JP2004129412A - Power storing device - Google Patents

Power storing device Download PDF

Info

Publication number
JP2004129412A
JP2004129412A JP2002291362A JP2002291362A JP2004129412A JP 2004129412 A JP2004129412 A JP 2004129412A JP 2002291362 A JP2002291362 A JP 2002291362A JP 2002291362 A JP2002291362 A JP 2002291362A JP 2004129412 A JP2004129412 A JP 2004129412A
Authority
JP
Japan
Prior art keywords
power
secondary battery
charging
battery
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002291362A
Other languages
Japanese (ja)
Inventor
Katsufusa Mizuki
水木 克房
Kensho Tokuda
徳田 憲昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2002291362A priority Critical patent/JP2004129412A/en
Publication of JP2004129412A publication Critical patent/JP2004129412A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To prolong the lifetime of a secondary battery having a suitable battery capacity by selecting the battery, and to reduce the environmental load. <P>SOLUTION: In the power storage device 13 having a secondary battery 5, which can be charged and discharged to a DC side of a power converter 4 connected between a system power source 2 of a power system for linking a distributed power source 1 and the load via a linkage transformer 8, the battery 5 is charged and discharged at a load leveling time to reduce a peak power; and a capacitor 9 is charged and discharged at a change-compensating operation time for suppressing the output change of the distributed power source 1, so that the capacitor 9 for complementing charging/discharging of the battery 5 is provided in parallel with the battery 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、商用電源あるいは自家発設備と負荷からなる交流回路に設けられ、二次電池の充放電により負荷平準化および負荷変動や分散電源の出力変動による電力の品質低下を抑制する電力貯蔵装置に関する。
【0002】
【従来の技術】
例えば風力発電システムなどの分散電源を系統電源に連系させた電力系統においては、前記風力発電機が、風速などの自然条件に応じて時々刻々と出力変動するものであり、例えば僻地や離島などに設置されることから、電力系統の末端、つまり、ディーゼル発電機を系統電源として持つ小規模な、いわゆる弱い電力系統となるのが一般的である。この種の弱い電力系統では、風力発電出力のような負荷変動が頻繁に現出すると、その負荷変動により電力系統に電圧または周波数変動を招く影響が大きいことから、負荷変動を抑えて電力系統の電圧または周波数変動を抑制するために電力貯蔵装置を設置するようにしている。
【0003】
図4は電力系統に設置された電力貯蔵装置3の回路構成を示す。この電力貯蔵装置3は、例えば風力発電システムである分散電源1と系統電源2との間に設置され、その連系点Aに連系用変圧器8を介して電力貯蔵装置3を接続した概略構成を有する。電力貯蔵装置3は、電力変換器4とその直流側に接続された充放電可能な鉛蓄電池などの二次電池5とで構成されている。なお、図中、6,7は系統母線に設けられた計器用変圧器(VT)と変流器(CT)である。
【0004】
前記電力変換器4は、放電機能と充電機能を有する双方向形交直変換器で、系統母線からの交流電力を直流変換して二次電池5に充電するコンバータ運転と、二次電池5に充電された直流電力を交流変換して系統母線に供給するインバータ運転とに切り換え制御される。
【0005】
そのため、電力貯蔵装置3では、前述した分散電源1の出力変動を計器用変圧器6及び変流器7により検出し、その分散電源1の出力変動を打ち消すように電力貯蔵装置3の電力変換器4をコンバータ運転またはインバータ運転させることにより二次電池5を充放電させ、この電力変換器4のコンバータ運転またはインバータ運転による電力系統との電力のやり取りでもって、分散電源1の出力変動を抑えて電力系統の電圧または周波数変動を抑制するように電力の変動補償動作を行っている。
【0006】
この電力貯蔵装置3における電力の変動補償動作は、前述した分散電源1の出力変動に対してばかりでなく、例えば一般家庭や工場などの電力需要家における電力パターンに基づく場合についても行われる。
【0007】
この電力需要家における1日の電力パターンは、例えばPM1〜4時頃の重負荷時間帯に電力ピークとなるような特性を有する。そのため、電力貯蔵装置3では、深夜ならびに軽負荷時間帯(例えばAM8時〜PM1時、PM5時〜10時頃)に電力変換器4のコンバータ運転により二次電池5を充電し、その二次電池5の充電電力を重負荷時間帯(例えばPM1時〜4時頃)に電力変換器4のインバータ運転により放電して、その二次電池5の放電電力を負荷に供給する。このように二次電池5の放電電力をピークシフトすることでピーク電力を低減することにより、負荷平準化を実現している(例えば、特許文献1参照)。
【0008】
【特許文献1】
特開2002−171669号公報
【0009】
【発明が解決しようとする課題】
ところで、前述した電力貯蔵装置3では、分散電源1の出力が風速などの自然条件に応じて時々刻々と変動するために頻繁に現出する出力変動に対して、電力変換器4の運転による電力系統との電力のやり取りでもって、常時、分散電源1の出力変動を抑えて電力系統の電圧または周波数変動を抑制する電力の変動補償動作と、電力需要家における1日の電力パターンに基づいて電力変換器4のコンバータ運転またはインバータ運転により二次電池の放電電力をピークシフトすることでピーク電力を低減する負荷平準化の両者について、電力変換器4の直流側に設けられた二次電池5の充放電により達成している。
【0010】
しかしながら、前述した二次電池5では、その電池容量の全てを、例えば秒オーダーの短時間で現出する出力変動に対応させることが非常に困難であり、二次電池5の特性上、分散電源を連系させた電力系統において変動対応としては余裕が大きい二次電池5を選択しているのが現状であった。
【0011】
また、その二次電池5の使用に当たっては、出力変動に相当する充放電電流で過電圧の不具合が発生しないように、二次電池5の充電状態(SOC)を例えば60〜70%程度にしておく必要があり、ピークシフトによる負荷平準化時には二次電池5の電池能力を100%使用することが困難であった。また、この二次電池5では、60〜70%の充電状態(SOC)を維持するためには、例えば週一回程度の頻度で電池劣化を防止する充放電作業を必要としていた。
【0012】
そこで、本発明は、前述した問題点に鑑みて提案されたもので、その目的とするところは、適正な電池容量を持つ二次電池を選定することができ、あるいは二次電池の長寿命化を図り、環境負荷の低減化に貢献し得る電力貯蔵装置を提供することにある。
【0013】
【課題を解決するための手段】
前記目的を達成するための技術的手段として、本発明は、商用電源あるいは自家発設備と負荷からなる交流回路に連系された電力変換器の直流側に充放電可能な二次電池を設けた電力貯蔵装置において、前記二次電池の充放電を補完するキャパシタを二次電池に並設したことを特徴とする。
【0014】
本発明では、キャパシタにより二次電池の充放電を補完するが、その補完手段としては、▲1▼ピーク電力を低減する負荷平準化時に前記二次電池を充放電させ、かつ、前記交流回路における負荷変動や分散電源の出力変動を抑制する変動補償動作時に前記キャパシタを充放電させること、▲2▼二次電池の定電流充電から定電圧充電への移行が必要な充電領域で、前記二次電池の充電と並行してキャパシタを充電開始させることがある。
【0015】
なお、交流回路における負荷変動は、電力系統に連系された大容量のアーク炉、電鉄負荷、鉄鋼圧延負荷などの変動負荷が引き起こす系統電圧変動を意味し、また、交流回路における分散電源の出力変動は、風力発電システムや太陽光発電システムなどにおいて秒オーダーの短時間で現出する出力変動を意味する。
【0016】
このように二次電池とキャパシタを併用することにり、電力変換器の直流側に設けられたエネルギー貯蔵を二次電池とキャパシタとで分担する。この二次電池とキャパシタとの分担により二次電池にかかる負担を軽減し、必要最小限の容量を有する二次電池を選定することができる。
【0017】
【発明の実施の形態】
本発明に係る電力貯蔵装置の実施形態を以下に詳述する。図1は自然エネルギーを利用したクリーンな電力供給源として、例えば風力発電システムを分散電源1として連系させた交流回路である電力系統に設置された電力貯蔵装置13の回路構成を示す。なお、図4と同一部分には同一参照符号を付す。分散電源1としては、風力発電システム以外にも太陽光発電システムなどにも適用可能である。
【0018】
この実施形態の電力貯蔵装置13は、例えば風力発電システムである分散電源1と系統電源2との間に設置され、その連系点Aに連系用変圧器8を介して電力貯蔵装置13を接続した概略構成を有する。この電力貯蔵装置13は、電力変換器4とその直流側に接続された鉛蓄電池などの二次電池5およびその二次電池5に並列に接続されたキャパシタ9とで構成されている。前述したキャパシタ9としては、比較的大容量の電解コンデンサや電気二重層コンデンサなどを使用することが望ましい。なお、図中、6,7は系統母線に設けられた計器用変圧器(VT)と変流器(CT)である。
【0019】
前記電力変換器4は、放電機能と充電機能を有する双方向形交直変換器で、系統母線からの交流電力を直流変換して二次電池5に充電するコンバータ運転と、二次電池5に充電された直流電力を交流変換して系統母線に供給するインバータ運転とに切り換え制御される。
【0020】
ここで、図2は電池工業会指針で規定されたMSE形(JIS規格)鉛蓄電池の標準特性で、二次電池の一般的な特性の一例を示す。この標準特性は、二次電池5の放電時間(分)設定に対する容量換算時間(時)の関係を10HR容量換算で例示したもので、最小単位(セル)2Vの二次電池5における許容最低電圧が1.6〜1.9V/セル(蓄電池温度25℃)についてプロットしている。二次電池5は、例えばこの図の標準特性に基づいて二次電池5の容量が選定される。
【0021】
この標準特性では、要求される電池電流と放電時間に基づいて、許容最低電圧1.6〜1.9V/セルのいずれかについて、二次電池の放電時間に対応する容量換算係数Kを決定して、要求する電池電流と容量換算係数Kとの積で二次電池5の最低限容量を選定することになる。
【0022】
標準特性では、要求される放電時間の長短の変化に対して、容量換算係数Kの変化が緩やかな区間と、逆に顕著な区間がある。これは、同一容量(Ah)の電池の特性を反映している。通電時間が短くなるほど通電電流は大きくとれるが、通電電流値には上限があり、図2の二次電池特性では10分以内の短時間通電使用では、通電電流の上限があまり変化しない(通電限界に近づいている)ことを意味する。
【0023】
そこで、この電力貯蔵装置13では、電力変換器4の直流側にエネルギー貯蔵部として、二次電池5の充放電を補完するキャパシタ9を二次電池5に並列接続する。このエネルギー貯蔵部の構成要素である二次電池5とキャパシタ9のうち、二次電池5は、ピーク電力を低減して負荷平準化したり、あるいは電力変換器4の損失分を供給したりする動作を行い、キャパシタ9は、分散電源1の出力変動を抑制する変動補償動作を行う。二次電池5とキャパシタ9は共に内部インピーダンスを有するが、キャパシタ9のインピーダンスを低く設定することにより、秒オーダーの短時間の出力変動に対してはキャパシタ9が優先して応答する。
【0024】
前述した二次電池5の標準特性から、ピークシフトによる負荷平準化と分散電源の出力変動に対する変動補償動作での二次電池の使用を考える。放電時間が時間オーダーの長時間では、二次電池5のみの充放電によりピーク電力を低減して負荷平準化する動作とし、放電時間が秒オーダーのような10分以内の短時間では、電池選択で決まる充放電各々の電流限界までは二次電池5のみで対応し、電池の充放電各々の電流限界を超える部分はキャパシタ9の充放電により分散電源1の出力変動に対する変動補償動作とする。このようにすると、二次電池5はその許容能力範囲内一杯で使用することになり、必要最低限の容量を有する適正な二次電池5を選定できることになる。
【0025】
電力貯蔵装置13では、前述した分散電源1の出力変動を計器用変圧器6及び変流器7により検出し、その検出された電力量(または電力変動量)に基づいて電力変換器4をコンバータ運転またはインバータ運転させることにより二次電池5およびキャパシタ9を充放電させ、例えば僻地や離島などの電力系統の末端に設置された分散電源1の出力が風速などの自然条件に応じて時々刻々と変動する場合であっても、前記キャパシタ9の充放電により分散電源1の出力変動を打ち消すように電力変換器4を制御することで分散電源1の出力変動を抑えて電力系統の電圧または周波数変動を抑制する。
【0026】
つまり、電力貯蔵装置13では、分散電源1の出力が大きい時に電力変換器4のコンバータ運転により二次電池5およびキャパシタ9を充電し、前述した分散電源1の出力が小さい時に前記二次電池5およびキャパシタ9の貯蔵電力を電力変換器4のインバータ運転により電力系統へ放電し、この電力変換器4の運転による電力系統との電力のやり取りでもって、分散電源1の出力変動を抑えて電力系統の電圧または周波数変動を抑制するように電力の変動補償動作を行っている。
【0027】
前述した二次電池5では、その電池容量の全てを、例えば秒オーダーの短時間で現出する出力変動に対応させることが非常に困難であったのに対して、その短周期の出力変動に対してはキャパシタ9の充放電で変動補償機能を補完することにより、負荷に対して必要最小限の最適な容量を有する二次電池5を選択することができる。
【0028】
また、例えば一般家庭や工場などの電力需要家における1日の電力パターンに基づく負荷平準化について、電力貯蔵装置13では、深夜ならびに軽負荷時間帯(例えばAM8時〜PM1時、PM5時〜10時頃)に電力変換器4のコンバータ運転により二次電池5を充電し、その二次電池5の充電電力を重負荷時間帯(例えばPM1時〜4時頃)に電力変換器4のインバータ運転により放電して、その二次電池5の放電電力を負荷に供給する。このように二次電池5の放電電力をピークシフトすることでピーク電力を低減することにより、負荷平準化を実現する。
【0029】
このような電力需要家における電力パターンに基づいてピーク電力を低減する負荷平準化のなかで、本装置による二次電池5の充放電で変動補償機能を発揮させる場合、前述の短時間の出力変動はキャパシタ9で補完されるため、その出力変動に対応する充放電電流で過電圧の不具合が発生することや変動補償相当の電池容量を考慮する必要がないことから、二次電池5の充電状態(SOC)を60〜70%程度に低くしておく必要がなく、ピークシフトによる負荷平準化のみに二次電池5を使用する理想に近づき、二次電池5の電池能力を100%使用することに近づけることができる。なお、このピークシフト対応のみで使用する二次電池5では、60〜70%の充電状態(SOC)にしておくために、例えば週一回程度の頻度で電池の劣化を防止する充放電作業も不要となる。
【0030】
以上のようにこの電力貯蔵装置13では、前述した分散電源1の出力変動に対する電力の変動補償動作を二次電池5およびキャパシタ9で、また、負荷の電力需要量に基づく昼夜間の負荷平準化を二次電池5が負担するようにしたことから、適正な電池容量を持つ二次電池5を選定できて二次電池5の長寿命化が図れ、環境負荷の低減化に貢献できる。
【0031】
ここで、一般的に鉛蓄電池などの二次電池5を充電する場合、電解液との反応速度との関係から、定格放電電流と同じ電流値でもって連続的に充電することが困難である。従って、図3に示すように定格放電電流を1C(A)とした場合、例えば0.1C(A)程度の定電流で充電を開始し、二次電池5の充電量が80%程度の充電状態(SOC)に達すると、定電圧充電に移行させて最終的に満充電状態になった時点で充電を完了する。この二次電池5の充電量の特性において、その充電量が80%まではほぼ直線的に増加するが、80%以上になると、充電量効率が低下するためにその充電量の増加率が低下してなだらかなカーブを描きながら最終的に100%の満充電状態に達する。
【0032】
この実施形態の電力貯蔵装置13では、前述した二次電池5の充電量が80%の充電状態(SOC)以降に発生する充電量効率の低下を補償するため、その80%の充電状態以降でキャパシタ9に充電する(図中破線mで示す)。二次電池5とキャパシタ9は共に内部インピーダンスを有するが、キャパシタ9のインピーダンスを低く設定することにより、定電流充電から定電圧充電へ移行する充電時の過渡期にはキャパシタ9が優先して応答する。この充電が終了すると、内部インピーダンス×キャパシタ容量相当の時間をかけてキャパシタ9と二次電池5の電圧が均衡して最終的に充電を完了する。
【0033】
なお、放電時も同様の動作となり、二次電池5とキャパシタ9の内部インピーダンスの差により過渡的にはキャパシタ9が優先して応答し、その後、内部インピーダンスとキャパシタ容量相当の時間をかけて電圧均衡に向かう。
【0034】
【発明の効果】
本発明によれば、商用電源あるいは自家発設備と負荷からなる交流回路に連系した電力変換器の直流側に充放電可能な二次電池を設けた電力貯蔵装置において、前記二次電池の充放電を補完するキャパシタを二次電池に並設したことにより、電力変換器の直流側に設けるエネルギー貯蔵を二次電池とキャパシタとで分担する。この二次電池とキャパシタとの分担により二次電池にかかる負担を軽減し、必要最小限の容量を有する二次電池を選定することができ、あるいは二次電池の長寿命化、環境負荷の低減化を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る電力貯蔵装置の実施形態を示す回路構成図である。
【図2】鉛蓄電池の標準特性の一例を示す特性図である。
【図3】二次電池の充電特性を示す特性図である。
【図4】従来の電力貯蔵装置を示す回路構成図である。
【符号の説明】
1 分散電源(風力発電機)
2 系統電源
4 電力変換器
5 二次電池
8 連系用変圧器
9 キャパシタ
13 電力貯蔵装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power storage device provided in an AC circuit including a commercial power supply or a self-powered facility and a load, and for suppressing load leveling due to charging and discharging of a secondary battery and suppressing power quality deterioration due to load fluctuation and output fluctuation of a distributed power supply. About.
[0002]
[Prior art]
For example, in a power system in which a distributed power supply such as a wind power generation system is connected to a system power supply, the wind power generator fluctuates every moment in accordance with natural conditions such as wind speed, such as a remote place or a remote island. In general, it is a small-sized, so-called weak power system having a diesel generator as a system power supply. In this type of weak power system, if load fluctuations such as wind power output appear frequently, the load fluctuations will have a large effect on the power system in voltage or frequency fluctuations. A power storage device is installed to suppress voltage or frequency fluctuations.
[0003]
FIG. 4 shows a circuit configuration of the power storage device 3 installed in the power system. This power storage device 3 is installed between a distributed power source 1 and a system power source 2 which are, for example, a wind power generation system, and the power storage device 3 is connected to a connection point A thereof via a connection transformer 8. Having a configuration. The power storage device 3 includes a power converter 4 and a secondary battery 5 such as a chargeable / dischargeable lead storage battery connected to the DC side thereof. In the figure, reference numerals 6 and 7 denote an instrument transformer (VT) and a current transformer (CT) provided on the system bus.
[0004]
The power converter 4 is a bidirectional AC / DC converter having a discharging function and a charging function. The converter operates to convert AC power from the system bus into DC and charge the secondary battery 5, and to charge the secondary battery 5. The control is switched to an inverter operation in which the converted DC power is converted to AC and supplied to the system bus.
[0005]
Therefore, in the power storage device 3, the output fluctuation of the distributed power source 1 described above is detected by the instrument transformer 6 and the current transformer 7, and the power converter of the power storage device 3 is configured to cancel the output fluctuation of the distributed power source 1. The secondary battery 5 is charged / discharged by operating the converter 4 in the converter operation or the inverter operation, and the output fluctuation of the distributed power source 1 is suppressed by exchanging the power with the power system by the converter operation or the inverter operation of the power converter 4. The power fluctuation compensation operation is performed so as to suppress the voltage or frequency fluctuation of the power system.
[0006]
The power fluctuation compensation operation in the power storage device 3 is performed not only for the output fluctuation of the distributed power supply 1 described above but also for a case based on a power pattern in a power consumer such as a general home or a factory.
[0007]
The daily power pattern of the power consumer has a characteristic such that the power peaks during a heavy load time period, for example, around 1 to 4 PM. Therefore, in the power storage device 3, the secondary battery 5 is charged by the converter operation of the power converter 4 at midnight and during a light load time period (for example, from 8:00 to 1:00 AM, from 5:00 to 10:00 PM), and the secondary battery is charged. 5 is discharged by the inverter operation of the power converter 4 during a heavy load time period (for example, around 1 PM to 4 PM), and the discharge power of the secondary battery 5 is supplied to the load. As described above, load leveling is realized by reducing the peak power by shifting the peak power of the discharge power of the secondary battery 5 (for example, see Patent Document 1).
[0008]
[Patent Document 1]
JP-A-2002-171669
[Problems to be solved by the invention]
By the way, in the above-described power storage device 3, the output of the distributed power source 1 fluctuates momentarily according to natural conditions such as wind speed and the like. In the power exchange with the power system, the power fluctuation compensation operation that suppresses the output fluctuation of the distributed power source 1 to suppress the voltage or frequency fluctuation of the power system at all times, and the power consumption based on the daily power pattern in the power consumer Regarding both load leveling in which the peak power is reduced by peak-shifting the discharge power of the secondary battery by the converter operation or inverter operation of the converter 4, the secondary battery 5 provided on the DC side of the power converter 4 Achieved by charging and discharging.
[0010]
However, in the above-described secondary battery 5, it is very difficult to make all of the battery capacity correspond to output fluctuations that appear in a short time, for example, on the order of seconds. At present, a secondary battery 5 having a large margin is selected as a response to fluctuations in a power system in which the power supply system is interconnected.
[0011]
In using the secondary battery 5, the state of charge (SOC) of the secondary battery 5 is set to, for example, about 60 to 70% so that a problem of overvoltage does not occur in the charge / discharge current corresponding to the output fluctuation. Therefore, it was difficult to use 100% of the battery capacity of the secondary battery 5 at the time of load leveling by peak shift. In addition, in order to maintain a state of charge (SOC) of 60 to 70% in the secondary battery 5, for example, a charge / discharge operation for preventing battery deterioration is required about once a week.
[0012]
Therefore, the present invention has been proposed in view of the above-mentioned problems, and its purpose is to select a secondary battery having an appropriate battery capacity, or to extend the life of the secondary battery. Accordingly, an object of the present invention is to provide a power storage device that can contribute to reduction of environmental load.
[0013]
[Means for Solving the Problems]
As a technical means for achieving the object, the present invention provides a chargeable / dischargeable secondary battery on the DC side of a power converter connected to an AC circuit including a commercial power supply or a self-propelled facility and a load. The power storage device is characterized in that a capacitor that complements the charging and discharging of the secondary battery is provided in parallel with the secondary battery.
[0014]
In the present invention, the charging and discharging of the secondary battery is complemented by the capacitor. As a complementing means, (1) the secondary battery is charged and discharged at the time of load leveling to reduce the peak power, and in the AC circuit, Charging and discharging the capacitor during a fluctuation compensation operation for suppressing load fluctuations and output fluctuations of the distributed power source; (2) in the charging region where the transition from constant current charging to constant voltage charging of the secondary battery is required, The capacitor may be started to charge in parallel with the charging of the battery.
[0015]
The load fluctuation in the AC circuit means a system voltage fluctuation caused by a variable load such as a large-capacity arc furnace connected to an electric power system, a railway load, a steel rolling load, and the like. The fluctuation means an output fluctuation that appears in a short time on the order of seconds in a wind power generation system, a solar power generation system, or the like.
[0016]
Thus, by using the secondary battery and the capacitor together, energy storage provided on the DC side of the power converter is shared between the secondary battery and the capacitor. The burden on the secondary battery can be reduced by the sharing of the secondary battery and the capacitor, and a secondary battery having a necessary minimum capacity can be selected.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a power storage device according to the present invention will be described in detail below. FIG. 1 shows a circuit configuration of a power storage device 13 installed in a power system as an AC circuit in which a wind power generation system is interconnected as a distributed power source 1 as a clean power supply source using natural energy, for example. The same parts as those in FIG. 4 are denoted by the same reference numerals. The distributed power source 1 is applicable to a solar power generation system and the like in addition to the wind power generation system.
[0018]
The power storage device 13 of this embodiment is installed between the distributed power source 1 and the system power source 2 which are, for example, a wind power generation system, and connects the power storage device 13 to the connection point A via the connection transformer 8. It has a schematic configuration connected. The power storage device 13 includes a power converter 4, a secondary battery 5 such as a lead storage battery connected to a DC side thereof, and a capacitor 9 connected in parallel to the secondary battery 5. It is desirable to use a relatively large-capacity electrolytic capacitor or electric double-layer capacitor as the capacitor 9 described above. In the figure, reference numerals 6 and 7 denote an instrument transformer (VT) and a current transformer (CT) provided on the system bus.
[0019]
The power converter 4 is a bidirectional AC / DC converter having a discharging function and a charging function. The converter operates to convert AC power from the system bus into DC and charge the secondary battery 5, and to charge the secondary battery 5. The control is switched to an inverter operation in which the converted DC power is converted to AC and supplied to the system bus.
[0020]
Here, FIG. 2 shows standard characteristics of an MSE type (JIS standard) lead storage battery specified by the guidelines of the Battery Association of Japan, and shows an example of general characteristics of a secondary battery. The standard characteristics exemplify the relationship of the capacity conversion time (hour) to the discharge time (minute) setting of the secondary battery 5 in terms of 10 HR capacity, and the minimum allowable voltage in the secondary battery 5 of the minimum unit (cell) 2V Are plotted for 1.6 to 1.9 V / cell (storage battery temperature 25 ° C.). The capacity of the secondary battery 5 is selected based on, for example, the standard characteristics shown in FIG.
[0021]
In this standard characteristic, the capacity conversion coefficient K corresponding to the discharge time of the secondary battery is determined for any of the allowable minimum voltages of 1.6 to 1.9 V / cell based on the required battery current and discharge time. Thus, the minimum capacity of the secondary battery 5 is selected by the product of the required battery current and the capacity conversion coefficient K.
[0022]
In the standard characteristics, there are a section in which the change of the capacity conversion coefficient K is gentle and a section in which the change is remarkable with respect to a change in the required discharge time. This reflects the characteristics of batteries having the same capacity (Ah). As the energizing time becomes shorter, the energizing current can be increased. However, the energizing current value has an upper limit, and in the rechargeable battery characteristics shown in FIG. Approaching).
[0023]
Therefore, in the power storage device 13, a capacitor 9 that complements charging and discharging of the secondary battery 5 is connected in parallel to the secondary battery 5 as an energy storage unit on the DC side of the power converter 4. Of the secondary battery 5 and the capacitor 9 that are components of the energy storage unit, the secondary battery 5 operates to reduce the peak power and level the load or supply the loss of the power converter 4. And the capacitor 9 performs a fluctuation compensation operation for suppressing the output fluctuation of the distributed power supply 1. Both the secondary battery 5 and the capacitor 9 have an internal impedance. By setting the impedance of the capacitor 9 low, the capacitor 9 preferentially responds to a short-term output fluctuation on the order of seconds.
[0024]
From the standard characteristics of the secondary battery 5 described above, consider the use of the secondary battery in the load leveling due to the peak shift and the fluctuation compensation operation for the output fluctuation of the distributed power supply. When the discharge time is as long as the order of time, the operation is performed to reduce the peak power by charging and discharging only the secondary battery 5 to level the load. The current limit of each charge / discharge determined by the above is handled only by the secondary battery 5, and the portion exceeding the current limit of each charge / discharge of the battery is subjected to the fluctuation compensation operation for the output fluctuation of the distributed power supply 1 by charging / discharging the capacitor 9. In this case, the secondary battery 5 is used in its full capacity within the allowable capacity range, and an appropriate secondary battery 5 having a minimum necessary capacity can be selected.
[0025]
In the power storage device 13, the output fluctuation of the distributed power source 1 is detected by the instrument transformer 6 and the current transformer 7, and the power converter 4 is converted into a converter based on the detected power amount (or power fluctuation amount). The secondary battery 5 and the capacitor 9 are charged and discharged by the operation or the inverter operation. For example, the output of the distributed power supply 1 installed at the terminal of the power system such as a remote area or a remote island is constantly changed according to natural conditions such as wind speed. Even if it fluctuates, by controlling the power converter 4 to cancel the output fluctuation of the distributed power supply 1 by charging and discharging the capacitor 9, the output fluctuation of the distributed power supply 1 is suppressed, and the voltage or frequency fluctuation of the power system is suppressed. Suppress.
[0026]
That is, the power storage device 13 charges the secondary battery 5 and the capacitor 9 by the converter operation of the power converter 4 when the output of the distributed power source 1 is large, and charges the secondary battery 5 when the output of the distributed power source 1 is small. In addition, the power stored in the capacitor 9 is discharged to the power system by the inverter operation of the power converter 4, and by exchanging the power with the power system by the operation of the power converter 4, the output fluctuation of the distributed power supply 1 is suppressed to suppress the power system. The power fluctuation compensation operation is performed so as to suppress the voltage or frequency fluctuation.
[0027]
In the above-described secondary battery 5, it is very difficult to make all of the battery capacity correspond to the output fluctuation appearing in a short time, for example, on the order of seconds. On the other hand, by supplementing the fluctuation compensation function by charging and discharging the capacitor 9, it is possible to select the secondary battery 5 having the minimum necessary and optimal capacity for the load.
[0028]
In addition, for example, regarding load leveling based on a daily power pattern in a power consumer such as a general household or a factory, the power storage device 13 uses the power storage device 13 at midnight and light load time periods (for example, 8:00 to 10:00 AM, 5:00 to 10:00 PM, and so on). The secondary battery 5 is charged by the converter operation of the power converter 4 around the time), and the charging power of the secondary battery 5 is changed by the inverter operation of the power converter 4 during the heavy load time period (for example, around 1 PM to 4 PM). It discharges, and supplies the discharge power of the secondary battery 5 to the load. In this way, load leveling is realized by reducing the peak power by shifting the discharge power of the secondary battery 5 to the peak.
[0029]
In such load leveling for reducing peak power based on the power pattern in the power consumer, when the fluctuation compensation function is exhibited by charging and discharging the secondary battery 5 by the present apparatus, the above-described short-term output fluctuation Is supplemented by the capacitor 9, the charging / discharging current corresponding to the output fluctuation causes an overvoltage problem, and there is no need to consider the battery capacity equivalent to fluctuation compensation. It is not necessary to keep the SOC) at about 60 to 70%, and it is close to the ideal to use the secondary battery 5 only for load leveling by peak shift, and to use the battery capacity of the secondary battery 5 at 100%. You can get closer. In addition, in the secondary battery 5 used only for the peak shift, in order to keep the state of charge (SOC) of 60 to 70%, for example, a charge / discharge operation for preventing the deterioration of the battery about once a week is also performed. It becomes unnecessary.
[0030]
As described above, in the power storage device 13, the above-described power fluctuation compensation operation for the output fluctuation of the distributed power source 1 is performed by the secondary battery 5 and the capacitor 9, and the load leveling during the day and night is performed based on the power demand of the load. , The secondary battery 5 having an appropriate battery capacity can be selected, the life of the secondary battery 5 can be extended, and the environmental load can be reduced.
[0031]
Here, in general, when charging a secondary battery 5 such as a lead storage battery, it is difficult to continuously charge the secondary battery 5 with the same current value as the rated discharge current due to the reaction speed with the electrolytic solution. Therefore, as shown in FIG. 3, when the rated discharge current is 1 C (A), charging starts at a constant current of, for example, about 0.1 C (A), and the charging amount of the secondary battery 5 is about 80%. When the state (SOC) is reached, the charging is shifted to the constant voltage charging, and the charging is completed when the battery is finally fully charged. In the characteristics of the charge amount of the secondary battery 5, the charge amount increases almost linearly up to 80%, but when the charge amount exceeds 80%, the charge amount efficiency decreases and the rate of increase of the charge amount decreases. Finally, it draws a gentle curve and finally reaches a fully charged state of 100%.
[0032]
In the power storage device 13 of this embodiment, in order to compensate for a decrease in the charging efficiency that occurs after the state of charge (SOC) of the secondary battery 5 of 80%, the state of charge of the secondary battery 5 starts after the state of charge of 80%. The capacitor 9 is charged (indicated by a broken line m in the figure). Although both the secondary battery 5 and the capacitor 9 have an internal impedance, by setting the impedance of the capacitor 9 low, the capacitor 9 preferentially responds during a transitional period during charging when switching from constant current charging to constant voltage charging. I do. When the charging is completed, the voltage of the capacitor 9 and the voltage of the secondary battery 5 are balanced over a time equivalent to the internal impedance × capacitor capacity, and the charging is finally completed.
[0033]
Note that the same operation is performed at the time of discharging, and the capacitor 9 transiently responds preferentially due to the difference between the internal impedance of the secondary battery 5 and the capacitor 9, and thereafter, the voltage takes a time corresponding to the internal impedance and the capacitor capacity. Head for equilibrium.
[0034]
【The invention's effect】
According to the present invention, in a power storage device provided with a chargeable / dischargeable secondary battery on the DC side of a power converter connected to an AC circuit including a commercial power supply or an autonomous facility and a load, the charging of the secondary battery is performed. By arranging the capacitor complementing the discharge in parallel with the secondary battery, energy storage provided on the DC side of the power converter is shared between the secondary battery and the capacitor. By sharing the rechargeable battery and the capacitor, the burden on the rechargeable battery can be reduced, and a rechargeable battery having the minimum necessary capacity can be selected. Can be achieved.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram showing an embodiment of a power storage device according to the present invention.
FIG. 2 is a characteristic diagram showing an example of standard characteristics of a lead storage battery.
FIG. 3 is a characteristic diagram showing charging characteristics of a secondary battery.
FIG. 4 is a circuit configuration diagram showing a conventional power storage device.
[Explanation of symbols]
1 distributed power source (wind generator)
2 System power supply 4 Power converter 5 Secondary battery 8 Interconnection transformer 9 Capacitor 13 Power storage device

Claims (3)

商用電源あるいは自家発設備と負荷からなる交流回路に連系された電力変換器の直流側に充放電可能な二次電池を設けた電力貯蔵装置において、前記二次電池の充放電を補完するキャパシタを二次電池に並設したことを特徴とする電力貯蔵装置。In a power storage device provided with a chargeable / dischargeable secondary battery on the DC side of a power converter connected to an AC circuit including a commercial power supply or a self-generating facility and a load, a capacitor for complementing the charge / discharge of the secondary battery A power storage device characterized in that a battery is provided in parallel with a secondary battery. ピーク電力を低減して負荷平準化時に前記二次電池を充放電させ、かつ、前記交流回路における負荷変動や分散電源の出力変動を抑制する変動補償動作時に前記キャパシタを充放電させることを特徴とする請求項1に記載の電力貯蔵装置。Charging and discharging the secondary battery at the time of load leveling by reducing peak power, and charging and discharging the capacitor at the time of a fluctuation compensation operation for suppressing load fluctuation and output fluctuation of the distributed power supply in the AC circuit. The power storage device according to claim 1. 前記二次電池の定電流充電から定電圧充電への移行が必要な充電領域で、前記二次電池の充電と並行してキャパシタを充電開始させることを特徴とする請求項1に記載の電力貯蔵装置。2. The power storage according to claim 1, wherein charging of the capacitor is started in parallel with the charging of the secondary battery in a charging area where a transition from constant current charging to constant voltage charging of the secondary battery is required. apparatus.
JP2002291362A 2002-10-03 2002-10-03 Power storing device Pending JP2004129412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291362A JP2004129412A (en) 2002-10-03 2002-10-03 Power storing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291362A JP2004129412A (en) 2002-10-03 2002-10-03 Power storing device

Publications (1)

Publication Number Publication Date
JP2004129412A true JP2004129412A (en) 2004-04-22

Family

ID=32282980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291362A Pending JP2004129412A (en) 2002-10-03 2002-10-03 Power storing device

Country Status (1)

Country Link
JP (1) JP2004129412A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125302A (en) * 2006-11-15 2008-05-29 Shimizu Corp Power stabilizer
JPWO2008041755A1 (en) * 2006-10-04 2010-02-04 東京電力株式会社 AC / DC converter
JP2011055671A (en) * 2009-09-03 2011-03-17 Shimizu Corp Control method of distributed power supply
JP2012010453A (en) * 2010-06-23 2012-01-12 Tokyo Electric Power Co Inc:The Storage battery system
JP2012016078A (en) * 2010-06-29 2012-01-19 Hitachi Ltd Charging control system
CN102769329A (en) * 2012-06-25 2012-11-07 郑洪莉 Battery charging device
WO2013103011A1 (en) 2012-01-06 2013-07-11 株式会社日立製作所 Power grid stabilization system and power grid stabilization method
US8736861B2 (en) 2005-09-12 2014-05-27 Ricoh Company, Ltd. Image forming apparatus
JP2014236600A (en) * 2013-06-03 2014-12-15 東北電力株式会社 Controller for a plurality of purposes of circuit storage battery
JP2015142460A (en) * 2014-01-29 2015-08-03 京セラ株式会社 Power control device, power control system, and power control method
JP2017520228A (en) * 2014-06-27 2017-07-20 エルゴトロン,インコーポレイティド Electric system for general-purpose charging station
CN111371125A (en) * 2020-01-17 2020-07-03 武汉大学 Splitting and grouping optimization method for improving system coherence under condition of considering fan access

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8736861B2 (en) 2005-09-12 2014-05-27 Ricoh Company, Ltd. Image forming apparatus
US9213297B2 (en) 2005-09-12 2015-12-15 Ricoh Company, Ltd. Image forming apparatus
JPWO2008041755A1 (en) * 2006-10-04 2010-02-04 東京電力株式会社 AC / DC converter
JP2008125302A (en) * 2006-11-15 2008-05-29 Shimizu Corp Power stabilizer
JP2011055671A (en) * 2009-09-03 2011-03-17 Shimizu Corp Control method of distributed power supply
JP2012010453A (en) * 2010-06-23 2012-01-12 Tokyo Electric Power Co Inc:The Storage battery system
JP2012016078A (en) * 2010-06-29 2012-01-19 Hitachi Ltd Charging control system
WO2013103011A1 (en) 2012-01-06 2013-07-11 株式会社日立製作所 Power grid stabilization system and power grid stabilization method
US9671807B2 (en) 2012-01-06 2017-06-06 Hitachi, Ltd. Power grid stabilization system and power grid stabilization method
CN102769329A (en) * 2012-06-25 2012-11-07 郑洪莉 Battery charging device
JP2014236600A (en) * 2013-06-03 2014-12-15 東北電力株式会社 Controller for a plurality of purposes of circuit storage battery
JP2015142460A (en) * 2014-01-29 2015-08-03 京セラ株式会社 Power control device, power control system, and power control method
JP2017520228A (en) * 2014-06-27 2017-07-20 エルゴトロン,インコーポレイティド Electric system for general-purpose charging station
CN111371125A (en) * 2020-01-17 2020-07-03 武汉大学 Splitting and grouping optimization method for improving system coherence under condition of considering fan access
CN111371125B (en) * 2020-01-17 2021-12-07 武汉大学 Splitting and grouping optimization method for improving system coherence under condition of considering fan access

Similar Documents

Publication Publication Date Title
JP5584763B2 (en) DC power distribution system
JP2947372B2 (en) Multifunction power converting system
WO2013088798A1 (en) Electric power supply system
JP3014487B2 (en) Relay storage battery charger
CN102201695A (en) Battery charging apparatus
US20110115292A1 (en) Power operation system, power operation method and photovoltaic power generator
KR101560514B1 (en) Voltage conversion circuit and electronic apparatus
WO2011148908A1 (en) Solar cell system
JP2004129412A (en) Power storing device
JP2009197587A (en) Wind turbine generator system
US20130134784A1 (en) Ping-Pong Type Battery Management system
JP2007300792A (en) Power source system
JP2000278866A (en) Power storage uninterruptive power supply
JP5477744B2 (en) Private power generation system
JP2004222341A (en) Power supply system
KR101840748B1 (en) Power converter for hybrid BESS with supercapacitor as auxiliary charging unit
JP6556482B2 (en) Power storage control system
KR101915244B1 (en) Power converter for hybrid BESS with supercapacitor as auxiliary charging unit and Resonance Circuit and that Control Method
JP6677186B2 (en) DC power supply system
JPH05168160A (en) Ac/dc converter system
JP2002171669A (en) Power system stabilizer and its control method
JP2001157382A (en) Method of operating batteries in power storage apparatus
JP3986211B2 (en) Battery charger
JPH0738130A (en) Battery controlling method of solar cell power supply system
WO2012002449A1 (en) Energy management system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070319