JP2004149346A - Explosion-resistant high strength cement-based hardened material and its production method - Google Patents

Explosion-resistant high strength cement-based hardened material and its production method Download PDF

Info

Publication number
JP2004149346A
JP2004149346A JP2002315131A JP2002315131A JP2004149346A JP 2004149346 A JP2004149346 A JP 2004149346A JP 2002315131 A JP2002315131 A JP 2002315131A JP 2002315131 A JP2002315131 A JP 2002315131A JP 2004149346 A JP2004149346 A JP 2004149346A
Authority
JP
Japan
Prior art keywords
explosion
hardened
strength
fiber
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002315131A
Other languages
Japanese (ja)
Other versions
JP4045169B2 (en
Inventor
Daisuke Mori
大介 森
Makoto Katagiri
誠 片桐
Original Assignee
Taiheiyo Cement Corp
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, 太平洋セメント株式会社 filed Critical Taiheiyo Cement Corp
Priority to JP2002315131A priority Critical patent/JP4045169B2/en
Publication of JP2004149346A publication Critical patent/JP2004149346A/en
Application granted granted Critical
Publication of JP4045169B2 publication Critical patent/JP4045169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve the safety to fire of a high strength cement-based hardened material having a compressive strength higher than 105 MPa by improving resistance to explosion (explosion prevention)caused by fire heat. <P>SOLUTION: The explosion-resistant high strength cement-based hardened material is obtained by adding organic fibers (vinylon fiber, polypropylene fiber or the like) having diameters of ≥0.005 and <0.04 mm to a formulation, from which the high strength cement-based hardened material having a compressive strength higher than 105 MP can be obtained, in an amount of 0.3-10 vol %, then kneading, forming, and hardening. A method for producing the cement-based hardened material is also provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、耐爆裂性高強度セメント質硬化体およびその製造方法に関し、特に、火災時において高強度セメント質硬化体に生じる爆裂を改良した耐爆裂性高強度セメント質硬化体およびその製造方法に関する。
【0002】
【従来の技術】
近年、通常のコンクリートに比べ圧縮強度が著しく改良された高強度セメント質硬化体が開発され、様々な構造物への適用が期待されている。
しかしながら、その高強度セメント質硬化体が緻密質であるために、その周辺で火災が発生し高熱状態になり、該硬化体内部の水が水蒸気に変化し体積を膨張させても、外部へ飛散できず蓄積されて膨張圧が高まり、ついには爆裂を起こし該硬化体自体を部分的・全体的に破壊する、という現象が生じる。
このように、高強度セメント質硬化体は、高強度を具備する一方で、火災安全性に対する信頼性が低い、という問題点を有していた。
【0003】
セメント質硬化体に対する火災時の爆裂防止手段として、圧縮強度105N/mmのコンクリート製プレハブ部材について、火災暴露したときに、150〜300℃の温度で軟化、収縮、溶融、または分解して毛細管孔を形成できる材料として、直径が0.003〜0.35mm、長さ5〜35mmの有機繊維(例;ポリプロピレン繊維)をコンクリート1mについて0.05〜1容量%含有させることにより、耐スポーリング性を改良する方法が知られている(例えば、特許文献1)。
【0004】
【特許文献1】
特許第2620910号公報(第3頁)
【0005】
【発明が解決しようとする課題】
上記従来技術は、圧縮強度が比較的低い105N/mm以下のセメント質硬化体を対象として、その原材料に有機繊維を混入することにより、該硬化体の耐スポーリング性を改良するものである。
しかし、この方法では、105N/mmを越える高強度を期待して設計された原材料に該有機繊維を添加し製造された硬化体は、緻密過ぎて火災熱による毛細管孔の形成が不十分なために爆裂する、という問題を有していた。
【0006】
本発明は、上記従来技術の問題点、知見に鑑みなされたものであって、その目的は、圧縮強度が105MPaを越える高強度セメント質硬化体について、
・火災熱による爆裂性を改良(爆裂防止)すること
にあり、もって火災に対する安全性を向上させた耐爆裂性高強度セメント質硬化体およびその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために鋭意研究した結果、特定の直径を有する有機質繊維を特定量添加することにより、爆裂性を改良(爆裂防止)することができることを見いだし、本発明を完成させたものである。
【0008】
即ち、本発明は、圧縮強度が105MPaを越える高強度セメント質硬化体を製造する配合物に、直径が0.005mm以上0.04mm未満の有機質繊維を0.3体積%以上10体積%以下添加したのち、混練し成形し硬化させたものであることを特徴とする耐爆裂性高強度セメント質硬化体である(請求項1)。
【0009】
また、本発明は、圧縮強度が105MPaを越える高強度セメント質硬化体を製造する配合物に、直径が0.005mm以上0.04mm未満の有機質繊維を0.3体積%以上10体積%以下添加したのち、混練し成形し硬化させることを特徴とする耐爆裂性高強度セメント質硬化体の製造方法である(請求項2)。
前記有機質繊維としては、長さが50mm以下である有機質繊維(請求項3)、長さが異なる有機質繊維を組み合わせたもの(請求項4)を使用することができる。そして、長さが異なる有機質繊維を組み合わせたものとしては、長さ5mm未満のもの、および、5〜30mmのもので構成され、かつ、それらの割合(体積比)が0.1〜20:1である有機質繊維(請求項5)が好ましい。
【0010】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明の耐爆裂性高強度セメント質硬化体は、大まかに言えば、圧縮強度が105MPa、特に110MPaを越えるような高強度セメント質硬化体を製造するために予め配合設計されたセメント配合物に、特定の直径を有する有機質繊維を特定量添加して製造された硬化体であって、圧縮強度のある程度の低下を認めつつ、耐爆裂性を改良させた硬化体である。
耐爆裂性高強度セメント質硬化体は、その用途にもよるが圧縮強度が90MPa以上発現することが望ましい。
【0011】
耐爆裂性高強度セメント質硬化体は、有機質繊維が均一に分散されているために、火災熱によって硬化体内部に容易に毛細管孔が形成され、逐次発生する水蒸気を誘導・飛散させ、膨張圧を上昇させず、また、硬化体に不規則な熱応力を生じさせないので、爆裂が発生することはない。
有機質繊維の直径は、硬化体製造時の作業性や爆裂防止効果の点から、0.005mm以上0.04mm未満が好ましい。
【0012】
有機質繊維の割合は、配合物に対して0.3体積%以上10体積%以下の範囲にすることが重要である。0.3体積%未満の場合、有機質繊維の量が過少なために爆裂防止効果が低下するので、逆に、10体積%を越える場合、硬化体の圧縮強度が極端に低下するほか製造時における作業性も低下するので、いずれの場合も好ましくない。
有機質繊維の好ましい割合は、製造時の作業性、コストなどの観点から0.4体積%以上2.0体積%以下、より好ましいのは0.5体積%以上1.5体積%以下である。
【0013】
本発明においては、有機質繊維は、長さが50mm以下である有機質繊維を用いることができる。
該繊維の入手のし易さ、硬化体製造時の作業性(例;成形時における打設の難易)、混練時におけるファイバーボール形成の防止などの観点を考慮すると、より好ましい繊維長は0.5〜30mm、さらに好ましいのは0.5〜5.0mm、特に好ましいのは1.0〜3.0mmである。
【0014】
本発明においては、有機質繊維は、長さが異なる有機質繊維を組み合わせたものを用いることができる。なお、「長さが異なる」とは、該繊維を適当な長さで群分け(グループ分け)することを意味する。
長さが異なる有機質繊維の組み合わせは、該繊維の入手のし易さ、硬化体製造時の作業性(例;成形時における打設の難易)、混練時におけるファイバーボール形成の防止などの観点から、繊維長さが▲1▼5mm未満のもの、および、▲2▼5〜30mmのものを組み合わせることが好ましい。前者(▲1▼)でより好ましい長さは0.5〜4.0mm、さらに好ましいのは1.0〜3.0mmであり、後者(▲2▼)でより好ましい長さは5.5〜20mm、さらに好ましいのは6.0〜10.0mmである。それらの割合(体積比)は、硬化体製造時の作業性(例;成形時における打設の難易)、混練時におけるファイバーボール形成の防止などの観点から、前者(▲1▼):後者(▲2▼)が0.1〜20:1が好ましく、より好ましくは1〜10:1、さらに好ましいのは1.5〜8:1である。
【0015】
有機質繊維は、火災熱(具体的には、300℃以下の温度)を受けて分解、溶融などにより硬化体中の水蒸気が容易に移動できる大きさの毛細管孔を形成させることのできる繊維である。
そのような繊維として、天然繊維、合成繊維いずれも使用でき、好ましくは合成繊維である。合成繊維は、具体的に、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維などが挙げられる。
また、有機質繊維は、2種以上の混合繊維であっても良く、爆裂防止効果の点から、ビニロン繊維および/またはポリプロピレン繊維が好ましい。
【0016】
耐爆裂性高強度セメント質硬化体を製造するために用いる原材料(有機質繊維を除く)および配合、混練・成形・養生の各方法(製造方法)は、従来の高強度セメント質硬化体を製造する場合と同じであり、それらについて限定するものではない。
【0017】
【実施例】
以下、実施例により本発明を説明する。
1.使用材料
1)セメント;▲1▼普通ポルトランドセメント(太平洋セメント(株)製)
▲2▼低熱ポルトランドセメント(太平洋セメント(株)製)
2)シリカフューム(平均粒径0.25μm)
3)骨材 ;▲1▼細骨材;珪砂5号
▲2▼粗骨材;砕石2005
4)金属繊維;鋼繊維(直径0.2mm、長さ15mm)
5)減水剤;ポリカルボン酸系高性能AE減水剤
6)水;水道水
7)石英粉末(平均粒径7μm)
8)高炉スラグ粉末(平均粒径7μm)
9)有機質繊維;▲1▼長さ1.0〜3.0mmのビニロン繊維(直径0.02mm)
▲2▼長さ6.0mmのビニロン繊維(直径0.02mm)
▲3▼長さ15.0mmのビニロン繊維(直径0.02mm)
【0018】
表1に示す配合割合で、上記材料をニ軸練りミキサに投入して、モルタル・コンクリートの各混練物を調製した。
【0019】
【表1】
【0020】
得られた各混練物およびその硬化体について、下記の特性を測定した。
1)モルタル(No.1〜15)
▲1▼フロー値:「JIS R 5201(セメントの物理試験方法)11.フロー試験」に記載される方法において、15回の落下運動を行わないで測定した。
▲2▼圧縮強度:有機質繊維を添加した場合および無添加の場合のそれぞれのモルタル混練物をφ50×100mmの型枠に流し込み、20℃で48時間前置き後90℃で48時間蒸気養生し、得た該硬化体の圧縮強度(3本の平均値)を測定した。
▲3▼爆裂:全てのモルタル混練物をφ50×100mmの型枠に流し込み、20℃で48時間前置き後90℃で48時間蒸気養生して得た硬化体を電気炉(30kW)に挿入し1時間で1000℃まで昇温させ冷却させたのち、爆裂の有無を観察した。
【0021】
1)コンクリート(No.16〜20)
▲1▼スランプ:「JIS R 1101(コンクリートのスランプ試験方法)」に準じて測定した。
▲2▼圧縮強度:有機質繊維を添加したそれぞれのコンクリート混練物をφ10×20cmの型枠に流し込み、20℃で48時間前置き後90℃で48時間蒸気養生し、得た該硬化体の圧縮強度(3本の平均値)を測定した。
▲3▼爆裂:全てのコンクリート混練物をφ10×20cmの型枠に流し込み、20℃で48時間前置き後90℃で48時間蒸気養生して得た硬化体を電気炉(30kW)に挿入し1時間で1000℃まで昇温させ冷却させたのち、爆裂の有無を観察した。
モルタル・コンクリートの測定結果を表2に示す。
【0022】
【表2】
【0023】
表2より、
1)試験例1〜13、および16〜19から、圧縮強度が105MPaを越える高強度セメント質硬化体製造用の配合物に、本発明で規定する量の有機質繊維を添加し製造したモルタル・コンクリート硬化体は、爆裂の形跡が認められず、目的を達成できることが判明した。
一方、
2)試験例14および19から、有機質繊維が無添加の場合および0.1体積%添加した場合のモルタル・コンクリート硬化体は、爆裂が認められた。
また、試験例15から、有機質繊維の添加量が過多の場合は、爆裂は起こらなかったものの、混練物の流動性および圧縮強度とが急激に低下し、好ましい配合でないことが確認された。
【0024】
【発明の効果】
以上説明したように、本発明の耐爆裂性高強度セメント質硬化体は、高強度セメント質硬化体製造用の配合物に、直径が0.005mm以上0.04mm未満の有機質繊維を0.3体積%以上10体積%(外割)以下添加してなる硬化体およびその製造方法を特徴とし、これにより、
高強度セメント質硬化体の耐爆裂性の向上(爆裂防止)という効果を奏し、もって、火災に対する安全性を向上することができる。
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to an explosion-resistant high-strength cementitious hardened body and a method for producing the same, and more particularly to an explosion-resistant high-strength cementitious hardened body with improved explosion that occurs in a high-strength cementitious hardened body and a method for producing the same. .
[0002]
[Prior art]
In recent years, a high-strength cementitious hardened body with significantly improved compressive strength compared to ordinary concrete has been developed and is expected to be applied to various structures.
However, because the high-strength hardened cementitious body is dense, a fire occurs in the vicinity and it becomes a high heat state. Even if the water inside the hardened body changes to water vapor and expands its volume, it is scattered outside. The expansion pressure is increased due to the failure to be accumulated, and finally, a phenomenon occurs in which explosion occurs and the cured body itself is partially or totally destroyed.
As described above, the high-strength cementitious cured body has a problem that it has high strength but has low reliability with respect to fire safety.
[0003]
As explosion prevention means in case of a fire for cementitious hardened body, the concrete prefabricated members of compressive strength 105N / mm 2, when the fire exposure, softening at a temperature of 150 to 300 ° C., shrinkage, melting or decomposition to capillary As a material capable of forming pores, by containing 0.05 to 1% by volume of organic fiber (eg, polypropylene fiber) having a diameter of 0.003 to 0.35 mm and a length of 5 to 35 mm with respect to 1 m 3 of concrete, A method for improving the polling property is known (for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent No. 2620910 (page 3)
[0005]
[Problems to be solved by the invention]
The above-mentioned prior art is intended to improve the spalling resistance of the hardened body by mixing organic fibers into the raw material for a cementitious hardened body having a relatively low compressive strength of 105 N / mm 2 or less. .
However, in this method, the cured product produced by adding the organic fiber to the raw material designed with a high strength exceeding 105 N / mm 2 is too dense to form capillary holes due to fire heat. It had the problem of exploding.
[0006]
The present invention has been made in view of the above problems and knowledge of the prior art, and its purpose is to provide a high-strength cementitious hardened body having a compressive strength exceeding 105 MPa.
The purpose is to provide an explosion-resistant high-strength cementitious hardened body with improved safety against fire and to improve the explosive property due to fire heat (explosion prevention), and a method for producing the same.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the explosive property can be improved (explosion prevention) by adding a specific amount of organic fiber having a specific diameter. Was completed.
[0008]
That is, the present invention adds 0.3% by volume or more and 10% by volume or less of organic fibers having a diameter of 0.005 mm or more and less than 0.04 mm to a composition for producing a high-strength hardened cementitious body having a compressive strength exceeding 105 MPa. After that, it is an explosion-resistant high-strength cementitious hardened body which is kneaded, molded and cured (Claim 1).
[0009]
Further, the present invention adds 0.3% by volume or more and 10% by volume or less of an organic fiber having a diameter of 0.005 mm or more and less than 0.04 mm to a composition for producing a high-strength hardened cementitious body having a compressive strength exceeding 105 MPa. Then, a method for producing an explosion-resistant high-strength cementitious hardened body characterized by kneading, molding and curing (claim 2).
As the organic fiber, an organic fiber having a length of 50 mm or less (Claim 3) and a combination of organic fibers having different lengths (Claim 4) can be used. And as what combined the organic fiber from which length differs, it is comprised by the thing of less than 5 mm in length, and the thing of 5-30 mm, and those ratios (volume ratio) are 0.1-20: 1. Organic fiber (Claim 5) is preferred.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The explosion-resistant high-strength cementitious hardened body of the present invention can be roughly classified into a cement composition that has been blended and designed in advance to produce a high-strength cementitious hardened body having a compressive strength exceeding 105 MPa, particularly 110 MPa. A cured product produced by adding a specific amount of an organic fiber having a specific diameter, which has improved explosion resistance while observing a certain decrease in compressive strength.
The explosion-resistant high-strength cementitious hardened body preferably has a compressive strength of 90 MPa or more, depending on its use.
[0011]
Explosion-resistant high-strength cementitious hardened bodies are uniformly dispersed with organic fibers, so capillary holes are easily formed inside the hardened bodies due to fire heat, and the generated water vapor is induced and scattered to expand the expansion pressure. Does not increase, and does not cause irregular thermal stress on the cured body, so that no explosion occurs.
The diameter of the organic fiber is preferably 0.005 mm or more and less than 0.04 mm from the viewpoint of workability at the time of producing a cured body and an explosion preventing effect.
[0012]
It is important that the ratio of the organic fiber is in the range of 0.3 volume% or more and 10 volume% or less with respect to the blend. If it is less than 0.3% by volume, the amount of organic fibers is too small to reduce the explosion prevention effect. Conversely, if it exceeds 10% by volume, the compressive strength of the cured product will be extremely reduced and during production. Since workability also decreases, it is not preferable in either case.
A desirable ratio of the organic fibers is 0.4% by volume or more and 2.0% by volume or less, and more preferably 0.5% by volume or more and 1.5% by volume or less from the viewpoints of workability during manufacturing, cost, and the like.
[0013]
In the present invention, an organic fiber having a length of 50 mm or less can be used as the organic fiber.
In view of easy availability of the fibers, workability during production of the cured body (eg, difficulty in placing during molding), prevention of fiber ball formation during kneading, and the like, a more preferable fiber length is 0. 5 to 30 mm, more preferably 0.5 to 5.0 mm, and particularly preferably 1.0 to 3.0 mm.
[0014]
In the present invention, organic fibers having a combination of organic fibers having different lengths can be used. “Different in length” means that the fibers are grouped (grouped) with an appropriate length.
The combination of organic fibers having different lengths is from the viewpoints of easy availability of the fibers, workability at the time of producing a cured body (eg, difficulty in placing at the time of molding), and prevention of fiber ball formation at the time of kneading. It is preferable to combine those having a fiber length of less than (1) 5 mm and (2) 5 to 30 mm. In the former (1), a more preferable length is 0.5 to 4.0 mm, more preferably 1.0 to 3.0 mm, and a more preferable length in the latter (2) is 5.5 to 5.5 mm. 20 mm, more preferably 6.0 to 10.0 mm. The ratio (volume ratio) is determined by the former (1): the latter (from the viewpoint of workability at the time of producing a cured body (eg, difficulty in placing at the time of molding) and prevention of fiber ball formation at the time of kneading). (2)) is preferably from 0.1 to 20: 1, more preferably from 1 to 10: 1, and even more preferably from 1.5 to 8: 1.
[0015]
The organic fiber is a fiber that can form a capillary hole having a size that allows water vapor in the cured body to easily move by decomposition, melting, etc. upon receiving fire heat (specifically, a temperature of 300 ° C. or lower). .
As such fiber, both natural fiber and synthetic fiber can be used, and synthetic fiber is preferable. Specific examples of the synthetic fiber include vinylon fiber, polypropylene fiber, polyethylene fiber, and aramid fiber.
Further, the organic fiber may be a mixed fiber of two or more types, and vinylon fiber and / or polypropylene fiber are preferable from the viewpoint of the explosion preventing effect.
[0016]
Raw materials (excluding organic fibers) used for manufacturing explosion-resistant high-strength cementitious hardened materials and blending, kneading, molding and curing methods (manufacturing methods) produce conventional high-strength cementitious hardened materials. It is the same as the case, and it is not limited about them.
[0017]
【Example】
Hereinafter, the present invention will be described by way of examples.
1. Materials used 1) Cement; (1) Ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
(2) Low heat Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
2) Silica fume (average particle size 0.25 μm)
3) Aggregate; (1) Fine aggregate; Silica sand No. 5 (2) Coarse aggregate; Crushed stone 2005
4) Metal fiber: Steel fiber (diameter 0.2mm, length 15mm)
5) Water reducing agent; polycarboxylic acid-based high-performance AE water reducing agent 6) Water; tap water 7) Quartz powder (average particle size 7 μm)
8) Blast furnace slag powder (average particle size 7μm)
9) Organic fiber; (1) Vinylon fiber with a length of 1.0 to 3.0 mm (diameter 0.02 mm)
(2) Vinylon fiber with a length of 6.0mm (diameter 0.02mm)
(3) Vinylon fiber with a length of 15.0mm (0.02mm in diameter)
[0018]
The above materials were put into a biaxial mixer at the blending ratio shown in Table 1 to prepare mortar / concrete kneaded materials.
[0019]
[Table 1]
[0020]
The following characteristics were measured for each kneaded product and its cured product.
1) Mortar (No. 1-15)
(1) Flow value: In the method described in “JIS R 5201 (Cement physical test method) 11. Flow test”, the flow value was measured without performing 15 drop motions.
(2) Compressive strength: Each mortar kneaded product with and without organic fibers poured into a mold of φ50 × 100 mm, pre-positioned at 20 ° C. for 48 hours and then steam-cured at 90 ° C. for 48 hours. Further, the compression strength (average value of three) of the cured body was measured.
(3) Explosion: All the mortar kneaded material was poured into a mold of φ50 × 100 mm, placed at 20 ° C. for 48 hours, then steam-cured at 90 ° C. for 48 hours, and inserted into an electric furnace (30 kW). After raising the temperature to 1000 ° C. over time and cooling, the presence or absence of explosion was observed.
[0021]
1) Concrete (No. 16-20)
(1) Slump: Measured according to “JIS R 1101 (Concrete slump test method)”.
(2) Compressive strength: Each concrete kneaded material added with organic fibers is poured into a mold of φ10 × 20 cm, placed at 20 ° C. for 48 hours and then steam-cured at 90 ° C. for 48 hours. (Average value of three) was measured.
(3) Explosion: All the concrete kneaded material was poured into a mold of φ10 × 20 cm, placed at 20 ° C. for 48 hours and then steam-cured at 90 ° C. for 48 hours, and inserted into an electric furnace (30 kW). After raising the temperature to 1000 ° C. over time and cooling, the presence or absence of explosion was observed.
Table 2 shows the measurement results of mortar and concrete.
[0022]
[Table 2]
[0023]
From Table 2,
1) Mortar / concrete produced from Test Examples 1 to 13 and 16 to 19 by adding an organic fiber in an amount specified in the present invention to a composition for producing a high-strength hardened cementitious body having a compressive strength exceeding 105 MPa. The cured body was found to be able to achieve its purpose with no evidence of explosion.
on the other hand,
2) From Test Examples 14 and 19, explosions were observed in the cured mortar and concrete when the organic fiber was not added and when 0.1% by volume was added.
In addition, from Test Example 15, when the amount of the organic fiber added was excessive, although explosion did not occur, it was confirmed that the fluidity and compressive strength of the kneaded material were drastically decreased, and the blending was not preferred.
[0024]
【The invention's effect】
As described above, the explosion-resistant high-strength cementitious hardened body of the present invention has 0.3% organic fiber having a diameter of 0.005 mm or more and less than 0.04 mm in a composition for producing a high-strength cementitious hardened body. It is characterized by a cured product obtained by adding 10% by volume or more (outer percent) or less and a method for producing the same.
The effect of improving the explosion resistance (explosion prevention) of the high-strength cementitious hardened body can be obtained, thereby improving the safety against fire.

Claims (5)

  1. 圧縮強度が105MPaを越える高強度セメント質硬化体を製造する配合物に、直径が0.005mm以上0.04mm未満の有機質繊維を0.3体積%以上10体積%以下添加したのち、混練し成形し硬化させたものであることを特徴とする耐爆裂性高強度セメント質硬化体。After adding 0.3% by volume or more and 10% by volume or less of organic fibers having a diameter of 0.005 mm or more and less than 0.04 mm to a compound for producing a high-strength cementitious cured body having a compressive strength exceeding 105 MPa, kneading and molding Explosion-resistant high-strength cementitious hardened body, characterized by being hardened and hardened.
  2. 圧縮強度が105MPaを越える高強度セメント質硬化体を製造する配合物に、直径が0.005mm以上0.04mm未満の有機質繊維を0.3体積%以上10体積%以下添加したのち、混練し成形し硬化させることを特徴とする耐爆裂性高強度セメント質硬化体の製造方法。After adding 0.3% by volume or more and 10% by volume or less of organic fibers having a diameter of 0.005 mm or more and less than 0.04 mm to a compound for producing a high-strength cementitious cured body having a compressive strength exceeding 105 MPa, kneading and molding A method for producing an explosion-resistant high-strength cementitious hardened body, characterized by being cured.
  3. 前記有機質繊維の長さが50mm以下である請求項2記載の耐爆裂性高強度セメント質硬化体の製造方法。The method for producing an explosion-resistant high-strength cementitious hardened body according to claim 2, wherein the organic fiber has a length of 50 mm or less.
  4. 前記有機質繊維が、長さが異なる有機質繊維を組み合わせたものである請求項2記載の耐爆裂性高強度セメント質硬化体の製造方法。The method for producing an explosion-resistant high-strength cementitious hardened body according to claim 2, wherein the organic fibers are a combination of organic fibers having different lengths.
  5. 前記有機質繊維が、
    ・長さ5mm未満のもの、および、5〜30mmのもので構成され、かつ、
    ・それらの割合(体積比)が0.1〜20:1である
    請求項4記載の耐爆裂性高強度セメント質硬化体の製造方法。
    The organic fiber is
    -Composed of less than 5 mm in length and 5-30 mm; and
    -The ratio (volume ratio) of them is 0.1-20: 1, The manufacturing method of the explosion-proof high-strength cementitious hardening body of Claim 4.
JP2002315131A 2002-10-30 2002-10-30 Explosion-resistant high-strength cementitious cured body and method for producing the same Active JP4045169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002315131A JP4045169B2 (en) 2002-10-30 2002-10-30 Explosion-resistant high-strength cementitious cured body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002315131A JP4045169B2 (en) 2002-10-30 2002-10-30 Explosion-resistant high-strength cementitious cured body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004149346A true JP2004149346A (en) 2004-05-27
JP4045169B2 JP4045169B2 (en) 2008-02-13

Family

ID=32459220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002315131A Active JP4045169B2 (en) 2002-10-30 2002-10-30 Explosion-resistant high-strength cementitious cured body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4045169B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194187A (en) * 2005-04-08 2005-07-21 Okumura Corp High strength and extra-high strength concrete and high strength and extra-high strength concrete structure
KR101008322B1 (en) 2008-12-26 2011-01-13 주식회사 삼표 Spalling prevention material composed of fiber and powder, and high strength refractory concrete using the same
JP2014091668A (en) * 2012-11-06 2014-05-19 Ohbayashi Corp Cement composition
JP2017193458A (en) * 2016-04-19 2017-10-26 株式会社大林組 Method for producing hydraulic composition and hydraulic composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194187A (en) * 2005-04-08 2005-07-21 Okumura Corp High strength and extra-high strength concrete and high strength and extra-high strength concrete structure
KR101008322B1 (en) 2008-12-26 2011-01-13 주식회사 삼표 Spalling prevention material composed of fiber and powder, and high strength refractory concrete using the same
JP2014091668A (en) * 2012-11-06 2014-05-19 Ohbayashi Corp Cement composition
JP2017193458A (en) * 2016-04-19 2017-10-26 株式会社大林組 Method for producing hydraulic composition and hydraulic composition

Also Published As

Publication number Publication date
JP4045169B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
JP2005067945A (en) Super-high strength high toughness mortar
JP2004284873A (en) Hydraulic complex material
JP2002348167A (en) Hydraulic composition
JP2005289657A (en) Method for producing high-strength centrifugally molded article and high-strength centrifugally molded article produced thereby
JP4045169B2 (en) Explosion-resistant high-strength cementitious cured body and method for producing the same
JP2006016218A (en) Refractory shotcrete and high strength lining concrete
JP2009149475A (en) Method for producing cement premix composition
JP2002037653A (en) Cement slurry
JP2010228953A (en) Cement composition
JP2017178739A (en) Method for manufacturing rapid hardening concrete
JP4878086B2 (en) Method for producing explosion-proof cement mortar
JP5885973B2 (en) Low shrinkage explosion-resistant hydraulic hardened body
JP5627121B2 (en) Cement mortar permanent formwork
JP2003146721A (en) Explosion resistant high strength cementitious hardened body and-manufacturing method therefor
JP4045175B2 (en) Method for producing explosion-resistant high-strength cementitious hardened body
JP2003089561A (en) Method for producing bursting resistant high strength cement hardened body
JP2005263567A (en) Method for producing high-strength centrifugally molded article and high-strength centrifugally molded article produced thereby
JP2003192416A (en) Bursting resistant high strength cement hardened body
JP2003073159A (en) Explosive fracture resistant high strength hardened cement and its manufacturing method
JP2001212817A (en) Method for producing fiber-reinforced concrete
JP4516531B2 (en) Explosion resistant hardened cement and method for producing the same
JP6803775B2 (en) Hydraulic composition and heat resistant structure
JP6961872B2 (en) High-strength cement hardened fiber Explosion prevention fiber and high-strength cement hardened fiber containing it
JP2001226162A (en) Joint filler material for post-tension-prestressed concrete plate
JP2019210171A (en) Hydraulic material and hydraulic hardened body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Ref document number: 4045169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250