1)項または(2)項記載のオイルミストセパレータエレメント。
【0010】
(4)共重合ポリエステルが、エチレンテレフタレート/エチレンイソフタレート共重合体である前記(3)項記載のオイルミストセパレータエレメント。
【0011】
(5)ポリエステル複合繊維の平均繊維径が、10〜45μmである前記(1)〜(4)項のいずれか1項記載のオイルミストセパレータエレメント。
【0012】
(6)前記上流層の空隙率が、70〜85%である前記(1)〜(5)項のいずれか1項記載のオイルミストセパレータエレメント。
【0013】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明でいう筒状とは、エレメントの横断面の形状が円形または楕円形等の筒状、あるいは横断面の形状が多角形であるような角型筒状のことである。尚、後記する製造上用いる巻き芯の形状が多角形の場合には、繊維層を巻き重ねるにつれて外径は角が丸みを帯び円形に近くなりやすいが、この形状でもセパレータエレメントとして問題なく使用できる。
【0014】
本発明の実施形態の一例を図1に示す。セパレータエレメント1は、図2に示すように上流層2、中流層3、下流層4の少なくとも3層からなり、ブローバイガス流5は層内を通過し、オイルミストが分離される。また、本発明のセパレータエレメントは、図3のように、内部から外部へガスを通過させるように設計することが好ましい。すなわち、上流層2がセパレータエレメント内壁側に、下流層4がセパレータエレメント外壁側に位置する事が好ましい。逆に、外部から内部へガスを通過させる場合は、下流層4はセパレータエレメント内壁側になり、液滴分離されたオイルミストは内壁側に滞留する。この時、滞留したオイルミストを除去するためには、セパレータエレメントの内壁側にドレーン抜きがあるようなベンチレーターを設計することが好ましい。また、内壁側は外壁側に比べ液滴化を行う面積も小さくなる傾向がある。
【0015】
本発明のセパレータエレメントに使用する上流層と下流層の複合繊維の材料には、ポリエステル樹脂が使用される。ポリエステル繊維は耐油性に優れ、繊維同士がその接点で強固に熱接合できるという特徴を持つ。ポリオレフィンの複合繊維は、オイルで膨潤する等耐油性が劣るため好ましくない。またナイロンは耐油性に優れているが、繊維同士の熱接合が弱く、望まれる除去効率が得られないため好ましくない。さらに、ナイロン等の構成原子に窒素原子を含む樹脂は、NO等の大気汚染の原因になる物質をエンジンから排出する恐れがあるという問題も発生するので好ましくない。
【0016】
上記ポリエステル複合繊維とは、融点の異なる2種のポリエステル樹脂からなる複合繊維であり、低融点成分が繊維断面周の少なくとも一部を占め、熱処理によって繊維間に熱接合を起こさせるものであれば、鞘芯型、並列型の如何を問わない。また、鞘芯型の場合は偏心構造でも良い。ポリエステル複合繊維は、後記する加熱処理での温度調節を容易にするため、高融点成分と低融点成分の融点差が10℃以上であることが好ましい。尚、明確な融点が無い樹脂の場合はその流動化温度を融点と見なす。融点差が10℃未満であると温度調節が難しく、調節を誤ると、繊維間の熱接合が不十分で強度の高いセパレータエレメントが得られなかったり、逆に、より高融点の成分までもが軟化ないし融解して繊維構造を失いやすく、繊維層が膜状化することがある。また、異常収縮によりしわが発生したりして、オイルミスト分離効率の良いセパレータエレメントが得られない恐れがある。
【0017】
ポリエステル複合繊維としては、例えば、ポリエチレンテレフタレートを芯成分に、エチレンテレフタレート/エチレンイソフタレート共重合体を鞘成分に用いた鞘芯型の複合繊維をあげることができる。ポリエステル複合繊維は前記した組成に限定されるものではないが、前記した組成は熱接合させるための温度調節も容易で、強度も優れているため好ましい。
【0018】
本発明に使用するポリエステル複合繊維は、捲縮を付与した短繊維であることが好ましい。これは不織布に加工した際、捲縮の無い繊維を用いた場合よりも繊維同士がよく絡み合い、3次元の格子構造を取ることができ、セパレータエレメント全体の強度が増すためである。従って、長繊維のスパンボンド不織布よりも、捲縮が付与された短繊維の不織布が好ましい。
【0019】
上流層のポリエステル複合繊維は、接点を互いに熱接合させることで繊維の位置関係を固定し、上流層での安定したオイルミスト分離性能を保持できる。上流層のポリエステル複合繊維において、その平均繊維径は10〜45μmであることが好ましい。平均繊維径が10〜45μmであると、繊維間の空孔が小さいためオイルミスト分離操作を行った際のセパレータエレメントの圧力損失が大きくなり、ベンチレータ全体に大きな負荷を加えるといった問題もなく、また繊維間の空隙が大きいため、分離操作時の分離効率が劣るというような問題もない。
【0020】
前記上流層に続く中流層は、微細なガラス繊維集合体からなり、特に耐油性に優れており、上流層よりも小さなオイルミストの分離が可能である。尚、本発明でいうガラス繊維は広く一般的に使用されているような平均繊維径10μm以下のものをいう。一般に、ブローバイガス中のオイルミストは0.1μmから100μm程度の大きさで分散していることが多い。前記上流層では特に十数μm以上のオイルミストを分離し、上流層で分離できない小さなオイルミストを中流層で分離するというように、段階的に効果的な分離を行える。中流層に平均繊維径勾配を持たせることで更に効果的な分離を行うことも可能である。また、上流層は、中流層のガラス繊維へガス流が直に吹き付けガラス繊維の位置関係を激しく変動させる事を防止する。さらに、上流層の存在で、ある程度のオイルミストが分離されるため中流層への負荷が軽減され、圧力変動によるガラス繊維の位置関係の変動も小さくなる。従って、セパレータエレメント全体としても安定した分離効率が得られる。尚、上記のガラス繊維集合体には、ガラス繊維の接点を接合するため、本発明の効果を損なわない範囲で接着剤を用いることができる。また、上記のガラス繊維集合体には、本発明の効果を損なわない範囲で、ガラス繊維以外の微細な繊維を併用することができる。
【0021】
下流層は、上流層と中流層でガス流から分離したオイルミストを液滴化して速やかに落下除去する役割を持つ。すなわち、上流層と中流層でガス中から分離されたオイルミストは、セパレータエレメント内部で凝集しながら下流層へとガス流に導かれ、最下流部で液滴化して落下除去される。最下流側に微細なガラス繊維を持つ構造では毛細管現象により落下しにくいため、最下流の繊維は微細なガラス繊維よりもポリエステル複合繊維が好ましい。さらに好ましくは、ポリエステル複合繊維の平均繊維径が10〜45μmであることが好ましい。平均繊維径が10〜45μmであると、毛細管現象の影響が小さく、空隙が大き過ぎてオイルミストを液滴化しにくくなることもない。オイルミストの液滴化とその落下がスムーズに進行するため、セパレータエレメント内部にオイルミストが滞留してガス流によってガス中に再分散してしまうという問題も起こりにくい。
【0022】
上流層は、単独での空隙率が70〜85%であることが好ましい。空隙率が70〜85%であると、オイルミスト分離操作を行った際のセパレータエレメントの圧力損失が大きくてライフが短くなったり、ベンチレータ全体に大きな負荷が生じるといった問題もなく、また、上流層の繊維密度が小さく強度の高いセパレータエレメントが得られにくいという問題や、中流層への負荷が大きくなるという問題もなく、セパレータエレメントの分離効率が低下しにくい。
【0023】
本発明において、上流層、中流層及び下流層の厚さの比率はオイルミストセパレータエレメントの外径によって変わる。例えば、外径が68mmの場合、これら3層の厚さの合計を100%とした場合、いずれの層も5%以上であることが好ましい。より好ましい厚さの比率は、上流層:中流層:下流層=20〜65:30〜75:5〜20%である。
【0024】
セパレータエレメントの端面は、その部分からオイルミストがショートパスする現象を生ずることを防止するため、シールされていることが好ましい。端面のシール方法としては、例えば、セパレータエレメントと同素材のエンドキャップやシートを熱で接合させる方法や、発泡体やゴム製のガスケットを接着剤で接合させる方法がある。
【0025】
本発明のオイルミストセパレータについて、製造方法の一例を説明する。捲縮付与されたポリエステル複合繊維をカード機を通して繊維集合層とし、コンベアにて加熱帯に移送する。加熱帯では赤外線ヒーターにより、上部から加熱され、加熱帯の出口付近では熱接合温度となり、繊維集合層は繊維間が熱接合した不織布の状態となる。加熱手段としては赤外線ヒーター、熱風等が使用できるが、風圧等が影響しない赤外線ヒーターが好ましい。熱接合不織布の裏面の温度は若干低めの方がコンベアからの離脱時、コンベアへの融着によって熱接合不織布が乱されることがなく好ましい。次いで、熱接合不織布を巻き芯に巻き取る。巻き取りは、加熱帯の出口において巻き芯を熱接合不織布上に乗せて、巻き芯がその位置で回転して行われる。巻き取りの際、巻き芯や巻き取り物の自重で加圧され、空隙率は適度に減少する。自重で加圧が不十分な場合は巻き芯の回転軸に荷重を与えて空隙率を調整することができる。上流層の巻き取り終了後は、上流層の外周に、中流層としてガラス繊維不織布を巻き取る。さらに、中流層の外周に、下流層としてポリエステル複合繊維の熱接合不織布を巻き取る。下流層の巻き取り終了後、冷却固化し巻き芯を抜き取る。その後、望まれる長さに切断することでオイルミストセパレータエレメントを得ることができる。
【0026】
【実施例】
以下、本発明を実施例によって説明するが、本発明はこれら実施例に限定されるものではない。実施例、比較例において行われた試験の方法は以下の通りである。
【0027】
(a)平均繊維径
繊維を走査型電子顕微鏡で撮影し、100本の繊維を無作為に選んでそれらの繊維径を測定し、その平均値を平均繊維径とした。
【0028】
(b)上流層の空隙率
セパレータエレメント上流層の空隙率を以下の式を用いて求めた。
(上流層の見かけの体積)=π{(上流層の外径)−(上流層の内径)}×(上流層の長さ)/4
(上流層の真体積)=(上流層の重量)/(上流層原材料の密度)
(上流層の空隙率)={1−(上流層の真体積)/(上流層の見かけの体積)}×100%
【0029】
(c)捲縮数
捲縮数は、JIS L 1015 7−12(1992)に準じて測定した。
【0030】
(d)繊維長
繊維長は、JIS L 1015 7−4(1992)に準じて測定した。
【0031】
(e)オイルミスト分離効率安定性評価
中型トラック用エンジンのベンチレータに試作したセパレータエレメントをセットし、オイルミストを含んだガスを通過させる。セパレータエレメント前後のオイルミスト量を測定し、以下の式を用いて分離効率を計算する。
(オイルミスト分離効率)={1−(セパレータエレメント通過後のブローバイガス単位体積におけるオイルミスト重量)/(セパレータエレメント通過前のブローバイガス単位体積におけるオイルミスト重量)}×100%
分離効率は経時的に測定し、分離効率の安定性を確認する。試験結果は表1に示した。図4に実施例1、2と比較例1の結果を詳細に示した。
【0032】
実施例1〜8
芯側の高融点成分が融点253℃のポリエチレンテレフタレート、鞘側の低融点成分が融点195℃のエチレンテレフタレート/エチレンイソフタレート共重合体のポリエステル鞘芯型複合繊維を用いた。また、複合繊維は繊維長45〜70mmであり、5〜15回/25.4mm(=1inch)の捲縮を付与した。
上記複合繊維をカード機を通して短繊維集合層とし、遠赤外線ヒーターにより230〜240℃で加熱することで熱接合不織布を得た。この熱接合不織布をステンレス製28mmφ巻き芯に空隙率を調整しながら加圧して、径42mmまで巻き取り上流層を形成した。上流層の空隙率は実施例毎に表1に記載した。続いて、上流層の外周に、繊維径1〜10μmのガラス繊維を含む厚さ5mmのガラス繊維不織布SPF−216(商品名、日本無機(株)製)を、径64mmまで加圧しながら巻き取り、中流層を形成した。さらに中流層の外周に、上流層の熱接合不織布と同様の方法で得た熱接合不織布を、径68mmまで巻き取り、下流層を形成した。この結果、径28〜42mmが上流層、径42〜64mmが中流層、径64〜68mmが下流層となった。冷却固化後、巻き芯を抜き取り、切断して外径68mm、内径28mm、長さ97mmのセパレータエレメントを作製した。端面はポリエステル不織布にて溶着シールした。
【0033】
比較例1
28mmφ巻き芯にガラス繊維不織布を径64mmまで巻き、上流層と中流層を形成し、その外周に実施例1で用いたものと同様のポリエステルの複合繊維による熱接合不織布を径68mmまで巻き、下流層を形成した。冷却固化後、巻き芯を抜き取り、切断して外径68mm、内径28mm、長さ97mmのセパレータエレメントを作製した。端面はポリエステル不織布にて溶着シールした。
【0034】
比較例2
高融点成分としてポリプロピレンを芯側に、低融点成分としてポリエチレンを鞘側に用いたポリオレフィンの複合繊維を用い、端面のシールにポリエチレンシートを用いた以外は、実施例1に準じた方法でセパレータエレメントを作製した。このセパレータエレメントはオイルに対して激しく膨潤するためオイルミストセパレータエレメントとしては使用不可能であった。
【0035】
【表1】

Figure 2004160328
【0036】
表1、図4から明らかなように、比較例1では分離効率が使用開始から徐々に低下するのに対して、実施例では分離効率は60時間以上安定していた。特に実施例1、2では、200時間後も分離効率が安定していた。
【0037】
【発明の効果】
本発明のオイルミストセパレータエレメントは、上流層は繊維接点が強固に熱接合したポリエステル複合繊維で構成され変形が少ないので、中流層のガラス繊維の位置関係の変動を軽減する。このため、繊維の密度むらが発生せず、経過時間に対して安定したオイルミストの分離が行える。また、熱接合したポリエステル複合繊維からなる上流層と下流層は非常に強度が大きいため、本発明のセパレータエレメントは補強用のコアやケース等を必要としない。
【図面の簡単な説明】
【図1】本発明のオイルミストセパレータエレメント一部切欠き斜視図。
【図2】本発明のオイルミストセパレータエレメントの層構造とブローバイガスの流れを示す説明図。
【図3】本発明のオイルミストセパレータエレメントを内部から外部へガスを通過させるように設計した時の断面図。
【図4】実施例1、2、比較例3の分離効率と経過時間の関係図。
【符号の説明】
1:オイルミストセパレータエレメント
2:上流層
3:中流層
4:下流層
5:ブローバイガス流[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an oil mist separator element used for a ventilator of a diesel engine or the like.
[0002]
[Prior art]
In the engine, in order to burn the blow-by gas flowing out of the combustion chamber into the crankcase without discharging it to the atmosphere, the blow-by gas is returned from the crankcase to the intake system by a PCV (Positive Crackcase Ventilation) system, and the blow-by gas is reduced. Reburning is often performed. At this time, the oil exists in the crankcase in the form of fine particles (oil mist), which is inconvenient for reburning the blow-by gas, causes air pollution, and reduces the amount of oil consumed. Increase. Therefore, before the blow-by gas is returned to the intake system, droplet separation is performed in which oil mist is separated from the blow-by gas and returned to the inside of the crankcase. As a means for separating oil mist, relatively large droplets are separated by centrifugation or a coarse filter trap, etc., and relatively small oil mist floating in blow-by gas that has passed through those separation mechanisms is separated by a separator element. A known method is known (for example, see Patent Document 1). Further, as such a separator element, there is known a separator element containing glass fiber as a main component, which can be housed and held in a breathable casing such as a punching metal and installed on a ventilator (for example, see Patent Document 2).
[0003]
[Patent Document 1]
JP 2001-336413 A [Patent Document 2]
Japanese Patent No. 3278453 [0004]
However, the glass fibers used for the separator element have a fierce change in the positional relationship of the fibers due to the influence of the gas flow, and density unevenness may occur in the fiber layer due to factors such as adhesion between the fibers or opening between the fibers. is there. Therefore, there has been a problem that the oil mist separation efficiency of the separator extremely decreases with time.
[0005]
[Problems to be solved by the invention]
The present invention solves the above problems, and the position of the fibers fluctuates due to the influence of the gas flow, the density unevenness of the fiber layer due to the adhesion between the fibers and the opening between the fibers is hardly generated, and the oil mist separation efficiency is reduced. It is an object of the present invention to provide an oil mist separator element which is stable and is hardly lowered for a long time.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, the upstream layer and the downstream layer are formed of a nonwoven fabric made of a polyester composite fiber in which fiber contacts are thermally bonded, and the middle layer is a glass fiber aggregate. By using the cylindrical separator element having at least three layers, it was found that an oil mist separator element having excellent separation performance was obtained by solving the above-mentioned problems, and based on the findings, the present invention was completed. Was.
[0007]
The present invention has the following configuration.
(1) A tubular oil mist separator element having a three-layer structure including at least an upstream layer, a middle stream layer, and a downstream layer, wherein the upstream layer is formed of a nonwoven fabric made of a polyester composite fiber whose fiber contacts are thermally bonded, An oil mist separator element, wherein the middle layer is formed of a glass fiber aggregate, and the downstream layer is formed of a nonwoven fabric made of the polyester composite fiber.
[0008]
(2) The oil mist separator element according to the above (1), wherein the nonwoven fabric made of the polyester composite fiber is a nonwoven fabric made of crimped short fibers.
[0009]
(3) The above-mentioned item (1) or (2), wherein the polyester composite fiber is a sheath-core type composite fiber using polyethylene terephthalate as a core component and copolymerized polyester having a melting point lower than that of the core component by 10 ° C. or more as a sheath component. An oil mist separator element according to any one of the preceding claims.
[0010]
(4) The oil mist separator element according to the above (3), wherein the copolymerized polyester is an ethylene terephthalate / ethylene isophthalate copolymer.
[0011]
(5) The oil mist separator element according to any one of the above (1) to (4), wherein the average fiber diameter of the polyester composite fiber is 10 to 45 µm.
[0012]
(6) The oil mist separator element according to any one of (1) to (5), wherein the porosity of the upstream layer is 70 to 85%.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The cylindrical shape in the present invention is a cylindrical shape in which the cross-sectional shape of the element is circular or elliptical, or a rectangular cylindrical shape in which the cross-sectional shape is polygonal. In the case where the shape of the winding core used in the production described later is polygonal, the outer diameter tends to be rounded with rounded corners as the fiber layers are wound, but this shape can be used without problem as a separator element. .
[0014]
FIG. 1 shows an example of the embodiment of the present invention. As shown in FIG. 2, the separator element 1 includes at least three layers, an upstream layer 2, a middle layer 3, and a downstream layer 4. The blow-by gas flow 5 passes through the layer, and oil mist is separated. Further, as shown in FIG. 3, the separator element of the present invention is preferably designed to allow gas to pass from inside to outside. That is, it is preferable that the upstream layer 2 is located on the inner wall side of the separator element and the downstream layer 4 is located on the outer wall side of the separator element. Conversely, when gas is passed from the outside to the inside, the downstream layer 4 is on the inner wall side of the separator element, and the oil mist separated from the droplets stays on the inner wall side. At this time, in order to remove the retained oil mist, it is preferable to design a ventilator having drain holes on the inner wall side of the separator element. Also, the inner wall side tends to have a smaller area for droplet formation than the outer wall side.
[0015]
Polyester resin is used as the material of the composite fibers of the upstream layer and the downstream layer used in the separator element of the present invention. Polyester fibers have excellent oil resistance and are characterized in that the fibers can be strongly thermally bonded at their contact points. Polyolefin composite fibers are not preferred because of poor oil resistance such as swelling with oil. Nylon is excellent in oil resistance, but is not preferable because the thermal bonding between the fibers is weak and the desired removal efficiency cannot be obtained. Further, a resin containing a nitrogen atom in the constituent atoms, such as nylon is undesirable because also occurs a problem that a substance that causes air pollution, such as NO X which may be discharged from the engine.
[0016]
The above-mentioned polyester composite fiber is a composite fiber composed of two types of polyester resins having different melting points, as long as the low-melting-point component occupies at least a part of the fiber cross-sectional periphery and causes thermal bonding between the fibers by heat treatment. , Sheath-core type and parallel type. In the case of a sheath-core type, an eccentric structure may be used. The polyester composite fiber preferably has a melting point difference of 10 ° C. or more between the high melting point component and the low melting point component in order to facilitate temperature control in the heat treatment described later. In the case of a resin having no clear melting point, the fluidization temperature is regarded as the melting point. If the difference in melting point is less than 10 ° C., it is difficult to adjust the temperature. If the adjustment is incorrect, the thermal bonding between the fibers is insufficient, and a high-strength separator element cannot be obtained. The fiber structure tends to be lost due to softening or melting, and the fiber layer may be formed into a film. Moreover, wrinkles may be generated due to abnormal shrinkage, and a separator element having high oil mist separation efficiency may not be obtained.
[0017]
Examples of the polyester composite fiber include a sheath-core composite fiber using polyethylene terephthalate as a core component and an ethylene terephthalate / ethylene isophthalate copolymer as a sheath component. The polyester composite fiber is not limited to the above-mentioned composition, but the above-mentioned composition is preferable because the temperature for heat bonding can be easily adjusted and the strength is excellent.
[0018]
The polyester composite fiber used in the present invention is preferably a crimped short fiber. This is because, when processed into a nonwoven fabric, the fibers are more entangled with each other than when non-crimped fibers are used, a three-dimensional lattice structure can be obtained, and the strength of the entire separator element increases. Therefore, a crimped short fiber nonwoven fabric is preferable to a long fiber spunbond nonwoven fabric.
[0019]
The polyester composite fiber of the upstream layer fixes the positional relationship of the fibers by thermally bonding the contacts to each other, and can maintain stable oil mist separation performance in the upstream layer. In the polyester composite fiber of the upstream layer, the average fiber diameter is preferably from 10 to 45 μm. When the average fiber diameter is 10 to 45 μm, the pressure loss of the separator element when performing an oil mist separation operation becomes large because the pores between the fibers are small, and there is no problem of applying a large load to the entire ventilator, and Since the space between the fibers is large, there is no problem that the separation efficiency during the separation operation is inferior.
[0020]
The middle layer following the upstream layer is made of a fine glass fiber aggregate, has particularly excellent oil resistance, and can separate an oil mist smaller than the upstream layer. In addition, the glass fiber referred to in the present invention refers to a glass fiber having an average fiber diameter of 10 μm or less as widely used. Generally, oil mist in blow-by gas is often dispersed in a size of about 0.1 μm to 100 μm. In the upstream layer, oil mist having a size of more than tens of μm is separated, and small oil mist that cannot be separated in the upstream layer is separated in the middle layer. It is also possible to perform more effective separation by giving the middle stream layer an average fiber diameter gradient. In addition, the upstream layer prevents the gas flow from being directly blown onto the glass fibers in the middle stream layer, thereby causing the positional relationship between the glass fibers to fluctuate drastically. Further, the presence of the upstream layer separates a certain amount of oil mist, thereby reducing the load on the middle stream layer and reducing the fluctuation of the positional relationship of the glass fibers due to the pressure fluctuation. Therefore, stable separation efficiency can be obtained for the entire separator element. In addition, an adhesive can be used for the above glass fiber aggregate in order not to impair the effects of the present invention in order to join the glass fiber contacts. Further, fine fibers other than glass fibers can be used in combination with the above glass fiber aggregate within a range not to impair the effects of the present invention.
[0021]
The downstream layer has a role of dropping the oil mist separated from the gas flow in the upstream layer and the middle layer and quickly dropping and removing the oil mist. That is, the oil mist separated from the gas in the upstream layer and the middle layer is guided to the gas flow to the downstream layer while aggregating inside the separator element, and is dropped and removed at the most downstream portion as droplets. In a structure having fine glass fibers on the lowermost stream side, it is difficult to drop due to the capillary phenomenon, so that the lowermost fiber is preferably a polyester composite fiber rather than a fine glass fiber. More preferably, the average fiber diameter of the polyester composite fiber is preferably from 10 to 45 μm. When the average fiber diameter is 10 to 45 µm, the influence of the capillary phenomenon is small, and the gap is not too large, so that it is not difficult to convert the oil mist into droplets. Since the formation and drop of the oil mist proceeds smoothly, the problem that the oil mist stays inside the separator element and is re-dispersed in the gas by the gas flow hardly occurs.
[0022]
The upstream layer preferably has a porosity alone of 70 to 85%. When the porosity is 70 to 85%, there is no problem that the pressure loss of the separator element when performing the oil mist separation operation is large and the life is shortened, and a large load is generated on the entire ventilator. There is no problem that it is difficult to obtain a separator element having a low fiber density and a high strength, and there is no problem that a load on a middle flow layer increases, and the separation efficiency of the separator element does not easily decrease.
[0023]
In the present invention, the ratio of the thickness of the upstream layer, the middle layer and the downstream layer varies depending on the outer diameter of the oil mist separator element. For example, when the outer diameter is 68 mm, and when the total thickness of these three layers is 100%, it is preferable that all the layers have a thickness of 5% or more. A more preferable thickness ratio is: upstream layer: middle layer: downstream layer = 20 to 65:30 to 75: 5 to 20%.
[0024]
The end face of the separator element is preferably sealed in order to prevent a phenomenon in which oil mist is short-passed from that portion. Examples of the sealing method of the end face include a method of joining an end cap or a sheet made of the same material with a separator element by heat, and a method of joining a foam or a rubber gasket with an adhesive.
[0025]
An example of a production method for the oil mist separator of the present invention will be described. The crimped polyester composite fiber is made into a fiber aggregated layer through a carding machine and transferred to a heating zone by a conveyor. In the heating zone, heating is performed from above by an infrared heater, and the temperature of the heating zone is near the outlet of the heating zone, and the fiber assembly layer is in a nonwoven fabric state in which the fibers are thermally bonded. As a heating means, an infrared heater, hot air or the like can be used, but an infrared heater which does not affect the wind pressure or the like is preferable. It is preferable that the temperature of the back surface of the heat-bonded nonwoven fabric is slightly lower because the heat-bonded nonwoven fabric is not disturbed by fusion to the conveyor when detached from the conveyor. Next, the heat-bonded nonwoven fabric is wound around a core. Winding is performed by placing the core on the heat-bonded nonwoven fabric at the outlet of the heating zone and rotating the core at that position. At the time of winding, pressure is applied by the own weight of the winding core and the wound material, and the porosity is appropriately reduced. When the pressure is insufficient due to its own weight, a load can be applied to the rotating shaft of the winding core to adjust the porosity. After the winding of the upstream layer is completed, the glass fiber nonwoven fabric is wound on the outer periphery of the upstream layer as a middle layer. Further, a heat-bonded nonwoven fabric of polyester composite fiber is wound around the outer periphery of the middle stream layer as a downstream layer. After the winding of the downstream layer is completed, it is cooled and solidified and the core is removed. Thereafter, the oil mist separator element can be obtained by cutting to a desired length.
[0026]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. The test methods performed in Examples and Comparative Examples are as follows.
[0027]
(A) Average fiber diameter Fibers were photographed with a scanning electron microscope, 100 fibers were randomly selected, their fiber diameters were measured, and the average value was defined as the average fiber diameter.
[0028]
(B) Porosity of upstream layer The porosity of the upstream layer of the separator element was determined using the following equation.
(Apparent volume of upstream layer) = π {(outside diameter of upstream layer) 2 − (inner diameter of upstream layer) 2層 × (length of upstream layer) / 4
(True volume of upstream layer) = (weight of upstream layer) / (density of raw material of upstream layer)
(Porosity of upstream layer) = {1− (true volume of upstream layer) / (apparent volume of upstream layer)} × 100%
[0029]
(C) Number of crimps The number of crimps was measured according to JIS L 1015 7-12 (1992).
[0030]
(D) Fiber length The fiber length was measured according to JIS L 10157-4 (1992).
[0031]
(E) Oil mist separation efficiency stability evaluation A prototype separator element is set on a ventilator of a medium-sized truck engine, and gas containing oil mist is passed. The amount of oil mist before and after the separator element is measured, and the separation efficiency is calculated using the following equation.
(Oil mist separation efficiency) = {1− (weight of oil mist in unit volume of blow-by gas after passing through separator element) / (weight of oil mist in unit volume of blow-by gas before passing through separator element)} × 100%
Separation efficiency is measured over time to confirm the stability of the separation efficiency. The test results are shown in Table 1. FIG. 4 shows the results of Examples 1 and 2 and Comparative Example 1 in detail.
[0032]
Examples 1 to 8
Polyester sheath-core composite fibers of a polyethylene terephthalate having a melting point of 253 ° C. on the core side and an ethylene terephthalate / ethylene isophthalate copolymer having a melting point of 195 ° C. on the sheath side were used. The composite fiber had a fiber length of 45 to 70 mm and was crimped 5 to 15 times / 25.4 mm (= 1 inch).
The conjugate fiber was made into a short fiber assembly layer through a carding machine, and heated at 230 to 240 ° C. by a far infrared heater to obtain a thermally bonded nonwoven fabric. This heat-bonded nonwoven fabric was pressed against a stainless steel 28 mmφ winding core while adjusting the porosity, and wound up to a diameter of 42 mm to form an upstream layer. The porosity of the upstream layer is described in Table 1 for each example. Subsequently, a glass fiber nonwoven fabric SPF-216 (trade name, manufactured by Nippon Inorganic Co., Ltd.) having a thickness of 5 mm containing glass fibers having a fiber diameter of 1 to 10 μm is wound around the outer periphery of the upstream layer while pressurizing to a diameter of 64 mm. , Forming a midstream layer. Further, a heat-bonded nonwoven fabric obtained by the same method as the heat-bonded nonwoven fabric of the upstream layer was wound up to a diameter of 68 mm on the outer periphery of the middle layer to form a downstream layer. As a result, the diameter 28 to 42 mm was the upstream layer, the diameter 42 to 64 mm was the middle layer, and the diameter 64 to 68 mm was the downstream layer. After cooling and solidification, the core was removed and cut to produce a separator element having an outer diameter of 68 mm, an inner diameter of 28 mm, and a length of 97 mm. The end face was welded and sealed with a polyester nonwoven fabric.
[0033]
Comparative Example 1
A glass fiber nonwoven fabric is wound around a core of 28 mmφ to a diameter of 64 mm, an upstream layer and a middle stream layer are formed, and a thermally bonded nonwoven fabric made of the same polyester composite fiber as that used in Example 1 is wound around the outer periphery thereof to a diameter of 68 mm. A layer was formed. After cooling and solidification, the core was removed and cut to produce a separator element having an outer diameter of 68 mm, an inner diameter of 28 mm, and a length of 97 mm. The end face was welded and sealed with a polyester nonwoven fabric.
[0034]
Comparative Example 2
A separator element was prepared in the same manner as in Example 1 except that a polyolefin composite fiber using polypropylene as the high melting point component on the core side and polyethylene as the low melting point component on the sheath side was used, and a polyethylene sheet was used for sealing the end face. Was prepared. This separator element swelled violently in oil and could not be used as an oil mist separator element.
[0035]
[Table 1]
Figure 2004160328
[0036]
As is clear from Table 1 and FIG. 4, in Comparative Example 1, the separation efficiency gradually decreased from the start of use, whereas in Example, the separation efficiency was stable for 60 hours or more. In particular, in Examples 1 and 2, the separation efficiency was stable even after 200 hours.
[0037]
【The invention's effect】
In the oil mist separator element of the present invention, the upstream layer is made of a polyester composite fiber in which fiber contacts are firmly thermally bonded and has little deformation, so that the change in the positional relationship of the glass fibers in the middle layer is reduced. For this reason, uneven density of the fiber does not occur, and the oil mist can be separated stably with respect to the elapsed time. In addition, since the upstream layer and the downstream layer made of the heat-bonded polyester composite fibers have extremely high strength, the separator element of the present invention does not require a reinforcing core or case.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view of an oil mist separator element of the present invention.
FIG. 2 is an explanatory diagram showing a layer structure of an oil mist separator element of the present invention and a flow of blow-by gas.
FIG. 3 is a cross-sectional view when the oil mist separator element of the present invention is designed to allow gas to pass from inside to outside.
FIG. 4 is a graph showing the relationship between separation efficiency and elapsed time in Examples 1 and 2 and Comparative Example 3.
[Explanation of symbols]
1: oil mist separator element 2: upstream layer 3: middle layer 4: downstream layer 5: blow-by gas flow

Claims (6)

少なくとも上流層、中流層及び下流層からなる3層構造を有する筒状オイルミストセパレータエレメントであって、上流層は、繊維接点が熱接合されたポリエステル複合繊維からなる不織布で構成され、続く中流層はガラス繊維集合体で構成され、下流層は前記ポリエステル複合繊維からなる不織布で構成されたことを特徴とするオイルミストセパレータエレメント。A cylindrical oil mist separator element having a three-layer structure comprising at least an upstream layer, a middle stream layer and a downstream layer, wherein the upstream layer is constituted by a nonwoven fabric made of a polyester composite fiber to which fiber contacts are thermally bonded. An oil mist separator element comprising: a glass fiber aggregate; and a downstream layer formed of a nonwoven fabric made of the polyester composite fiber. ポリエステル複合繊維からなる不織布が、捲縮を有する短繊維からなる不織布である請求項1記載のオイルミストセパレータエレメント。The oil mist separator element according to claim 1, wherein the nonwoven fabric made of the polyester composite fiber is a nonwoven fabric made of crimped short fibers. ポリエステル複合繊維が、芯成分にポリエチレンテレフタレートを、鞘成分に芯成分より融点が10℃以上低い共重合ポリエステルを用いた鞘芯型の複合繊維である請求項1または2記載のオイルミストセパレータエレメント。The oil mist separator element according to claim 1 or 2, wherein the polyester composite fiber is a sheath-core type composite fiber using polyethylene terephthalate as a core component and copolymerized polyester having a melting point lower than that of the core component by 10 ° C or more as a sheath component. 共重合ポリエステルが、エチレンテレフタレート/エチレンイソフタレート共重合体である請求項3記載のオイルミストセパレータエレメント。The oil mist separator element according to claim 3, wherein the copolymerized polyester is an ethylene terephthalate / ethylene isophthalate copolymer. ポリエステル複合繊維の平均繊維径が、10〜45μmである請求項1〜4のいずれか1項記載のオイルミストセパレータエレメント。The oil mist separator element according to any one of claims 1 to 4, wherein an average fiber diameter of the polyester composite fiber is 10 to 45 µm. 前記上流層の空隙率が、70〜85%である請求項1〜5のいずれか1項記載のオイルミストセパレータエレメント。The oil mist separator element according to any one of claims 1 to 5, wherein the porosity of the upstream layer is 70 to 85%.
JP2002327878A 2002-11-12 2002-11-12 Oil mist separator element Expired - Fee Related JP4048924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327878A JP4048924B2 (en) 2002-11-12 2002-11-12 Oil mist separator element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327878A JP4048924B2 (en) 2002-11-12 2002-11-12 Oil mist separator element

Publications (2)

Publication Number Publication Date
JP2004160328A true JP2004160328A (en) 2004-06-10
JP4048924B2 JP4048924B2 (en) 2008-02-20

Family

ID=32806337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327878A Expired - Fee Related JP4048924B2 (en) 2002-11-12 2002-11-12 Oil mist separator element

Country Status (1)

Country Link
JP (1) JP4048924B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526495A (en) * 2005-01-07 2008-07-24 メックス・インコーポレイテッド Fiber bed-type collecting strip media for mist separators.
JP2008533348A (en) * 2005-02-04 2008-08-21 ドナルドソン カンパニー,インコーポレイティド Aerosol separator and method
JP2009226322A (en) * 2008-03-24 2009-10-08 Asahi Kasei Fibers Corp Mist filter
JP2011047306A (en) * 2009-08-26 2011-03-10 Toyota Boshoku Corp Oil mist separator
DE102010042883A1 (en) 2009-10-28 2011-05-05 Toyota Boshoku Kabushiki Kaisha, Kariya-shi Oil mist separator for use at cylinder head cover of prime mover of vehicle, has housing comprising ports and passage, and gap formed between section of filter and upper wall of housing in proximity to proximal end of plate
US8404014B2 (en) 2005-02-22 2013-03-26 Donaldson Company, Inc. Aerosol separator
JP2013094699A (en) * 2011-10-28 2013-05-20 Toyota Boshoku Corp Filter medium for mist separator
US8512435B2 (en) 2004-11-05 2013-08-20 Donaldson Company, Inc. Filter medium and breather filter structure
CN104248894A (en) * 2013-06-28 2014-12-31 量瑞流体科技(上海)有限公司 Compressed gas filter core and preparation technology thereof
JP2016140789A (en) * 2015-01-30 2016-08-08 株式会社神戸製鋼所 Abnormality diagnostic device of oil mist removal device
JP2017078383A (en) * 2015-10-22 2017-04-27 株式会社タツノ Compressor unit
US10071332B2 (en) 2014-09-15 2018-09-11 Ge Jenbacher Gmbh & Co. Og Filter insert
USRE47737E1 (en) 2004-11-05 2019-11-26 Donaldson Company, Inc. Filter medium and structure
WO2022170234A1 (en) * 2021-02-08 2022-08-11 Porex Technologies Corporation Seamless filtration media and methods of use

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8512435B2 (en) 2004-11-05 2013-08-20 Donaldson Company, Inc. Filter medium and breather filter structure
US11504663B2 (en) 2004-11-05 2022-11-22 Donaldson Company, Inc. Filter medium and breather filter structure
USRE49097E1 (en) 2004-11-05 2022-06-07 Donaldson Company, Inc. Filter medium and structure
US10610813B2 (en) 2004-11-05 2020-04-07 Donaldson Company, Inc. Filter medium and breather filter structure
USRE47737E1 (en) 2004-11-05 2019-11-26 Donaldson Company, Inc. Filter medium and structure
US9795906B2 (en) 2004-11-05 2017-10-24 Donaldson Company, Inc. Filter medium and breather filter structure
US8641796B2 (en) 2004-11-05 2014-02-04 Donaldson Company, Inc. Filter medium and breather filter structure
JP2008526495A (en) * 2005-01-07 2008-07-24 メックス・インコーポレイテッド Fiber bed-type collecting strip media for mist separators.
US8177875B2 (en) 2005-02-04 2012-05-15 Donaldson Company, Inc. Aerosol separator; and method
US8460424B2 (en) 2005-02-04 2013-06-11 Donaldson Company, Inc. Aerosol separator; and method
JP2008533348A (en) * 2005-02-04 2008-08-21 ドナルドソン カンパニー,インコーポレイティド Aerosol separator and method
US8404014B2 (en) 2005-02-22 2013-03-26 Donaldson Company, Inc. Aerosol separator
JP2009226322A (en) * 2008-03-24 2009-10-08 Asahi Kasei Fibers Corp Mist filter
JP2011047306A (en) * 2009-08-26 2011-03-10 Toyota Boshoku Corp Oil mist separator
DE102010042883A1 (en) 2009-10-28 2011-05-05 Toyota Boshoku Kabushiki Kaisha, Kariya-shi Oil mist separator for use at cylinder head cover of prime mover of vehicle, has housing comprising ports and passage, and gap formed between section of filter and upper wall of housing in proximity to proximal end of plate
DE102010042883B4 (en) * 2009-10-28 2017-07-13 Toyota Boshoku Kabushiki Kaisha Oil Mist Separators
JP2011094506A (en) * 2009-10-28 2011-05-12 Toyota Boshoku Corp Oil mist separator
DE102012217019B4 (en) 2011-10-28 2021-08-19 Toyota Boshoku Kabushiki Kaisha Filters for mist eliminators
JP2013094699A (en) * 2011-10-28 2013-05-20 Toyota Boshoku Corp Filter medium for mist separator
CN104248894A (en) * 2013-06-28 2014-12-31 量瑞流体科技(上海)有限公司 Compressed gas filter core and preparation technology thereof
US10071332B2 (en) 2014-09-15 2018-09-11 Ge Jenbacher Gmbh & Co. Og Filter insert
JP2016140789A (en) * 2015-01-30 2016-08-08 株式会社神戸製鋼所 Abnormality diagnostic device of oil mist removal device
JP2017078383A (en) * 2015-10-22 2017-04-27 株式会社タツノ Compressor unit
WO2022170234A1 (en) * 2021-02-08 2022-08-11 Porex Technologies Corporation Seamless filtration media and methods of use

Also Published As

Publication number Publication date
JP4048924B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
JP2004160328A (en) Oil mist separator element
US6808553B2 (en) Filter medium for turbine and methods of using and producing the same
EP2321029B1 (en) Multi-component filter media with nanofiber attachment
US6409787B1 (en) Bicomponent substrate for filter element with membrane
EP1313538B1 (en) Integrated nonwoven laminate material
US7837756B2 (en) Filter with ePTFE and method of forming
KR100452179B1 (en) High precision cylinder filter
US20110210061A1 (en) Compressed nanofiber composite media
KR20140053292A (en) Liquid filtration media containing melt-blown fibers
TWI363668B (en) Process for producing a honeycomb body with a metallic fleece, honeycomb body produced by the process and process for filtering an exhaust-gas stream
AU2001285468A1 (en) Integrated nonwoven laminate material
JP5425553B2 (en) Nonwoven fabric for air filter
JP2010253419A (en) Cylindrical filter
JP2007098356A (en) Composite pleat filter
JP6685589B2 (en) Non-woven filter material and air cleaner element
JP2005512781A (en) Multi-layer composite filter element for in-line filtration
JP5823205B2 (en) Cartridge filter
JP4697135B2 (en) Air filter media
JP2002370020A (en) Suction filter medium for turbine, its using method and manufacturing method therefor
US20060156701A1 (en) Filter elements for filters
KR20170107052A (en) Barrier vent assembly
JP4359059B2 (en) Filter material for oil filter for automatic transmission
JP5710426B2 (en) Oil impregnated filter medium
JP2002370009A (en) Suction filter medium for turbine and use method therefor
CN113039003A (en) Depth filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051013

A977 Report on retrieval

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees