JP2004143405A - Method for producing resin fine particle - Google Patents

Method for producing resin fine particle Download PDF

Info

Publication number
JP2004143405A
JP2004143405A JP2003118727A JP2003118727A JP2004143405A JP 2004143405 A JP2004143405 A JP 2004143405A JP 2003118727 A JP2003118727 A JP 2003118727A JP 2003118727 A JP2003118727 A JP 2003118727A JP 2004143405 A JP2004143405 A JP 2004143405A
Authority
JP
Japan
Prior art keywords
resin
fluid
pressure
fine particles
resin fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003118727A
Other languages
Japanese (ja)
Other versions
JP4504629B2 (en
Inventor
Katsunori Toyoshima
豊嶋 克典
Hiroshi Maenaka
前中 寛
Toshio Tada
多田 俊生
Yohei Nishimura
西村 洋平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003118727A priority Critical patent/JP4504629B2/en
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to KR1020057020020A priority patent/KR20060006051A/en
Priority to TW092134124A priority patent/TW200422326A/en
Priority to AU2003289159A priority patent/AU2003289159A1/en
Priority to US10/553,421 priority patent/US20060116468A1/en
Priority to PCT/JP2003/015506 priority patent/WO2004094507A1/en
Priority to EP03777225A priority patent/EP1616900A4/en
Publication of JP2004143405A publication Critical patent/JP2004143405A/en
Application granted granted Critical
Publication of JP4504629B2 publication Critical patent/JP4504629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing resin particles capable of obtaining the resin particles having a high sphericity and uniform particle diameter easily. <P>SOLUTION: The method for producing resin particles is provided by heating and/or pressurizing a mixture of the resin with a fluid not dissolving the resin at a normal temperature and pressure, and having a process 1 of making at least one component of the liquid state fluid as a supercritical state or semi-supercritical state and a process 2 of lowering the temperature of the liquid state fluid and releasing the pressure. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、真球度が高く、粒子径の揃った樹脂微粒子を容易に得ることができる樹脂微粒子の製造方法に関する。
【0002】
【従来の技術】
樹脂微粒子は、滑り性付与剤、トナー、塗料用艶消し剤、光拡散用の添加剤をはじめ、クロマトグラフィー用充填剤や免疫診断試薬用担体等の用途に広く利用されている。とりわけ近年では、液晶パネル用のスペーサーや導電性微粒子の基材粒子等のIT分野での用途も拡大している。このような液晶パネル用のスペーサーや導電性微粒子の基材粒子等のIT分野等に用いる樹脂微粒子には、球形でかつ粒子径分布の狭いことが求められている。
【0003】
従来、樹脂微粒子を作製する方法としては、粉砕機等を用いて物理的に粉砕する方法が用いられていた。この方法によれば、多くの樹脂について極めて低コストかつ容易に樹脂微粒子を得ることができる。しかしながら、この方法では、得られる樹脂微粒子の形状は不定形であり、粒子径も大きく、粒子径分布の狭いものを得るには分級等の作業を必要とし、更に得られた樹脂微粒子の強度も弱くなる傾向があるという問題点があった。
【0004】
これに対して、乳化重合、分散重合、シード重合、懸濁重合等の重合方法により樹脂微粒子を作製する方法が提案されている。例えば、特許文献1には、予め所望の大きさの液滴を含むモノマー分散液を作製し、次いでこの分散液を重合槽に導入して通常の攪拌下に重合を行うことによって、得られる樹脂微粒子の粒子径や粒度分布を制御する方法が提案されている。この方法によれば、球形であり、かつ、粒子径分布の狭い樹脂微粒子を作製することができる。しかしながら、これらの方法は、これらの重合方法で重合できる樹脂についてしか適用できないことに加え、目的とする粒子径の樹脂微粒子を作製するには重合条件等を極めて厳格に調整する必要があるという問題があった。
【0005】
【特許文献1】
特開平3−131603号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記現状に鑑み、真球度が高く、粒子径の揃った樹脂微粒子を容易に得ることができる樹脂微粒子の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、樹脂と、常温常圧では前記樹脂を溶解しない流体との混合物を加熱及び/又は加圧して、前記流体の少なくとも一成分を超臨界状態又は亜臨界状態にする工程1と、前記流体を降温して解圧する工程2とを有する樹脂微粒子の製造方法である。
以下に本発明を詳述する。
【0008】
本発明者らは、鋭意検討の結果、樹脂と、常温常圧では該樹脂を溶解しない流体との混合物を加熱及び/又は加圧して流体の少なくとも一成分を超臨界状態又は亜臨界状態にし、その後降温して解圧することにより、真球度が高く粒子径の揃った樹脂微粒子が流体中に懸濁した樹脂微粒子懸濁液が得られることを見出し、本発明を完成するに至った。
超臨界状態又は亜臨界状態にある流体は気体の有する拡散性と液体の有する溶解性とを併せ持つ。従って、常温常圧では樹脂に対して貧溶媒であっても超臨界状態又は亜臨界状態にすることにより良溶媒となり、樹脂を溶解、分散することができる。その後、降温、解圧すれば、再び流体は貧溶媒となることから、溶解していた樹脂が析出する。超臨界状態又は亜臨界状態にある流体中では樹脂は極めて高い分散状態にあったことから、析出してくる樹脂は極めて小さく、また、その表面張力によってほぼ完全な球形になるものと考えられる。
【0009】
なお、本明細書において、超臨界流体とは、臨界圧力(以下、Pcともいう)以上、かつ臨界温度(以下、Tcともいう)以上の条件の流体を意味する。また、亜臨界流体とは、超臨界状態以外の状態であって、反応時の圧力、温度をそれぞれP、Tとしたときに、0.5<P/Pc<1.0かつ0.5<T/Tc、又は、0.5<P/Pcかつ0.5<T/Tc<1.0の条件の流体を意味する。上記亜臨界流体の好ましい圧力、温度の範囲は、0.6<P/Pc<1.0かつ0.6<T/Tc、又は、0.6<P/Pcかつ0.6<T/Tc<1.0である。ただし、流体が水である場合には、亜臨界流体となる温度、圧力の範囲は、0.5<P/Pc<1.0かつ0.5<T/Tc、又は、0.5<P/Pcかつ0.5<T/Tc<1.0である。なお、ここで温度は摂氏を表すが、Tc又はTのいずれかが摂氏ではマイナスである場合には、上記亜臨界状態を表す式はこの限りではない。
【0010】
本発明の樹脂微粒子の製造方法では、まず、樹脂と常温常圧では該樹脂が熔解しない流体とを混合する。
本発明の樹脂微粒子の製造方法を適用できる樹脂としては特に限定されず、例えば、ポリエチレンテレフタレート等のポリエステル樹脂;ポリフェニレンエーテル樹脂;脂環式炭化水素樹脂;熱可塑性ポリイミド樹脂;ポリアミドイミド樹脂;ポリエステルイミド樹脂;ポリオレフィン樹脂;ポリスチレン樹脂;ポリアミド樹脂;ポリビニルアセタール樹脂;ポリビニルアルコール樹脂;ポリ酢酸ビニル樹脂;ポリ塩化ビニル樹脂、ポリメタクリル酸メチル等のポリ(メタ)アクリル酸エステル樹脂;ポリエーテルイミド樹脂;熱可塑性ポリベンゾイミダゾール樹脂等が挙げられる。
また、例えば、エポキシ樹脂、硬化型変性ポリフェニレンエーテル樹脂、硬化型ポリイミド樹脂、ケイ素樹脂、ベンゾオキサジン樹脂、メラニン樹脂、ユリア樹脂、アリル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビスマレイミドトリアジン樹脂、アルキド樹脂、フラン樹脂、ポリウレタン樹脂、アニリン樹脂等の硬化性樹脂等も用いることができる。
【0011】
本発明の樹脂微粒子の製造方法において樹脂微粒子を製造するにあたっては、上記樹脂の形状としては比表面積(単位体積あたりの表面積)を大きくした方が好ましい。比表面積を大きくすることで流体と樹脂との接触を高効率で行うことができ、処理時間を短縮できる。処理時間を短縮することで、エネルギー効率を高め、かつ、樹脂の分解や劣化を抑制することができる。比表面積を大きくする方法としては特に限定されないが、例えば、直径1〜5mm程度の粉体状の樹脂を用いる方法、予め1mm以下のフィルムに成形された樹脂を用いる方法等が挙げられる。
【0012】
上記流体としては、常温常圧では上記樹脂を溶解しないものであれば特に限定されないが、水やアルコール等の有機媒体等の常温常圧で液体であるものであってもよいし、二酸化炭素、窒素、酸素、ヘリウム、アルゴン、空気等の常温常圧で気体であるものであってもよいし、また、これらの混合流体であってもよい。ただし、常温常圧では液体であるものを少なくとも1種含有することが好ましい。上記流体が常温常圧で気体であるもののみからなる場合には、流体中に樹脂を溶解させるために極めて高い圧力や温度を要する場合がある。
なお、上記流体として混合流体を用いる場合には、混合流体を構成する流体の少なくとも1成分が超臨界状態又は亜臨界状態になればよい。
【0013】
上記常温常圧で液体である流体としては水及び/又はアルコールが好ましい。水は使いやすい媒体であるうえ、安価であるので経済的であり、環境に与える影響の点でも好ましい。また、メタノール等のアルコールも、同様の理由により好ましい。更に、2級アルコールであるイソプロパノールを用いれば、加水分解性樹脂の加水分解を抑制することができる。
また、常温常圧で樹脂を溶解しない限りにおいて、ヘキサン、ヘプタン、イソブタン、イソペンタン、ネオペンタン、シクロヘキサン、ブテン等の飽和、不飽和、直鎖、分岐、環状飽和炭化水素;トルエン、ベンゼン、スチレン、キシレン等の芳香族炭化水素系有機溶剤;アセトン、イソブチルメチルケトン、イソプロピルメチルケトン、メチルエチルケトン等のケトン系有機溶剤;イソ吉草酸、酢酸等のカルボン酸系化合物;ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系有機溶剤;酢酸エチル、酢酸ブチル等のエステル系有機溶剤;ヘキサメチレンジアミン等のアミン系有機溶剤;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等のアクリル系有機溶剤;ジメチルスルホキシド、N、N−ジメチルホルムアミド、N、N−ジメチルアセトアミド、N−メチル−2−ピロリドン等も用いることができる。これらの有機溶媒は、ハロゲン化等によりその一部又は全部が変性されていても構わない。
【0014】
上記樹脂と流体とは、上述の条件を満たす範囲で最適な組み合わせを選択する。例えば、樹脂がポリエチレンテレフタレートである場合には、液体流体としてはメタノールが好適であり、樹脂がポリメタクリル酸メチルである場合には、液体流体としては水が好適であり、樹脂がポリオレフィン樹脂である場合には、液体流体としては水とアルコールとの混合流体が好適である。
【0015】
本発明の樹脂微粒子の製造方法では、上記樹脂と流体との混合物を加熱及び/又は加圧して上記流体を超臨界状態又は亜臨界流体にする。上記流体が混合流体である場合には、少なくとも一成分が超臨界状態又は亜臨界流体になればよい。例えば、水は約374℃以上の温度かつ約22MPa以上の圧力により、メタノールは約240℃以上の温度かつ約8MPa以上の圧力により超臨界状態になることが知られている。
なお、上記混合物を耐圧容器に密封すれば、加熱することにより容易に超臨界状態又は亜臨界状態を達成することができる。上記耐熱容器としては特に限定されず、従来公知のものを用いることができ、例えば、オートクレーブ等を用いることができる。
【0016】
超臨界状態又は亜臨界状態は極めて活性の高い環境であり、化学反応が非常に促進されることから、長時間樹脂を超臨界状態に置くとエステル化、アセタール化等の反応が起こったり、分解反応が起こったりすることがある。従って、超臨界状態又は亜臨界状態に置く時間は樹脂が反応しない程度の短い時間内とすることが好ましい。例えば、ポリエチレンテレフタレートとメタノールとの組み合わせでは、250℃5分以内とすることが好ましい。
【0017】
また、超臨界状態又は亜臨界状態において上記樹脂と流体との混合物を攪拌することが好ましい。攪拌し剪断力を与えることにより上記樹脂が流体中により均一に拡散し、得られる樹脂微粒子の粒子径をより均一にするとこができる。
上記攪拌の方法としては特に限定されず、従来公知の方法を用いることができ、例えば、オートクレーブ用の撹拌モーターを用いる方法や、予め超臨界状態又は亜臨界状態においても安定な硬質球(例えば、鋼鉄製ボール等)を少なくとも1つ耐圧容器中に入れておき超臨界状態又は亜臨界状態で耐圧容器を振とうさせる方法等が挙げられる。
【0018】
所定の時間超臨界状態又は亜臨界状態を保った後には、上記流体を速やかに降温して解圧することが好ましい。上述のように超臨界状態又は亜臨界状態中に樹脂を長時間おくと、樹脂が反応してしまうことがある。所定の時間が経過した後には密封状態のまま急冷して常温常圧に戻すことにより、樹脂の反応を防止することができる。急冷する方法としては特に限定されず、例えば、上記耐圧容器を空冷又は水冷する方法等が挙げられる。
以上の工程により、樹脂微粒子の懸濁液が得られる。得られた懸濁液中の樹脂微粒子は、ほぼ完全な球状であり、また、粒子径分布も極めて狭いものである。
【0019】
上記樹脂微粒子懸濁液から樹脂微粒子を回収する方法としては特に限定されず、従来公知の方法を用いることができる。ただし、樹脂と流体との組み合わせによっては得られる樹脂微粒子懸濁液にべたつき感があることがあり、この場合には、樹脂微粒子を回収する際に樹脂微粒子同士が合着しないようにする必要がある。例えば、上記樹脂微粒子懸濁液を落下させながら、空中で熱風又は遠赤外線等の熱源を用いて熱乾燥させる方法や、いったん非極性溶媒で洗浄した後、乾燥する方法等が好適である。図1に上記樹脂微粒子懸濁液を落下させながら、空中で熱乾燥させる装置の1例を示した。
【0020】
本発明の樹脂微粒子の製造方法では、樹脂と常温常圧では該樹脂を溶解しない流体との混合物を加熱及び/又は加圧して流体の少なくとも一成分を超臨界状態又は亜臨界状態にし、その後降温して解圧することにより、ほぼ完全に球状で、かつ、粒子径分布の狭い樹脂微粒子の懸濁液を得ることができる。また、本発明では密封した耐圧容器を用いることにより、一連の工程を温度のみをコントロールすることで行うことができる。
更に、製造条件を整えれば、樹脂の熱分解がほとんど起こることはないことから、高分子量の樹脂を原料として用いれば、ほぼそのままの高分子量の樹脂微粒子を得ることができる。また、原料樹脂の分子量にバラツキがある場合であっても、超臨界状態又は亜臨界状態にするまでの過程で流体に溶解した比較的低分子量の樹脂を除く操作を行えば、高分子量でかつ分子量分布の狭い樹脂微粒子を得ることもできる。
本発明の樹脂微粒子の製造方法によれは、ほとんどの樹脂について極めて容易に粒子径の揃った球形の樹脂微粒子を得ることができる。
【0021】
【実施例】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0022】
(実施例1)
内容積10mLの耐圧容器にメタノール4gと直径約3mmのペレット状のポリエチレンテレフタレート0.2gを入れ密封した。なお、耐熱容器中には予めSUS製のボールを1個入れておいた。耐圧容器を振動させて、メタノールとポリエチレンテレフタレートとを混合した後、オイルバス中で250℃になるまで加熱し、メタノールを超臨界状態にした。この状態で耐圧容器を振動させ、5分後に急冷して常温常圧に戻した。
これにより、メタノール中にポリエチレンテレフタレートの微粒子が懸濁した樹脂微粒子懸濁液が得られた。
得られた樹脂微粒子懸濁液中の樹脂微粒子を観察したところ、ほぼ完全に球形であり、平均粒子径は8.6μmであった。図2に得られた樹脂微粒子の粒子径の分布を示した。
【0023】
(実施例2)
内容積10mLの耐圧容器に水4gと直径約3mmのペレット状のポリメタクリル酸メチル0.2gを入れ密封した。なお、耐厚容器中には予めSUS製のボールを1個入れておいた。耐圧容器を振動させて、水とポリメタクリル酸メチルとを混合した後、サンドバス中で400℃になるまで加熱し、水を超臨界状態にした。5分後に急冷して常温常圧に戻した。
これにより、水中にポリメタクリル酸メチルの微粒子が懸濁した樹脂微粒子懸濁液が得られた。
【0024】
【発明の効果】
本発明によれば、真球度が高く、粒子径の揃った樹脂微粒子を容易に得ることができる樹脂微粒子の製造方法を提供できる。
【図面の簡単な説明】
【図1】樹脂微粒子懸濁液を落下させながら、空中で熱乾燥させる装置の1例を示す模式図である。
【図2】実施例1で得られた樹脂微粒子の粒子径の分布を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing fine resin particles that can easily obtain fine resin particles having a high sphericity and a uniform particle diameter.
[0002]
[Prior art]
BACKGROUND ART Resin fine particles are widely used in applications such as a lubricity-imparting agent, a toner, a matting agent for paint, an additive for light diffusion, a filler for chromatography, and a carrier for immunodiagnostic reagents. Particularly in recent years, applications in the IT field, such as spacers for liquid crystal panels and base particles of conductive fine particles, have been expanding. It is required that resin fine particles used in the IT field and the like, such as spacers for liquid crystal panels and base particles of conductive fine particles, be spherical and have a narrow particle size distribution.
[0003]
Conventionally, as a method of producing resin fine particles, a method of physically pulverizing using a pulverizer or the like has been used. According to this method, resin fine particles can be easily obtained at low cost for many resins. However, in this method, the shape of the obtained resin fine particles is indefinite, the particle size is large, and a process such as classification is required to obtain a narrow particle size distribution, and the strength of the obtained resin fine particles is also high. There is a problem that it tends to be weak.
[0004]
On the other hand, a method for producing resin fine particles by a polymerization method such as emulsion polymerization, dispersion polymerization, seed polymerization, or suspension polymerization has been proposed. For example, Patent Document 1 discloses a resin obtained by preparing a monomer dispersion containing droplets of a desired size in advance, and then introducing the dispersion into a polymerization tank and performing polymerization under ordinary stirring. Methods for controlling the particle size and particle size distribution of fine particles have been proposed. According to this method, spherical resin particles having a narrow particle size distribution can be produced. However, these methods are not only applicable to resins that can be polymerized by these polymerization methods, but also require the polymerization conditions and the like to be extremely strictly adjusted in order to produce resin fine particles having a target particle diameter. was there.
[0005]
[Patent Document 1]
JP-A-3-131603
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and has as its object to provide a method for producing resin fine particles capable of easily obtaining resin fine particles having a high sphericity and a uniform particle diameter.
[0007]
[Means for Solving the Problems]
The present invention provides a step 1 of heating and / or pressurizing a mixture of a resin and a fluid that does not dissolve the resin at normal temperature and pressure to bring at least one component of the fluid into a supercritical state or a subcritical state; And a step of depressurizing the fluid by depressurizing the fluid.
Hereinafter, the present invention will be described in detail.
[0008]
The present inventors have as a result of intensive studies, heating and / or pressurizing a mixture of a resin and a fluid that does not dissolve the resin at normal temperature and normal pressure to bring at least one component of the fluid into a supercritical state or a subcritical state, After that, it was found that by lowering the temperature and decompressing, a resin fine particle suspension in which resin fine particles having a high sphericity and a uniform particle diameter were suspended in a fluid was obtained, and the present invention was completed.
A fluid in a supercritical or subcritical state has both the diffusivity of a gas and the solubility of a liquid. Therefore, at normal temperature and normal pressure, even if a poor solvent is used for the resin, a supercritical state or a subcritical state becomes a good solvent, and the resin can be dissolved and dispersed. After that, if the temperature is reduced and the pressure is released, the fluid becomes a poor solvent again, so that the dissolved resin is deposited. Since the resin was in a very high dispersion state in a fluid in a supercritical state or a subcritical state, it is considered that the precipitated resin is extremely small and almost completely spherical due to its surface tension.
[0009]
In this specification, a supercritical fluid refers to a fluid that is at or above a critical pressure (hereinafter, also referred to as Pc) and at or above a critical temperature (hereinafter, also referred to as Tc). The subcritical fluid is a state other than the supercritical state, and when the pressure and temperature during the reaction are P and T, respectively, 0.5 <P / Pc <1.0 and 0.5 < It means T / Tc or a fluid satisfying the condition of 0.5 <P / Pc and 0.5 <T / Tc <1.0. The preferred pressure and temperature ranges of the subcritical fluid are 0.6 <P / Pc <1.0 and 0.6 <T / Tc, or 0.6 <P / Pc and 0.6 <T / Tc. <1.0. However, when the fluid is water, the range of temperature and pressure at which the fluid becomes a subcritical fluid is 0.5 <P / Pc <1.0 and 0.5 <T / Tc, or 0.5 <P / Pc. / Pc and 0.5 <T / Tc <1.0. Here, the temperature represents Celsius, but when either Tc or T is minus in Celsius, the above expression for the subcritical state is not limited to this.
[0010]
In the method for producing resin fine particles of the present invention, first, a resin is mixed with a fluid that does not melt at normal temperature and normal pressure.
The resin to which the method for producing resin fine particles of the present invention can be applied is not particularly limited, and examples thereof include a polyester resin such as polyethylene terephthalate; a polyphenylene ether resin; an alicyclic hydrocarbon resin; a thermoplastic polyimide resin; a polyamide imide resin; Resin; polyolefin resin; polystyrene resin; polyamide resin; polyvinyl acetal resin; polyvinyl alcohol resin; polyvinyl acetate resin; poly (meth) acrylate resin such as polyvinyl chloride resin and polymethyl methacrylate; polyetherimide resin; And a plastic polybenzimidazole resin.
Also, for example, epoxy resin, curable modified polyphenylene ether resin, curable polyimide resin, silicon resin, benzoxazine resin, melanin resin, urea resin, allyl resin, phenol resin, unsaturated polyester resin, bismaleimide triazine resin, alkyd resin Curable resin such as furan resin, polyurethane resin, aniline resin and the like can also be used.
[0011]
In producing the resin fine particles in the method for producing resin fine particles of the present invention, it is preferable that the shape of the resin be such that the specific surface area (surface area per unit volume) is large. By increasing the specific surface area, the contact between the fluid and the resin can be performed with high efficiency, and the processing time can be reduced. By shortening the processing time, energy efficiency can be increased, and decomposition and deterioration of the resin can be suppressed. The method for increasing the specific surface area is not particularly limited, and examples thereof include a method using a powdery resin having a diameter of about 1 to 5 mm, and a method using a resin previously formed into a film of 1 mm or less.
[0012]
The fluid is not particularly limited as long as it does not dissolve the resin at normal temperature and normal pressure, but may be a liquid that is liquid at normal temperature and normal pressure such as an organic medium such as water or alcohol, or carbon dioxide, It may be a gas at normal temperature and normal pressure such as nitrogen, oxygen, helium, argon, and air, or a mixed fluid thereof. However, it is preferable to contain at least one kind that is liquid at normal temperature and normal pressure. When the fluid is only a gas that is a gas at normal temperature and normal pressure, an extremely high pressure and temperature may be required to dissolve the resin in the fluid.
When a mixed fluid is used as the fluid, at least one component of the fluid constituting the mixed fluid may be in a supercritical state or a subcritical state.
[0013]
As the fluid which is liquid at normal temperature and normal pressure, water and / or alcohol are preferable. Water is an easy-to-use medium, is economical because it is inexpensive, and is preferable in terms of its effect on the environment. Alcohols such as methanol are also preferred for similar reasons. Furthermore, if isopropanol, which is a secondary alcohol, is used, hydrolysis of the hydrolyzable resin can be suppressed.
Unless the resin is dissolved at normal temperature and normal pressure, saturated, unsaturated, linear, branched, and cyclic saturated hydrocarbons such as hexane, heptane, isobutane, isopentane, neopentane, cyclohexane, and butene; toluene, benzene, styrene, xylene Organic solvents such as acetone, isobutyl methyl ketone, isopropyl methyl ketone, and methyl ethyl ketone; carboxylic acid compounds such as isovaleric acid and acetic acid; diethyl ether, dibutyl ether, tetrahydrofuran, dioxane, etc. Ether organic solvents; ester organic solvents such as ethyl acetate and butyl acetate; amine organic solvents such as hexamethylene diamine; acrylic organic solvents such as methyl (meth) acrylate and ethyl (meth) acrylate; dimethyl sulfoxide , N, N Dimethylformamide, N, N- dimethylacetamide can be used also N- methyl-2-pyrrolidone. These organic solvents may be partially or entirely modified by halogenation or the like.
[0014]
An optimal combination of the resin and the fluid is selected within a range satisfying the above-described conditions. For example, when the resin is polyethylene terephthalate, methanol is preferable as the liquid fluid, and when the resin is polymethyl methacrylate, water is preferable as the liquid fluid, and the resin is a polyolefin resin. In such a case, a mixed fluid of water and alcohol is suitable as the liquid fluid.
[0015]
In the method for producing resin fine particles of the present invention, the mixture of the resin and the fluid is heated and / or pressurized to make the fluid a supercritical state or a subcritical fluid. When the fluid is a mixed fluid, at least one component may be in a supercritical state or a subcritical fluid. For example, it is known that water becomes a supercritical state at a temperature of about 374 ° C. or more and a pressure of about 22 MPa or more, and methanol becomes a supercritical state at a temperature of about 240 ° C. or more and a pressure of about 8 MPa or more.
If the mixture is sealed in a pressure vessel, a supercritical state or a subcritical state can be easily achieved by heating. The heat-resistant container is not particularly limited, and a conventionally known one can be used. For example, an autoclave or the like can be used.
[0016]
The supercritical state or subcritical state is an environment with extremely high activity, and the chemical reaction is greatly accelerated, so if the resin is kept in the supercritical state for a long time, reactions such as esterification and acetalization may occur and decomposition may occur. Reaction may occur. Therefore, it is preferable that the time during which the resin is placed in the supercritical state or the subcritical state is within a short time such that the resin does not react. For example, in the case of a combination of polyethylene terephthalate and methanol, the temperature is preferably set to 250 ° C. within 5 minutes.
[0017]
Further, it is preferable to stir the mixture of the resin and the fluid in a supercritical state or a subcritical state. By stirring and applying a shearing force, the resin is more uniformly diffused in the fluid, and the particle diameter of the obtained resin fine particles can be made more uniform.
The stirring method is not particularly limited, and a conventionally known method can be used. For example, a method using a stirring motor for an autoclave, or a hard sphere that is stable in a supercritical state or a subcritical state in advance (for example, A method of placing at least one steel ball or the like in a pressure vessel and shaking the pressure vessel in a supercritical state or a subcritical state.
[0018]
After maintaining the supercritical state or subcritical state for a predetermined time, it is preferable that the temperature of the fluid is rapidly lowered to decompress the fluid. If the resin is left in the supercritical state or subcritical state for a long time as described above, the resin may react. After a predetermined time has elapsed, the reaction of the resin can be prevented by rapidly cooling in a sealed state and returning to normal temperature and normal pressure. The method of quenching is not particularly limited, and includes, for example, a method of air-cooling or water-cooling the pressure-resistant container.
Through the above steps, a suspension of fine resin particles is obtained. The resin fine particles in the obtained suspension are almost perfectly spherical, and the particle size distribution is extremely narrow.
[0019]
The method for recovering the resin fine particles from the resin fine particle suspension is not particularly limited, and a conventionally known method can be used. However, depending on the combination of the resin and the fluid, the obtained resin fine particle suspension may have a sticky feeling. In this case, it is necessary to prevent the resin fine particles from coalescing when collecting the resin fine particles. is there. For example, a method in which the resin fine particle suspension is dried while being heated in the air using a heat source such as hot air or far infrared rays, or a method in which the resin fine particle suspension is once washed with a non-polar solvent and then dried. FIG. 1 shows an example of an apparatus for thermally drying in the air while dropping the resin fine particle suspension.
[0020]
In the method for producing resin fine particles of the present invention, a mixture of a resin and a fluid that does not dissolve the resin at normal temperature and normal pressure is heated and / or pressurized so that at least one component of the fluid is in a supercritical state or a subcritical state, and then the temperature is lowered. By releasing the pressure, it is possible to obtain a suspension of resin fine particles which are almost perfectly spherical and have a narrow particle size distribution. In the present invention, a series of steps can be performed by controlling only the temperature by using a sealed pressure-resistant container.
Furthermore, if the production conditions are adjusted, the thermal decomposition of the resin hardly occurs. Therefore, when a high-molecular-weight resin is used as a raw material, high-molecular-weight resin fine particles can be obtained as they are. In addition, even if the molecular weight of the raw material resin varies, by performing the operation to remove the relatively low molecular weight resin dissolved in the fluid in the process until the supercritical state or subcritical state, high molecular weight and Resin fine particles having a narrow molecular weight distribution can also be obtained.
According to the method for producing resin fine particles of the present invention, spherical resin fine particles having a uniform particle diameter can be obtained very easily for most resins.
[0021]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0022]
(Example 1)
4 g of methanol and 0.2 g of polyethylene terephthalate pellets having a diameter of about 3 mm were placed in a pressure-resistant container having an internal volume of 10 mL, and sealed. Note that one SUS ball was put in the heat-resistant container in advance. The pressure vessel was vibrated to mix methanol and polyethylene terephthalate, and then heated to 250 ° C. in an oil bath to bring the methanol to a supercritical state. In this state, the pressure vessel was vibrated, and rapidly cooled after 5 minutes to return to normal temperature and normal pressure.
As a result, a resin fine particle suspension in which fine particles of polyethylene terephthalate were suspended in methanol was obtained.
Observation of the resin fine particles in the obtained resin fine particle suspension revealed that the resin fine particles were almost completely spherical and the average particle diameter was 8.6 μm. FIG. 2 shows the particle size distribution of the obtained resin fine particles.
[0023]
(Example 2)
4 g of water and 0.2 g of pelletized polymethyl methacrylate having a diameter of about 3 mm were placed in a pressure-resistant container having an internal volume of 10 mL, and sealed. In addition, one SUS ball was previously placed in the thick container. After the water and polymethyl methacrylate were mixed by vibrating the pressure vessel, the mixture was heated to 400 ° C. in a sand bath to bring the water to a supercritical state. After 5 minutes, the mixture was rapidly cooled and returned to normal temperature and normal pressure.
As a result, a resin fine particle suspension in which fine particles of poly (methyl methacrylate) were suspended in water was obtained.
[0024]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the sphericity is high and the manufacturing method of the resin fine particle which can easily obtain the resin fine particle with a uniform particle diameter can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an apparatus for thermally drying in the air while dropping a resin particle suspension.
FIG. 2 is a view showing a distribution of particle diameters of resin fine particles obtained in Example 1.

Claims (4)

樹脂と、常温常圧では前記樹脂を溶解しない流体との混合物を加熱及び/又は加圧して、前記流体の少なくとも一成分を超臨界状態又は亜臨界状態にする工程1と、
前記流体を降温して解圧する工程2とを有する
ことを特徴とする樹脂微粒子の製造方法。
Heating and / or pressurizing a mixture of a resin and a fluid that does not dissolve the resin at normal temperature and pressure to bring at least one component of the fluid into a supercritical state or a subcritical state;
And 2. depressurizing the fluid by depressurizing the fluid.
樹脂と、常温常圧では前記樹脂を溶解しない流体との混合物を耐圧容器に密封し、前記耐圧容器を加熱することにより前記流体の少なくとも一成分を超臨界状態又は亜臨界状態にする工程1と、
前記耐圧容器を急冷して解圧する工程2とを有する
ことを特徴とする樹脂微粒子の製造方法。
Resin and a mixture of a fluid that does not dissolve the resin at normal temperature and normal pressure is sealed in a pressure vessel, and heating the pressure vessel to bring at least one component of the fluid into a supercritical state or a subcritical state; and ,
And 2. depressurizing the pressure-resistant container by rapidly cooling the pressure-resistant container.
流体は、常温常圧では液体であるものを含有することを特徴とする請求項1又は2記載の樹脂微粒子の製造方法。3. The method for producing resin fine particles according to claim 1, wherein the fluid contains a liquid that is liquid at normal temperature and normal pressure. 流体は、水及び/又はアルコールを含有することを特徴とする請求項1又は2記載の樹脂微粒子の製造方法。The method for producing resin fine particles according to claim 1, wherein the fluid contains water and / or alcohol.
JP2003118727A 2002-08-28 2003-04-23 Method for producing resin fine particles Expired - Fee Related JP4504629B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003118727A JP4504629B2 (en) 2002-08-28 2003-04-23 Method for producing resin fine particles
TW092134124A TW200422326A (en) 2003-04-23 2003-12-04 Method for producing fine resin particles and fine resin particles
AU2003289159A AU2003289159A1 (en) 2003-04-23 2003-12-04 Method for producing fine resin particles and fine resin particles
US10/553,421 US20060116468A1 (en) 2003-04-23 2003-12-04 Method for producing fine resin particles and fine resin particles
KR1020057020020A KR20060006051A (en) 2003-04-23 2003-12-04 Method for producing fine resin particles and fine resin particles
PCT/JP2003/015506 WO2004094507A1 (en) 2003-04-23 2003-12-04 Method for producing fine resin particles and fine resin particles
EP03777225A EP1616900A4 (en) 2003-04-23 2003-12-04 Method for producing fine resin particles and fine resin particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002249106 2002-08-28
JP2003118727A JP4504629B2 (en) 2002-08-28 2003-04-23 Method for producing resin fine particles

Publications (2)

Publication Number Publication Date
JP2004143405A true JP2004143405A (en) 2004-05-20
JP4504629B2 JP4504629B2 (en) 2010-07-14

Family

ID=32472746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003118727A Expired - Fee Related JP4504629B2 (en) 2002-08-28 2003-04-23 Method for producing resin fine particles

Country Status (1)

Country Link
JP (1) JP4504629B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016219A (en) * 2005-06-09 2007-01-25 Toss Ltd Method for producing ultrafine particle
WO2007034688A1 (en) * 2005-09-21 2007-03-29 National University Corporation Toyohashi University Of Technology Copolymer comprising polymer aggregate, microparticle thereof, and method for production of the microparticle
JP2008007668A (en) * 2006-06-30 2008-01-17 Sanyo Chem Ind Ltd Method for producing resin particle
JP2010189524A (en) * 2009-02-17 2010-09-02 National Institute Of Advanced Industrial Science & Technology Polyimide fine particle dispersion, polyimide fine particle, and method for producing them
US7947369B2 (en) 2005-05-26 2011-05-24 Daicel-Degussa Ltd. Production of fine spherical thermoplastic resin particles
JP2012131923A (en) * 2010-12-22 2012-07-12 Sekisui Chem Co Ltd Method for producing vinyl acetal resin

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04332761A (en) * 1990-10-16 1992-11-19 Union Carbide Chem & Plast Technol Corp Pressurized fluid composition and its manufacture
JPH04335036A (en) * 1990-12-20 1992-11-24 Bayer Ag Isolation of polymer from solvent by using fluid containing carbon dioxide
JPH08104830A (en) * 1994-10-03 1996-04-23 Nippon Paint Co Ltd Production of fine particles for coating
JPH08503721A (en) * 1992-11-02 1996-04-23 フェロー コーポレイション Manufacturing method of coating material
JPH08113652A (en) * 1994-08-24 1996-05-07 Nippon Paint Co Ltd Production of fine polymer particle
JP2003096198A (en) * 2001-09-21 2003-04-03 Ricoh Co Ltd Method for forming fine particle from silicone resin, and fine particle obtained by the same
JP2003268119A (en) * 2002-03-13 2003-09-25 Hitachi Cable Ltd Method for producing powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04332761A (en) * 1990-10-16 1992-11-19 Union Carbide Chem & Plast Technol Corp Pressurized fluid composition and its manufacture
JPH04335036A (en) * 1990-12-20 1992-11-24 Bayer Ag Isolation of polymer from solvent by using fluid containing carbon dioxide
JPH08503721A (en) * 1992-11-02 1996-04-23 フェロー コーポレイション Manufacturing method of coating material
JPH08113652A (en) * 1994-08-24 1996-05-07 Nippon Paint Co Ltd Production of fine polymer particle
JPH08104830A (en) * 1994-10-03 1996-04-23 Nippon Paint Co Ltd Production of fine particles for coating
JP2003096198A (en) * 2001-09-21 2003-04-03 Ricoh Co Ltd Method for forming fine particle from silicone resin, and fine particle obtained by the same
JP2003268119A (en) * 2002-03-13 2003-09-25 Hitachi Cable Ltd Method for producing powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947369B2 (en) 2005-05-26 2011-05-24 Daicel-Degussa Ltd. Production of fine spherical thermoplastic resin particles
JP2007016219A (en) * 2005-06-09 2007-01-25 Toss Ltd Method for producing ultrafine particle
WO2007034688A1 (en) * 2005-09-21 2007-03-29 National University Corporation Toyohashi University Of Technology Copolymer comprising polymer aggregate, microparticle thereof, and method for production of the microparticle
JP2008007668A (en) * 2006-06-30 2008-01-17 Sanyo Chem Ind Ltd Method for producing resin particle
JP2010189524A (en) * 2009-02-17 2010-09-02 National Institute Of Advanced Industrial Science & Technology Polyimide fine particle dispersion, polyimide fine particle, and method for producing them
JP2012131923A (en) * 2010-12-22 2012-07-12 Sekisui Chem Co Ltd Method for producing vinyl acetal resin

Also Published As

Publication number Publication date
JP4504629B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
Cooper et al. Synthesis of highly cross-linked polymers in supercritical carbon dioxide by heterogeneous polymerization
JP3601284B2 (en) Method for producing spherical polyamide
Kanamori et al. Facile synthesis of macroporous cross-linked methacrylate gels by atom transfer radical polymerization
CN101230136B (en) Polyimide microparticle and preparation method thereof
EP3078700B1 (en) Polyvinylidene fluoride resin particles and method for producing same
WO2006057374A1 (en) Method for preparing composite fine particles
WO2005073285A1 (en) A method for producing fine particles using method of rapid expansion into poor solvent from supercritical fluid
CN102164988B (en) Method for producing single-hole hollow polymer microparticles
JP4504629B2 (en) Method for producing resin fine particles
CN101921353A (en) Synthesizing method of polystyrene microsphere
Horak Uniform polymer beads of micrometer size
JP2008161817A (en) Method for manufacturing hollow microcapsule
Hori et al. Preparation of porous polymer materials using water‐in‐oil gel emulsions as templates
CN103113585A (en) Preparation method of solid polyimide microspheres
TW202334262A (en) Hollow particles, method for producing hollow particles, and resin composition
Hulubei et al. New polyimide-based porous crosslinked beads by suspension polymerization: physical and chemical factors affecting their morphology
Yuan et al. The mechanism of the formation of multihollow polymer spheres through sulfonated polystyrene particles
Zhang et al. Kinetics of polymerization and particle stabilization mechanism on dispersion copolymerization of styrene and divinylbenzene
Ji et al. Development of an immobilization method by encapsulating inorganic metal salts forming hollow microcapsules
JP2008510880A (en) Method and apparatus for producing polyvinyl alcohol having a high degree of polymerization
JP2004143404A (en) Polyolefin-based resin particle
Fang et al. Microwave-assisted free radical polymerizations
JP2004143406A (en) Polyester-based resin fine particle and method for producing the same
Nagai et al. Fabrication of Highly Spherical Millimeter‐Sized Poly (amic acid) Capsules by Removing Non‐Volatile Solvent
JP2005082696A (en) Method for producing resin fine particle having low ion content and resin fine particle having low ion content

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

R151 Written notification of patent or utility model registration

Ref document number: 4504629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees