JP2004143516A - Steel sheet having excellent flatness after cooling - Google Patents

Steel sheet having excellent flatness after cooling Download PDF

Info

Publication number
JP2004143516A
JP2004143516A JP2002308823A JP2002308823A JP2004143516A JP 2004143516 A JP2004143516 A JP 2004143516A JP 2002308823 A JP2002308823 A JP 2002308823A JP 2002308823 A JP2002308823 A JP 2002308823A JP 2004143516 A JP2004143516 A JP 2004143516A
Authority
JP
Japan
Prior art keywords
steel sheet
cooling
less
flatness
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002308823A
Other languages
Japanese (ja)
Inventor
Takeshi Urabe
占部 健
Kazuhiko Hasegawa
長谷川 和彦
Kazushi Onishi
大西 一志
Shigeru Hieda
稗田 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002308823A priority Critical patent/JP2004143516A/en
Publication of JP2004143516A publication Critical patent/JP2004143516A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet in which transformation stress occurring on cooling is reduced, and which has excellent flatness after cooling. <P>SOLUTION: The steel sheet comprising, by mass, 0.01 to 0.60% C, 0.01 to 0.60% Si, 0.30 to 2.0% Mn and 0.003 to 0.10% Al, and in which a shrinkage percentage by cooling in a test piece after the completion of transformation on cooling at 30°C/s in the measurement of an expansion by four Master is ≤0.35%. The steel sheet can comprise one or more kinds of metals selected from 0.01 to 1.2% Cu, 0.01 to 10% Ni, 0.01 to 5% Cr, 0.01 to 2% Mo, 0.01 to 0.1% V, 0.005 to 0.1% Nb, 0.005 to 0.1% Ti, 0.0003 to 0.010% B and 0.005 to 0.050% rare earth elements as well. It is preferable that an Ms point expressed by the formula (1) is controlled to ≤400°C since the flatness is made more satisfactory. The formula (1) is expressed by the Ms point (°C)=521-353C-22Si-24Mn-17Ni-18Cr-8Cu-16Mo. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷却後の平たん度に優れる鋼板に関し、詳しくは、オーステナイト温度域からの冷却時に生じる変態応力が小さく、冷却後の平たん度に優れる鋼板に関する。
【0002】
【従来の技術】
鋼板は、オーステナイト領域に加熱されたあとの冷却過程において鋼板に生じる残留応力が鋼板のもつ降伏点を超えると、形状の崩れを起こし、平たん度が低下する。特に、鋼帯として製造することが難しい幅の広いもの、例えば幅が2000mmを超えるような鋼板においては、この現象が顕著にあらわれる。
【0003】
この形状の崩れは、矯正できる場合はレベラーあるいはプレス等により矯正されるが、そのために工程を付加する等、余分の大きな工数が必要になる。また、形状の崩れが矯正できない場合は、その鋼板は不適合品としてスクラップ処理される。矯正、スクラップ処理のいずれであっても、工業的に大きな無駄が生じる。
【0004】
前記の平たん度低下の大きな要因となる残留応力は、一般的に、冷却(特に、急冷)時の収縮に伴い発生する熱応力と変態時の膨張に伴い発生する変態応力の和としてあらわされている。
【0005】
熱応力は、鋼板のもつ質量効果により鋼板の全ての部分を均一に冷却することが難しく、鋼板の外周部と内部における冷却、収縮に時間的な差があることにより生じる。一方、変態応力は、オーステナイト相からフェライト相やマルテンサイト相への変態に伴い生じるもので、やはり、鋼板の外周部と内部における変態、膨張の時間的な差により生じる。
【0006】
実際の鋼板の冷却時には、このような収縮、膨張に伴って熱応力と変態応力がともに発生し、引張、圧縮の応力を生じさせ、複合的に作用し、また一部は鋼板内にとどまり、冷却後の平たん度の低下等の形状崩れの原因になる。その際、平たん度の低下に対して熱応力と変態応力の何れの影響がより大きいかは、鋼板の厚さや幅、冷却速度などとの関係によって異なってくる。
【0007】
このように、鋼板の冷却後の平たん度に大きな影響を与える前記の熱応力と変態応力のうち、熱応力を低減するために、従来、鋼板をできるだけ均一に冷却しようとする試みがなされてきた。例えば、特許文献1では、熱間圧延された高温厚鋼板、特に比較的薄くかつ広幅の厚鋼板をローラクエンチ装置により冷却する際に、鋼板中央部のみに冷却水を噴射する補助クエンチノズルを用い、鋼板を幅方向に均一に冷却し、平たん度の良好な鋼板を得る方法が開示されている。
【0008】
また、特許文献2には、Ni等の合金元素量を経済的かつ溶接性等を劣化させない程度に抑えた成分系の鋼板を、焼入れ前に良好な平たん度を確保し、続いて低温焼入れ、焼戻しすることにより、鋼板内の位置による温度分布を小さくし、残留応力が低い高靱性高張力鋼板を製造する方法が示されている。
【0009】
しかしながら、前記の変態応力を積極的に低減することにより平たん度の良好な鋼板を得ようとする試みはなされていない。
【0010】
【特許文献1】
特開平5−96320号公報
【特許文献2】
特開平7−126739号公報
【0011】
【発明が解決しようとする課題】
本発明は、このような状況に鑑みなされたもので、その課題は、冷却時に生じる変態応力が小さく、冷却後の平たん度に優れる鋼板、特に、鋼板内に発生する残留応力に占める変態応力の割合がより大きいと考えられる、板厚10mm以下で、板幅が2000mmを超えるサイズの鋼板において、冷却後の平たん度に優れる鋼板を提供することにある。
【0012】
【課題を解決するための手段】
焼入れ処理等の工程において、冷却時に生じ、平たん度に大きく影響する変態応力は、以下の(a)〜(c)の3現象が鋼板内で同時に起こることにより生じると考えられている。
(a) オーステナイト1相の領域でのオーステナイト相の冷却に伴う収縮
(b) オーステナイト相からフェライト相やマルテンサイト相への変態時の結晶構造の変化に伴う膨張
(c) 変態完了後の組織の冷却に伴う収縮
すなわち、冷却時には、鋼板の外周部(鋼板の周囲4辺の近傍(4周部)をいう)が内部に比べ早く変態を完了し、冷却が進むと、外周部が前記(c)に示した変態完了後の組織の冷却に伴う収縮をすると同時に、内部が(b)に示したオーステナイト相からフェライト相等への変態に伴う膨張を起こすので、外側からの収縮と内側からの膨張により鋼板の内部に大きな圧縮の応力が発生し、前記の形状崩れ(平たん度に着目すれば、「平たん崩れ」ともいえる)という現象としてあらわれる。この現象は、外周部と内部との温度差がそれほど大きくなく熱応力の影響が比較的小さい、板厚の薄い鋼板(例えば、板厚10mm以下の鋼板)で顕著である。
【0013】
そこで、本発明者らは、検討を重ねた結果、鋼材の化学組成をコントロールし、変態が完了する温度においてその変態完了後組織内に未変態のオーステナイト相を残し、その後の冷却時に、前記組織内で、既に変態が完了して生じたフェライト相等の収縮と未変態オーステナイト相からフェライト相等への変態に伴う膨張とを同時に起こさせることによって、変態完了後組織の収縮率を減少させ得ることを見いだした。前記の収縮と膨張とが互いに打ち消しあい、変態完了後組織の収縮率が見かけ上低下することによるものと考えられる。これにより、鋼板内に発生する変態応力を低減させて、冷却後の平たん度に優れる鋼板を容易に得ることができる。
【0014】
また、マルテンサイト変態開始温度(以下、「Ms点」という)を低下させることによりオーステナイト相からフェライト相等への変態時の結晶構造の変化に伴う膨張率を低く抑えることが可能であり、平たん度に優れる鋼板を安定して得られることを知見した。
【0015】
本発明は、これらの知見に基づいてなされたもので、その要旨は、下記の冷却後の平たん度に優れる鋼板にある。
【0016】
質量%で、C:0.01〜0.60%、Si:0.01〜0.60%、Mn:0.30〜2.0%およびAl:0.003〜0.10%を含有し、残部がFeおよび不純物からなり、不純物中のPが0.03%以下、Sが0.01%以下、Nが0.010%以下で、フォーマスタによる膨張量測定において、試験片を30℃/sで冷却したときに変態完了後の試験片の冷却による収縮率が0.35%以下である冷却後の平たん度に優れる鋼板。
【0017】
なお、前記の「フォーマスタ」とは、自動連続冷却変態測定装置のことであり、CCT曲線(連続冷却変態曲線)を測定するときに一般的に用いられる。特定の冷却条件で試験片の膨張量を連続的に測定し、その収縮率の変化から変態点を測定する装置で、これを利用することにより、ある温度域での収縮率の特定が可能である。
【0018】
また、ここでいう「平たん度」とは、JIS G 3193(熱間圧延鋼板および鋼帯の形状、寸法、質量およびその許容差)に規定される鋼板の平たん度である。
【0019】
この鋼板は、さらに、質量%で、Cu:0.01〜1.2%、Ni:0.01〜10%、Cr:0.01〜5%、Mo:0.01〜2%、V:0.01〜0.1%、Nb:0.005〜0.1%、Ti:0.005〜0.1%およびB:0.0003〜0.010%のうちから選ばれた何れか1種以上、または/および、希土類元素(以下、「REM」と記す。また、その含有量は、含まれるREMの合計の含有量を意味する):0.005〜0.050%を含有し、フォーマスタによる膨張量測定において、試験片を30℃/sで冷却したときに変態完了後の試験片の冷却による収縮率が0.35%以下のものであってもよい。
【0020】
前記の鋼板において、下記▲1▼式で表されるMs点が400℃以下であれば、冷却後の平たん度がより一層良好で、好ましい。なお、▲1▼式において、C、Si等の各元素を表す記号は、それぞれの元素の含有量(質量%)を表す。
Ms点(℃)=521−353C−22Si−24Mn−17Ni−18Cr−8Cu−16Mo ・・・▲1▼
【0021】
【発明の実施の形態】
以下に、本発明の冷却後の平たん度に優れる鋼板について詳細に説明する。なお、鋼板の化学成分含有量の「%」は、「質量%」を意味する。
【0022】
上記本発明の鋼板において、その化学組成、フォーマスタでの所定条件下における収縮率およびMs点を上記のように限定した理由について説明する。
【0023】
C:0.01〜0.60%
Cは、鋼板の強度を確保する上で必要であると同時に、変態完了時における未変態オーステナイト量を確保するために必要な元素である。しかし、その含有量が0.01%未満ではその効果は十分に得られず、また、0.60%を超えて含有させると耐溶接割れ性が劣化する。したがって、C含有量は、0.01〜0.60%の範囲とする。良好な溶接性が要求される場合は、C含有量の上限は0.20%とするのが好ましい。さらに、良好な低温衝撃特性が要求されるような場合、上限は0.10%とするのが好ましい。
【0024】
Si:0.01〜0.60%
Siは溶製時に脱酸元素として添加される元素であり、鋼板の強度の確保に寄与すると同時に、変態点を低下させることにより冷却後の平たん度の向上に寄与する。この効果は、Si含有量が0.01%未満では十分に得られず、また、0.60%を超えて含有させると溶接性および靱性が劣化する。したがって、Si含有量は、0.01〜0.60%の範囲とする。
【0025】
Mn:0.30〜2.0%
Mnは、焼入れ性を向上させ、鋼板の強度を高めると同時に、変態完了時の温度における未変態オーステナイト量を確保するために必要な元素である。このような効果を得るためには、Mnを0.30%以上含有させることが必要であるが、2.0%を超えて含有させると靱性、溶接性が劣化するので好ましくない。したがって、Mn含有量は、0.30〜2.0%の範囲とする。
【0026】
Al:0.003〜0.10%
Alは溶製時に脱酸元素として添加される元素であるが、含有量が0.003%未満ではその効果は十分ではなく、また、0.10%を超えて過剰に含有させると靱性が劣化する。したがって、Al含有量は、0.003〜0.10%の範囲とする。
【0027】
上記本発明の鋼板は、前述した成分以外、残部がFeと不純物からなるものである。不純物としては、P、SおよびNの上限を抑えることが必要である。
【0028】
P:0.03%以下
Pは、母材および溶接部の靱性を損なわせるだけでなく、溶接性も低下させるので、その含有量は低いほうが好ましい。しかし、過度に低減させようとするとコスト上昇を招くことから、実害を生じさせない範囲として、P含有量は0.03%以下とする。
【0029】
S:0.01%以下
Sは、MnS等の介在物を形成し、曲げ加工性および靱性を劣化させるので、その含有量は低いほうが好ましい。しかし、過度の低減はコスト上昇を招くことから、実害を生じさせない範囲として、S含有量は0.01%以下とする。
【0030】
N:0.010%以下
Nは、母材および溶接部の靱性を損なわせるため、その含有量は低いほうが好ましい。しかし、過度の低減はコスト上昇を招くことから、実害を生じさせない範囲として、N含有量は0.010%以下とする。
【0031】
上記本発明の鋼板は、さらに、Cu:0.01〜1.2%、Ni:0.01〜10%、Cr:0.01〜5%、Mo:0.01〜2%、V:0.01〜0.1%、Nb:0.005〜0.1%、Ti:0.005〜0.1%およびB:0.0003〜0.010%のうちから選ばれた何れか1種以上、または、REM:0.005〜0.050%、または、前記それぞれの含有量の範囲のCu、Ni、Cr、Mo、V、Nb、TiおよびBのうちから選ばれた何れか1種以上と前記含有量の範囲のREMとを含有するものであってもよい。
【0032】
前記のCu、Ni、Cr、Mo、V、Nb、TiおよびBは何れも鋼板の強度を上昇させる作用効果を有している。また、成分によっては、強度上昇効果に加え、靱性を向上させ、あるいは冷却後の平たん度の向上に寄与する等、特有の作用効果があるので、必要に応じて適宜添加すればよい。REMは、介在物の形態制御作用を有し、曲げ加工性の改善等に有効なので、必要に応じて添加する。これらの成分の作用効果と、含有量の限定理由は下記のとおりである。
【0033】
Cu:0.01〜1.2%
Cuは、固溶強化、析出強化により鋼板の強度を上昇させ、また焼入れ性を向上させると同時に、変態点を低下させることにより鋼板の冷却後の平たん度の向上に寄与するので、必要に応じて添加する。添加する場合、その含有量が0.01%未満ではその効果は十分に得られず、また、1.2%を超えて含有させると靱性および溶接性が劣化する。したがって、Cuの含有量は、0.01〜1.2%の範囲とする。
【0034】
Ni:0.01〜10%
Niは、鋼板の強度および靱性を向上させ、また、変態点を低下させて変態完了後組織内に未変態オーステナイトを得るのに有効な元素であって、必要に応じて添加する。添加する場合、その含有量が0.01%未満ではその効果は十分に発揮されず、また、10%を超えて含有させると経済性が損なわれるので好ましくない。
したがって、Niの含有量は、0.01〜10%の範囲とする。
【0035】
Cr:0.01〜5%
Crは、鋼板の強度上昇に有効であると同時に、変態点を低下させることにより鋼板の冷却後の平たん度の向上に寄与する元素で、必要に応じて添加する。添加する場合、その含有量が0.01%未満ではその効果は十分に発揮されず、また、5%を超えて含有させると溶接性が劣化する。したがって、Crの含有量は、0.01〜5%の範囲とする。
【0036】
Mo:0.01〜2%
Moは、鋼板の強度上昇と焼戻し軟化防止に有効であると同時に、変態点を低下させることにより鋼板の冷却後の平たん度の向上に寄与する元素で、必要に応じて添加する。添加する場合、その含有量が0.01%未満ではその効果は十分ではなく、また、2%を超えて含有させると溶接性が劣化するとともに、経済性が損なわれる。したがって、Moの含有量は、0.01〜2%の範囲とする。
【0037】
V:0.01〜0.1%
Vは、鋼板の強度上昇と焼戻し軟化防止に有効な元素であり、必要に応じて添加する。添加する場合、その含有量が0.01%未満ではその効果は十分ではなく、また、0.1%を超えて含有させると靱性と溶接性が劣化する。したがって、Vの含有量は、0.01〜0.1%の範囲とする。
【0038】
Nb:0.005〜0.1%
Nbは、炭窒化物を析出させることにより鋼板の強度を上昇させる効果を有しており、必要に応じて添加する。添加する場合、その含有量が0.005%未満ではその効果は十分ではなく、また、0.1%を超えて含有させると溶接性が劣化する。
したがって、Nbの含有量は、0.005〜0.1%の範囲とする。
【0039】
Ti:0.005〜0.1%
Tiは、オーステナイト結晶粒の成長を抑制して結晶粒を微細化すると同時に、炭窒化物の析出により鋼板の強度向上に有効な元素であり、必要に応じて添加する。添加する場合、0.005%未満ではその効果は十分ではなく、また、0.1%を超えて含有させると靱性および溶接性が劣化する。したがって、Tiの含有量は、0.005〜0.1%の範囲とする。
【0040】
B:0.0003〜0.010%
Bは、微量の添加で焼入れ性を高め、強度の上昇にも有効に作用する元素であり、必要に応じて添加する。添加する場合、0.0003%未満ではその効果は十分ではなく、また、0.010%を超えて含有させても効果が飽和するばかりでなく、溶接性を劣化させる原因となる。したがって、Bの含有量は、0.0003〜0.010%の範囲とする。
【0041】
REM:0.005〜0.050%
REMは、鋼中に含まれる介在物の形態制御作用があり、曲げ加工性、靱性および板厚方向の延性改善に有効な元素であり、必要に応じて添加する。添加する場合、0.005%未満ではその効果は十分ではなく、また、0.050%を超えて含有させても効果は飽和する。したがって、REMの含有量は、0.005〜0.050%とする。
【0042】
本発明の鋼板は、さらに、フォーマスタによる膨張量測定において、試験片を30℃/sで冷却したときに変態完了後の試験片の冷却による収縮率が0.35%以下であることが必要である。これは、収縮率が低い方が鋼板内に生じる変態応力が低下するからで、収縮率が0.35%以下で顕著な効果があらわれる。
【0043】
前述した本発明の鋼板において、Ms点が400℃以下であれば、冷却後の平たん度がより一層向上するので好ましい。Ms点が低下することにより、FeやC原子の拡散、変態に必要なエネルギーが増大して変態反応が進みにくくなり、後述する▲2▼式で表される平均膨張率が低下して、平たん度が向上するからである。
【0044】
以上説明した本発明の鋼板は、先に述べたように、オーステナイト領域に加熱されたあとの冷却過程で生じる変態応力が小さいので、冷却後の平たん度が良好である。特に、前記の冷却過程で鋼板内に発生する残留応力に占める変態応力の割合がより大きいと考えられる、板厚が10mm以下で、板幅が2000mmを超えるサイズの鋼板においては、その効果が顕著にあらわれ、本発明で規定する条件から外れる鋼板に比較して、冷却後の平たん度が極めて良好である。
【0045】
この鋼板は、通常工業的に用いられている製造設備によって容易に製造することができる。
【0046】
前記の板厚が10mm以下で、板幅が2000mmを超えるサイズの鋼板の場合を例にとると、まず、転炉、電気炉等により精錬し、必要に応じて真空処理を施し、前記の化学組成を満たすように成分調整した溶鋼を溶製する。次いで、この溶鋼を、連続鋳造法または造塊法によって鋳片または鋼塊に鋳造する。
【0047】
連続鋳造鋳片は、再加熱した後、所定の板厚および板幅、例えば、板幅を3000mm、4000mm、4500mm等に、また、板厚をそれぞれ5mm、10mm等になるように熱間圧延を施す。前記の再加熱は、950〜1300℃の温度域で行うのが好ましい。再加熱温度が950℃未満では、圧延仕上げ温度が極端に低下し、圧延時の形状確保が困難になるので好ましくなく、1300℃を超えると、結晶粒が粗大化し、靱性が低下するので好ましくないからである。なお、加熱時間は、被処理材(鋳片)のサイズ、特に鋳片厚さを考慮して適宜定めればよい。
【0048】
造塊法によって得られた鋼塊の場合は、分塊圧延により、製造しようとする鋼板に応じた適当なサイズの鋼片とし、前記と同様に再加熱した後、熱間圧延を施す。
【0049】
続いて、前記熱間圧延を施した後の鋼板を、例えば、900℃で再加熱した後、焼入れ処理を施す。この熱間圧延後の処理は、鋼板の機械的性質を整え、鋼板の種類に応じて必要とされる材質を具備させるために実施する処理であって、前記の「再加熱焼入れ」処理以外に、「再加熱焼入れ+焼戻し」、熱間圧延後の鋼板をそのまま焼入れる「直接焼入れ」、「直接焼入れ+焼戻し」、オンライン水冷の「TMCP(熱加工制御)」、「TMCP+焼戻し」等の処理を施してもよい。
【0050】
これらの処理は、いずれも水冷を含む処理である。この場合の冷却は、水冷に限らず、空冷であってもよいが、水冷を含む処理が施されて製造される鋼板の方が、変態応力の影響が強くあらわれやすく、冷却後の平たん度に優れるという効果が顕著である。
【0051】
このようにして製造される本発明の鋼板は、冷却後の平たん度が良好であり、製造後、レベラーやプレス等により矯正する必要がない。
【0052】
【実施例】
表1に示した化学組成の供試鋼(No.1〜No.29)を、造塊後、分塊圧延により、あるいは連続鋳造により鋼片とし、再加熱(再加熱温度:1100℃)した後、所定の板幅、板厚まで熱間圧延を施し、900℃に加熱した後、焼入れを実施した。
【0053】
表2に、各供試鋼(No.1〜No.29)について、フォーマスタ(富士電波工機(株)製、型番FTF−200)により測定した膨張量から求めた収縮率、各供試鋼について製造した各鋼板のサイズと焼入れ後の平たん度の値、および平たん度の評価結果を示す。
【0054】
【表1】

Figure 2004143516
【0055】
【表2】
Figure 2004143516
【0056】
収縮率は、製造した鋼板から採取した直径3mm×長さ10mmの円筒形の試験片をフォーマスタにセットし、900℃まで加熱して5分間保持した後、30℃/sで冷却したときの試験片の温度とその温度における膨張量の測定結果から求めた。なお、前記の試験片は、板厚10mmの鋼板については、1/4t(板厚の1/4)の位置で、板厚5mmの鋼板については、1/2tの位置で採取した。
【0057】
図1に、フォーマスタによる膨張量測定結果の一例を模式的に示す。
【0058】
図1において、縦軸の膨張量とは、〔測定温度における試験片の長さ〕から〔室温における試験片の長さ、すなわち10mm〕を差し引くことにより求めた値である。また、図中に示したA点、B点およびC点はそれぞれ下記の点を表す。
【0059】
A点:膨張量が図1に示す位置で極小値をとる点で、変態開始点
B点:膨張量が図1に示す位置で極大値をとる点で、変態完了点
C点:測定温度が100℃となる点
さらに、平均膨張率を▲2▼式で、収縮率を▲3▼式で定義する。
【0060】
【数1】
Figure 2004143516
【0061】
表2に示した平たん度の値は、JIS G 3193に規定される「ひずみの最大値から鋼板の厚さを引いたもの」で、2000mmピッチでの測定値のうちの最大値である。
【0062】
平たん度は、JISに規定される平たん度に基づき、下記の5段階(◎印、○印、△印、▲印および×印)で評価した。すなわち、JIS G 3193に鋼板の厚さおよび幅ごとに定められている平たん度の最大値の2/3の値(表2中に「JIS平たん度の2/3の値(単位:mm/2000mm)」として表示)を基準として、この値以下(すなわち、◎印、○印または△印)であれば、平たん度が良好とした。
◎印:試験を行った全サイズの鋼板が、安定して「JIS平たん度の2/3の値」     以下を満足し、さらに、その値よりも厳しい平たん度10(単位:mm/     2000mm)以下を全サイズの鋼板が満たしているもの
○印:試験を行った全サイズの鋼板が、「JIS平たん度の2/3の値」以下を満足し、さらに、その値よりも厳しい平たん度10以下を一部のサイズの鋼板が満たしているもの
△印:試験を行った全サイズの鋼板が、「JIS平たん度の2/3の値」以下を満足するもの
▲印:一部のサイズの鋼板が「JIS平たん度の2/3の値」以下を満たしていないもの
×印:全サイズの鋼板が「JIS平たん度の2/3の値」以下を満たしていないもの
表2の結果から明らかなように、収縮率が0.35%以下の供試鋼No.1〜No.18の鋼(本発明例)は、「JIS平たん度の2/3の値」以下を満足する良好な平たん度を有するものであった。このうち、供試鋼No.12およびNo.16の鋼を除いては、いずれもMs点(表1参照)が400℃以下で、400℃を超えるNo.12およびNo.16の鋼に比べて良好であった。また、本発明例のなかでも、収縮率が0.30%以下の鋼(No.3〜No.7、No.9〜No.11、No.13およびNo.14の鋼)では、平たん度が「JIS平たん度の2/3の値」以下よりもさらに厳しい平たん度10以下を満たしており、特に良好であった。
【0063】
図2は、表2に示した、平たん度の前記の5段階の評価結果を、収縮率を横軸に、Ms点を縦軸にとって図示したものである。この図から、収縮率が0.35%以下であれば、平たん度は◎印、○印または△印で良好であり、さらに、Ms点が400℃以下であれば、◎印または○印で、より一層良好であることが明らかである。
また、収縮率が0.30%以下であれば、いずれも◎印で、極めて良好であることも明白に読みとれる。
【0064】
【発明の効果】
本発明の鋼板は、オーステナイト領域に加熱されたあとの冷却過程で鋼板内に生じる変態応力が小さいので、冷却後の平たん度が良好である。特に、板厚が10mm以下で、板幅が2000mmを超える薄物広幅材の場合は、その効果が顕著にあらわれ、冷却後の平たん度が極めて良好である。
【図面の簡単な説明】
【図1】フォーマスタによる膨張量測定結果の一例を模式的に示す図である。
【図2】実施例の結果で、平たん度の評価結果を、収縮率を横軸に、Ms点を縦軸にとって示した図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel sheet having excellent flatness after cooling, and more particularly to a steel sheet having a small transformation stress generated during cooling from an austenite temperature range and having excellent flatness after cooling.
[0002]
[Prior art]
When the residual stress generated in the steel sheet in the cooling process after being heated to the austenitic region exceeds the yield point of the steel sheet, the steel sheet is deformed in shape and the flatness is reduced. In particular, this phenomenon appears remarkably in a steel sheet having a wide width which is difficult to manufacture as a steel strip, for example, a steel sheet having a width exceeding 2000 mm.
[0003]
When this shape collapse can be corrected, it is corrected by a leveler or a press, but extra large man-hours are required, such as adding a process. If the deformation of the shape cannot be corrected, the steel sheet is scrapped as a non-conforming product. Regardless of the straightening or scrap processing, industrially large waste occurs.
[0004]
Residual stress, which is a major factor in the reduction in flatness, is generally expressed as the sum of thermal stress generated due to shrinkage during cooling (particularly rapid cooling) and transformation stress generated due to expansion during transformation. ing.
[0005]
The thermal stress makes it difficult to uniformly cool all parts of the steel sheet due to the mass effect of the steel sheet, and is caused by a temporal difference in cooling and shrinkage between the outer peripheral part and the inner part of the steel sheet. On the other hand, the transformation stress is caused by the transformation from the austenite phase to the ferrite phase or the martensite phase, and is also caused by the time difference between the transformation and expansion between the outer peripheral portion and the inner portion of the steel sheet.
[0006]
During actual cooling of the steel sheet, thermal stress and transformation stress are generated together with such shrinkage and expansion, producing tensile and compressive stress, acting in a complex manner, and partially remaining in the steel sheet, It causes shape collapse such as a decrease in flatness after cooling. At this time, whether the thermal stress or the transformation stress has a greater effect on the reduction in flatness depends on the relationship between the thickness and width of the steel sheet, the cooling rate, and the like.
[0007]
As described above, in order to reduce the thermal stress among the thermal stress and the transformation stress which greatly affect the flatness of the steel sheet after cooling, conventionally, attempts have been made to cool the steel sheet as uniformly as possible. Was. For example, in Patent Literature 1, when a hot-rolled high-temperature steel plate, particularly a relatively thin and wide steel plate is cooled by a roller quench device, an auxiliary quench nozzle that injects cooling water only into the central portion of the steel plate is used. A method of uniformly cooling a steel sheet in a width direction to obtain a steel sheet having good flatness is disclosed.
[0008]
Further, Patent Document 2 discloses that a steel sheet having a composition in which the amount of alloying elements such as Ni is suppressed economically and does not deteriorate the weldability, etc., ensures good flatness before quenching, A method for producing a high-toughness high-strength steel sheet having low residual stress by tempering to reduce the temperature distribution depending on the position in the steel sheet.
[0009]
However, no attempt has been made to obtain a steel sheet having good flatness by positively reducing the transformation stress.
[0010]
[Patent Document 1]
JP-A-5-96320 [Patent Document 2]
Japanese Patent Application Laid-Open No. 7-126439
[Problems to be solved by the invention]
The present invention has been made in view of such a situation, and the problem is that the transformation stress generated during cooling is small, and the flatness after cooling is excellent in flatness, particularly, the transformation stress occupying the residual stress generated in the steel plate. It is an object of the present invention to provide a steel sheet having a flatness after cooling of a steel sheet having a thickness of 10 mm or less and a width exceeding 2000 mm, which is considered to have a larger ratio.
[0012]
[Means for Solving the Problems]
It is considered that the transformation stress that occurs during cooling in a process such as quenching treatment and greatly affects flatness is caused by the following three phenomena (a) to (c) occurring simultaneously in a steel sheet.
(A) Shrinkage due to cooling of austenite phase in the region of austenite 1 phase (b) Expansion due to change in crystal structure during transformation from austenite phase to ferrite phase or martensite phase (c) Microstructure after completion of transformation Shrinkage due to cooling, that is, at the time of cooling, the outer peripheral portion of the steel plate (near the four sides of the steel plate (refer to the four peripheral portions)) completes the transformation earlier than the inside, and as the cooling proceeds, the outer peripheral portion becomes the above (c) ), The structure shrinks with the cooling of the structure after completion of the transformation, and at the same time, the inside expands due to the transformation from the austenitic phase to the ferrite phase, etc. as shown in FIG. As a result, a large compressive stress is generated inside the steel sheet, and this phenomenon appears as the above-mentioned shape collapse (in terms of flatness, it can be said to be “flat collapse”). This phenomenon is remarkable in a thin steel plate (for example, a steel plate having a thickness of 10 mm or less) in which the temperature difference between the outer peripheral portion and the inner portion is not so large and the influence of thermal stress is relatively small.
[0013]
Therefore, the present inventors have studied and found that, after controlling the chemical composition of the steel material, at the temperature at which the transformation is completed, the untransformed austenite phase remains in the structure after the completion of the transformation, and at the time of subsequent cooling, the structure Within, by simultaneously causing the shrinkage of the ferrite phase or the like that has already been completed after transformation and the expansion accompanying the transformation from the untransformed austenite phase to the ferrite phase or the like, it is possible to reduce the contraction rate of the structure after the completion of the transformation. I found it. It is considered that the contraction and the expansion cancel each other, and the contraction rate of the tissue apparently decreases after the transformation is completed. Thereby, the transformation stress generated in the steel sheet can be reduced, and a steel sheet excellent in flatness after cooling can be easily obtained.
[0014]
Further, by lowering the martensitic transformation start temperature (hereinafter, referred to as “Ms point”), it is possible to suppress the expansion coefficient accompanying the change in the crystal structure during transformation from an austenite phase to a ferrite phase, etc. It has been found that a steel sheet excellent in degree can be stably obtained.
[0015]
The present invention has been made based on these findings, and the gist of the present invention lies in the following steel sheet having excellent flatness after cooling.
[0016]
In mass%, C: 0.01 to 0.60%, Si: 0.01 to 0.60%, Mn: 0.30 to 2.0%, and Al: 0.003 to 0.10% The balance consists of Fe and impurities, P in the impurities is 0.03% or less, S is 0.01% or less, and N is 0.010% or less. A steel sheet having excellent flatness after cooling, wherein the specimen has a shrinkage rate of 0.35% or less upon cooling after transformation is completed when cooled at / s.
[0017]
The “for master” refers to an automatic continuous cooling transformation measuring device, and is generally used when measuring a CCT curve (continuous cooling transformation curve). A device that continuously measures the amount of expansion of a test piece under specific cooling conditions and measures the transformation point from the change in the shrinkage.By using this device, it is possible to specify the shrinkage in a certain temperature range. is there.
[0018]
The term “flatness” as used herein refers to the flatness of a steel sheet specified in JIS G 3193 (shape, dimensions, mass and tolerance of hot-rolled steel sheet and steel strip).
[0019]
This steel sheet further contains, by mass%, Cu: 0.01 to 1.2%, Ni: 0.01 to 10%, Cr: 0.01 to 5%, Mo: 0.01 to 2%, and V: Any one selected from 0.01 to 0.1%, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.1%, and B: 0.0003 to 0.010% Species or more and / or rare earth elements (hereinafter referred to as “REM”, and the content means the total content of REM included): 0.005 to 0.050% In the measurement of the amount of expansion by the Formastar, when the test piece is cooled at 30 ° C./s, the shrinkage due to cooling of the test piece after the transformation is completed may be 0.35% or less.
[0020]
In the above steel sheet, when the Ms point represented by the following formula (1) is 400 ° C. or lower, the flatness after cooling is more excellent, which is preferable. In the formula (1), symbols representing each element such as C and Si represent the content (% by mass) of each element.
Ms point (° C.) = 521-353C-22Si-24Mn-17Ni-18Cr-8Cu-16Mo (1)
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the steel sheet having excellent flatness after cooling according to the present invention will be described in detail. In addition, “%” of the chemical component content of the steel sheet means “% by mass”.
[0022]
The reason why the chemical composition, the shrinkage ratio under predetermined conditions in the Formaster, and the Ms point of the steel sheet of the present invention are limited as described above will be described.
[0023]
C: 0.01 to 0.60%
C is an element necessary for securing the strength of the steel sheet and also necessary for securing the amount of untransformed austenite at the time of completion of the transformation. However, if the content is less than 0.01%, the effect cannot be sufficiently obtained, and if the content exceeds 0.60%, the weld cracking resistance deteriorates. Therefore, the C content is in the range of 0.01 to 0.60%. When good weldability is required, the upper limit of the C content is preferably set to 0.20%. Furthermore, when good low-temperature impact characteristics are required, the upper limit is preferably set to 0.10%.
[0024]
Si: 0.01 to 0.60%
Si is an element added as a deoxidizing element at the time of smelting, and contributes to securing the strength of the steel sheet and, at the same time, lowering the transformation point to improve the flatness after cooling. This effect cannot be sufficiently obtained when the Si content is less than 0.01%, and the weldability and toughness are deteriorated when the Si content exceeds 0.60%. Therefore, the Si content is in the range of 0.01 to 0.60%.
[0025]
Mn: 0.30-2.0%
Mn is an element necessary for improving the hardenability and increasing the strength of the steel sheet, and at the same time ensuring the amount of untransformed austenite at the temperature at the time of completion of the transformation. In order to obtain such an effect, it is necessary to contain Mn in an amount of 0.30% or more. However, if it is contained in excess of 2.0%, toughness and weldability are undesirably deteriorated. Therefore, the Mn content is in the range of 0.30 to 2.0%.
[0026]
Al: 0.003 to 0.10%
Al is an element added as a deoxidizing element at the time of smelting, but its effect is not sufficient if its content is less than 0.003%, and if it exceeds 0.10%, its toughness deteriorates. I do. Therefore, the Al content is in the range of 0.003 to 0.10%.
[0027]
The steel sheet according to the present invention has a balance of Fe and impurities other than the components described above. As impurities, it is necessary to suppress the upper limits of P, S, and N.
[0028]
P: 0.03% or less P not only impairs the toughness of the base material and the welded portion, but also lowers the weldability. Therefore, the content of P is preferably lower. However, an excessive reduction will increase the cost, so that the P content is 0.03% or less as a range that does not cause actual harm.
[0029]
S: 0.01% or less S forms inclusions such as MnS and deteriorates bending workability and toughness. Therefore, the content of S is preferably lower. However, since an excessive reduction causes an increase in cost, the S content is set to 0.01% or less as a range that does not cause actual harm.
[0030]
N: 0.010% or less N impairs the toughness of the base metal and the welded portion, so that the N content is preferably low. However, excessive reduction leads to an increase in cost, so that the N content is set to 0.010% or less as a range that does not cause actual harm.
[0031]
The steel sheet of the present invention further includes Cu: 0.01 to 1.2%, Ni: 0.01 to 10%, Cr: 0.01 to 5%, Mo: 0.01 to 2%, and V: 0. 0.01 to 0.1%, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.1%, and B: any one selected from 0.0003 to 0.010% Above, or REM: 0.005 to 0.050%, or any one selected from Cu, Ni, Cr, Mo, V, Nb, Ti, and B in the respective content ranges. It may contain the above and REM in the above content range.
[0032]
The above-mentioned Cu, Ni, Cr, Mo, V, Nb, Ti and B all have the effect of increasing the strength of the steel sheet. In addition, some components have a specific action effect such as improving the toughness or improving the flatness after cooling, in addition to the effect of increasing the strength, and may be appropriately added as necessary. REM has a function of controlling the shape of inclusions and is effective in improving bending workability and the like. Therefore, REM is added as necessary. The effects of these components and the reasons for limiting the contents are as follows.
[0033]
Cu: 0.01 to 1.2%
Cu increases the strength of the steel sheet by solid solution strengthening and precipitation strengthening, and also improves the hardenability, and at the same time contributes to the improvement of flatness after cooling the steel sheet by lowering the transformation point. Add accordingly. In the case of adding, if the content is less than 0.01%, the effect cannot be sufficiently obtained, and if the content exceeds 1.2%, toughness and weldability are deteriorated. Therefore, the content of Cu is in the range of 0.01 to 1.2%.
[0034]
Ni: 0.01 to 10%
Ni is an element that is effective for improving the strength and toughness of the steel sheet and for lowering the transformation point to obtain untransformed austenite in the structure after the completion of the transformation, and is added as necessary. In the case of adding, if its content is less than 0.01%, its effect is not sufficiently exhibited, and if its content exceeds 10%, economical efficiency is impaired, so that it is not preferable.
Therefore, the content of Ni is set in the range of 0.01 to 10%.
[0035]
Cr: 0.01 to 5%
Cr is an element that is effective in increasing the strength of the steel sheet and also contributes to improving the flatness after cooling the steel sheet by lowering the transformation point, and is added as necessary. In the case of adding, if the content is less than 0.01%, the effect is not sufficiently exhibited, and if the content exceeds 5%, the weldability is deteriorated. Therefore, the content of Cr is in the range of 0.01 to 5%.
[0036]
Mo: 0.01 to 2%
Mo is an element that is effective in increasing the strength of the steel sheet and preventing temper softening and, at the same time, contributes to improving the flatness after cooling the steel sheet by lowering the transformation point, and is added as necessary. When added, if the content is less than 0.01%, the effect is not sufficient, and if added more than 2%, the weldability is deteriorated and the economy is impaired. Therefore, the content of Mo is in the range of 0.01 to 2%.
[0037]
V: 0.01-0.1%
V is an element effective in increasing the strength of the steel sheet and preventing temper softening, and is added as necessary. When added, if the content is less than 0.01%, the effect is not sufficient, and if added more than 0.1%, toughness and weldability are deteriorated. Therefore, the content of V is in the range of 0.01 to 0.1%.
[0038]
Nb: 0.005 to 0.1%
Nb has the effect of increasing the strength of the steel sheet by precipitating carbonitride, and is added as necessary. In the case of adding, if the content is less than 0.005%, the effect is not sufficient, and if the content exceeds 0.1%, the weldability is deteriorated.
Therefore, the Nb content is in the range of 0.005 to 0.1%.
[0039]
Ti: 0.005 to 0.1%
Ti is an element that suppresses the growth of austenite crystal grains and refines the crystal grains, and at the same time, is an element effective for improving the strength of the steel sheet by precipitation of carbonitride, and is added as necessary. In the case of adding, if less than 0.005%, the effect is not sufficient, and if it exceeds 0.1%, toughness and weldability deteriorate. Therefore, the content of Ti is set in the range of 0.005 to 0.1%.
[0040]
B: 0.0003-0.010%
B is an element that enhances hardenability by adding a trace amount and effectively acts to increase strength, and is added as necessary. When added, if less than 0.0003%, the effect is not sufficient, and if added over 0.010%, the effect is not only saturated, but also causes the weldability to deteriorate. Therefore, the content of B is in the range of 0.0003 to 0.010%.
[0041]
REM: 0.005 to 0.050%
REM is an element that has the function of controlling the form of inclusions contained in steel and is effective in improving bending workability, toughness, and ductility in the thickness direction, and is added as necessary. In the case of adding, if less than 0.005%, the effect is not sufficient, and even if it exceeds 0.050%, the effect is saturated. Therefore, the content of REM is set to 0.005 to 0.050%.
[0042]
Further, in the steel sheet of the present invention, when the test piece is cooled at 30 ° C./s, the shrinkage rate due to cooling of the test piece after the transformation is required to be 0.35% or less in the expansion amount measurement by Formaster. It is. This is because the lower the shrinkage, the lower the transformation stress generated in the steel sheet, and a remarkable effect is obtained when the shrinkage is 0.35% or less.
[0043]
In the steel sheet of the present invention described above, it is preferable that the Ms point be 400 ° C. or lower, because the flatness after cooling is further improved. When the Ms point decreases, the energy required for the diffusion and transformation of Fe and C atoms increases, making it difficult for the transformation reaction to proceed. As a result, the average expansion coefficient represented by the following equation (2) decreases, and It is because the degree of improvement is improved.
[0044]
As described above, the steel sheet of the present invention described above has a small transformation stress generated in a cooling process after being heated to the austenite region, and thus has good flatness after cooling. In particular, the effect is remarkable in a steel sheet having a thickness of 10 mm or less and a width of more than 2000 mm, which is considered to have a larger ratio of the transformation stress to the residual stress generated in the steel sheet in the cooling process. And the flatness after cooling is extremely good as compared with a steel sheet which does not satisfy the conditions specified in the present invention.
[0045]
This steel sheet can be easily manufactured by manufacturing equipment generally used industrially.
[0046]
Taking the case of a steel sheet having a thickness of 10 mm or less and a width of more than 2000 mm as an example, first, it is refined by a converter, an electric furnace, or the like, subjected to a vacuum treatment as necessary, The molten steel whose composition is adjusted to satisfy the composition is smelted. Next, the molten steel is cast into a slab or a steel ingot by a continuous casting method or an ingot making method.
[0047]
After reheating the continuous cast slab, hot rolling is performed to a predetermined plate thickness and plate width, for example, a plate width of 3000 mm, 4000 mm, 4500 mm, and the like, and a plate thickness of 5 mm and 10 mm, respectively. Apply. The reheating is preferably performed in a temperature range of 950 to 1300 ° C. When the reheating temperature is lower than 950 ° C., the rolling finish temperature is extremely lowered, and it becomes difficult to secure the shape at the time of rolling. When the reheating temperature is higher than 1300 ° C., the crystal grains are coarsened, and the toughness is lowered. Because. Note that the heating time may be appropriately determined in consideration of the size of the material to be processed (cast piece), particularly the thickness of the cast piece.
[0048]
In the case of a steel ingot obtained by the ingot-making method, a billet of an appropriate size according to the steel sheet to be manufactured is obtained by ingot rolling, reheated in the same manner as described above, and then subjected to hot rolling.
[0049]
Subsequently, the steel sheet that has been subjected to the hot rolling is reheated at, for example, 900 ° C., and then subjected to a quenching treatment. The process after the hot rolling is a process performed to adjust the mechanical properties of the steel sheet and to provide a material required according to the type of the steel sheet. , "Reheating quenching + tempering", "Direct quenching", "Direct quenching + tempering", quenching the steel sheet after hot rolling as it is, "TMCP (thermal processing control)" of online water cooling, "TMCP + tempering", etc. May be applied.
[0050]
These processes are all processes including water cooling. The cooling in this case is not limited to water cooling, and may be air cooling.However, the steel sheet manufactured by performing the processing including water cooling is more likely to be affected by the transformation stress, and the flatness after cooling. Is remarkable.
[0051]
The thus manufactured steel sheet of the present invention has good flatness after cooling, and does not need to be straightened by a leveler, a press, or the like after the manufacture.
[0052]
【Example】
The test steels (No. 1 to No. 29) having the chemical compositions shown in Table 1 were formed into ingots by slab-rolling or continuous casting after ingot casting, and reheated (reheat temperature: 1100 ° C.). Thereafter, hot rolling was performed to a predetermined sheet width and sheet thickness, heated to 900 ° C., and then quenched.
[0053]
Table 2 shows the shrinkage ratios of the test steels (No. 1 to No. 29) obtained from the amount of expansion measured by Formaster (Model No. FTF-200, manufactured by Fuji Denki Koki Co., Ltd.). The size of each steel plate manufactured for steel, the value of flatness after quenching, and the evaluation result of flatness are shown.
[0054]
[Table 1]
Figure 2004143516
[0055]
[Table 2]
Figure 2004143516
[0056]
The shrinkage rate was determined by setting a cylindrical test piece having a diameter of 3 mm and a length of 10 mm collected from the manufactured steel plate in a formastar, heating it to 900 ° C, holding it for 5 minutes, and then cooling it at 30 ° C / s. It was determined from the temperature of the test piece and the measurement result of the amount of expansion at that temperature. In addition, the said test piece was extract | collected in the position of 1 / 4t (1/4 of plate thickness) about the steel plate of plate thickness 10mm, and the position of 1 / 2t about the steel plate of plate thickness 5mm.
[0057]
FIG. 1 schematically shows an example of the expansion amount measurement result by the Formaster.
[0058]
In FIG. 1, the expansion amount on the vertical axis is a value obtained by subtracting [the length of the test piece at room temperature, that is, 10 mm] from [the length of the test piece at the measurement temperature]. The points A, B and C shown in the figure respectively represent the following points.
[0059]
Point A: A point at which the expansion amount has a minimum value at the position shown in FIG. 1, transformation start point B: A point at which the expansion amount has a maximum value at the position shown in FIG. The point at which the temperature reaches 100 ° C. Further, the average expansion rate is defined by equation (2), and the shrinkage rate is defined by equation (3).
[0060]
(Equation 1)
Figure 2004143516
[0061]
The flatness value shown in Table 2 is “the maximum value of the strain minus the thickness of the steel sheet” specified in JIS G 3193, and is the maximum value of the measured values at a pitch of 2000 mm.
[0062]
The flatness was evaluated based on the flatness specified by JIS in the following five grades (◎, ○, △, ▲, and ×). That is, a value of 2/3 of the maximum flatness defined in JIS G 3193 for each thickness and width of the steel sheet (in Table 2, "2/3 value of JIS flatness (unit: mm) / 2000 mm) "), the flatness was determined to be good if the value was equal to or less than this value (that is, ◎, ○ or Δ).
印: Steel plates of all sizes tested stably satisfy the following “2/3 value of JIS flatness” and a flatness 10 stricter than that value (unit: mm / 2000 mm) ) Steel plates of all sizes satisfy the following: ○: Steel plates of all sizes tested satisfy the value of "2/3 of JIS flatness" or less, and the flatness is stricter than that value. Steel plates of some sizes satisfy the hardness of 10 or less △ mark: Steel plates of all sizes tested satisfy "2/3 value of JIS flatness" or less ▲ mark: 1 The steel sheet of the size of the part does not satisfy the value of "2/3 of JIS flatness" or less x mark: The steel sheet of all sizes does not satisfy the value of "2/3 of the JIS flatness" or less As is clear from the results in Table 2, the test steel No. having a shrinkage of 0.35% or less was used. 1 to No. The steel No. 18 (Example of the present invention) had a good flatness satisfying the value of "2/3 of the JIS flatness" or less. Of these, test steel No. 12 and No. Except for the steel No. 16, the Ms point (see Table 1) was 400 ° C. or less and exceeded 400 ° C. 12 and No. It was better than the steel No. 16. Further, among the examples of the present invention, the steel having a shrinkage of 0.30% or less (steel of No. 3 to No. 7, No. 9 to No. 11, No. 13 and No. 14) is flat. The degree of flatness satisfies the stricter flatness of 10 or less than "2/3 value of JIS flatness" or less, and was particularly good.
[0063]
FIG. 2 shows the evaluation results of the above-mentioned five levels of flatness shown in Table 2 with the shrinkage ratio on the horizontal axis and the Ms point on the vertical axis. From this figure, when the shrinkage rate is 0.35% or less, the flatness is good with ◎, △ or Δ, and when the Ms point is 400 ° C. or less, ◎ or ま た は. It is clear that the results are even better.
In addition, when the shrinkage ratio is 0.30% or less, all of them are marked with い ず れ and it can be clearly read that they are extremely good.
[0064]
【The invention's effect】
The steel sheet of the present invention has good flatness after cooling because the transformation stress generated in the steel sheet during the cooling process after being heated to the austenite region is small. In particular, in the case of a thin and wide material having a thickness of 10 mm or less and a width of more than 2000 mm, the effect is remarkable, and the flatness after cooling is extremely good.
[Brief description of the drawings]
FIG. 1 is a diagram schematically illustrating an example of an expansion amount measurement result by a Formaster.
FIG. 2 is a diagram showing the results of the example, in which the evaluation result of flatness is shown with the shrinkage ratio on the horizontal axis and the Ms point on the vertical axis.

Claims (4)

質量%で、C:0.01〜0.60%、Si:0.01〜0.60%、Mn:0.30〜2.0%およびAl:0.003〜0.10%を含有し、残部がFeおよび不純物からなり、不純物中のPが0.03%以下、Sが0.01%以下、Nが0.010%以下で、フォーマスタによる膨張量測定において、試験片を30℃/sで冷却したときに変態完了後の試験片の冷却による収縮率が0.35%以下であることを特徴とする冷却後の平たん度に優れる鋼板。In mass%, C: 0.01 to 0.60%, Si: 0.01 to 0.60%, Mn: 0.30 to 2.0%, and Al: 0.003 to 0.10% The balance consists of Fe and impurities, P in the impurities is 0.03% or less, S is 0.01% or less, and N is 0.010% or less. A flat steel sheet having excellent flatness after cooling, wherein the steel sheet has a shrinkage rate of 0.35% or less upon cooling of the test piece after transformation is completed when cooled at / s. 請求項1に記載の成分に加えて、さらに、質量%で、Cu:0.01〜1.2%、Ni:0.01〜10%、Cr:0.01〜5%、Mo:0.01〜2%、V:0.01〜0.1%、Nb:0.005〜0.1%、Ti:0.005〜0.1%およびB:0.0003〜0.010%のうちから選ばれた何れか1種以上を含有し、残部がFeおよび不純物からなり、不純物中のPが0.03%以下、Sが0.01%以下、Nが0.010%以下で、フォーマスタによる膨張量測定において、試験片を30℃/sで冷却したときに変態完了後の試験片の冷却による収縮率が0.35%以下であることを特徴とする冷却後の平たん度に優れる鋼板。In addition to the components described in claim 1, further, by mass%, Cu: 0.01 to 1.2%, Ni: 0.01 to 10%, Cr: 0.01 to 5%, Mo: 0. 01 to 2%, V: 0.01 to 0.1%, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.1%, and B: 0.0003 to 0.010% And the balance consists of Fe and impurities, P in the impurities is 0.03% or less, S is 0.01% or less, N is 0.010% or less, and In the measurement of the amount of expansion by the master, when the test piece is cooled at 30 ° C./s, the shrinkage due to cooling of the test piece after the transformation is 0.35% or less is characterized by flatness after cooling. Excellent steel plate. 請求項1または2に記載の成分に加えて、さらに、質量%で、希土類元素:0.005〜0.050%を含有し、残部がFeおよび不純物からなり、不純物中のPが0.03%以下、Sが0.01%以下、Nが0.010%以下で、フォーマスタによる膨張量測定において、試験片を30℃/sで冷却したときに変態完了後の試験片の冷却による収縮率が0.35%以下であることを特徴とする冷却後の平たん度に優れる鋼板。In addition to the component according to claim 1 or 2, further contains 0.005 to 0.050% by mass of a rare earth element, with the balance being Fe and impurities, and P in the impurities being 0.03%. % Or less, S is 0.01% or less, and N is 0.010% or less. In the expansion amount measurement by Formaster, when the test piece is cooled at 30 ° C./s, shrinkage due to cooling of the test piece after transformation is completed. A steel sheet having excellent flatness after cooling, wherein the rate is 0.35% or less. 下記▲1▼式で求められるマルテンサイト変態開始温度(Ms点)が400℃以下であることを特徴とする請求項1〜3の何れかに記載の冷却後の平たん度に優れる鋼板。
Ms点(℃)=521−353C−22Si−24Mn−17Ni−18Cr−8Cu−16Mo ・・・▲1▼
The steel sheet having excellent flatness after cooling according to any one of claims 1 to 3, wherein a martensite transformation start temperature (Ms point) determined by the following formula (1) is 400 ° C or less.
Ms point (° C.) = 521-353C-22Si-24Mn-17Ni-18Cr-8Cu-16Mo (1)
JP2002308823A 2002-10-23 2002-10-23 Steel sheet having excellent flatness after cooling Pending JP2004143516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308823A JP2004143516A (en) 2002-10-23 2002-10-23 Steel sheet having excellent flatness after cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308823A JP2004143516A (en) 2002-10-23 2002-10-23 Steel sheet having excellent flatness after cooling

Publications (1)

Publication Number Publication Date
JP2004143516A true JP2004143516A (en) 2004-05-20

Family

ID=32454855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308823A Pending JP2004143516A (en) 2002-10-23 2002-10-23 Steel sheet having excellent flatness after cooling

Country Status (1)

Country Link
JP (1) JP2004143516A (en)

Similar Documents

Publication Publication Date Title
JP6762415B2 (en) Hot forming member with excellent crack propagation resistance and ductility, and its manufacturing method
JP5321605B2 (en) High strength cold-rolled steel sheet having excellent ductility and method for producing the same
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
JP7277836B2 (en) hot stamped body
JP7277837B2 (en) hot stamped body
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP7268182B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
CN110343970A (en) A kind of hot rolling high strength and ductility medium managese steel and preparation method thereof having lower Mn content
JP5747249B2 (en) High-strength steel material excellent in strength, ductility and energy absorption capacity and its manufacturing method
JP2008297570A (en) Low yield ratio steel sheet
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
CN111032898B (en) Ferritic stainless steel hot-rolled annealed steel sheet and method for producing same
CN111655892B (en) Hot-rolled steel sheet for continuous pipe and method for producing same
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
KR102463485B1 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP7229827B2 (en) Manufacturing method of high carbon steel sheet
JPH0741854A (en) Production of ferrite single phase stainless hot rolled steel sheet excellent in toughness
JPH08199310A (en) Production of high strength martensitic stainless steel member
JP2023507639A (en) HIGH STRENGTH FERRITIC STAINLESS STEEL FOR CLAMP AND METHOD FOR MANUFACTURING SAME
JP6610067B2 (en) Cold rolled steel sheet manufacturing method and cold rolled steel sheet
JP2004143516A (en) Steel sheet having excellent flatness after cooling
JP4342061B2 (en) Ferritic stainless steel material for frame and manufacturing method thereof
US20240216967A1 (en) Method for producing steel sheet for cold rolling and method for producing cold-rolled steel sheet
JP3606135B2 (en) Ferritic stainless steel sheet for spring and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Effective date: 20051219

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060224

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060620

Free format text: JAPANESE INTERMEDIATE CODE: A02