JP2004134287A - Abnormality detection device of battery pack - Google Patents

Abnormality detection device of battery pack Download PDF

Info

Publication number
JP2004134287A
JP2004134287A JP2002298817A JP2002298817A JP2004134287A JP 2004134287 A JP2004134287 A JP 2004134287A JP 2002298817 A JP2002298817 A JP 2002298817A JP 2002298817 A JP2002298817 A JP 2002298817A JP 2004134287 A JP2004134287 A JP 2004134287A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
battery pack
internal resistance
battery
threshold
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002298817A
Other languages
Japanese (ja)
Other versions
JP4069721B2 (en )
Inventor
Makoto Iwashima
Toyoaki Nakagawa
Tetsuya Niiguni
中川 豊昭
岩島 誠
新国 哲也
Original Assignee
Nissan Motor Co Ltd
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Apparatus for testing electrical condition of accumulators or electric batteries, e.g. capacity or charge condition
    • G01R31/3644Various constructional arrangements
    • G01R31/3658Various constructional arrangements for testing or monitoring individual cells or groups of cells in a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Apparatus for testing electrical condition of accumulators or electric batteries, e.g. capacity or charge condition
    • G01R31/3644Various constructional arrangements
    • G01R31/3662Various constructional arrangements involving measuring the internal battery impedance, conductance or related variables

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device to make sure to detect abnormality of a battery pack at an early stage. <P>SOLUTION: This is the abnormality detection device of the battery pack to detect overcharge status or over-discharge status of the battery pack in which a plurality of cells (unit cell) are connected in series, or the battery pack in which a plurality of cell parallel circuits in which a plurality of cells are connected in parallel are connected in series, and this device estimates the internal resistance of the battery pack, changes an overcharge threshold value and an over-discharge threshold value according to the estimated internal resistance, outputs an overcharge detection signal when the voltage at the both ends voltage of the cell or the cell parallel circuit exceeds the overcharge threshold value, and outputs an over-discharge detection signal when the voltage at the both ends voltage of the cell or the cell parallel circuit becomes below the over-discharge threshold value. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は組電池の異常状態を検出する装置に関する。 The present invention relates to an apparatus for detecting an abnormal state of the battery pack.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
複数の単電池(以下、セルと呼ぶ)が直列に接続された組電池において、セル電圧が過放電しきい値以下になった場合にそのセルが過放電状態にあると判定し、セル電圧が過充電しきい値以上になった場合にそのセルが過充電状態にあると判定する組電池の異常検出装置が知られている(例えば、特許文献1参照)。 A plurality of unit cells (hereinafter, referred to as cells) in the connected battery pack is in series, it is determined that when the cell voltage falls below the overdischarge threshold the cell is overdischarged, the cell voltage overcharge the cell if it becomes more than the threshold are abnormality detection apparatus for determining battery pack to be overcharged is known (e.g., see Patent Document 1).
【0003】 [0003]
この出願の発明に関連する先行技術文献としては次のものがある。 The prior art documents related to the invention of this application are the following.
【特許文献1】 [Patent Document 1]
特開平05−258778号公報(第2−3頁、図1) JP 05-258778 discloses (2-3 pages, Fig. 1)
【0004】 [0004]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
しかしながら、従来の組電池の異常検出装置では、過放電しきい値と過充電しきい値をそれぞれ固定値としているので、セルの内部抵抗が増大するとセル電圧の変化が急峻になり、セル電圧がしきい値を超えて異常状態を検出してから充放電を禁止したのでは制御が間に合わなくなるおそれがある。 However, in the abnormality detecting device of a conventional battery pack, so that the respective fixed value overdischarge threshold and overcharge threshold, the change of the cell voltage when the internal resistance increases the cell becomes steeper, the cell voltage than banned discharge from the detection of the abnormal state exceeds the threshold, there is a possibility that control can not keep up.
【0005】 [0005]
本発明は、組電池の異常を早期に確実に検出するようにした組電池の異常検出装置を提供するものである。 The present invention is to provide an abnormality detecting device of the assembled battery so as to reliably detect the abnormality of the assembled battery early.
【0006】 [0006]
【課題を解決するための手段】 In order to solve the problems]
本発明は、組電池の内部抵抗を推定し、内部抵抗推定値に応じて過充電しきい値および過放電しきい値を変更する。 The present invention estimates the internal resistance of the battery pack, changing the overcharge threshold and overdischarge threshold value according to the internal resistance estimated value.
【0007】 [0007]
【発明の効果】 【Effect of the invention】
本発明によれば、組電池の異常を早期に確実に検出することができる。 According to the present invention, it is possible to reliably detect the abnormality of the assembled battery early.
【0008】 [0008]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
セル(単電池)をn個直列に接続した組電池に対して本願発明を適用した一実施の形態を説明する。 An embodiment according to the present invention will be described with respect to the assembled battery connected cell (unit cell) into n series. なお、本願発明は、セルを複数個直列に接続した組電池に限定されず、複数のセルを並列に接続したセル並列回路を複数組直列に接続した組電池に対しても適用することができる。 Incidentally, the present invention is not limited to the battery pack connecting a cell to multiple series, can be applied to an assembled battery that is connected to the cell parallel circuit in which a plurality of cells connected in parallel to a plurality of sets series .
【0009】 [0009]
また、本願発明は、電池の温度が低くなるほど電池内部の化学反応が緩やかになって電池の内部抵抗が増大する種類のすべての電池に対して適用することができる。 Further, the present invention can be applied to all battery types internal resistance increases the temperature becomes gradual chemical reaction within the battery as lower battery cell.
【0010】 [0010]
《発明の第1の実施の形態》 "The first embodiment of the invention"
図1は第1の実施の形態の構成を示す。 Figure 1 shows the configuration of the first embodiment. 組電池1はn個のセル11,12,13,・・,1nが直列に接続されている。 The battery pack 1 is n cells 11, 12, 13, · ·, 1n are connected in series. この組電池1の各セル11〜1nの両端C0−C1、C1−C2、C2−C3、・・、Cn−1−Cnには、電流バイパス回路21〜2n、過充電検出回路31〜3nおよび過放電検出回路41〜4nがそれぞれ並列に接続される。 This set across C0-C1 of each cell 11~1n battery 1, C1-C2, C2-C3, ··, the Cn-1-Cn, the current bypass circuit 21 to 2 n, the overcharge detection circuit 31~3n and over-discharge detection circuit 41~4n are connected in parallel.
【0011】 [0011]
電流バイパス回路21〜2nは、セル両端の電圧が所定の電圧を超えたときに、それまでセルに流れていた充電電流をバイパスし、セルの充電を停止する回路である。 Current bypass circuit 21~2n, when the voltage of the cell across exceeds a predetermined voltage, bypassing the charging current flowing through the cell until it is a circuit that stops charging of the cell. この電流バイパス回路21〜2nには、抵抗器とツェナーダイオードとを直列に接続した回路や、抵抗器とトランジスターとを直列にした回路など、種々の回路を用いることができる。 The current bypass circuit 21 to 2 n, and a resistor and a Zener diode circuit or connected in series, a resistor and a transistor such circuits in series, it is possible to use various circuit.
【0012】 [0012]
図2は、過充電検出回路31〜3nと過放電検出回路41〜4nの詳細を示す。 Figure 2 shows details of the over-charge detection circuit 31~3n and over-discharge detection circuit 41 to 4n. なお、これらの回路は各セル11〜1nに対してすべて共通である。 Note that these circuits are all common to each cell 11 to 1n. 過充電検出回路31〜3nは、コンパレーターC1、インバーターIV1、トランジスター(FET)Q1および抵抗器R1〜R3から構成される。 Overcharge detection circuit 31~3n is comparators C1, inverters IV1, composed of transistors (FET) Q1 and resistors R1-R3. まず、しきい値切り換え信号SIGがローレベルの状態でトランジスターQ1がオフしている場合を考えると、コンパレーターC1は、制御電源電圧Vccを抵抗器R1と抵抗器(R2+R3)とで分圧したしきい値電圧Vc1とセル電圧Vcとを比較する。 Considering first the case where the transistor Q1 threshold switching signal SIG is at the low level is off, the comparator C1 has pressed component left the control power supply voltage Vcc and the resistor R1 resistor and (R2 + R3) comparing the threshold voltage Vc1 and the cell voltage Vc.
【数1】 [Number 1]
Vc1=(R2+R3)/(R1+R2+R3)・Vcc Vc1 = (R2 + R3) / (R1 + R2 + R3) · Vcc
セル電圧Vcがしきい値Vc1を超えるとコンパレーターC1の出力がローレベルになり、インバーターIN1でハイレベルに反転されて過充電検出信号としてOR素子51〜5nへ出力される。 The output of the comparator C1 when the cell voltage Vc exceeds the threshold value Vc1 becomes low level, the output is inverted to a high level at the inverter IN1 to OR element 51~5n as overcharge detection signal.
【0013】 [0013]
次に、しきい値切り換え信号SIGがハイレベルに変化してトランジスターQ1がオンし、抵抗器R3の両端が短絡されると、コンパレーターC1は、制御電源電圧Vccを抵抗器R1とR2とで分圧したしきい値電圧Vc2とセル電圧Vcとを比較する。 Then, the transistor Q1 is turned on threshold switching signal SIG is changed to the high level, when both ends of the resistor R3 is short-circuited, the comparator C1 is a control power supply voltage Vcc and the resistor R1 R2 and with Compare dividing threshold voltage Vc2 and the cell voltage Vc.
【数2】 [Number 2]
Vc2=R2/(R1+R2)・Vcc Vc2 = R2 / (R1 + R2) · Vcc
セル電圧Vcがしきい値Vc2を超えるとコンパレーターC1の出力がローレベルになり、インバーターIN1でハイレベルに反転されて過充電検出信号としてOR素子51〜5nへ出力される。 The output of the comparator C1 when the cell voltage Vc exceeds the threshold value Vc2 becomes low level, the output is inverted to a high level at the inverter IN1 to OR element 51~5n as overcharge detection signal.
【0014】 [0014]
このように、しきい値切り換え信号SIGにより過充電検出用しきい値をVc1とVc2の間で切り換えることができる。 Thus, it is possible to switch the overcharge detection threshold between Vc1 and Vc2 by the threshold switching signal SIG. しきい値切り換え信号SIGがローレベルのときは過充電検出用しきい値Vc1が選択され、しきい値切り換え信号SIGがハイレベルのときは過充電検出用しきい値Vc2が選択される。 When the threshold switching signal SIG is at the low level is selected overcharge detection threshold Vc1, when the threshold switching signal SIG is at the high level overcharge detection threshold Vc2 is selected. ここで、上述したように過充電しきい値Vc2はしきい値Vc1より低い。 Here, the overcharge threshold Vc2 as described above is lower than the threshold value Vc1.
【数3】 [Number 3]
Vc2<Vc1 Vc2 <Vc1
したがって、ローレベルのしきい値切り換え信号SIGで高い過充電しきい値Vc1が選択され、ハイレベルのしきい値切り換え信号SIGで低い過充電しきい値Vc2が選択される。 Therefore, high overcharge threshold Vc1 at the low level threshold switching signal SIG is selected, low overcharge threshold Vc2 is selected by the threshold switching signal SIG at a high level.
【0015】 [0015]
過放電検出回路41〜4nは、コンパレーターC2、インバーターIV2、トランジスター(FET)Q2および抵抗器R4〜R6から構成される。 Overdischarge detection circuit 41~4n is comparator C2, composed of inverters IV2, transistor (FET) Q2 and resistors R4-R6. まず、しきい値切り換え信号SIGがローレベルの状態でトランジスターQ2がオフしている場合を考えると、コンパレーターC2は、制御電源電圧Vccを抵抗器(R4+R5)と抵抗器R6とで分圧したしきい値電圧Vd1とセル電圧Vcとを比較する。 Considering first the case where the transistor Q2 threshold switching signal SIG is at the low level is off, the comparator C2 is obtained by dividing a control power source voltage Vcc by resistors and (R4 + R5) and a resistor R6 comparing the threshold voltage Vd1 and the cell voltage Vc.
【数4】 [Number 4]
Vd1=R6/(R4+R5+R6)・Vcc Vd1 = R6 / (R4 + R5 + R6) · Vcc
セル電圧Vcがしきい値Vd1より低くなるとコンパレーターC2の出力がハイレベルに反転し、過放電検出信号としてOR素子51〜5nへ出力される。 The output of the comparator C2 is inverted to the high level when the cell voltage Vc is lower than the threshold value Vd1, is output to the OR element 51~5n as over-discharge detection signal.
【0016】 [0016]
次に、しきい値切り換え信号SIGがハイレベルに変化すると、インバーターIV2の出力がローレベルになってトランジスターQ2がオンし、抵抗器R4の両端が短絡される。 Next, the threshold switching signal SIG is changed to the high level, the transistor Q2 output of the inverter IV2 is turned low level to turn on, both ends of the resistor R4 is shorted. コンパレーターC2は、制御電源電圧Vccを抵抗器R5と抵抗器R6とで分圧したしきい値Vd2とセル電圧Vcとを比較する。 Comparator C2 compares a control power supply voltage Vcc and the resistor R5 resistor R6 and in dividing the a threshold Vd2 and the cell voltage Vc.
【数5】 [Number 5]
Vd2=R6/(R5+R6)・Vcc Vd2 = R6 / (R5 + R6) · Vcc
セル電圧Vcがしきい値Vd2より低くなるとコンパレーターC2の出力がハイレベルに反転し、過放電検出信号としてOR素子51〜5nへ出力される。 The output of the comparator C2 is inverted to the high level when the cell voltage Vc is lower than the threshold value Vd2, is output to the OR element 51~5n as over-discharge detection signal.
【0017】 [0017]
このように、しきい値切り換え信号SIGにより過放電検出用しきい値をVd1とVd2の間で切り換えることができる。 Thus, the over-discharge detection threshold by the threshold switching signal SIG can be switched between Vd1 and Vd2. しきい値切り換え信号SIGがローレベルのときは過放電検出用しきい値Vd1が選択され、しきい値切り換え信号SIGがハイレベルのときは過放電検出用しきい値Vd2が選択される。 When the threshold switching signal SIG is at the low level is selected overdischarge detection threshold Vd1, when the threshold switching signal SIG is at the high level overdischarge detection threshold Vd2 is selected. ここで、上述したように過放電しきい値Vd2はしきい値Vd1より高い。 Here, the overdischarge threshold Vd2, as described above is higher than the threshold value Vd1.
【数6】 [6]
Vd2>Vd1 Vd2> Vd1
したがって、ローレベルのしきい値切り換え信号SIGで低い過放電しきい値Vc1が選択され、ハイレベルのしきい値切り換え信号SIGで高い過放電しきい値Vc2が選択される。 Therefore, low overdischarge threshold value Vc1 at the low level threshold switching signal SIG is selected, overdischarge threshold value Vc2 is selected higher at a high level threshold switching signal SIG.
【0018】 [0018]
図1に戻って説明を続けると、OR素子51〜5nは、いずれかのセル11〜1nの過充電検出信号または過放電検出信号を入力し、OR素子6へ出力する。 Referring back to FIG. 1, OR element 51~5n receives the overcharge detection signal or the overdischarge detection signal of one of the cells 11 to 1n, and outputs it to the OR element 6. 充放電制御回路7は、OR素子6からいずれかのセル11〜1nの過充電検出信号が入力されると組電池1の充電を停止し、OR素子6からいずれかのセル11〜1nの過放電検出信号が入力される組電池1の放電を停止する。 Charge and discharge control circuit 7, the overcharge detection signal of one of the cells 11~1n from OR element 6 is input to stop the charging of the assembled battery 1, over one of the cell 11~1n from OR element 6 discharge detection signal stops the discharge of the battery pack 1 to be input.
【0019】 [0019]
充放電制御回路7は、しきい値切り換え信号SIGにより過充電検出回路31〜3nのしきい値Vc1とVc2を切り換えるとともに、過放電検出回路41〜4nのしきい値Vd1とVd2を切り換える。 Charge and discharge control circuit 7 switches the threshold Vc1 of the over-charge detection circuit 31~3n and Vc2 by the threshold switching signal SIG, it switches the threshold Vd1 and Vd2 of the over-discharge detection circuit 41 to 4n. ローレベルのしきい値切り換え信号SIGで過充電検出しきい値Vc1と過放電検出しきい値Vd1を選択し、ハイレベルのしきい値切り換え信号SIGで過充電検出しきい値Vc2と過放電検出しきい値Vd2を選択する。 Overcharge detection threshold Vc1 by the threshold switching signal SIG at a low level and selects the overdischarge detection threshold Vd1, overdischarge detection and overcharge detection threshold Vc2 at the high level threshold switching signal SIG to select the threshold value Vd2.
【0020】 [0020]
図3は、組電池の内部抵抗が小さい場合の充電時の電圧変化と、内部抵抗が大きい場合の充電時の電圧変化を示す。 Figure 3 shows the voltage change during charge when the internal resistance of the battery pack is small, the voltage change during charge when the internal resistance is large. 一般に、電池は温度が低くなるにしたがって電池内部の化学反応が緩やかになるため、電池の内部抵抗が大きくなる。 In general, the battery since the chemical reaction in the battery as the temperature decreases becomes gradual, the internal resistance of the battery increases. 電池の温度が高い状態で充電を行う場合には、図3に示す内部抵抗小の特性曲線にしたがって電池電圧(セル電圧)Vcが上昇する。 The temperature of the battery when the charging is high, the battery voltage (cell voltage) Vc according to the characteristic curve of the internal resistance small as shown in FIG. 3 is increased. 電池電圧Vcが過充電しきい値Vc1に達すると、過充電検出回路31〜3nから過充電検出信号が充放電制御回路7へ出力される。 When the battery voltage Vc reaches the overcharge threshold Vc1, overcharge detection signal is output to the charge and discharge control circuit 7 from the overcharge detecting circuit 31 to 3n. 充放電制御回路7は、過充電検出信号を受信すると直ちに充電停止処理を実行する。 Charge and discharge control circuit 7, immediately executes a charge stop process receives the overcharge detection signal.
【0021】 [0021]
ここで、電池電圧Vcが過充電しきい値Vc1に達してから実際に充電が停止されるまでには、「制御遅れ時間」が存在する。 Here, the battery voltage Vc to until actually charged from reaching overcharge threshold Vc1 is stopped, there is a "control delay time". そのため、図3に示すように、電池電圧Vcが過充電しきい値Vc1に達した後も、制御遅れ時間の間、そのまま電池電圧Vcが上昇を続けることになる。 Therefore, as shown in FIG. 3, even after the battery voltage Vc reaches the overcharge threshold Vc1, during the response delay time, as the battery voltage Vc is to continue to rise. しかし、電池温度が高い状態で充電を行った場合は電池電圧Vcが緩やかに上昇するから、制御遅れ時間の間、電池電圧Vcが上昇し続けても充電停止制御が実行される前に電池電圧Vcが電池劣化開始電圧に達することはない。 However, since if the battery temperature was charged in a state of high battery voltage Vc is gradually increased, while the response delay time, the battery voltage before the charging stop control also continues to rise the battery voltage Vc is performed Vc does not reach the battery degradation start voltage.
【0022】 [0022]
一方、電池温度が低い状態で充電を行った場合は、電池の内部抵抗が大きいから電池電圧Vcの変化が急峻になり、図3に示す内部抵抗大の特性曲線にしたがって電池電圧Vcが上昇する。 On the other hand, if the battery temperature was charged at a low state, the change in battery voltage Vc because the internal resistance of the battery is large becomes steep, the battery voltage Vc increases according to the characteristic curve of the internal resistance is large as shown in FIG. 3 . 電池電圧Vcが過充電しきい値Vc1に達すると、過充電検出回路31〜3nから過充電検出信号が充放電制御回路7へ出力され、充放電制御回路7が直ちに充電停止処理を実行する。 When the battery voltage Vc reaches the overcharge threshold Vc1, overcharge detection signal from the overcharge detecting circuit 31~3n is outputted to the charge and discharge control circuit 7, charge-discharge control circuit 7 immediately executes the charge stop processing. ところが、電池温度が低い状態で充電を行った場合は電池電圧Vcが急激に上昇するから、制御遅れ時間の間、電池電圧Vcが上昇し続けて、充電停止制御が実行される前に電池劣化開始電圧に達してしまう。 However, since the battery voltage Vc when the battery temperature was charged at a low state increases rapidly during the response delay time, continues to rise the battery voltage Vc, battery degradation before charging stop control is executed It would reach the start voltage. つまり、充電停止制御が間に合わず、電池の劣化が生じることになる。 In other words, charging stop control is not in time, so that the deterioration of the battery occurs.
【0023】 [0023]
そこで、この第1の実施の形態では、組電池1の内部抵抗の増大を推定し、内部抵抗の増大が推定された場合には過充電しきい値Vc1を低いしきい値Vc2に切り換える。 Therefore, in this first embodiment, to estimate the increase in the internal resistance of the battery pack 1 switches the overcharging threshold Vc1 to a low threshold Vc2 when an increase in internal resistance was estimated. これにより、内部抵抗の増大により充電時に電池電圧Vcが急激に上昇しても、過充電しきい値Vc1よりも低いしきい値Vc2を超えた時点で過充電検出回路31〜3nから過充電検出信号が出力され、充放電制御回路7により充電停止制御が実行される。 Accordingly, even when the battery voltage Vc during charging due to the increase in the internal resistance rises sharply, the overcharge detection from the over-charge detection circuit 31~3n upon exceeding the lower threshold value Vc2 than the overcharge threshold Vc1 signal is output, charging stop control is executed by the charge and discharge control circuit 7. その結果、制御遅れ時間の間、電池電圧Vcが上昇し続けても、充電停止制御が実行される前に電池電圧Vcが電池劣化開始電圧に達することはなく、過充電による電池の劣化を避けることができる。 Avoid a result, during the response delay time, also continues to rise the battery voltage Vc, not the battery voltage Vc before charging stop control is executed reaches the battery deterioration starting voltage, the deterioration of the battery due to overcharging be able to.
【0024】 [0024]
ここで、内部抵抗増大時の過充電しきい値Vc2には、組電池1の通常の使用条件下で予想される最大の内部抵抗発生時に、制御遅れ時間後の電池電圧Vcが電池劣化開始電圧を超えない値を設定する。 Here, the overcharge threshold Vc2 when the internal resistance increases, the maximum time of the internal resistance generated, the battery voltage Vc battery deterioration starting voltage after the control delay time to be expected under normal use conditions of the battery pack 1 to set a value that does not exceed.
【0025】 [0025]
図4は、組電池の内部抵抗が小さい場合の放電時の電圧変化と、内部抵抗が大きい場合の放電時の電圧変化を示す。 Figure 4 illustrates a voltage change at the time of discharging in case the internal resistance is small of the assembled battery, a voltage change at the time of discharging in case the internal resistance is large. 上述したように、一般に、電池は温度が低くなるにしたがって電池内部の化学反応が緩やかになるため、電池の内部抵抗が大きくなる。 As described above, in general, the battery because the chemical reactions in the battery according to temperature becomes lower becomes gradual, the internal resistance of the battery increases. 電池の温度が高い状態で放電を行う場合には、図4に示す内部抵抗小の特性曲線にしたがって電池電圧(セル電圧)Vcが低下する。 Temperature of the battery in the case of a discharge high, according to the characteristic curve of the internal resistance small battery voltage (cell voltage) Vc drops shown in FIG. 電池電圧Vcが過放電しきい値Vd1に達すると、過放電検出回路41〜4nから過放電検出信号が充放電制御回路7へ出力される。 When the battery voltage Vc reaches the overdischarge threshold Vd1, over-discharge detection signal is output to the charge and discharge control circuit 7 from the over-discharge detection circuit 41 to 4n. 充放電制御回路7は、過放電検出信号を受信すると直ちに放電停止処理を実行する。 Charge and discharge control circuit 7, immediately executes the discharge stop processing when receiving the overdischarge detection signal.
【0026】 [0026]
ここで、電池電圧Vcが過放電しきい値Vd1に達してから実際に放電が停止されるまでには、「制御遅れ時間」が存在する。 Here, the battery voltage Vc By the actual discharging from reaching over-discharge threshold Vd1 is stopped, there is a "control delay time". そのため、図4に示すように、電池電圧Vcが過放電しきい値Vd1に達した後も、制御遅れ時間の間、そのまま電池電圧Vcが低下を続けることになる。 Therefore, as shown in FIG. 4, after the battery voltage Vc reaches the overdischarge threshold Vd1, during the response delay time, as the battery voltage Vc will continue to fall. しかし、電池温度が高い状態で充電を行った場合は電池電圧Vcが緩やかに低下するから、制御遅れ時間の間、電池電圧Vcが低下し続けても放電停止制御が実行される前に電池電圧Vcが電池劣化開始電圧に達することはない。 However, since the battery voltage Vc when the battery temperature was charged in a high state is reduced gradually, during the response delay time, the battery voltage before the discharge stop control also continues to decrease the battery voltage Vc is performed Vc does not reach the battery degradation start voltage.
【0027】 [0027]
一方、電池温度が低い状態で放電を行った場合は、電池の内部抵抗が大きいから電池電圧Vcの変化が急峻になり、図4に示す内部抵抗大の特性曲線にしたがって電池電圧Vcが低下する。 On the other hand, if the battery temperature was discharged at a low state, the change in battery voltage Vc because the internal resistance of the battery is large becomes steep, the battery voltage Vc decreases according to the characteristic curve of the internal resistance is large as shown in FIG. 4 . 電池電圧Vcが過放電しきい値Vd1に達すると、過放電検出回路41〜4nから過放電検出信号が充放電制御回路7へ出力され、充放電制御回路7が直ちに放電停止処理を実行する。 When the battery voltage Vc reaches the overdischarge threshold Vd1, over-discharge detection signal from the over-discharge detection circuit 41~4n is outputted to the charge and discharge control circuit 7, charge-discharge control circuit 7 immediately executes the discharge stop processing. ところが、電池温度が低い状態で放電を行った場合は電池電圧Vcが急激に低下するから、制御遅れ時間の間、電池電圧Vcが低下し続けて、放電停止制御が実行される前に電池劣化開始電圧に達してしまう。 However, since the battery voltage Vc when the battery temperature was discharged at a low state is rapidly lowered, while the response delay time, continues to decrease the battery voltage Vc, battery degradation before discharge stop control is executed It would reach the start voltage. つまり、放電停止制御が間に合わず、電池の劣化が生じることになる。 That is, the discharge stop control too late, so that the deterioration of the battery occurs.
【0028】 [0028]
そこで、この第1の実施の形態では、組電池1の内部抵抗の増大を推定し、内部抵抗の増大が推定された場合には過放電しきい値Vd1を高いしきい値Vd2へ切り換える。 Therefore, in this first embodiment, to estimate the increase in the internal resistance of the battery pack 1, if the increase in the internal resistance is estimated switches the overdischarge threshold value Vd1 to high threshold Vd2. これにより、内部抵抗の増大により放電時に電池電圧Vcが急激に低下しても、過放電しきい値Vd1よりも高いしきい値Vd2を下回った時点で過放電検出回路41〜4nから過放電検出信号が出力され、充放電制御回路7により直ちに放電停止制御が実行される。 Accordingly, even when the battery voltage Vc during discharge due to the increase in the internal resistance decreases rapidly, over-discharge detection from the over-discharge detection circuit 41~4n when below a higher threshold Vd2 than overdischarge threshold value Vd1 signal is output immediately discharge stop controlled by the charge and discharge control circuit 7 is executed. その結果、制御遅れ時間の間、電池電圧Vcが低下し続けても、放電停止制御が実行される前に電池電圧Vcが電池劣化開始電圧を下回ることがなく、過放電による電池の劣化を避けることができる。 Avoid a result, during the response delay time, also continued to drop the battery voltage Vc, without the battery voltage Vc before discharge stop control is performed is below the battery deterioration starting voltage, the deterioration of the battery due to overdischarge be able to.
【0029】 [0029]
ここで、内部抵抗増大時の過放電しきい値Vd2には、組電池1の通常の使用条件下で予想される最大の内部抵抗発生時に、制御遅れ時間後の電池電圧Vcが電池劣化開始電圧を下回らない値を設定する。 Here, the overdischarge threshold Vd2 at the internal resistance increases, the maximum time of the internal resistance generated, the battery voltage Vc battery deterioration starting voltage after the control delay time to be expected under normal use conditions of the battery pack 1 to set the value of not less than.
【0030】 [0030]
次に、この第1の実施の形態の組電池1の内部抵抗の推定方法について説明する。 Next, a description method of estimating the internal resistance of the battery pack 1 of the first embodiment. 組電池1の充電中に、組電池1の充電容量が目標充電容量に達する前にいずれかのセル11〜1nで過充電状態が検出された場合には、過充電状態が検出されたセルの電圧Vcの変化が他のセルの電圧変化よりも急峻であり、そのセルの内部抵抗は他のセルよりも大きいと推定される。 Of the charging the battery pack 1, when the overcharge state is detected in one of the cells 11~1n before charging capacity of the battery pack 1 reaches the target charge amount, the cell overcharge state is detected change of voltage Vc is steeper than the voltage change of other cells, the internal resistance of the cell is estimated to be greater than other cells. したがって、このような場合には、しきい値切り換え信号SIGをハイレベルにして高い過充電しきい値Vc1を低いしきい値Vc2に切り換える。 Therefore, in such a case, it switches the overcharge threshold Vc1 higher by the threshold switching signal SIG to high level to a low threshold Vc2.
【0031】 [0031]
このように第1の実施の形態では、組電池1の充電中に、組電池1の充電容量が目標充電容量に達する前にいずれかのセル11〜1nで過充電状態が検出された場合は、組電池1のいずれかのセルの内部抵抗が大きくなっていると推定し、この推定により過充電しきい値を高い値Vc1から低い値Vc2へ変更するようにした。 Thus, in the first embodiment, in the assembled battery 1 charging, if the charge capacity of the battery pack 1 is over-charged state in either cell 11~1n before reaching the target charge amount is detected estimates the internal resistance of any cell of the assembled battery 1 is increased, and to change the overcharge threshold from a high value Vc1 this estimated to a low value Vc2. これにより、次回の過充放電検出サイクルでは低い過充電しきい値Vc2が用いられることになり、特に前回の検出サイクルで過充電状態が検出されたセルの電圧Vcが電池劣化開始電圧に達してセルの劣化が生じるのを避けることができ、組電池の異常を早期に確実に検出することができる。 And this makes it possible to lower overcharge threshold Vc2 is used in the next overdischarge detection cycle, the voltage Vc of the cell overcharge state is detected reaches the battery deterioration starting voltage, especially in the last detection cycle can avoid deterioration of the cell occurs, it is possible to reliably detect the abnormality of the assembled battery early.
【0032】 [0032]
また、組電池1の放電中に、組電池1の放電容量が目標放電容量に達する前にいずれかのセル11〜1nで過放電状態が検出された場合には、過放電状態が検出されたセルの電圧Vcの変化が他のセルの電圧変化よりも急峻であり、そのセルの内部抵抗は他のセルよりも大きいと推定される。 Further, in the battery pack 1 discharge, when the over-discharge state is detected in one of the cells 11~1n before discharge capacity of the battery pack 1 reaches the target discharge capacity, over-discharge state is detected change of the voltage Vc of the cell is steeper than the voltage change of other cells, the internal resistance of the cell is estimated to be greater than other cells. したがって、このような場合には、しきい値切り換え信号SIGをハイレベルにして低い過放電しきい値Vd1を高いしきい値Vd2に切り換える。 Therefore, in such a case, it switched to the high threshold Vd2 overdischarge threshold value Vd1 lower by the threshold switching signal SIG to high level.
【0033】 [0033]
このように第1の実施の形態では、組電池1の放電中に、組電池1の放電容量が目標放電容量に達する前にいずれかのセル11〜1nで過放電状態が検出された場合は、組電池1のいずれかのセルの内部抵抗が大きくなっていると推定し、この推定により過放電しきい値を低い値Vd1から高い値Vd2へ変更するようにした。 In this manner, the first embodiment, in the assembled battery 1 discharging, set the discharge capacity of the battery 1 is in either cell 11~1n before reaching the target discharge capacity when the over-discharge state is detected estimates the internal resistance of any cell of the assembled battery 1 is increased, and to change the over-discharge threshold from a low value Vd1 this estimated to a high value Vd2. これにより、次回の過充放電検出サイクルでは高い過放電しきい値Vd2が用いられることになり、特に前回の検出サイクルで過放電状態が検出されたセルの電圧Vcが電池劣化開始電圧に達してセルの劣化が生じるのを避けることができ、組電池の異常を早期に確実に検出することができる。 And thereby, will be high overdischarge threshold Vd2 is used in the next overdischarge detection cycle, the voltage Vc of the cell over-discharge state is detected reaches the battery deterioration starting voltage, especially in the last detection cycle can avoid deterioration of the cell occurs, it is possible to reliably detect the abnormality of the assembled battery early.
【0034】 [0034]
上述した第1の実施の形態では、組電池1の充放電中に、組電池1の充放電容量が目標充放電容量に達する前にいずれかのセル11〜1nで過充電状態または過放電状態が検出された場合には、過充電状態または過放電状態が検出されたセルの内部抵抗は他のセルよりも大きいと推定する例を示したが、内部抵抗の推定方法はこの第1の実施の形態に限定されない。 In the first embodiment described above, during the charging and discharging of the assembled battery 1, overcharged state or overdischarged state either in cell 11~1n before charge and discharge capacity of the battery pack 1 reaches a target charge-and-discharge capacity if but is detected, although the internal resistance of the cell over-charge state or over-discharge state is detected an example of estimating larger than other cells, the method of estimating the internal resistance to the first embodiment but it is not limited to the form. 例えば、充放電時の組電池に流れる電流とセルの電圧をサンプリングし、サンプリング結果の電流と電圧を二次元平面上で直線回帰し、この回帰直線の傾きから電池の内部抵抗を推定する方法などを利用することができる。 For example, sampling the voltage of the current and the cell flowing through the assembled battery during charging and discharging, and linear regression current and voltage sampling results on a two dimensional plane, the method of estimating the internal resistance of the battery from the slope of the regression line, etc. it can be utilized.
【0035】 [0035]
《発明の第2の実施の形態》 "The second embodiment of the invention"
上述した第1の実施の形態では、充放電制御回路7により組電池1の内部抵抗を推定する例を示したが、内部抵抗推定手段にハードウエアデバイスを用いる第2の実施の形態を説明する。 In the first embodiment described above, an example of estimating the internal resistance of the battery pack 1 by the charge and discharge control circuit 7, a description will be given of a second embodiment using the hardware device to the internal resistance estimating means .
【0036】 [0036]
図5は第2の実施の形態の構成を示す。 Figure 5 shows the configuration of the second embodiment. なお、図1に示す第1の実施の形態の構成と同様な機器に対しては同一の符号を付して相違点を中心に説明する。 Incidentally, differences will be mainly described with the same reference numerals are given to the first embodiment of the configuration similar to equipment shown in Figure 1. 温度センサー8は組電池1の温度を検出し、組電池1の温度が予め設定したしきい値以下に低下したらハイレベルのしきい値切り換え信号SIGを過充電検出回路31〜3nと過放電検出回路41〜4nへ出力する。 Temperature sensor 8 detects the temperature of the battery pack 1, assembled battery 1 temperature is a threshold switching signal SIG high level Once drops below preset threshold overcharge detection circuit 31~3n overdischarge detection and outputs it to the circuit 41~4n.
【0037】 [0037]
上述したように、一般に電池は温度が低くなるにしたがって電池内部の化学反応が緩やかになるため、電池の内部抵抗が大きくなる。 As described above, generally the battery for the chemical reaction in the battery as the temperature decreases becomes gradual, the internal resistance of the battery increases. そこで、この第2の実施の形態では、組電池1の温度がしきい値以下に低下したら組電池1の内部抵抗が増大したと判断し、しきい値切り換え信号SIGをハイレベルに切り換える。 Therefore, in this second embodiment, it is determined the temperature of the assembled battery 1 and the internal resistance of the battery pack 1 Once drops below the threshold value is increased, switching the threshold switching signal SIG to high level. これにより、過充電しきい値が高い値Vc1から低い値Vc2へ切り換わるとともに、過放電しきい値が低い値Vd1から高い値Vd2へ切り換わる。 Thus, the overcharge threshold switches to a low value Vc2 from a high value Vc1, overdischarge threshold value is switched from a low value Vd1 to higher value Vd2.
【0038】 [0038]
このように、組電池1の温度がしきい値以下に低下したら過充電しきい値を高い値Vc1から低い値Vc2へ切り換えるとともに、過放電しきい値を低い値Vd1から高い値Vd2へ切り換えるようにした。 Thus, the temperature of the assembled battery 1 switches the overcharging threshold Once drops below the threshold value from a high value Vc1 to a low value Vc2, to switch the overdischarge threshold from a low value Vd1 to higher value Vd2 It was. つまり、第2の実施の形態では組電池1の温度を検出し、温度検出値に基づいて組電池1の内部抵抗を推定し、内部抵抗推定値に応じて過充電しきい値と過放電しきい値を変更するようにした。 That is, in the second embodiment detects the temperature of the assembled battery 1, to estimate the internal resistance of the battery pack 1 based on the temperature detection value, over-discharge and overcharge threshold in accordance with the internal resistance estimated value It was to change the threshold. これにより、組電池1の異常を早期に確実に検出することができ、組電池1の温度低下時に内部抵抗が増大して充放電時の電圧変化が急峻になっても、セル電圧Vcが電池劣化開始電圧に達してセルの劣化が生じるのを避けることができる。 This makes it possible to reliably detect the abnormality of the assembled battery 1 at an early stage, even when the abrupt voltage change at the time of charging and discharging the internal resistance increases when the temperature drop of the battery pack 1, the cell voltage Vc battery can avoid deterioration of the cell occurs reaches the deterioration starting voltage.
【0039】 [0039]
なお、組電池温度のしきい値と過充放電しきい値Vc2、Vd2には、組電池1の通常の使用条件下で予想される最低温度のときに、上述した制御遅れ時間後の電池電圧Vcが電池劣化開始電圧に達しない値を設定する。 Note that the battery pack temperature thresholds and overdischarge threshold Vc2, Vd2, when the lowest temperature expected in normal conditions of use of the battery pack 1, the above-mentioned response delay time after the battery voltage Vc is set to a value which does not reach a battery degradation start voltage.
【0040】 [0040]
《発明の第3の実施の形態》 "Third embodiment of the invention"
内部抵抗推定手段に他のハードウエアデバイスを用いる第3の実施の形態を説明する。 Illustrating a third embodiment using other hardware devices on the internal resistance estimating means. 図6は第3の実施の形態の構成を示す。 Figure 6 shows the configuration of the third embodiment. なお、図1に示す第1の実施の形態の構成と同様な機器に対しては同一の符号を付して相違点を中心に説明する。 Incidentally, differences will be mainly described with the same reference numerals are given to the first embodiment of the configuration similar to equipment shown in Figure 1. 充放電時間積算回路9は組電池1の充放電時間を積算し、組電池1の充放電時間の積算値が予め設定したしきい値に達したらハイレベルのしきい値切り換え信号SIGを過充電検出回路31〜3nと過放電検出回路41〜4nへ出力する。 Discharge time integrating circuit 9 integrates the charging and discharging time of the battery pack 1, overcharge threshold switching signal SIG high level reaches the threshold the integrated value previously set in the charge and discharge time of the battery pack 1 and outputs it to the detection circuit 31~3n and over-discharge detection circuit 41 to 4n.
【0041】 [0041]
一般に、電池は劣化が進むにつれて内部抵抗が増大し、電圧変化が急峻になる。 In general, the battery internal resistance increases as the deterioration progresses, the voltage change becomes steep. そこで、この第3の実施の形態では、組電池1の充放電時間の積算値がしきい値に達したら組電池1の内部抵抗が増大したと判断し、しきい値切り換え信号SIGをハイレベルに切り換える。 Therefore, in this third embodiment, it is determined integrated value of the charge and discharge time of the battery pack 1 and the internal resistance of the battery pack 1 reaches the threshold is increased, the high level threshold switching signal SIG It switched to. これにより、過充電しきい値が高い値Vc1から低い値Vc2へ切り換わるとともに、過放電しきい値が低い値Vd1から高い値Vd2へ切り換わる。 Thus, the overcharge threshold switches to a low value Vc2 from a high value Vc1, overdischarge threshold value is switched from a low value Vd1 to higher value Vd2.
【0042】 [0042]
このように、組電池1の充放電時間の積算値がしきい値に達したら過充電しきい値を高い値Vc1から低い値Vc2へ切り換えるとともに、過放電しきい値を低い値Vd1から高い値Vd2へ切り換えるようにした。 Thus, it switches the overcharge threshold When the integrated value of the charging and discharging time of the battery pack 1 reaches a threshold value from a high value Vc1 to a low value Vc2, high over-discharge threshold from a low value Vd1 value It was to switch to Vd2. つまり、第3の実施の形態では組電池1の充放電時間を積算し、この充放電時間積算値に基づいて組電池1の内部抵抗を推定し、内部抵抗推定値に応じて過充電しきい値と過放電しきい値を変更するようにした。 That is, in the third embodiment by integrating the charge and discharge time of the battery pack 1, estimates the internal resistance of the battery pack 1 based on the charge and discharge time integrated value, overcharge threshold in accordance with the internal resistance estimated value and to change the values ​​and overdischarge threshold. これにより、組電池1の異常を早期に確実に検出することができ、組電池1の長い間の使用により組電池1が徐々に劣化して内部抵抗が増大し、充放電時の電圧変化が急峻になっても、セル電圧Vcが電池劣化開始電圧に達してセルの劣化が生じるのを避けることができる。 Thus, it is possible to reliably detect the abnormality of the assembled battery 1 at an early stage, the internal resistance increases to deteriorate the battery pack 1 gradually by the use of long-time battery pack 1, the voltage change at the time of charge and discharge even steeper, the cell voltage Vc can be prevented from deterioration of the cell occurs reach the battery deterioration starting voltage.
【0043】 [0043]
なお、組電池充放電時間積算値のしきい値と過充放電しきい値Vc2、Vd2には、通常の使用条件下で使用したときに、上述した制御遅れ時間後の電池電圧Vcが電池劣化開始電圧に達しない値を設定する。 Note that the threshold and overdischarge threshold Vc2, Vd2 of the assembled battery charge and discharge time integrated value, when used under normal conditions of use, the battery voltage Vc after response delay time described above is the battery degradation setting the not reach the start voltage value.
【0044】 [0044]
《発明の第4の実施の形態》 "Fourth Embodiment of the invention"
内部抵抗推定手段に他のハードウエアデバイスを用いる第4の実施の形態を説明する。 Illustrating a fourth embodiment using other hardware devices on the internal resistance estimating means. 図7は第4の実施の形態の構成を示す。 Figure 7 shows the construction of a fourth embodiment. なお、図1に示す第1の実施の形態の構成と同様な機器に対しては同一の符号を付して相違点を中心に説明する。 Incidentally, differences will be mainly described with the same reference numerals are given to the first embodiment of the configuration similar to equipment shown in Figure 1. タイマー回路10は、組電池1の電源投入時点からの稼動時間を計時し、稼動時間が予め設定した所定時間に達したらハイレベルのしきい値切り換え信号SIGを過充電検出回路31〜3nと過放電検出回路41〜4nへ出力する。 The timer circuit 10 measures the operating time from the power-on time of the battery pack 1, the threshold switching signal SIG high level reaches a predetermined operating time is the preset time and the over-charge detection circuit 31~3n over and outputs to the discharge detector circuit 41 to 4n.
【0045】 [0045]
一般に、電池は、電源投入時点、つまり稼動開始時点では温度が低く、稼動時間が長くなるにしたがって温度が上昇する。 Generally, batteries, power-on time, i.e. low temperature at operation start time, the temperature is increased in accordance with the operating time becomes longer. つまり、電源投入直後は温度が低いので内部抵抗が高く、電圧変化が急峻になる。 That is, the internal resistance is high, the voltage change becomes steep immediately after power-on since the temperature is low. そこで、この第4の実施の形態では、電源投入時点から所定の稼動時間の間は組電池1の内部抵抗が高いと判断し、その間はしきい値切り換え信号SIGをハイレベルにする。 Therefore, in this fourth embodiment, between the power-on time of the predetermined operating time is determined to be high internal resistance of the battery pack 1, during which the threshold switching signal SIG to high level. これにより、電源投入時点から所定の稼動時間の間は、過充電しきい値が高い値Vc1から低い値Vc2へ切り換わるとともに、過放電しきい値が低い値Vd1から高い値Vd2へ切り換わる。 Thus, between power-on time of the predetermined operating time, along with overcharge threshold switches to a low value Vc2 from a high value Vc1, overdischarge threshold value is switched from a low value Vd1 to higher value Vd2.
【0046】 [0046]
このように、組電池1の電源投入時点から所定の稼動時間の間は、過充電しきい値を高い値Vc1から低い値Vc2へ切り換えるとともに、過放電しきい値を低い値Vd1から高い値Vd2へ切り換えるようにした。 Thus, between power-on time of the battery pack 1 of the predetermined operating time, switches the overcharging threshold from a high value Vc1 to a low value Vc2, high value overdischarge threshold from a low value Vd1 Vd2 It was to switch to. つまり、この第4の実施の形態では組電池1の電源投入時点からの稼動時間を計時し、組電池1の電源投入からの稼動時間に基づいて組電池1の内部抵抗を推定し、内部抵抗推定値に応じて過充電しきい値と過放電しきい値を変更するようにした。 In other words, in the fourth embodiment measures the operating time from the power-on time of the battery pack 1, estimates the internal resistance of the battery pack 1 based on the operation time from the power-on of the battery pack 1, the internal resistance and to change the overcharge threshold and overdischarge threshold value in accordance with the estimated value. これにより、組電池1の異常を早期に確実に検出することができ、電源投入直後の組電池1の内部抵抗が高くて電圧変化が急峻になっても、セル電圧Vcが電池劣化開始電圧に達してセルの劣化が生じるのを避けることができる。 Thus, it is possible to early reliably detect the abnormality of the assembled battery 1, even when the abrupt voltage change is high internal resistance of the battery pack 1 immediately after the power is turned on, the cell voltage Vc to the battery deterioration starting voltage It reached it is possible to avoid the deterioration of the cell occurs.
【0047】 [0047]
なお、上記所定の稼動時間と過充放電しきい値Vc2、Vd2には、通常の使用条件下で使用したときに、上述した制御遅れ時間後の電池電圧Vcが電池劣化開始電圧に達しない値を設定する。 Note that the predetermined operating time and overdischarge threshold Vc2, Vd2, when used in normal conditions of use, the battery voltage Vc after response delay time described above does not reach the battery deterioration starting voltage value to set.
【0048】 [0048]
特許請求の範囲の構成要素と一実施の形態の構成要素との対応関係は次の通りである。 Correspondence between the component and the components of an embodiment of the claims is as follows. すなわち、過充電検出回路31〜3nが過充電検出手段を、過放電検出回路41〜4nが過放電検出手段を、過充電検出回路31〜3nおよび過放電検出回路41〜4nが過充放電検出手段を、充放電制御回路7、温度センサー8、充放電時間積算回路9、タイマー回路10がそれぞれ内部抵抗推定手段およびしきい値変更手段をそれぞれ構成する。 In other words, the overcharge detection circuit 31~3n overcharge detecting means, the over-discharge detection circuit 41~4n overdischarge detecting means, the over-charge detection circuit 31~3n and over-discharge detection circuit 41~4n is overdischarge detection means, charge and discharge control circuit 7, the temperature sensor 8, the charge and discharge time integrating circuit 9, the timer circuit 10 each constituting an internal resistance estimating means, and the threshold changing unit, respectively. なお、本発明の特徴的な機能を損なわない限り、各構成要素は上記構成に限定されるものではない。 Incidentally, as long as they do not impair the characteristic features of the present invention, each component is not limited to the above configuration.
【0049】 [0049]
なお、上述した一実施の形態では、組電池の充放電中に目標充放電容量に達する前に過充電検出信号または過放電検出信号が出力されたときは、組電池のいずれかのセルの内部抵抗が大きくなっていると推定する例、または組電池の温度、充放電時間積算値および電源投入時点からの稼動時間に基づいて組電池の内部抵抗を推定する例を示したが、組電池の内部抵抗を推定する方法は上述した一実施の形態の方法に限定されるものではない。 In the embodiment described above, when the overcharge detecting signal or the over-discharge detection signal is output before during charging and discharging of the assembled battery reaches the target charge-discharge capacity, the internal one of the cell of the assembled battery examples estimates that the resistance is increased, or the battery pack temperature, the example of estimating the internal resistance of the battery pack based on the operation time from the charging and discharging time integrated value and power-on time, the battery pack method of estimating the internal resistance is not limited to the method of the embodiment described above.
【0050】 [0050]
また、上述した一実施の形態では、内部抵抗推定値に応じて過充電しきい値および過放電しきい値をそれぞれ2段階に変更する例を示したが、過充電しきい値および過放電しきい値の変更段数は2段階に限定されず、3段階以上としてもよい。 Further, in the embodiment described above, an example of changing the overcharge threshold and overdischarge threshold value respectively 2 stages according to the internal resistance estimated value, and overcharge threshold and overdischarge changing the number of stages of the threshold is not limited to two stages may be three or more stages. あるいは、内部抵抗推定値に応じて過充電しきい値および過放電しきい値を連続的に変更してもよい。 Alternatively, the overcharge threshold and overdischarge threshold value may be continuously changed according to the internal resistance estimated value.
【0051】 [0051]
上述した一実施の形態では組電池1の内部抵抗推定値に応じて過充電しきい値と過放電しきい値とを同時に変更する例を示した。 In the embodiment described above shows an example of changing the overcharge threshold and overdischarge threshold value simultaneously in response to the internal resistance estimated value of the assembled battery 1. これにより、しきい値切り換え信号SIGを送る信号線を1本化することができ、装置を簡素化することができる。 Thus, it is possible to one of the signal line for sending a threshold switching signal SIG, it is possible to simplify the apparatus. もちろん、過充電しきい値と過放電しきい値とを同時に変更せず、それぞれ別個にしきい値切り換え信号線を設けて別々のタイミングで切り換えるようにしてもよい。 Of course, without changing the overcharge threshold and overdischarge threshold value at the same time, may be switched at different timings separately provided a threshold switching signal line.
【0052】 [0052]
さらに、上述した第2から第4の実施の形態では、組電池1の内部抵抗推定手段にそれぞれ温度センサー8、充放電時間積算回路9およびタイマー回路10のハードウエアデバイスを用いる例を示した。 Furthermore, in the fourth embodiment from the second described above, an example of using a hardware device, respectively to the internal resistance estimating means of the battery pack 1 Temperature sensor 8, the charge and discharge time integrating circuit 9 and a timer circuit 10. このようなハードウエアデバイスにより内部抵抗推定手段を構成することによって、過充電検出回路31〜3nおよび過放電検出回路41〜4nもハードウエアデバイスであるから、ハードウエアデバイスのみで組電池の異常検出装置を構成することができ、マイクロコンピューターやA/Dコンバーターを用いずに装置を簡素化することができる。 By constituting the internal resistance estimating means by such hardware devices, since the over-charge detection circuit 31~3n and over-discharge detection circuit 41~4n also a hardware device, hardware device only the assembled battery abnormality detection can configure the device, it is possible to simplify the apparatus without using a microcomputer and a / D converter.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】第1の実施の形態の構成を示す図である。 1 is a diagram showing a configuration of a first embodiment.
【図2】過充電検出回路と過放電検出回路の詳細を示す図である。 2 is a diagram showing the details of the over-charge detection circuit and over-discharge detection circuit.
【図3】組電池の内部抵抗が小さい場合の充電時の電圧変化と、内部抵抗が大きい場合の充電時の電圧変化を示す図である。 The voltage change at the time of charging in the case [3] sets the internal resistance of the battery is small, a diagram illustrating a voltage change during charge when the internal resistance is large.
【図4】組電池の内部抵抗が小さい場合の放電時の電圧変化と、内部抵抗が大きい場合の放電時の電圧変化を示す図である。 [4] set and the voltage change at the time of discharging in case the internal resistance is small batteries is a diagram illustrating a voltage change at the time of discharging in case the internal resistance is large.
【図5】第2の実施の形態の構成を示す図である。 5 is a diagram showing a configuration of a second embodiment.
【図6】第3の実施の形態の構成を示す図である。 6 is a diagram showing a configuration of a third embodiment.
【図7】第4の実施の形態の構成を示す図である。 7 is a diagram showing a configuration of a fourth embodiment.
【符号の説明】 DESCRIPTION OF SYMBOLS
1 組電池6、51〜5n OR素子7 充放電制御回路8 温度センサー9 充放電時間積算回路10 タイマー回路11、12、13、・・、1n セル(単電池) 1 assembled battery 6,51~5N OR element 7 charging and discharging control circuit 8 Temperature sensor 9 discharge time integrating circuit 10 timer circuit 11, 12, 13, · ·, 1n cell (unit cell)
31〜3n 過充電検出回路41〜4n 過放電検出回路 31~3n overcharge detection circuit 41~4n over-discharge detection circuit

Claims (11)

  1. 単電池(以下、セルという)を複数個直列に接続した組電池、または複数のセルを並列に接続したセル並列回路を複数組直列に接続した組電池の過充電状態を検出する組電池の異常検出装置であって、 Single cell (hereinafter, referred to as a cell) of the battery pack to detect the overcharge state of the battery connected assembled batteries were connected to each other in series or cells parallel circuit in which a plurality of cells connected in parallel, a plurality of sets series abnormal a detection device,
    前記セルまたは前記セル並列回路の両端電圧が過充電しきい値を超えたときに過充電検出信号を出力する過充電検出手段と、 Overcharge detecting means for outputting an overcharge detection signal when the voltage across said cell or the cell parallel circuit exceeds the overcharge threshold,
    前記組電池の内部抵抗を推定する内部抵抗推定手段と、 And internal resistance estimating means for estimating an internal resistance of the battery pack,
    前記組電池の内部抵抗推定値に応じて前記過充電しきい値を変更する過充電しきい値変更手段とを備えることを特徴とする組電池の異常検出装置。 Abnormality detecting device of a battery pack characterized by comprising the overcharge threshold value change means for changing the overcharge threshold in accordance with the internal resistance estimated value of the battery pack.
  2. 請求項1に記載の組電池の異常検出装置において、 In the abnormality detecting device for a battery pack according to claim 1,
    前記過充電しきい値変更手段は、前記組電池の内部抵抗推定値が大きいほど前記過充電しきい値を低くすることを特徴とする組電池の異常検出装置。 The overcharge threshold value change means, the abnormality detecting device of the battery pack, characterized in that to lower the higher the overcharge threshold is larger internal resistance estimated value of the battery pack.
  3. 単電池(以下、セルという)を複数個直列に接続した組電池、または複数のセルを並列に接続したセル並列回路を複数組直列に接続した組電池の過放電状態を検出する組電池の異常検出装置であって、 Single cell (hereinafter, referred to as a cell) of the battery pack to detect the over-discharge state of the battery pack connected assembled batteries were connected to each other in series or cells parallel circuit in which a plurality of cells connected in parallel, a plurality of sets series abnormal a detection device,
    前記セルまたは前記セル並列回路の両端電圧が過放電しきい値を下回ったときに過放電検出信号を出力する過放電検出手段と、 And over-discharge detection means for outputting an over-discharge detection signal when the voltage across said cell or the cell parallel circuit falls below the overdischarge threshold,
    前記組電池の内部抵抗を推定する内部抵抗推定手段と、 And internal resistance estimating means for estimating an internal resistance of the battery pack,
    前記組電池の内部抵抗推定値に応じて前記過放電しきい値を変更する過放電しきい値変更手段とを備えることを特徴とする組電池の異常検出装置。 Abnormality detecting device of a battery pack characterized by comprising the overdischarge threshold value changing means for changing the over-discharge threshold in accordance with the internal resistance estimated value of the battery pack.
  4. 請求項1に記載の組電池の異常検出装置において、 In the abnormality detecting device for a battery pack according to claim 1,
    前記過放電しきい値変更手段は、前記組電池の内部抵抗推定値が大きいほど前記過放電しきい値を高くすることを特徴とする組電池の異常検出装置。 The overdischarge threshold value changing means, the abnormality detecting device of the battery pack, characterized in that to increase the over-discharge threshold value the larger the internal resistance estimated value of the battery pack.
  5. 単電池(以下、セルという)を複数個直列に接続した組電池、または複数のセルを並列に接続したセル並列回路を複数組直列に接続した組電池の過充電状態または過放電状態を検出する組電池の異常検出装置であって、 Single cell (hereinafter, referred to as a cell) to detect the overcharge state or the overdischarged state of the battery pack connected assembled batteries were connected to each other in series or cells parallel circuit in which a plurality of cells connected in parallel, a plurality of sets series a malfunction detection device of the battery pack,
    前記セルまたは前記セル並列回路の両端電圧が過充電しきい値を超えたときに過充電検出信号を出力し、前記セルまたは前記セル並列回路の両端電圧が過放電しきい値を下回ったときに過放電検出信号を出力する過充放電検出手段と、 When the voltage across the cell or the cell parallel circuit outputs the overcharge detection signal when it exceeds the overcharge threshold, the voltage across the cell or the cell parallel circuit falls below the overdischarge threshold and overdischarge detecting means for outputting an over-discharge detection signal,
    前記組電池の内部抵抗を推定する内部抵抗推定手段と、 And internal resistance estimating means for estimating an internal resistance of the battery pack,
    前記組電池の内部抵抗推定値に応じて前記過充電しきい値および前記過放電しきい値を変更する過充放電しきい値変更手段とを備えることを特徴とする組電池の異常検出装置。 Abnormality detecting device of a battery pack characterized by comprising the overdischarge threshold value change means the change the overcharge threshold and the overdischarge threshold value according to the internal resistance estimated value of the battery pack.
  6. 請求項5に記載の組電池の異常検出装置において、 In the abnormality detecting device for a battery pack according to claim 5,
    前記過充放電しきい値変更手段は、前記組電池の内部抵抗推定値が大きいほど前記過充電しきい値を低くし、前記過放電しきい値を高くすることを特徴とする組電池の異常検出装置。 The overdischarge threshold value change means, said set lower the overcharge threshold the larger the internal resistance estimated value of the battery, abnormality of the assembled battery, characterized in that to increase the over-discharge threshold detection device.
  7. 請求項5または請求項6に記載の組電池の異常検出装置において、 In the abnormality detecting device for a battery pack according to claim 5 or claim 6,
    前記過充放電しきい値変更手段は、前記組電池の内部抵抗推定値に応じて前記過充電しきい値と前記過放電しきい値とを同時に変更することを特徴とする組電池の異常検出装置。 The overdischarge threshold value change means, abnormality detection of the battery pack, which comprises simultaneously changing the said overdischarge threshold value and the overcharge threshold in accordance with the internal resistance estimated value of the battery pack apparatus.
  8. 請求項1〜7のいずれかの項に記載の組電池の異常検出装置において、 In the abnormality detecting device for a battery pack according to any one of claims 1 to 7,
    前記内部抵抗推定手段は、前記組電池の充放電中に目標充放電容量に達する前に前記過充電検出信号または前記過放電検出信号が出力されたときは、前記組電池のいずれかのセルまたはセル並列回路の内部抵抗が大きくなっていると推定することを特徴とする組電池の異常検出装置。 The internal resistance estimating means, when the overcharge detecting signal or the over-discharge detection signal before it reaches the target charge-and-discharge capacity in charging and discharging of the battery pack is output, one of the cells of the battery pack or abnormality detecting device of an assembled battery and estimating the internal resistance of the cell parallel circuit is increased.
  9. 請求項1〜7のいずれかの項に記載の組電池の異常検出装置において、 In the abnormality detecting device for a battery pack according to any one of claims 1 to 7,
    前記組電池の温度を検出する電池温度検出手段を備え、 Comprising a battery temperature detecting means for detecting a temperature of the battery pack,
    前記内部抵抗推定手段は、前記組電池の温度検出値に基づいて前記組電池の内部抵抗を推定することを特徴とする組電池の異常検出装置。 The internal resistance estimating means, the abnormality detecting device of an assembled battery and estimates the internal resistance of the battery pack based on the temperature detection value of the battery pack.
  10. 請求項1〜7のいずれかの項に記載の組電池の異常検出装置において、 In the abnormality detecting device for a battery pack according to any one of claims 1 to 7,
    前記組電池の充放電時間を積算する充放電時間積算手段を備え、 Includes a charge and discharge time integrating means for integrating the charge and discharge time of the battery pack,
    前記内部抵抗推定手段は、前記組電池の充放電時間積算値に基づいて前記組電池の内部抵抗を推定することを特徴とする組電池の異常検出装置。 The internal resistance estimating means, the abnormality detecting device of an assembled battery and estimates the internal resistance of the battery pack based on the charging and discharging time integrated value of the battery pack.
  11. 請求項1〜7のいずれかの項に記載の組電池の異常検出装置において、 In the abnormality detecting device for a battery pack according to any one of claims 1 to 7,
    前記組電池の電源投入時点からの稼動時間を計時する稼動時間計時手段を備え、 With the operating time counting means for counting the operation time from the power-on time of the battery pack,
    前記内部抵抗推定手段は、前記組電池の電源投入時点からの稼動時間に基づいて前記組電池の内部抵抗を推定することを特徴とする組電池の異常検出装置。 The internal resistance estimating means, the abnormality detecting device of an assembled battery and estimates the internal resistance of the battery pack based on the operation time from the power-on time of the battery pack.
JP2002298817A 2002-10-11 2002-10-11 Abnormality detecting device of the battery pack Expired - Fee Related JP4069721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298817A JP4069721B2 (en) 2002-10-11 2002-10-11 Abnormality detecting device of the battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298817A JP4069721B2 (en) 2002-10-11 2002-10-11 Abnormality detecting device of the battery pack

Publications (2)

Publication Number Publication Date
JP2004134287A true true JP2004134287A (en) 2004-04-30
JP4069721B2 JP4069721B2 (en) 2008-04-02

Family

ID=32288129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298817A Expired - Fee Related JP4069721B2 (en) 2002-10-11 2002-10-11 Abnormality detecting device of the battery pack

Country Status (1)

Country Link
JP (1) JP4069721B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278913A (en) * 2006-04-10 2007-10-25 Denso Corp State monitoring device of battery pack
JP2008064584A (en) * 2006-09-07 2008-03-21 Shin Kobe Electric Mach Co Ltd Battery state informing method
JP2009055755A (en) * 2007-08-29 2009-03-12 Ricoh Co Ltd Semiconductor device for protecting secondary battery
JP2010016975A (en) * 2008-07-03 2010-01-21 Hitachi Koki Co Ltd Charging system and battery pack used for the system
EP2434302A1 (en) * 2009-09-29 2012-03-28 Denso Corporation Voltage monitoring apparatus
CN103311561A (en) * 2012-03-06 2013-09-18 北京联动天翼科技有限公司 Apparatus and method for preparing high-capacity battery pack through parallel connection of low-capacity batteries
JP2013210206A (en) * 2012-03-30 2013-10-10 Toyota Industries Corp On-vehicle battery charge state estimation device
JP2013210205A (en) * 2012-03-30 2013-10-10 Toyota Industries Corp On-vehicle battery charge state estimation device
CN103630845A (en) * 2013-11-13 2014-03-12 凯迈(洛阳)电子有限公司 Lithium ion battery internal resistance sorting device
JP2014147201A (en) * 2013-01-29 2014-08-14 Toyota Industries Corp Method of changing setting of state determination of cell system and cell
JP2014187735A (en) * 2013-03-21 2014-10-02 Sumitomo (Shi) Construction Machinery Co Ltd Excavator
JP2015072878A (en) * 2013-10-04 2015-04-16 三菱重工業株式会社 Battery monitoring device and threshold setting method
US9140761B2 (en) 2009-12-25 2015-09-22 Toyota Jidosha Kabushiki Kaisha Battery pack failure detection device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508146B2 (en) * 2006-04-10 2010-07-21 株式会社デンソー Status monitoring device of the battery pack
JP2007278913A (en) * 2006-04-10 2007-10-25 Denso Corp State monitoring device of battery pack
JP2008064584A (en) * 2006-09-07 2008-03-21 Shin Kobe Electric Mach Co Ltd Battery state informing method
JP4670778B2 (en) * 2006-09-07 2011-04-13 新神戸電機株式会社 Battery state notification method
JP2009055755A (en) * 2007-08-29 2009-03-12 Ricoh Co Ltd Semiconductor device for protecting secondary battery
US8148944B2 (en) 2007-08-29 2012-04-03 Ricoh Company, Ltd. Secondary battery protection semiconductor device for protecting a secondary battery
JP2010016975A (en) * 2008-07-03 2010-01-21 Hitachi Koki Co Ltd Charging system and battery pack used for the system
EP2434302A4 (en) * 2009-09-29 2013-10-30 Denso Corp Voltage monitoring apparatus
EP2434302A1 (en) * 2009-09-29 2012-03-28 Denso Corporation Voltage monitoring apparatus
CN102576040A (en) * 2009-09-29 2012-07-11 丰田自动车株式会社 Voltage monitoring apparatus
CN102576040B (en) * 2009-09-29 2015-04-15 株式会社电装 Voltage monitoring apparatus
US8854047B2 (en) 2009-09-29 2014-10-07 Denso Corporation Voltage monitor for monitoring voltage of a battery
US9140761B2 (en) 2009-12-25 2015-09-22 Toyota Jidosha Kabushiki Kaisha Battery pack failure detection device
CN103311561A (en) * 2012-03-06 2013-09-18 北京联动天翼科技有限公司 Apparatus and method for preparing high-capacity battery pack through parallel connection of low-capacity batteries
JP2013210206A (en) * 2012-03-30 2013-10-10 Toyota Industries Corp On-vehicle battery charge state estimation device
JP2013210205A (en) * 2012-03-30 2013-10-10 Toyota Industries Corp On-vehicle battery charge state estimation device
JP2014147201A (en) * 2013-01-29 2014-08-14 Toyota Industries Corp Method of changing setting of state determination of cell system and cell
JP2014187735A (en) * 2013-03-21 2014-10-02 Sumitomo (Shi) Construction Machinery Co Ltd Excavator
JP2015072878A (en) * 2013-10-04 2015-04-16 三菱重工業株式会社 Battery monitoring device and threshold setting method
CN103630845A (en) * 2013-11-13 2014-03-12 凯迈(洛阳)电子有限公司 Lithium ion battery internal resistance sorting device

Also Published As

Publication number Publication date Type
JP4069721B2 (en) 2008-04-02 grant

Similar Documents

Publication Publication Date Title
US20060071643A1 (en) Method and device for monitoring battery cells of a battery pack and method and arrangement for balancing battery cell voltages during charge
US6172485B1 (en) Power supply monitoring integrated circuit device and battery pack
US20110049977A1 (en) Safety and performance optimized controls for large scale electric vehicle battery systems
US20090179650A1 (en) Cell voltage abnormality detector and cell voltage monitoring device for a multi-cell series battery
US6819083B1 (en) Dual use thermistor for battery cell thermal protection and battery pack overcharge/undercharge protection
US20010026147A1 (en) Charging and discharging control circuit and charging type power supply device
US20090130542A1 (en) Abnormality detection apparatus for battery pack
US6960899B2 (en) Apparatus for discharging a combination battery consisting of a plurality of secondary batteries
US20040036446A1 (en) Malfunction detection apparatus and method for battery pack
US6222346B1 (en) Battery protection device
US20040257041A1 (en) Charging and discharging control apparatus for backup battery
US20090202890A1 (en) Battery pack
US20080143298A1 (en) Abnormality diagnostic device
US20050127873A1 (en) Battery charging method
US20090051324A1 (en) Battery pack and method for detecting disconnection of same
US20090295332A1 (en) Battery pack and charging method for the same
JP2000092732A (en) Method for judging scattering of battery pack and battery device
JP2003257501A (en) Secondary battery residual capacity meter
US20050212486A1 (en) Capacity adjustment apparatus for battery pack and capacity adjustment method for battery pack
JP2003284253A (en) Method of adjusting capacity of secondary battery
US20120013180A1 (en) Battery control apparatus, battery control method, and vehicle
JP2005117780A (en) Protective ic for battery and battery pack using the same
US20090096420A1 (en) Systems and methods for cell balancing
US20100194398A1 (en) Rechargeable battery abnormality detection apparatus and rechargeable battery apparatus
US20110156714A1 (en) Battery fault detection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees