JP2004146480A - Magnetoresistance effect element for laminating heuslar magnetic layer and non-magnetic intermediate layer in body-centered cubic structure and magnetic head - Google Patents

Magnetoresistance effect element for laminating heuslar magnetic layer and non-magnetic intermediate layer in body-centered cubic structure and magnetic head Download PDF

Info

Publication number
JP2004146480A
JP2004146480A JP2002307797A JP2002307797A JP2004146480A JP 2004146480 A JP2004146480 A JP 2004146480A JP 2002307797 A JP2002307797 A JP 2002307797A JP 2002307797 A JP2002307797 A JP 2002307797A JP 2004146480 A JP2004146480 A JP 2004146480A
Authority
JP
Japan
Prior art keywords
layer
magnetic
ferromagnetic
intermediate layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002307797A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hoshiya
星屋 裕之
Katsumi Hoshino
星野 勝美
Susumu Soeya
添谷 進
Hiromasa Takahashi
高橋 宏昌
Jun Hayakawa
早川 純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002307797A priority Critical patent/JP2004146480A/en
Publication of JP2004146480A publication Critical patent/JP2004146480A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording apparatus that corresponds to high-density recording and has long-term reliability and a magnetic head using a magnetroresistance effect element. <P>SOLUTION: The magnetroresistance effect element using a ferromagnetic Heusler alloy film can be obtained with satisfactory characteristics by arranging a body-centered cubic structure, such as Cr as a non-magnetic intermediate layer or the structure of a non-magnetic Heusler alloy, thus solving the problem wherein sufficient reproduction output cannot be obtained even if the Heusler alloy is used in a magnetroresistance effect lamination film comprising the intermediate layer, such as conventional Cu. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は磁気記録再生装置、特に高記録密度の磁気記録再生装置に好適な磁気ヘッドおよびそれを構成するのため磁気抵抗効果素子に関する。
【0002】
【従来の技術】
特開平9−16920号公報には、積層逆平行ピン止め層と反強磁性交換バイアス層を用いたスピンバルブ磁気抵抗センサの記載がある。特開平7−169026号公報には反強磁性的結合層を用いたスピンバルブセンサの記載がある。
【0003】
特開2000−156530号公報には磁化が実質的に固定された第2の磁性層に酸化物などの第3の層を含んだ磁気抵抗効果素子の記述がある。
【0004】
特開2000−340859号公報には磁性層にスピン分極率の高い酸化物を用い、膜面に垂直に電流を流す磁気抵抗効果型ヘッドの記載がある。
【0005】
特開2000−150985号公報には高分極率膜を用いたトンネル磁気抵抗効果素子の記載がある。特開平11−135857号公報にはトンネルバリア層側に高分極率膜を用いた磁気抵抗効果素子の記載がある。
【0006】
特開平11−289115号公報には非磁性層を介して強磁性体と半導体あるいはハーフメタルを接続したスピン偏極素子の記載がある。アプライド フィジックス レターズ誌第73巻1008〜1010頁(Appl.Phys.Lett.73,1008(1998))にはハーフメタルとしてLaSrMnOを用いた強磁性トンネル結合に関する記載がある。
【0007】
アプライド フィジックス レターズ誌第74巻4017〜4019頁(Appl.Phys.Lett.74,4017(1999))には鉄酸化物とCoを用いた強磁性トンネル磁気抵抗効果の記載がある。
【0008】
特開平11−97766号公報にはハーフメタル酸化物層を用いた強磁性トンネル接合素子の記載がある。特表平8−504303号公報にはFeなどの半金属材料を用いた磁気抵抗デバイスの記載がある。
【0009】
特開平6−267742号公報にはハーフメタルから成る磁性層を用いた磁気抵抗効果素子の記載がある。特開平7−73416号公報には軟質能動層にイクスチェンジ層を隣接したMR型読み出しトランスデューサーの記載がある。
【0010】
ジャーナル オブ マグネティズム アンド マグネティック マテリアルス誌、93巻、(1991)、58から66頁(J.Magn.Mag.Matt,93(1991)58−66)にはFe/Cr、Co/Crなどの多層膜もしくはサンドイッチ膜で反平行結合が生じることが記載されている。
【0011】
【発明が解決しようとする課題】
従来の技術では、特にその再生部において、外部磁界に対して十分な感度と出力を有し、かつ対称性のよい特性をする磁気抵抗効果素子を実現することができず、十分に記録密度の高い磁気記録装置を実現することが困難であった。
【0012】
近年、上記再生部を構成する材料として、強磁性金属層を非磁性金属層を介して積層した多層膜からなる磁気抵抗効果膜を用いた、いわゆる巨大磁気抵抗効果素子が実用化されている。この場合、非磁性層で隔てられた強磁性層間の磁化と磁化のなす角度によって電気抵抗が大きく変化する磁気抵抗効果が利用される。
【0013】
上記巨大磁気抵抗効果素子として磁気ヘッドなどに用いる場合、スピンバルブとよばれる構造が提唱されている。スピンバルブ構造は、例えば反強磁性膜/強磁性金属層/非磁性金属層/軟磁性金属層からなる積層構造を有し、上記の反強磁性膜/強磁性金属層の界面に発生する交換結合磁界によって反強磁性膜と密着した強磁性金属層の磁化を実質的に固定し、他方の軟磁性金属層が外部磁界によって磁化回転することで生ずる抵抗変化を元に出力を得ることができる。
【0014】
ここで、以下では上記固定の効果を固定バイアス、この効果を生じる反強磁性膜を固定バイアス層とよぶことにする。また、上記磁化が実質的に固定される強磁性金属層を固定層、もしくは強磁性固定層とよぶことにする。同様に外部磁場によって磁化回転する軟磁性金属層を自由層もしくは軟磁性自由層とよぶことにする。固定層は、感知すべき磁界に対して実質的に磁化が固定されていることがその所要とする機能であり、反強磁性膜の代わりに硬磁性膜、すなわち比較的大きな磁界が加わらない限り磁化が変化しない材料で代替することもできる。
【0015】
上記のようなスピンバルブ型磁気抵抗効果積層膜を用いた磁気ヘッドでは、強磁性層//非磁性層/軟磁性層の部分がその磁気抵抗効果の大きさを決定する部分である。軟磁性金属層も強磁性金属層の一種であるから、強磁性金属層/非磁性金属層の界面が上記効果の本質をになうことになる。公知の技術で強磁性金属層に酸化物を挿入したり、強磁性金属層の一部を酸化したりすることで抵抗変化率を向上できることが知られている。
【0016】
また、一方で高分極率材料の適用によって磁気抵抗効果を増大せしめることも提唱されている。しかし、実際に強磁性金属層などの金属薄膜層と高分極率を有する酸化物などの化合物層とを積層して磁気抵抗効果素子を実現することはきわめて困難であった。これは例えば、高分極率材料が酸化物などの化合物からなるために、金属層と積層すると、金属層と反応し、あるいは化合物成分が金属層に拡散して非化学量論組成となって、特性を悪化させるためである。
【0017】
さらに、高分極率材料として金属であって酸素等の反応はないホイスラー合金も提唱されているが、L2構造とよばれる複雑な規則構造でないと強磁性などの特性を有さないため、通常の成膜工程で作製するとアモルファスや微結晶、もしくは異なる結晶構造が形成される問題がある。
【0018】
例えば日本応用磁気学会第25回学術講演集および日本応用磁気学会誌にはCoMnGeホイスラー合金薄膜の形成が述べられ、熱処理温度400℃でホイスラー合金の規則化が認められている。しかし、良好な結晶性のホイスラー薄膜を得るのに熱処理温度を400℃程度に上げる必要があるとすると、そのような高い温度での熱処理は、他の金属層との極薄い積層構成の形成を困難にする。また、極薄い金属層との平坦な界面形成を妨げるだけでなく、高分極率層と他の金属層、例えばCoFe層との反応を促進し、やはり良好な高分極率層の形成を妨げてしまうことから、高分極率層と金属層を積層した磁気抵抗効果膜の積層は困難であった。
【0019】
また、非磁性中間層として従来よく用いられたのはCuである。Cuは電気抵抗が低く、導電性に優れるとともに、CoやNiFeなどと同じ面心立方構造の結晶格子を有するため、巨大磁気抵抗効果積層膜の非磁性中間層としてよく用いられている。しかしながら、強磁性層がホイスラー合金などの面心立方構造でない場合にはCuよりも他の結晶構造の非磁性中間層の方が大きな磁気抵抗効果が得られる可能性がある。実際、強磁性層が体心立方構造を持つFeである場合、巨大磁気抵抗効果が比較的大きい組合せとして、同じ体心立方構造であるCrを用いたFe/Cr多層膜での巨大磁気抵抗効果が報告されている。
【0020】
そこで本発明の目的は高密度記録に対応した長期信頼性の高い磁気記録装置もしくは磁気抵抗効果素子を用いた磁気ヘッドを提供することにある。より具体的には、高分極率を有するホイスラー合金薄膜などの強磁性金属層を非磁性中間層との界面に有する抵抗変化率の高いスピンバルブ型磁気抵抗効果素子を提供し、これを磁気ヘッドに用いた磁気記録再生装置を提供することにある。
【0021】
【課題を解決するための手段】
本発明では高記録密度に対応した巨大磁気抵抗効果を用いた磁気抵抗効果素子を磁気ヘッドに搭載した磁気記録装置を提供するために、上記磁気抵抗効果素子として用いるスピンバルブ型の巨大磁気抵抗効果積層膜、すなわち軟磁性自由層/非磁性中間層/強磁性固定層/反強磁性膜の積層構造を有する磁気抵抗効果素子を用いる。ここで反強磁性膜は強磁性固定層の磁化を実質的に固定するための交換結合バイアスを印加するものであって、直接強磁性固定層に密着して形成するか、あるいは間接的に磁気的結合を経て効果をもたらしてもよい。あるいは反強磁性膜の代わりに他のバイアス印加手段、例えば硬磁性膜の残留磁化を用いたり、電流バイアスを用いてもよい。
【0022】
本発明では、課題を解決して高記録密度に好適な磁気抵抗効果素子あるいはそれを用いた磁気ヘッドを搭載した磁気記録再生装置を得るために、上記強磁性固定層の少なくとも非磁性中間層との界面に高分極率層を配置する。または軟磁性自由層の少なくとも非磁性中間層との界面に高分極率層を配置する。強磁性固定層と軟磁性自由層の双方の非磁性中間層側の界面に高分極率層を配置してもよい。軟磁気特性や磁歪の適正化の観点から、強磁性固定層に用いるのが容易である。第1の強磁性層/非磁性挿入層/第2の強磁性層の積層体として形成した構成を採用する。
【0023】
高分極率層は、非磁性中間層に接する界面に配置されるが、ハーフメタルなどの強磁性化合物もしくは強磁性化合物と金属の混合体であって、特にホイスラー合金層で形成する。ホイスラー合金層はスパッタリングなどの手段で室温もしくは200℃以下の基板温度で他の金属層と連続積層して形成し、その後熱処理を行ってホイスラー合金の規則構造相を析出させて形成する。
【0024】
ここで、ホイスラー合金層とは、XZY(X=Co,Cu,Pt、Z=Mn,Cr,Fe、Y=Ge,Al,Si)型のホイスラー合金、すなわち、L2構造もしくはB2構造をとる合金の層である。
【0025】
高分極率層は強磁性を示し、強磁性固定層または軟磁性自由層を高分極率層単体で構成してもよいが、高分極率層と金属強磁性体などと積層して、例えば強磁性固定層として高分極率層/CoFe層/Ru層/CoFe層/反強磁性膜のような構成とすることで、高い抵抗変化率と高い交換結合磁界および適切な波形対称性を実現することができる。また、軟磁性自由層としては高分極率層/CoFe層/NiFe層のような積層構造とすることで、高い抵抗変化率と軟磁気特性を実現することができる。
【0026】
ホイスラー合金層との結晶の連続性を保つために、非磁性中間層としてはCrなどの体心立方構造を有する材料が望ましい。あるいは同様の理由から、L2型もしくはXMnM(X=Cu,Pt、M=Ge,Al,Si)型の結晶構造を有する非強磁性の合金とする。
【0027】
積層構成からなる磁気抵抗効果素子には、電流を印加して出力を感知する少なくとも一対の電極を配置する。上記電流は、積層構成の層構造に平行に電流を流して界面散乱による巨大磁気抵抗効果を感知する。あるいは上記電流は積層構成の層構造に垂直に電流を流して、高分極率層の分極した電子が界面を透過して磁気抵抗を生じるようにして磁気抵抗効果を感知する。
【0028】
磁気抵抗効果素子は軟磁性自由層をノイズの発生を防止するため、単磁区化構成を有するとよい。例えば磁気抵抗効果素子の膜面方向でかつ感知すべき磁界の方向に垂直な両端部に残留磁化を有する硬磁性膜などを配置する。あるいは磁気抵抗効果素子の膜厚方向に隣接して配置した残留磁化を有する硬磁性膜などを配置して、磁気抵抗効果素子の積層構成と硬磁性膜を同一形状の端部を有するようにして端部の静磁気結合により単磁区化を実現してもよい。
【0029】
本発明ではこのような材料、構成、を用いた磁気抵抗効果型磁気抵抗効果素子と、これを再生部とした磁気ヘッドならびにそれを用いた磁気記録再生装置において、高記録密度、すなわち記録媒体上に記録される記録波長が短くかつ記録トラックの幅が狭い記録を実現して、十分な再生出力を得、記録を良好に保つことができる。
【0030】
【発明の実施の形態】
本発明の巨大磁気抵抗積層膜を構成する薄膜は、高周波マグネトロンスパッタリング装置により、アルゴン1から6ミリトールの雰囲気中にて、厚さ1ミリのセラミックス基板に以下の材料を順次積層して作製した。スパッタリングターゲットとしてタンタル、ニッケル−20at%鉄合金、Cr、コバルト、MnPt、ルテニウム、CoMnGeを用いた。Coターゲット上には、FeおよびNiの1センチ角のチップを適宜配置して組成を調整した。同様にCoMnGe上にはGeなどの1センチ角のチップを適宜配置して組成を調整した。
【0031】
積層膜は、各ターゲットを配置したカソードに各々高周波電力を印加して装置内にプラズマを発生させておき、各カソードごとに配置されたシャッターを一つずつ開閉して順次各層を形成した。膜形成時には永久磁石を用いて基板に平行におよそ80エルステッドの磁界を印加して一軸異方性をもたせた。形成した膜を、真空中、磁場中で270℃、3時間の熱処理を行って反強磁性膜を相変態させるとともに、高分極率規則相を析出させ、室温での磁気抵抗を測定して評価した。基体上の素子の形成はフォトレジスト工程によってパターニングした。その後、基体はスライダー加工し、磁気記録装置に搭載した。
【0032】
以下に本発明の具体的な実施例を、図を追って説明する。
【0033】
図1は本発明の磁気抵抗効果素子に用いる磁気抵抗効果積層膜の構成例である。図中の表記、例えば、「Ta3」は、積層構成の例としての構成材料と、その厚さをナノメートルで示したものである。磁気抵抗効果積層膜101は、図1では以下の構成例のような構造を有する。基体50上に下地膜14、反強磁性膜11、強磁性固定層15、非磁性中間層12、軟磁性自由層13、保護膜37を連続して形成してなる。
【0034】
上記積層構成は、巨大磁気抵抗効果もしくはトンネル磁気抵抗効果として、強磁性固定層15の磁化の方向と、軟磁性自由層13の磁化の方向の互いのなす角度に応じて電気抵抗が変化する。下地膜14は、ここではTa/NiFeの構成を有するが、他の構成であってもよい。また、下地膜14は省略しても本発明の主旨に反するものではない。下地膜14は、磁気抵抗効果積層膜101の、下地膜14の上の部分の結晶性を制御し、結晶配向性を高める効果がある。
【0035】
本発明の図1の構成例でもっとも重要な主旨は、強磁性固定層15と非磁性中間層12の構成にある。図1では強磁性固定層15をホイスラー合金層16、第1の強磁性層151、反平行結合層154および第2の強磁性層152の積層体として示した。上記積層体は磁気的に結合するよう形成してなり、反平行結合層154を介して反平行の方向をむいた磁化状態をとって磁気的に一体として扱える。
【0036】
また、非磁性中間層12を体心立方構造を有するCrで構成した。これにより非磁性中間層12とホイスラー合金層16の結晶構造が、体心立方構造および体心立方構造を基本構造としたL2構造であって、結晶構造的に類似となる材料で構成することで電子の非弾性散乱を抑制できるからである。また、本図の例と異なって反平行結合層を用いずに強磁性固定層15をホイスラー合金層16だけや、ホイスラー合金16と第1の脅威磁性膜151の積層体から構成しても何ら本発明の趣旨に反するものではない。ホイスラー合金層16はL2構造またはB2構造をもつ強磁性ホイスラー合金、例えばCoMnGe、CoMnAl、CoMnSi、CoFe0.6Cr0.4Alなどから構成するとよい。
【0037】
さらにホイスラー合金層16はその厚さを10ナノメートル以下、特に1ナノメートルから3ナノメートルとすると磁気特性に優れ、非磁性中間層12を介して軟磁性自由層13と強磁性固定層15の間の層間結合を低減し、高い抵抗変化率を示す。ホイスラー合金のかわりに、同様にハーフメタルであって、高いスピン分極率を有するマグネタイトFeO4やCrOを用いても有効である。
【0038】
軟磁性自由層13は、第1の軟磁性膜131と非磁性中間層12に接する側の第2の軟磁性膜132の積層体とするとよい。しかしながらこの他の構成、例えば単層の軟磁性膜で構成しても本発明の主旨に反するものではない。
【0039】
図2は本発明の磁気抵抗効果素子に用いる磁気抵抗効果積層膜の別の構成例である。図中の表記は図1に準ずる。磁気抵抗効果積層膜101は、基体50上に下地膜14、反強磁性膜11、強磁性固定層15、非磁性中間層12、軟磁性自由層13、保護膜37を連続して形成してなる。
【0040】
上記積層構成は、巨大磁気抵抗効果として、強磁性固定層15の磁化の方向と軟磁性自由層13の磁化の方向の互いのなす角度に応じて電気抵抗が変化する。下地膜14、強磁性固定層15等の構成と効果については図1と同様であるので説明を省略する。また、下地膜14、強磁性固定層15等の構成が本図と若干異なっていても本発明の主旨に反するものではない。
【0041】
本発明のこの構成例でもっとも重要な主旨は、強磁性固定層15および軟磁性自由層13が非磁性中間層12と接する部分の構成にある。体心立方構造のCrなどで構成した非磁性中間層12はホイスラー合金層165およびホイスラー合金層163と接して積層し、結晶的な連続性を保って良好な特性を得ることができる。
【0042】
ここで軟磁性自由層13は、第1の軟磁性膜131、第2の軟磁性膜132、反平行結合層134、第3の軟磁性膜133、非磁性中間層12に接するホイスラー合金層163で構成してなる。反平行結合層134を介して反強磁性的に磁化が配列する機能によって、軟磁性自由層13の実質的な磁化の量を低減したような効果を磁気ヘッドとして実現することができる。しかしながら、軟磁性自由層13を反平行結合層134を含まない形としても本発明の趣旨に反するものではない。
【0043】
図3は本発明の磁気抵抗効果素子に用いる磁気抵抗効果積層膜のさらに別の構成例である。図中の表記は図1、2に準ずる。
【0044】
磁気抵抗効果積層膜101は、基体50上に下地膜14、反強磁性膜11、強磁性固定層15、非磁性ホイスラー合金中間層121、軟磁性自由層13、保護膜37を連続して形成してなる。上記積層構成は、巨大磁気抵抗効果として強磁性固定層15の磁化の方向と、軟磁性自由層13の磁化の方向の互いのなす角度に応じて電気抵抗が変化する。下地膜14、強磁性固定層15、軟磁性自由層13等の構成と効果については図2と同様であるので説明を省略する。
【0045】
下地膜14、強磁性固定層15等の構成が本図と若干異なっていても本発明の主旨に反するものではない。本発明のこの構成例でもっとも重要な主旨は、強磁性固定層15および軟磁性自由層13が接する非磁性ホイスラー合金中間層121の構成にある。非磁性ホイスラー合金中間層121はL2構造またはB2構造をもつ非磁性ホイスラー合金で構成してなる。これによりホイスラー合金層165とホイスラー合金層163と積層し、結晶的な連続性を保って良好な特性を得ることができる。非磁性ホイスラー合金としては、強磁性ホイスラー合金の組成をずらすことでも得られるが、XMnM(X=Cu,Pt、M=Ge,Al,Si)とすることでも達成できる。
【0046】
図4は本発明の磁気抵抗効果素子を搭載した磁気ヘッドの構成例を示す概念図である。基体50上に磁気抵抗効果積層膜101、電極40、下部シールド35、上部磁気シールド36、下部磁気コア84、コイル42、上部コア83を形成してなり、対向面63を形成してなる。磁気抵抗効果積層膜101には電極40を通じて電流を印加し、再生出力を検知する。ここで上記電流は磁気抵抗効果積層膜101の膜厚方向に通電することが望ましい。
【0047】
本図では上部磁気シールド36と下部磁気コア84を備えた構造になっているが、上部磁気シールド36と下部磁気コア84とを兼用した構造としても本発明の主旨を損なうものではない。また記録ヘッドとして面内記録方式の磁気コアを図示したが、垂直磁気記録方式の磁気コアを用いても本発明の趣旨に反するものではない。
【0048】
図5は本発明の一実施例の磁気記録再生装置の構成例である。磁気的に情報を記録する記録媒体91を保持するディスク95をスピンドルモーター93にて回転させ、アクチュエーター92によってヘッドスライダー90をディスク95のトラック上に誘導する。すなわち磁気ディスク装置においてはヘッドスライダー90上に形成した再生ヘッド、および記録ヘッドがこの機構によってディスク95上の所定の記録位置に近接して相対運動し、信号を順次書き込みもしくは読み取るのである。
【0049】
アクチュエーター92はロータリーアクチュエーターであることが望ましい。記録信号は信号処理系94を通じて記録ヘッドにて媒体上に記録し、再生ヘッドの出力を、信号処理系94を経て信号として得る。さらに再生ヘッドを所望の記録トラック上へ移動せしめるに際して、本再生ヘッドからの高感度な出力を用いてトラック上の位置を検出し、アクチュエーター92を制御してヘッドスライダーの位置決めを行うことができる。本図ではヘッドスライダー90、ディスク95を各1個示したが、これらは複数であっても構わない。またディスク95は両面に記録媒体91を有して情報を記録してもよい。情報の記録がディスク両面の場合ヘッドスライダー90はディスクの両面に配置する。
【0050】
上述したような構成について、本発明の磁気ヘッドおよびこれを搭載した磁気記録再生装置を試験した結果、十分な出力と、良好なバイアス特性を示し、また動作の信頼性も良好であった。
【0051】
【発明の効果】
以上詳述したように、本発明によれば良好なバイアス特性と、出力の高い磁気抵抗効果素子と、これを用いた磁気ヘッドが得られ、特に高い記録密度において良好な再生出力とバイアス特性を有する磁気ヘッドおよび高密度磁気記録再生装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施例の磁気抵抗効果積層膜の構成例を示す断面図。
【図2】本発明の一実施例の磁気抵抗効果積層膜の構成例を示す断面図。
【図3】本発明の一実施例の磁気抵抗効果積層膜の構成例を示す断面図。
【図4】本発明の磁気抵抗効果素子を搭載した磁気ヘッドの構成例を示す概念図。
【図5】本発明の磁気記録再生装置の構成例を示す概念図。
【符号の説明】
11…反強磁性膜、12…非磁性中間層、13…軟磁性自由層、14…下地膜、15…強磁性固定層、16…ホイスラー合金層、35…下部磁気シールド、36…上部シールド、37…保護膜、40…電極、42…コイル、50…基体、63…対向面、83…上部磁気コア、84…下部磁気コア、90…ヘッドスライダー、91…記録媒体、92…アクチュエーター、93…スピンドル、94…信号処理系、95…磁気ディスク、101…磁気抵抗効果積層膜、121…非磁性ホイスラー合金中間層、131…第1の軟磁性膜、132…第2の軟磁性膜、133…第3の軟磁性膜、134…反平行結合層、151…第1の強磁性層、152…第2の強磁性層、154…反平行結合層、163,165…ホイスラー合金層。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic recording / reproducing apparatus, and more particularly to a magnetic head suitable for a high recording density magnetic recording / reproducing apparatus and a magnetoresistive element for constituting the same.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 9-16920 describes a spin valve magnetoresistive sensor using a stacked antiparallel pinned layer and an antiferromagnetic exchange bias layer. Japanese Patent Application Laid-Open No. 7-169006 describes a spin valve sensor using an antiferromagnetic coupling layer.
[0003]
Japanese Patent Application Laid-Open No. 2000-156530 describes a magnetoresistive element in which a second magnetic layer whose magnetization is substantially fixed includes a third layer such as an oxide.
[0004]
Japanese Patent Application Laid-Open No. 2000-340859 describes a magnetoresistive head in which an oxide having a high spin polarizability is used for a magnetic layer and a current flows perpendicularly to the film surface.
[0005]
Japanese Patent Application Laid-Open No. 2000-150985 describes a tunnel magnetoresistance effect element using a highly polarizable film. JP-A-11-135857 describes a magnetoresistive element using a high polarizability film on the tunnel barrier layer side.
[0006]
Japanese Patent Application Laid-Open No. H11-289115 describes a spin polarization element in which a ferromagnetic material is connected to a semiconductor or a half metal via a nonmagnetic layer. In Applied Physics Letters Journal Vol. 73, pp. 1008~1010 (Appl.Phys.Lett.73,1008 (1998)) may description of ferromagnetic tunnel junction using LaSrMnO 3 as a half-metal.
[0007]
Applied Physics Letters, Vol. 74, pp. 4017-4019 (Appl. Phys. Lett. 74, 4017 (1999)) describes a ferromagnetic tunnel magnetoresistance effect using iron oxide and Co.
[0008]
Japanese Patent Application Laid-Open No. 11-97766 describes a ferromagnetic tunnel junction device using a half metal oxide layer. Japanese Patent Publication No. Hei 8-504303 is described magnetoresistive device using a semi-metal material such as Fe 3 O 4.
[0009]
JP-A-6-267742 discloses a magnetoresistance effect element using a magnetic layer made of a half metal. Japanese Patent Application Laid-Open No. 7-73416 describes an MR read transducer in which an exchange layer is adjacent to a soft active layer.
[0010]
Journal of Magnetics and Magnetic Materials, Vol. 93, (1991), pp. 58-66 (J. Magn. Mag. Matt, 93 (1991) 58-66) describes multilayers such as Fe / Cr and Co / Cr. It is described that antiparallel coupling occurs in a film or a sandwich film.
[0011]
[Problems to be solved by the invention]
In the prior art, a magnetoresistive element having sufficient sensitivity and output to an external magnetic field and having good symmetric characteristics cannot be realized, particularly in the reproducing section, and the recording density is not sufficiently high. It has been difficult to realize a high magnetic recording device.
[0012]
In recent years, a so-called giant magnetoresistance effect element using a magnetoresistance effect film formed of a multilayer film in which a ferromagnetic metal layer is laminated via a nonmagnetic metal layer has been put to practical use as a material constituting the reproducing section. In this case, a magnetoresistive effect is used in which the electrical resistance changes greatly depending on the angle between the magnetization between the ferromagnetic layers separated by the nonmagnetic layer and the magnetization.
[0013]
When the giant magnetoresistive element is used in a magnetic head or the like, a structure called a spin valve has been proposed. The spin valve structure has, for example, a laminated structure including an antiferromagnetic film / a ferromagnetic metal layer / a nonmagnetic metal layer / a soft magnetic metal layer, and exchange generated at the interface between the antiferromagnetic film / ferromagnetic metal layer. The magnetization of the ferromagnetic metal layer that is in close contact with the antiferromagnetic film is substantially fixed by the coupling magnetic field, and an output can be obtained based on the resistance change caused by the other soft magnetic metal layer rotating by the external magnetic field. .
[0014]
Here, the above-mentioned effect of fixing will be referred to as a fixed bias, and the antiferromagnetic film that produces this effect will be referred to as a fixed bias layer. The ferromagnetic metal layer whose magnetization is substantially fixed is referred to as a fixed layer or a ferromagnetic fixed layer. Similarly, a soft magnetic metal layer whose magnetization is rotated by an external magnetic field is called a free layer or a soft magnetic free layer. The fixed layer is a function that requires that the magnetization is substantially fixed with respect to the magnetic field to be sensed, and instead of an antiferromagnetic film, a hard magnetic film, that is, unless a relatively large magnetic field is applied. A material whose magnetization does not change can be substituted.
[0015]
In a magnetic head using the above-described spin-valve type magnetoresistive laminated film, the portion of the ferromagnetic layer // nonmagnetic layer / soft magnetic layer determines the magnitude of the magnetoresistance effect. Since the soft magnetic metal layer is also a kind of the ferromagnetic metal layer, the effect of the interface between the ferromagnetic metal layer and the nonmagnetic metal layer is essential. It is known that the resistance change rate can be improved by inserting an oxide into the ferromagnetic metal layer or oxidizing a part of the ferromagnetic metal layer by a known technique.
[0016]
On the other hand, it has also been proposed to increase the magnetoresistance effect by applying a highly polarizable material. However, it has been extremely difficult to actually realize a magnetoresistance effect element by laminating a metal thin film layer such as a ferromagnetic metal layer and a compound layer such as an oxide having a high polarizability. This is because, for example, since the high polarizability material is made of a compound such as an oxide, when laminated with a metal layer, it reacts with the metal layer, or the compound component diffuses into the metal layer and becomes a non-stoichiometric composition, This is because the characteristics are deteriorated.
[0017]
Furthermore, since although a metal has also been proposed Heusler alloy reaction is not oxygen such as a high spin polarized material, which does not have the characteristics of such ferromagnetic not complex ordered structure called L2 1 structure, usually However, there is a problem that an amorphous or microcrystalline structure or a different crystal structure is formed when the film is manufactured in the film forming process.
[0018]
For example, the 25th Annual Meeting of the Japan Society of Applied Magnetics and the journal of the Japan Society of Applied Magnetics describe the formation of Co 2 MnGe Heusler alloy thin films, and recognize that Heusler alloys are ordered at a heat treatment temperature of 400 ° C. However, if it is necessary to increase the heat treatment temperature to about 400 ° C. in order to obtain a good crystalline Heusler thin film, heat treatment at such a high temperature may result in the formation of an extremely thin laminated structure with other metal layers. Make it difficult. In addition, it not only prevents the formation of a flat interface with an extremely thin metal layer, but also promotes the reaction between the highly polarizable layer and another metal layer, for example, a CoFe layer, and also prevents the formation of a good highly polarizable layer. For this reason, it has been difficult to laminate a magnetoresistive film in which a high polarizability layer and a metal layer are laminated.
[0019]
Further, Cu is conventionally used as the non-magnetic intermediate layer. Cu has a low electric resistance and excellent conductivity, and has the same crystal lattice of a face-centered cubic structure as Co, NiFe, etc., and is therefore often used as a nonmagnetic intermediate layer of a giant magnetoresistance effect laminated film. However, when the ferromagnetic layer does not have a face-centered cubic structure such as a Heusler alloy, a non-magnetic intermediate layer having another crystal structure may have a greater magnetoresistance effect than Cu. In fact, when the ferromagnetic layer is Fe having a body-centered cubic structure, a combination having a relatively large giant magnetoresistance effect is considered to be a giant magnetoresistance effect in an Fe / Cr multilayer film using Cr having the same body-centered cubic structure. Have been reported.
[0020]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a magnetic recording device or a magnetic head using a magnetoresistive element having high long-term reliability and high density recording. More specifically, the present invention provides a spin-valve magnetoresistive element having a high resistance change rate having a ferromagnetic metal layer such as a Heusler alloy thin film having a high polarizability at an interface with a non-magnetic intermediate layer, Another object of the present invention is to provide a magnetic recording / reproducing apparatus used for the above.
[0021]
[Means for Solving the Problems]
In the present invention, in order to provide a magnetic recording device in which a magnetoresistive element using a giant magnetoresistive effect corresponding to a high recording density is mounted on a magnetic head, a spin-valve type giant magnetoresistive effect used as the magnetoresistive effect element is provided. A magnetoresistance effect element having a laminated structure of a laminated film, that is, a soft magnetic free layer / nonmagnetic intermediate layer / ferromagnetic fixed layer / antiferromagnetic film is used. Here, the antiferromagnetic film applies an exchange coupling bias for substantially fixing the magnetization of the ferromagnetic pinned layer, and is formed directly on the ferromagnetic pinned layer or indirectly. The effect may be obtained through a dynamic connection. Alternatively, instead of the antiferromagnetic film, another bias applying means, for example, the residual magnetization of the hard magnetic film or a current bias may be used.
[0022]
In the present invention, at least a non-magnetic intermediate layer of the ferromagnetic pinned layer and a magnetic recording / reproducing apparatus equipped with a magneto-resistance effect element suitable for high recording density or a magnetic head using the same are solved. A high polarizability layer is arranged at the interface of. Alternatively, a high polarizability layer is disposed at least at the interface between the soft magnetic free layer and the nonmagnetic intermediate layer. A high polarizability layer may be arranged at the interface between the ferromagnetic fixed layer and the soft magnetic free layer on the side of the nonmagnetic intermediate layer. From the viewpoint of optimizing soft magnetic properties and magnetostriction, it is easy to use the ferromagnetic pinned layer. A structure formed as a laminate of a first ferromagnetic layer / a nonmagnetic insertion layer / a second ferromagnetic layer is employed.
[0023]
The high polarizability layer is disposed at an interface in contact with the nonmagnetic intermediate layer, and is formed of a ferromagnetic compound such as a half metal or a mixture of a ferromagnetic compound and a metal, and is particularly formed of a Heusler alloy layer. The Heusler alloy layer is formed by continuously laminating another metal layer at room temperature or at a substrate temperature of 200 ° C. or less by means of sputtering or the like, and then performing heat treatment to precipitate an ordered structure phase of the Heusler alloy.
[0024]
Here, the Heusler alloy layer, X 2 ZY (X = Co , Cu, Pt, Z = Mn, Cr, Fe, Y = Ge, Al, Si) type Heusler alloy, i.e., L2 1 structure or B2 structure Is a layer of an alloy that takes
[0025]
The high polarizability layer exhibits ferromagnetism, and the ferromagnetic fixed layer or the soft magnetic free layer may be composed of a single high polarizability layer. A high resistance change rate, a high exchange coupling magnetic field, and appropriate waveform symmetry can be realized by using a structure such as a high polarizability layer / CoFe layer / Ru layer / CoFe layer / antiferromagnetic film as the magnetic fixed layer. Can be. In addition, by forming the soft magnetic free layer into a laminated structure such as a high polarizability layer / CoFe layer / NiFe layer, a high resistance change rate and a soft magnetic property can be realized.
[0026]
In order to maintain the continuity of the crystal with the Heusler alloy layer, a material having a body-centered cubic structure such as Cr is desirable for the nonmagnetic intermediate layer. Alternatively the same reason, the L2 1 type or X 2 MnM (X = Cu, Pt, M = Ge, Al, Si) type non-ferromagnetic alloy having a crystal structure.
[0027]
At least a pair of electrodes for applying a current and sensing an output are arranged on the magnetoresistive element having a laminated structure. The current flows in parallel to the layered structure of the laminated structure and senses a giant magnetoresistance effect due to interface scattering. Alternatively, the current flows perpendicularly to the layered structure of the laminated structure, and the magneto-resistance effect is sensed by causing the polarized electrons of the high polarizability layer to pass through the interface to generate a magneto-resistance.
[0028]
The magnetoresistive element preferably has a single magnetic domain configuration in order to prevent the soft magnetic free layer from generating noise. For example, a hard magnetic film having residual magnetization is disposed at both ends perpendicular to the direction of the magnetic field to be sensed in the direction of the film surface of the magnetoresistive element. Alternatively, a hard magnetic film or the like having a remanent magnetization disposed adjacent to the film thickness direction of the magnetoresistive effect element is arranged so that the laminated structure of the magnetoresistive effect element and the hard magnetic film have ends of the same shape. A single magnetic domain may be realized by magnetostatic coupling at the ends.
[0029]
In the present invention, in a magneto-resistance effect type magneto-resistance effect element using such a material and configuration, a magnetic head using the same as a reproducing unit, and a magnetic recording / reproducing apparatus using the same, high recording density, Thus, recording with a short recording wavelength and a narrow recording track width can be realized, a sufficient reproduction output can be obtained, and the recording can be maintained well.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
The thin film constituting the giant magnetoresistive laminated film of the present invention was prepared by sequentially laminating the following materials on a ceramic substrate having a thickness of 1 mm in an atmosphere of 1 to 6 mTorr of argon by a high-frequency magnetron sputtering apparatus. Tantalum, nickel-20 at% iron alloy, Cr, cobalt, MnPt, ruthenium, and CoMnGe were used as sputtering targets. The composition was adjusted by appropriately arranging 1-cm square chips of Fe and Ni on the Co target. Similarly, a 1 cm square chip of Ge or the like was appropriately arranged on CoMnGe to adjust the composition.
[0031]
In the laminated film, high frequency power was applied to each of the cathodes on which the respective targets were arranged to generate plasma in the apparatus, and shutters arranged for the respective cathodes were opened and closed one by one to form each layer sequentially. At the time of film formation, a magnetic field of about 80 Oe was applied in parallel to the substrate using a permanent magnet to give uniaxial anisotropy. The formed film is subjected to a heat treatment at 270 ° C. for 3 hours in a magnetic field in a vacuum to transform the antiferromagnetic film, to precipitate a highly polarizable ordered phase, and to measure and evaluate the magnetoresistance at room temperature. did. The formation of the element on the substrate was patterned by a photoresist process. Thereafter, the substrate was processed with a slider and mounted on a magnetic recording device.
[0032]
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
[0033]
FIG. 1 shows a configuration example of a magnetoresistive effect laminated film used for the magnetoresistive element of the present invention. The notation in the figure, for example, “Ta3” indicates a constituent material as an example of the laminated structure and its thickness in nanometers. The magnetoresistive effect laminated film 101 has a structure as shown in FIG. A base film 14, an antiferromagnetic film 11, a ferromagnetic pinned layer 15, a nonmagnetic intermediate layer 12, a soft magnetic free layer 13, and a protective film 37 are successively formed on a base 50.
[0034]
In the laminated structure, the electric resistance changes as a giant magnetoresistance effect or a tunnel magnetoresistance effect according to the angle between the magnetization direction of the ferromagnetic fixed layer 15 and the magnetization direction of the soft magnetic free layer 13. The base film 14 has a configuration of Ta / NiFe here, but may have another configuration. Further, omitting the base film 14 does not detract from the gist of the present invention. The underlayer 14 has the effect of controlling the crystallinity of the portion of the magnetoresistive effect laminated film 101 above the underlayer 14 and increasing the crystal orientation.
[0035]
The most important point of the configuration example of FIG. 1 of the present invention lies in the configuration of the ferromagnetic fixed layer 15 and the nonmagnetic intermediate layer 12. In FIG. 1, the ferromagnetic fixed layer 15 is shown as a laminate of the Heusler alloy layer 16, the first ferromagnetic layer 151, the antiparallel coupling layer 154, and the second ferromagnetic layer 152. The laminated body is formed so as to be magnetically coupled, and can take a magnetization state in an antiparallel direction via the antiparallel coupling layer 154 and can be magnetically integrated.
[0036]
The nonmagnetic intermediate layer 12 was made of Cr having a body-centered cubic structure. The crystal structure of the non-magnetic intermediate layer 12 and the Heusler alloy layer 16 is a result, a L2 1 structure in which a basic structure of the body-centered cubic structure and a body-centered cubic structure, be comprised of a material which is a crystal structure similar This can suppress inelastic scattering of electrons. Also, unlike the example of this figure, the ferromagnetic pinned layer 15 may be composed of only the Heusler alloy layer 16 or a laminate of the Heusler alloy 16 and the first threat magnetic film 151 without using the antiparallel coupling layer. It is not against the gist of the present invention. Heusler alloy layer 16 is a ferromagnetic Heusler alloy having a L2 1 structure or B2 structure, such as Co 2 MnGe, Co 2 MnAl, Co 2 MnSi, may consist etc. Co 2 Fe 0.6 Cr 0.4 Al.
[0037]
Further, when the Heusler alloy layer 16 has a thickness of 10 nm or less, particularly 1 nm to 3 nm, the magnetic properties are excellent, and the soft magnetic free layer 13 and the ferromagnetic pinned layer 15 are interposed via the nonmagnetic intermediate layer 12. It reduces interlayer coupling between layers and shows a high rate of resistance change. It is also effective to use a magnetite Fe 3 O 4 or CrO 2 which is a half metal and has a high spin polarizability instead of the Heusler alloy.
[0038]
The soft magnetic free layer 13 may be a laminate of the first soft magnetic film 131 and the second soft magnetic film 132 on the side in contact with the nonmagnetic intermediate layer 12. However, other configurations, such as a single-layer soft magnetic film, do not depart from the gist of the present invention.
[0039]
FIG. 2 shows another configuration example of the magnetoresistive effect laminated film used in the magnetoresistive element of the present invention. The notation in the figure conforms to FIG. The magnetoresistive effect laminated film 101 is formed by continuously forming a base film 14, an antiferromagnetic film 11, a ferromagnetic pinned layer 15, a nonmagnetic intermediate layer 12, a soft magnetic free layer 13, and a protective film 37 on a substrate 50. Become.
[0040]
In the above-described laminated structure, as a giant magnetoresistance effect, the electric resistance changes according to the angle between the magnetization direction of the ferromagnetic fixed layer 15 and the magnetization direction of the soft magnetic free layer 13. The configurations and effects of the underlayer 14, the ferromagnetic fixed layer 15, and the like are the same as those in FIG. Further, even if the configurations of the base film 14, the ferromagnetic fixed layer 15, and the like are slightly different from those in the drawing, they do not depart from the gist of the present invention.
[0041]
The most important point of this configuration example of the present invention lies in the configuration of a portion where the ferromagnetic fixed layer 15 and the soft magnetic free layer 13 are in contact with the nonmagnetic intermediate layer 12. The nonmagnetic intermediate layer 12 composed of a body-centered cubic Cr or the like is stacked in contact with the Heusler alloy layer 165 and the Heusler alloy layer 163, and good characteristics can be obtained while maintaining crystal continuity.
[0042]
Here, the soft magnetic free layer 13 is composed of the first soft magnetic film 131, the second soft magnetic film 132, the antiparallel coupling layer 134, the third soft magnetic film 133, and the Heusler alloy layer 163 in contact with the nonmagnetic intermediate layer 12. It consists of. With the function of arranging the magnetization in an antiferromagnetic manner via the antiparallel coupling layer 134, it is possible to realize the effect of reducing the substantial amount of the magnetization of the soft magnetic free layer 13 as a magnetic head. However, even if the soft magnetic free layer 13 does not include the antiparallel coupling layer 134, it is not against the gist of the present invention.
[0043]
FIG. 3 shows still another configuration example of the magnetoresistive effect laminated film used in the magnetoresistive element of the present invention. The notation in the figure is based on FIGS.
[0044]
In the magneto-resistance effect laminated film 101, an underlayer 14, an antiferromagnetic film 11, a ferromagnetic pinned layer 15, a nonmagnetic Heusler alloy intermediate layer 121, a soft magnetic free layer 13, and a protective film 37 are successively formed on a substrate 50. Do it. In the laminated structure, the electric resistance changes as the giant magnetoresistance effect according to the angle between the magnetization direction of the ferromagnetic fixed layer 15 and the magnetization direction of the soft magnetic free layer 13. The configurations and effects of the underlayer 14, the ferromagnetic fixed layer 15, the soft magnetic free layer 13, and the like are the same as in FIG.
[0045]
Even if the configurations of the base film 14, the ferromagnetic fixed layer 15, and the like are slightly different from those in the drawing, they do not depart from the gist of the present invention. The most important point of this configuration example of the present invention lies in the configuration of the nonmagnetic Heusler alloy intermediate layer 121 where the ferromagnetic fixed layer 15 and the soft magnetic free layer 13 are in contact. Magnetic Heusler alloy intermediate layer 121 is constituted by a non-magnetic Heusler alloy having a L2 1 structure or B2 structure. Thereby, the Heusler alloy layer 165 and the Heusler alloy layer 163 are stacked, and good characteristics can be obtained while maintaining crystal continuity. The non-magnetic Heusler alloy can be obtained by shifting the composition of the ferromagnetic Heusler alloy, but can also be achieved by using X 2 MnM (X = Cu, Pt, M = Ge, Al, Si).
[0046]
FIG. 4 is a conceptual diagram showing a configuration example of a magnetic head equipped with the magnetoresistive element of the present invention. A magnetoresistive laminated film 101, an electrode 40, a lower shield 35, an upper magnetic shield 36, a lower magnetic core 84, a coil 42, an upper core 83 are formed on a base 50, and an opposing surface 63 is formed. A current is applied to the magneto-resistance effect laminated film 101 through the electrode 40, and a reproduction output is detected. Here, it is desirable that the above-mentioned current be conducted in the thickness direction of the magnetoresistive effect laminated film 101.
[0047]
In this drawing, the structure is provided with the upper magnetic shield 36 and the lower magnetic core 84. However, a structure that combines the upper magnetic shield 36 and the lower magnetic core 84 does not impair the gist of the present invention. Although the in-plane recording magnetic core is shown as the recording head, the use of a perpendicular magnetic recording magnetic core is not contrary to the spirit of the present invention.
[0048]
FIG. 5 shows a configuration example of a magnetic recording / reproducing apparatus according to an embodiment of the present invention. A disk 95 holding a recording medium 91 for magnetically recording information is rotated by a spindle motor 93, and a head slider 90 is guided on tracks of the disk 95 by an actuator 92. That is, in the magnetic disk device, the reproducing head and the recording head formed on the head slider 90 relatively move close to a predetermined recording position on the disk 95 by this mechanism, and sequentially write or read signals.
[0049]
The actuator 92 is preferably a rotary actuator. The recording signal is recorded on the medium by the recording head through the signal processing system 94, and the output of the reproducing head is obtained as a signal through the signal processing system 94. Further, when the reproducing head is moved to a desired recording track, the position on the track can be detected by using the high-sensitivity output from the reproducing head, and the actuator 92 can be controlled to position the head slider. Although one head slider 90 and one disk 95 are shown in this drawing, a plurality of these may be used. The disc 95 may have a recording medium 91 on both sides to record information. When information is recorded on both sides of the disk, head sliders 90 are arranged on both sides of the disk.
[0050]
As a result of testing the magnetic head of the present invention and a magnetic recording / reproducing apparatus equipped with the same with the above-described configuration, sufficient output, good bias characteristics were exhibited, and operation reliability was also good.
[0051]
【The invention's effect】
As described in detail above, according to the present invention, it is possible to obtain a magnetoresistive element having good bias characteristics, a high output, and a magnetic head using the same. And a high-density magnetic recording / reproducing apparatus having the same.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a configuration example of a magnetoresistive effect laminated film according to one embodiment of the present invention.
FIG. 2 is a sectional view showing a configuration example of a magnetoresistive effect laminated film according to one embodiment of the present invention.
FIG. 3 is a sectional view showing a configuration example of a magnetoresistive effect laminated film according to one embodiment of the present invention.
FIG. 4 is a conceptual diagram showing a configuration example of a magnetic head on which the magnetoresistive element of the present invention is mounted.
FIG. 5 is a conceptual diagram showing a configuration example of a magnetic recording / reproducing device of the present invention.
[Explanation of symbols]
11: antiferromagnetic film, 12: non-magnetic intermediate layer, 13: soft magnetic free layer, 14: underlayer, 15: ferromagnetic fixed layer, 16: Heusler alloy layer, 35: lower magnetic shield, 36: upper shield, 37: protective film, 40: electrode, 42: coil, 50: base, 63: facing surface, 83: upper magnetic core, 84: lower magnetic core, 90: head slider, 91: recording medium, 92: actuator, 93 ... Spindle, 94: signal processing system, 95: magnetic disk, 101: magnetoresistive laminated film, 121: non-magnetic Heusler alloy intermediate layer, 131: first soft magnetic film, 132: second soft magnetic film, 133 ... Third soft magnetic film, 134: anti-parallel coupling layer, 151: first ferromagnetic layer, 152: second ferromagnetic layer, 154: anti-parallel coupling layer, 163, 165: Heusler alloy layer.

Claims (4)

非磁性中間層を介して分離した少なくとも二層の強磁性層による強磁性層/非磁性中間層/強磁性層の積層構成を有し、外部の磁界に応じて上記強磁性層の互いの磁化の相対角度が変わって上記積層構成が磁気抵抗効果を生じる、少なくとも一対の電極を有することを特徴とする磁気抵抗効果素子およびこれを用いた磁気ヘッドで、少なくとも一方の強磁性層の一部が、ホイスラー合金、Fe,CrOなどのハーフメタルあるいは高分極率材料からなり、少なくとも非磁性中間層の一部が体心立方構造もしくは体心立方構造を元素置換した結晶構造を有することを特徴とする磁気抵抗効果素子。It has a laminated structure of a ferromagnetic layer / a nonmagnetic intermediate layer / a ferromagnetic layer composed of at least two ferromagnetic layers separated via a nonmagnetic intermediate layer. Wherein the relative angle changes to produce a magnetoresistive effect, wherein the magnetoresistive element has at least a pair of electrodes and a magnetic head using the same. , A half metal such as Heusler alloy, Fe 3 O 4 , CrO 2 or a highly polarizable material, and at least a part of the non-magnetic intermediate layer has a body-centered cubic structure or a crystal structure obtained by substituting the body-centered cubic structure with an element. A magnetoresistive effect element characterized by the following. 非磁性中間層を介して分離した少なくとも二層の強磁性層による強磁性層/非磁性中間層/強磁性層の積層構成を有し、上記積層構成が反強磁性膜/強磁性層/反平行結合層/強磁性層/非磁性中間層/強磁性層の構成を有し、反平行結合層を介して2つの強磁性層の磁化が反平行方向に結合し、反強磁性膜が接した強磁性層に交換結合によって実質的にその磁化を固定してなり、外部の磁界に応じて上記強磁性層の互いの磁化の相対角度が変わって上記積層構成が磁気抵抗効果を生じ、少なくとも一対の電極を有する磁気抵抗効果素子において、少なくとも一方の強磁性層の一部が、XZY(X=Co,Cu,Pt、Z=Mn,Cr,Fe、Y=Ge,Al,Si)型のホイスラー合金からなり、少なくとも非磁性中間層の一部が体心立方構造もしくは体心立方構造を元素置換した結晶構造を有することを特徴とする磁気抵抗効果素子。It has a laminated structure of a ferromagnetic layer / a non-magnetic intermediate layer / a ferromagnetic layer composed of at least two ferromagnetic layers separated via a non-magnetic intermediate layer. It has a configuration of a parallel coupling layer / ferromagnetic layer / non-magnetic intermediate layer / ferromagnetic layer. The magnetizations of the two ferromagnetic layers are coupled in the anti-parallel direction via the anti-parallel coupling layer, and the anti-ferromagnetic films are connected. The magnetization is substantially fixed by exchange coupling to the ferromagnetic layer, and the relative angle between the magnetizations of the ferromagnetic layers changes according to an external magnetic field, so that the laminated structure produces a magnetoresistive effect. In a magnetoresistive element having a pair of electrodes, at least one of the ferromagnetic layers is partially formed of X 2 ZY (X = Co, Cu, Pt, Z = Mn, Cr, Fe, Y = Ge, Al, Si). Type Heusler alloy, at least part of the non-magnetic intermediate layer is body-centered Magnetoresistive element characterized by having a square structure or body-centered cubic structure element substitution crystal structure. 非磁性中間層の結晶構造がL2型もしくはXMnM(X=Cu,Pt、M=Ge,Al,Si)型の結晶構造を有することを特徴とする請求項1または2記載の磁気抵抗効果素子。A nonmagnetic intermediate layer crystal structure L2 1 type or X 2 MnM (X = Cu, Pt, M = Ge, Al, Si) type magnetic resistance according to claim 1 or 2, wherein the having the crystal structure Effect element. 請求項1ないし3のいずれか記載の磁気抵抗効果素子を含んで構成されることを特徴とする磁気ヘッド。A magnetic head comprising the magneto-resistance effect element according to claim 1.
JP2002307797A 2002-10-23 2002-10-23 Magnetoresistance effect element for laminating heuslar magnetic layer and non-magnetic intermediate layer in body-centered cubic structure and magnetic head Pending JP2004146480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002307797A JP2004146480A (en) 2002-10-23 2002-10-23 Magnetoresistance effect element for laminating heuslar magnetic layer and non-magnetic intermediate layer in body-centered cubic structure and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002307797A JP2004146480A (en) 2002-10-23 2002-10-23 Magnetoresistance effect element for laminating heuslar magnetic layer and non-magnetic intermediate layer in body-centered cubic structure and magnetic head

Publications (1)

Publication Number Publication Date
JP2004146480A true JP2004146480A (en) 2004-05-20

Family

ID=32454107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002307797A Pending JP2004146480A (en) 2002-10-23 2002-10-23 Magnetoresistance effect element for laminating heuslar magnetic layer and non-magnetic intermediate layer in body-centered cubic structure and magnetic head

Country Status (1)

Country Link
JP (1) JP2004146480A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245274A (en) * 2005-03-03 2006-09-14 Alps Electric Co Ltd Magnetic sensing element
JP2006295001A (en) * 2005-04-13 2006-10-26 Sony Corp Storage element and memory
JP2006339218A (en) * 2005-05-31 2006-12-14 Alps Electric Co Ltd Magnetic detecting element and its manufacturing method
JP2007227748A (en) * 2006-02-24 2007-09-06 Alps Electric Co Ltd Magnetoresistance effect element
JP2008156703A (en) * 2006-12-25 2008-07-10 National Institute For Materials Science Heusler alloy, and tmr element or gmr element using it
US7533456B2 (en) 2006-08-30 2009-05-19 Tdk Corporation Fabrication process for magneto-resistive effect devices of the CPP structure
US7554776B2 (en) 2004-09-01 2009-06-30 Tdk Corporation CCP magnetic detecting element including a self-pinned CoFe layer
US7558028B2 (en) 2005-11-16 2009-07-07 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head with improved CPP sensor using Heusler alloys
US7567413B2 (en) 2005-04-08 2009-07-28 Tdk Corporation Magnetic detecting element with diffusion-preventing layer between spacer Cu and magnetic layer, and method of manufacturing the same
JP2010219177A (en) * 2009-03-16 2010-09-30 Nec Corp Magnetic tunnel junction device, and magnetic random access memory
US7895731B2 (en) 2006-06-23 2011-03-01 Tdk Corporation Method for manufacturing magnetic field detecting element utilizing diffusion and migration of silver
JP2012174737A (en) * 2011-02-17 2012-09-10 Toshiba Corp Magnetoresistance effect element, magnetic head assembly and magnetic recorder
US8760818B1 (en) 2013-01-09 2014-06-24 Western Digital (Fremont), Llc Systems and methods for providing magnetic storage elements with high magneto-resistance using heusler alloys
EP3176843A4 (en) * 2014-08-01 2018-03-21 National Institute for Materials Science Magnetoresistive element, magnetic head using magnetoresistive element, and magnetic playback device
CN112349832A (en) * 2019-08-08 2021-02-09 Tdk株式会社 Magnetoresistive element and Wheatstone alloy
WO2022209531A1 (en) * 2021-03-31 2022-10-06 国立研究開発法人物質・材料研究機構 Current-perpendicular-to-plane giant magneto-resistive element and manufacturing method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554776B2 (en) 2004-09-01 2009-06-30 Tdk Corporation CCP magnetic detecting element including a self-pinned CoFe layer
JP2006245274A (en) * 2005-03-03 2006-09-14 Alps Electric Co Ltd Magnetic sensing element
US7567413B2 (en) 2005-04-08 2009-07-28 Tdk Corporation Magnetic detecting element with diffusion-preventing layer between spacer Cu and magnetic layer, and method of manufacturing the same
JP2006295001A (en) * 2005-04-13 2006-10-26 Sony Corp Storage element and memory
JP4544037B2 (en) * 2005-05-31 2010-09-15 Tdk株式会社 Magnetic sensing element and manufacturing method thereof
JP2006339218A (en) * 2005-05-31 2006-12-14 Alps Electric Co Ltd Magnetic detecting element and its manufacturing method
US7558028B2 (en) 2005-11-16 2009-07-07 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head with improved CPP sensor using Heusler alloys
JP2007227748A (en) * 2006-02-24 2007-09-06 Alps Electric Co Ltd Magnetoresistance effect element
US7760473B2 (en) 2006-02-24 2010-07-20 Tdk Corporation Magnetoresistance element employing Heusler alloy as magnetic layer
US7895731B2 (en) 2006-06-23 2011-03-01 Tdk Corporation Method for manufacturing magnetic field detecting element utilizing diffusion and migration of silver
US7533456B2 (en) 2006-08-30 2009-05-19 Tdk Corporation Fabrication process for magneto-resistive effect devices of the CPP structure
JP2008156703A (en) * 2006-12-25 2008-07-10 National Institute For Materials Science Heusler alloy, and tmr element or gmr element using it
JP2010219177A (en) * 2009-03-16 2010-09-30 Nec Corp Magnetic tunnel junction device, and magnetic random access memory
JP2012174737A (en) * 2011-02-17 2012-09-10 Toshiba Corp Magnetoresistance effect element, magnetic head assembly and magnetic recorder
US8649127B2 (en) 2011-02-17 2014-02-11 Kabushiki Kaisha Toshiba Magneto-resistive effect device, magnetic head assembly, and magnetic recording device
US8760818B1 (en) 2013-01-09 2014-06-24 Western Digital (Fremont), Llc Systems and methods for providing magnetic storage elements with high magneto-resistance using heusler alloys
US9042057B1 (en) 2013-01-09 2015-05-26 Western Digital (Fremont), Llc Methods for providing magnetic storage elements with high magneto-resistance using Heusler alloys
EP3176843A4 (en) * 2014-08-01 2018-03-21 National Institute for Materials Science Magnetoresistive element, magnetic head using magnetoresistive element, and magnetic playback device
CN112349832A (en) * 2019-08-08 2021-02-09 Tdk株式会社 Magnetoresistive element and Wheatstone alloy
CN112349832B (en) * 2019-08-08 2023-11-03 Tdk株式会社 Magneto-resistive effect element and wheatler alloy
WO2022209531A1 (en) * 2021-03-31 2022-10-06 国立研究開発法人物質・材料研究機構 Current-perpendicular-to-plane giant magneto-resistive element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7265948B2 (en) Magnetoresistive element with oxide magnetic layers and metal magnetic films deposited thereon
US6724585B2 (en) Magnetoresistive element and device utilizing magnetoresistance effect
JP3587447B2 (en) Memory element
JP3327375B2 (en) Magnetoresistive transducer, method of manufacturing the same, and magnetic recording apparatus
JP3180027B2 (en) Spin valve magnetoresistive sensor and magnetic recording system using this sensor
US7019371B2 (en) Current-in-plane magnetic sensor including a trilayer structure
KR20070106433A (en) Magneto-resistive element and method of manufacturing the same
KR20070098423A (en) Magnetoresistance effect device, magnetic head, magnetic recording system, and magnetic random access memory
US20070297098A1 (en) Magnetoresistive element, magnetic head, magnetic recording apparatus, and magnetic memory
JP2004199816A (en) Magnetic head
JP4296180B2 (en) Magnetoresistive element, magnetic head, magnetic reproducing device, and method of manufacturing magnetoresistive element
JP2009026400A (en) Differential magnetoresistive magnetic head
KR20080077330A (en) Magnetoresistive effect element, magnetic head, magnetic storage unit, and magnetic memory unit
US6603643B2 (en) Magnetoresistive head containing oxide layer
JPWO2009054062A1 (en) Magnetic tunnel junction device with a magnetization free layer of sandwich structure
US20040165321A1 (en) Spin valve magnetoresistive element having pinned magnetic layer composed of epitaxial laminated film having magnetic sublayers and nanomagnetic interlayer
JP2004146480A (en) Magnetoresistance effect element for laminating heuslar magnetic layer and non-magnetic intermediate layer in body-centered cubic structure and magnetic head
JP3691898B2 (en) Magnetoresistive effect element, magnetic information reading method, and recording element
JP2005019484A (en) Magnetoresistive effect element and magnetic head
US8547666B2 (en) Current perpendicular to plane magnetoresistive head having suppressed spin torque noise
JP2008243920A (en) Magnetoresistance-effect reproducing element, magnetic head and magnetic reproducing apparatus
JP2008091551A (en) Magnetoresistance effect element, magnetic storage device, and magnetic memory device
JP2005302131A (en) Magnetic head and magnetic recording reproducing device using it
JP3321615B2 (en) Magnetoresistive element and magnetic transducer
KR100363462B1 (en) Spin valve type magnetoresistive effect element and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041224