JP2004124804A - Two-stage compressor - Google Patents

Two-stage compressor Download PDF

Info

Publication number
JP2004124804A
JP2004124804A JP2002289791A JP2002289791A JP2004124804A JP 2004124804 A JP2004124804 A JP 2004124804A JP 2002289791 A JP2002289791 A JP 2002289791A JP 2002289791 A JP2002289791 A JP 2002289791A JP 2004124804 A JP2004124804 A JP 2004124804A
Authority
JP
Japan
Prior art keywords
lubricating oil
compression
compression section
refrigerant
stage compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002289791A
Other languages
Japanese (ja)
Other versions
JP3838186B2 (en
Inventor
Shigeki Iwanami
岩波 重樹
Atsushi Yamazaki
山崎 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002289791A priority Critical patent/JP3838186B2/en
Publication of JP2004124804A publication Critical patent/JP2004124804A/en
Application granted granted Critical
Publication of JP3838186B2 publication Critical patent/JP3838186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-stage compressor capable of attaining high efficiency of refrigerating cycle device by reducing oil rate of refrigerant. <P>SOLUTION: This two-stage compressor, in which a first compression section 120 for compressing the refrigerant in a refrigerating cycle and a second compression section 130 for further compressing the refrigerant compressed by the first compression section 120 are stored in a container 110, is provided with a lubricating oil separator 180 for separating lubricating oil contained in the refrigerant on the discharge side of the second compression section 130. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、COを冷媒として用いる冷凍サイクル装置に適用して好適な2段圧縮機に関するものである。
【0002】
【従来の技術】
従来の2段圧縮機に関わる技術として、例えば特許文献1に示すものが知られている。この2段圧縮機においては、密閉容器内に第1圧縮部と第2圧縮部とが収容されており、密閉容器内が中間圧力となる内部中間圧型のものとしている。冷媒ガスが流通する流路としては、第1圧縮部から一旦密閉容器内に通じ、更に密閉容器内から第2圧縮部に繋がる第1流路と、第1圧縮部から第2圧縮部に直接繋がる第2流路とを有している。また、中間圧力が平衡圧力(圧縮機停止時に平衡状態となる内部圧力)と同じになるように、第1圧縮部と第2圧縮部の容積比を設定している。
【0003】
第1圧縮部で圧縮された冷媒は、第1流路によって一旦密閉容器内に拡散して、冷媒中に含まれる潤滑油は分離して、密閉容器内の底部に溜められる。この潤滑油によって、第1、第2圧縮機の外部側摺動部の潤滑が行われる。また、中間圧力と第1圧縮部内の圧力との差によって第1圧縮部内部への潤滑油の供給を可能とする。更にここでは、中間圧力を平衡圧力と同じにすることで、起動時の密閉容器内の圧力変動を小さくしてオイルフォーミングを抑制する。即ち、泡状となった潤滑油が第2圧縮部を介して2段圧縮機自身の外へ流出して密閉容器内の潤滑油が不足するのを防止するようにしている。また、密閉容器の耐圧設計が容易となり、軽量化を可能としている。
【0004】
【特許文献1】
特開2001−73976号公報
【0005】
【発明が解決しようとする課題】
しかしながら、第2圧縮部内の圧力と中間圧力との差によって、第2圧縮部内部へは密閉容器内底部に溜まる潤滑油を供給することができないため、第2圧縮部にとっては第1圧縮部から第2流路によって供給される冷媒中に含まれる潤滑油に頼ることになる。そして、この潤滑油を確保するために冷凍サイクル装置における冷媒のオイルレートを低減することが難しくなる。冷凍サイクル装置のオイルレートが高いと熱交換器の効率が悪化したり、配管系での圧力損失が増大し、総じて冷凍サイクル装置の効率が低下する。
【0006】
本発明の目的は、上記問題に鑑み、冷媒のオイルレートを低減して冷凍サイクル装置の効率向上を可能とする2段圧縮機を提供することにある。
【0007】
【課題を解決するための手段】
本発明は上記目的を達成するために、以下の技術的手段を採用する。
【0008】
請求項1に記載の発明では、冷凍サイクル中の冷媒を圧縮する第1圧縮部(120)と、第1圧縮部(120)で圧縮された冷媒を更に圧縮する第2圧縮部(130)とが容器(110)内に収容されて成る2段圧縮機において、第2圧縮部(130)の吐出側に冷媒中に含まれる潤滑油を分離する潤滑油分離器(180)が設けられたことを特徴としている。
【0009】
これにより、2段圧縮機(100)から冷媒を圧縮吐出する際に、冷媒中にほぼ潤滑油を含まないようにすることができるので、冷凍サイクル装置における熱交換器の効率低下や配管系での圧力損失増加等を防止して、冷凍サイクル装置の効率を向上させることができる。
【0010】
潤滑油分離器(180)としては、請求項2に記載の発明のように、遠心分離式が好適であり、安価な構造で容易に対応することができる。
【0011】
請求項3に記載の発明では、容器(110)内には、第1圧縮部(120)の吸入圧力と第2圧縮部(130)の吐出圧力との中間圧力となる中間圧力領域(111、114、111a)が形成され、分離された潤滑油は、中間圧力領域(114、111a)に導入されることを特徴としている。
【0012】
これにより、容器(110)内の中間圧力領域(114、111a)を分離された潤滑油の貯油部(114、111a)とすることができ、中間圧力領域(114、111a)に溜められた潤滑油を圧力差によって第1圧縮部(120)の吸入側に供給し、第1圧縮部(120)、第2圧縮部(130)の潤滑を繰り返し行うことができる。また、潤滑油分離器(180)から中間圧力領域(114、111a)に潤滑油を導入させることで、直接第1圧縮部(120)に潤滑油を戻す場合よりも圧力差を小さくできるので、潤滑油分離器(180)における減圧のための絞り部(183、117)として極小の孔を設ける必要が無く、加工を容易にすることができる。
【0013】
そして、請求項3に記載の発明において、請求項4に記載の発明のように、分離された潤滑油を中間圧力領域(114)との圧力差によって第1圧縮部(120)の吸入側に供給する供給流路(150)と、第1圧縮部(120)の吐出側と第2圧縮部(130)の吸入側とを接続する接続流路(160)とを設けるようにしてやれば、分離された潤滑油を確実に第1圧縮部(120)、第2圧縮部(130)に循環させることができる。
【0014】
また、請求項3に記載の発明において、請求項5記載の発明のように、分離された潤滑油を中間圧力領域(114)との圧力差によって第1圧縮部(120)の吸入側に供給する供給流路(150)と、分離された潤滑油を第2圧縮部(130)の冷媒吸入時に生ずる負圧によってこの第2圧縮部(130)に吸引する吸引流路(170)とを設けるようにしても良く、これによれば、第1圧縮部(120)から中間圧力領域(111)に一旦全量の冷媒を流出させることができ、中間圧力領域(111)に冷却を要するものがある場合に好適である。
【0015】
尚、請求項3〜請求項5に記載の発明においては、請求項6に記載の発明のように、第1圧縮部(120)および第2圧縮部(130)を作動させるモータ部(190)を有し、モータ部(190)を中間圧力領域(111)に収容した中間圧ドーム方式の電動2段圧縮機に適用して好適である。
【0016】
また、請求項3に記載の発明において、請求項7に記載の発明のように、第1圧縮部(120)および第2圧縮部(130)の各圧縮部材(124a、124b)を往復動させる機構(123)を有し、この機構(123)を中間圧力領域(111a)に収容したクランク室(111a)が中間圧方式の往復動2段圧縮機に適用しても良い。
【0017】
尚、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。
【0018】
【発明の実施の形態】
(第1実施形態)
本発明における第1実施形態について図1〜図3を用いて説明する。2段圧縮機100は、ハウジング110内に2つの圧縮部120、130を有し、COを冷媒として作動する冷凍サイクル装置(図示せず)に適用されるもので、2回に分けて冷媒を高圧(臨界圧力を超えるような圧力)に圧縮する圧縮機である。更に具体的には、2つの圧縮部120、130はモータ部190によって作動され、モータ部190は2つの圧縮部120、130の中間圧力となるハウジング110内に収容される中間圧ドーム方式の電動2段圧縮機としている。
【0019】
以下、その詳細について図1を用いて説明すると、ハウジング110は、円筒状の密閉容器を成すもので、内部に第1圧縮部120および第2圧縮部130が配設されており、両圧縮部120、130は、モータ部190によって作動されるようにしている。
【0020】
モータ部190は、ハウジング110内の上方に形成されるモータ室111に収容されており、ロータ部191とステータ部192とから成る。ロータ部191はシャフト193に固定されており、また、ステータ部192はロータ部191の外周側でハウジング110の内周面に圧入によって固定されている。そして、図示しない外部電源からの電力がステータ部192に供給されると、ロータ部191の回転に伴ってシャフト193が回転駆動されるようにしている。
【0021】
第1圧縮部120は、第1段目の圧縮を行うものであり、ハウジング110内の下方に支持部121によって支持されている。第1圧縮部120は、周知のようにシリンダ内にロータとベーン(図示せず)とが配設されて成るロータリ式の圧縮部としており、上記モータ部190のシャフト193によってロータが公転することで圧縮仕事を行う。
【0022】
第1圧縮部120の吸入側には支持部121内の流路(図示せず)を介して吸入口112が接続されており、冷凍サイクル装置の蒸発器(図示せず)側から流出する冷媒が流入されるようにしている。また、支持部121には、後述する潤滑油分離器180で分離された潤滑油がハウジング110内の底部側に向けて通過可能となる潤滑油穴122が設けられている。尚、ハウジング110内の底部と第1圧縮部120との間には、上記潤滑油が溜められる貯油部114が形成されている。
【0023】
第2圧縮部130は、第1圧縮部120で圧縮された冷媒を更に圧縮(第2段目の圧縮)するものであり、ハウジング110内において上記第1圧縮部120の上側に設けられている。基本構造は、第1圧縮部120と同様のロータリ式の圧縮部であり、支持部131によってハウジング110内に支持され、上記モータ部190のシャフト193によってロータが公転することで圧縮仕事を行う。尚、第2圧縮部130の支持部131には、潤滑油穴132が設けられている。
【0024】
第1圧縮部120には、その吐出側から上記潤滑油穴132を通してモータ室111に開口するモータ室吐出部141が設けられており、また、第2圧縮部130には、モータ室111から第2圧縮部130の吸入側に繋がる第2圧縮吸入部142が設けられている。よってハウジング110内のモータ室111、第1、第2圧縮部120、130間の空間、貯油部114は、第1圧縮部120の吸入圧力と第2圧縮部130の吐出圧力との中間圧力となる中間圧力領域となる。
【0025】
第2圧縮部130の吐出側には、吐出口113が設けられ、冷凍サイクル装置の凝縮器(図示せず)側に接続されるようにしている。第2圧縮部130と吐出口113との間には、本発明の特徴部となる潤滑油分離器180が設けられている。潤滑油分離器180は、第2圧縮部130の吐出側で冷媒中に含まれる潤滑油を分離する遠心分離式のものであり、図2に示すように、分離パイプ181、分離筒182、絞り部183等から成る。
【0026】
分離パイプ181は、蓋部181aを有するパイプ部材であり、有底筒状の分離筒182の上側に接合され、分離筒182の内部と吐出口113とを連通させるようにしている。分離筒182の底部には、細孔によって形成され、この分離筒182の内部圧力を減圧して貯油部114に連通させる絞り部183が設けられている。また、分離筒182には、図3に示すように、分離筒182の上側の内周面に接するように導入通路184が設けられ、第2圧縮部130の吐出側と分離筒182内とが連通されるようにしている。
【0027】
そして、ハウジング110の底部近傍からは、第1圧縮部120の吸入側に接続される潤滑油供給パイプ(供給流路)150が設けられている。更には、第1圧縮部120の吐出側と第2圧縮部130の吸入側との間には、両者120、130間を直接繋ぐ接続パイプ(接続流路)160が設けられている。
【0028】
次に、上記構成に基づく作動および作用効果について説明する。2段圧縮機100はモータ部190の駆動によって第1圧縮部120、第2圧縮部130が作動され、吸入口112から吸入された冷媒は、まず第1圧縮部120で1段目の圧縮が行われる。また、後述するように貯油部114に溜められた潤滑油は、貯油部114内の中間圧力と第1圧縮部120の吸入圧力との圧力差によって、潤滑油供給パイプ150を通って第1圧縮部120内に供給され、第1圧縮部120内の潤滑を果たす。
【0029】
第1圧縮部120で圧縮された冷媒の一部は、モータ室吐出部141から一旦モータ室111内に拡散し、モータ部190の冷却を行い、第2圧縮吸入部142から第2圧縮部130に吸入される。冷媒がモータ室111で拡散される際に冷媒中に含まれる潤滑油は分離され、潤滑油穴132、122を通って貯油部114に溜められる。また、第1圧縮部120から接続パイプ160を通る冷媒は、潤滑油を含んだまま第2圧縮部130内に流入し、第2圧縮部130内の潤滑を果たす。
【0030】
上記のように第2圧縮吸入部142および接続パイプ160から流入した冷媒は混合されて第2圧縮部130によって2段目の圧縮が行われる。圧縮された冷媒は、更に第2圧縮部130の吐出側から潤滑油分離器180の導入通路184を介して分離筒182内に流入する。この時冷媒は分離パイプ181と分離筒182との間で旋回しながら下方に流れ、比重の小さい冷媒は分離パイプ181内に流入し、吐出口113から流出する。
【0031】
一方、冷媒中の比重の大きい潤滑油は、遠心力によって分離筒182の内周壁側に分離され、重力によって下降し、分離筒182内の圧力(第2圧縮部130の吐出圧力)と貯油部114内の圧力(中間圧力)との差によって絞り部183から潤滑油穴122を介して貯油部114に流出して溜められる。
【0032】
このように、本発明では第2圧縮部130の吐出側に潤滑油分離器180を設けることにより、2段圧縮機100から冷凍サイクル装置の凝縮器側に冷媒を圧縮吐出する際に、冷媒中に潤滑油をほぼ含まないようにすることができるので、冷凍サイクル装置における熱交換器の効率低下や配管系での圧力損失増加等を防止して、冷凍サイクル装置の効率を向上させることができる。
【0033】
潤滑油分離器180としては遠心分離式のものを用いており、安価な構造で容易に対応することができる。
【0034】
また、中間圧力領域となるハウジング110内を潤滑油分離器180によって分離された潤滑油の貯油部114とすることができ、分離された潤滑油を圧力差によって潤滑油供給パイプ150から第1圧縮部120の吸入側に供給し、更に接続パイプ160によって第2圧縮部130に供給し、第1圧縮部120、第2圧縮部130の潤滑を繰り返し行うことができる。
【0035】
更には、潤滑油分離器180から貯油部114に潤滑油を導入させることで、直接第1圧縮部120に潤滑油を戻す場合よりも圧力差を小さくできるので、潤滑油分離器180における減圧のための絞り部183として極小の孔を設ける必要が無く、加工を容易にすることができる。
【0036】
(第2実施形態)
本発明の第2実施形態を図4に示す。第2実施形態は、上記第1実施形態に対して、接続パイプ160を廃止し、これに代えて吸引パイプ170を設けるようにしたものである。
【0037】
吸引パイプ170は、本発明の吸引流路を成すものであり、ハウジング110内の底部(貯油部114)から第2圧縮吸入部142の側壁に接続される流路としている。
【0038】
この第2実施形態においては、第1圧縮部120で圧縮された冷媒の全量がモータ室吐出部141から一旦モータ室111内に流出拡散する。この時冷媒中の潤滑油はこの拡散により分離され、潤滑油穴132、122を通って貯油部114に溜められる。冷媒は第2圧縮吸入部142から第2圧縮部130に吸入される。
【0039】
そして、第2圧縮吸入部142に冷媒が吸入される際に生ずる負圧によって、貯油部114に溜められた潤滑油は、吸引パイプ170を通して第2圧縮部130内に吸引され、第2圧縮部130内の潤滑を果たす。
【0040】
このように、第1圧縮部120からの冷媒の全量をモータ室111に流出させることで、モータ部190への冷却効果を高めることができる。尚、第2圧縮部130に対しては、吸引パイプ170によって潤滑油の供給を可能として、第2圧縮部130の潤滑を満足させることができる。
【0041】
(第3実施形態)
本発明の第3実施形態を図5に示す。第3実施形態は、2段圧縮機100をクランク室111aが中間圧方式の往復動2段圧縮機に適用したものである。
【0042】
2段圧縮機100は、シャフト123aに斜板123bが固定されて成るクランク機構(機構)123によってピストン124が往復動される圧縮部120、130を形成している。ピストン124は、円柱状を成す部材で中央に凹部124cが形成され、シュー125を介して斜板123bに接続されている。ピストン124の長手方向の両端部側にはそれぞれ大径部(圧縮部材)124a、小径部(圧縮部材)124bが形成されており、ハウジング110内に設けられたシリンダ115a、115bに挿入され、大径部124a側で第1圧縮部120、小径部124b側で第2圧縮部130を構成している。尚、クランク機構123の斜板123bおよびピストン124の凹部124c近傍は、第1圧縮部120および第2圧縮部130との間に形成される空間、即ちクランク室111a内に収容されている。
【0043】
尚、クランク室111aは、第1吐出流路127によって第1圧縮部120の1段目吐出室126と連通されており、また、吸入流路133によって第2圧縮部130の2段目吸入室134と連通されている。よって、クランク室111aは、第1圧縮部120の吸入圧力および第2圧縮部130の吐出圧力の中間圧力となる中間圧力領域に対応する。
【0044】
そして、第2圧縮部130の吐出側、即ち2段目吐出室135の下流側には上記第1実施形態と同様の潤滑油分離器180が設けられている。潤滑油分離器180の下方には貯油室114aが設けられ、分離筒182内部と連通している。更に、貯油室114a内は、絞り部117を有する潤滑油戻し流路116によってクランク室111a内と連通するようにしている。
【0045】
このように構成される2段圧縮機100においては、吸入口112から吸入された冷媒は、第1圧縮部120で1段目の圧縮が行われ、1段目吐出室126から第1吐出流路127を通りクランク室111a内に流入する。そして、冷媒は吸入流路133から2段目吸入室134を経て第2圧縮部130に流入し、2段目の圧縮が行われる。この時冷媒中の潤滑油によってピストン124の小径部124bおよびシリンダ115b間の潤滑が果たされる。その後、冷媒は潤滑油分離器180内に流入し、冷媒中の潤滑油は分離され、分離筒182から貯油室114aに溜められる。尚、冷媒は吐出口113から冷凍サイクル装置の凝縮器側に吐出される。
【0046】
貯油室114aに溜められた潤滑油は、貯油室114a内の圧力(2段目吐出圧力)とクランク室111a内の圧力(中間圧力)との圧力差により、潤滑油戻し流路116および絞り部117を通ってクランク室111a内に導入される。この潤滑油によって、クランク機構123(シャフト123aの回転支持部や斜板123bのピストン124との接続部等)の潤滑が果たされる。また、クランク室111aと第1圧縮部120の吸入側との圧力差によって、潤滑油はピストン124の大径部124aおよびシリンダ115a間にも供給され、その部位における潤滑を果たす。
【0047】
これにより、第1、第2圧縮部120、130およびクランク機構123の潤滑を果たしつつ、潤滑油分離器180によって吐出される冷媒中にほぼ潤滑油を含まないようにすることができるので、冷凍サイクル装置の効率を向上させることができる。
【0048】
(その他の実施形態)
上記第1、第2実施形態では、潤滑油分離器180によって分離された潤滑油を中間圧力領域としての貯油部114に導入するようにしたが、これに限らず、第1圧縮部120の吸入側に接続される流路を設けて直接第1圧縮部120に導くようにしても良い。
【図面の簡単な説明】
【図1】本発明の第1実施形態における2段圧縮機を示す断面図である。
【図2】図1における潤滑油分離器を示す断面図である。
【図3】図2におけるA−A部を示す断面図である。
【図4】本発明の第2実施形態における2段圧縮機を示す断面図である。
【図5】本発明の第3実施形態における2段圧縮機を示す断面図である。
【符号の説明】
100 2段圧縮機
110 ハウジング(容器)
114 貯油部(中間圧力領域)
120 第1圧縮部
123 クランク機構(機構)
124a 大径部(圧縮部材)
124b 小径部(圧縮部材)
130 第2圧縮部
150 潤滑油供給パイプ(供給流路)
160 接続パイプ(接続流路)
170 吸引パイプ(吸引流路)
180 潤滑油分離器
190 モータ部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a two-stage compressor suitable for being applied to a refrigeration cycle device using CO 2 as a refrigerant.
[0002]
[Prior art]
As a technique related to a conventional two-stage compressor, for example, a technique disclosed in Patent Document 1 is known. In this two-stage compressor, a first compression section and a second compression section are accommodated in a closed vessel, and the inside pressure of the closed vessel is an internal intermediate pressure type. As the flow path through which the refrigerant gas flows, a first flow path from the first compression section to the inside of the closed container, and further from the closed container to the second compression section, and a direct flow from the first compression section to the second compression section. And a second flow path connected thereto. Further, the volume ratio between the first compression section and the second compression section is set such that the intermediate pressure becomes equal to the equilibrium pressure (the internal pressure at which the compressor is stopped when the compressor is stopped).
[0003]
The refrigerant compressed by the first compression unit is once diffused into the closed container by the first flow path, and the lubricating oil contained in the refrigerant is separated and stored at the bottom in the closed container. The lubricating oil lubricates the outer sliding portions of the first and second compressors. Further, it is possible to supply the lubricating oil to the inside of the first compression section by the difference between the intermediate pressure and the pressure in the first compression section. Further, here, by setting the intermediate pressure to be equal to the equilibrium pressure, the pressure fluctuation in the closed container at the time of starting is reduced, and the oil forming is suppressed. That is, it is possible to prevent the lubricating oil in the form of foam from flowing out of the two-stage compressor itself through the second compressing section and running out of the lubricating oil in the closed container. Further, the pressure-resistant design of the sealed container is facilitated, and the weight can be reduced.
[0004]
[Patent Document 1]
JP-A-2001-73976
[Problems to be solved by the invention]
However, because of the difference between the pressure in the second compression section and the intermediate pressure, it is not possible to supply lubricating oil accumulated in the bottom of the closed container to the inside of the second compression section. It will rely on the lubricating oil contained in the refrigerant supplied by the second flow path. Then, it becomes difficult to reduce the oil rate of the refrigerant in the refrigeration cycle device in order to secure this lubricating oil. If the oil rate of the refrigeration cycle device is high, the efficiency of the heat exchanger deteriorates, the pressure loss in the piping system increases, and the efficiency of the refrigeration cycle device generally decreases.
[0006]
An object of the present invention is to provide a two-stage compressor that can reduce the oil rate of a refrigerant and improve the efficiency of a refrigeration cycle device in view of the above problems.
[0007]
[Means for Solving the Problems]
The present invention employs the following technical means to achieve the above object.
[0008]
According to the first aspect of the present invention, the first compressor (120) compresses the refrigerant in the refrigeration cycle, and the second compressor (130) further compresses the refrigerant compressed by the first compressor (120). In the two-stage compressor in which the lubricating oil is contained in the container (110), the lubricating oil separator (180) for separating the lubricating oil contained in the refrigerant is provided on the discharge side of the second compression section (130). It is characterized by.
[0009]
Thereby, when compressing and discharging the refrigerant from the two-stage compressor (100), it is possible to make the refrigerant substantially free of lubricating oil, so that the efficiency of the heat exchanger in the refrigeration cycle apparatus is reduced and the piping system is not used. Thus, the efficiency of the refrigeration cycle apparatus can be improved.
[0010]
As the lubricating oil separator (180), a centrifugal separator is suitable as in the invention described in claim 2, and can be easily coped with an inexpensive structure.
[0011]
According to the third aspect of the present invention, in the container (110), an intermediate pressure region (111, which is an intermediate pressure between the suction pressure of the first compression unit (120) and the discharge pressure of the second compression unit (130)). 114, 111a) are formed, and the separated lubricating oil is introduced into the intermediate pressure region (114, 111a).
[0012]
As a result, the intermediate pressure region (114, 111a) in the container (110) can be used as the separated lubricating oil storage portion (114, 111a), and the lubrication stored in the intermediate pressure region (114, 111a) can be obtained. Oil can be supplied to the suction side of the first compression section (120) by a pressure difference, and the first compression section (120) and the second compression section (130) can be repeatedly lubricated. Further, by introducing the lubricating oil from the lubricating oil separator (180) to the intermediate pressure region (114, 111a), the pressure difference can be reduced as compared with the case where the lubricating oil is directly returned to the first compression section (120). There is no need to provide a very small hole as the throttle portion (183, 117) for decompression in the lubricating oil separator (180), and processing can be facilitated.
[0013]
According to the third aspect of the present invention, as in the fourth aspect of the present invention, the separated lubricating oil is supplied to the suction side of the first compression section (120) by a pressure difference from the intermediate pressure area (114). If a supply flow path (150) for supply and a connection flow path (160) for connecting the discharge side of the first compression section (120) and the suction side of the second compression section (130) are provided, separation can be achieved. The lubricating oil thus obtained can be reliably circulated through the first compression section (120) and the second compression section (130).
[0014]
According to the third aspect of the invention, as in the fifth aspect of the invention, the separated lubricating oil is supplied to the suction side of the first compression section (120) by a pressure difference from the intermediate pressure area (114). And a suction flow path (170) for sucking the separated lubricating oil into the second compression section (130) by the negative pressure generated when the refrigerant is sucked into the second compression section (130). According to this, according to this, the entire amount of the refrigerant can be once discharged from the first compression section (120) to the intermediate pressure area (111), and some of the refrigerant requires cooling in the intermediate pressure area (111). It is suitable for the case.
[0015]
According to the third to fifth aspects of the present invention, as in the sixth aspect of the present invention, the motor section (190) for operating the first compression section (120) and the second compression section (130). This is suitable for application to an intermediate pressure dome type electric two-stage compressor in which the motor unit (190) is accommodated in the intermediate pressure region (111).
[0016]
Further, in the invention according to claim 3, as in the invention according to claim 7, each compression member (124a, 124b) of the first compression section (120) and the second compression section (130) is reciprocated. The crank chamber (111a) having the mechanism (123) in which the mechanism (123) is accommodated in the intermediate pressure region (111a) may be applied to a reciprocating two-stage compressor of an intermediate pressure system.
[0017]
Note that the reference numerals in parentheses of the above means indicate the correspondence with specific means described in the embodiment described later.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
A first embodiment of the present invention will be described with reference to FIGS. The two-stage compressor 100 has two compression units 120 and 130 in a housing 110 and is applied to a refrigeration cycle device (not shown) that operates using CO 2 as a refrigerant. Is a compressor that compresses the pressure to a high pressure (a pressure exceeding the critical pressure). More specifically, the two compression units 120 and 130 are operated by a motor unit 190, and the motor unit 190 is an intermediate-pressure dome-type electric motor housed in a housing 110 that has an intermediate pressure between the two compression units 120 and 130. It is a two-stage compressor.
[0019]
Hereinafter, the details will be described with reference to FIG. 1. The housing 110 forms a cylindrical closed container, and has a first compression unit 120 and a second compression unit 130 disposed therein. 120 and 130 are operated by the motor unit 190.
[0020]
The motor section 190 is accommodated in a motor chamber 111 formed above the housing 110, and includes a rotor section 191 and a stator section 192. The rotor portion 191 is fixed to the shaft 193, and the stator portion 192 is fixed to the inner peripheral surface of the housing 110 on the outer peripheral side of the rotor portion 191 by press fitting. When power from an external power supply (not shown) is supplied to the stator unit 192, the shaft 193 is driven to rotate with the rotation of the rotor unit 191.
[0021]
The first compression section 120 performs first-stage compression, and is supported by the support section 121 below the inside of the housing 110. As is well known, the first compression section 120 is a rotary compression section in which a rotor and a vane (not shown) are disposed in a cylinder, and the rotor revolves around the shaft 193 of the motor section 190. Do compression work with.
[0022]
A suction port 112 is connected to a suction side of the first compression section 120 via a flow path (not shown) in the support section 121, and a refrigerant flowing out from an evaporator (not shown) side of the refrigeration cycle apparatus. Is allowed to flow in. Further, the support portion 121 is provided with a lubricating oil hole 122 through which the lubricating oil separated by a lubricating oil separator 180 described later can pass toward the bottom inside the housing 110. An oil storage section 114 for storing the lubricating oil is formed between the bottom inside the housing 110 and the first compression section 120.
[0023]
The second compression section 130 is for further compressing (second-stage compression) the refrigerant compressed by the first compression section 120, and is provided in the housing 110 above the first compression section 120. . The basic structure is a rotary compression unit similar to the first compression unit 120, which is supported in the housing 110 by the support unit 131 and performs compression work by revolving the rotor by the shaft 193 of the motor unit 190. Note that a lubricating oil hole 132 is provided in the support part 131 of the second compression part 130.
[0024]
The first compression section 120 is provided with a motor chamber discharge section 141 which opens from the discharge side to the motor chamber 111 through the lubricating oil hole 132, and the second compression section 130 has a A second compression suction unit 142 connected to the suction side of the second compression unit 130 is provided. Accordingly, the motor chamber 111 in the housing 110, the space between the first and second compression units 120 and 130, and the oil storage unit 114 provide an intermediate pressure between the suction pressure of the first compression unit 120 and the discharge pressure of the second compression unit 130. Intermediate pressure region.
[0025]
A discharge port 113 is provided on the discharge side of the second compression unit 130, and is connected to a condenser (not shown) of the refrigeration cycle apparatus. A lubricating oil separator 180, which is a feature of the present invention, is provided between the second compression section 130 and the discharge port 113. The lubricating oil separator 180 is of a centrifugal type that separates the lubricating oil contained in the refrigerant on the discharge side of the second compression unit 130, and as shown in FIG. 2, a separation pipe 181, a separation cylinder 182, and a throttle. 183 and the like.
[0026]
The separation pipe 181 is a pipe member having a lid portion 181a, is joined to the upper side of the bottomed cylindrical separation tube 182, and communicates the inside of the separation tube 182 with the discharge port 113. At the bottom of the separation cylinder 182, there is provided a throttle part 183 which is formed by a fine hole and reduces the internal pressure of the separation cylinder 182 to communicate with the oil storage part 114. As shown in FIG. 3, an introduction passage 184 is provided in the separation cylinder 182 so as to be in contact with the upper inner peripheral surface of the separation cylinder 182, and the discharge side of the second compression unit 130 and the inside of the separation cylinder 182 are provided. I am trying to communicate.
[0027]
A lubricating oil supply pipe (supply flow path) 150 connected to the suction side of the first compression unit 120 is provided from near the bottom of the housing 110. Further, between the discharge side of the first compression unit 120 and the suction side of the second compression unit 130, a connection pipe (connection flow path) 160 that directly connects the two 120 and 130 is provided.
[0028]
Next, operations and effects based on the above configuration will be described. In the two-stage compressor 100, the first compression unit 120 and the second compression unit 130 are operated by the driving of the motor unit 190, and the refrigerant sucked from the suction port 112 is first compressed by the first compression unit 120 in the first stage. Done. Further, as described later, the lubricating oil stored in the oil storage unit 114 passes through the lubricating oil supply pipe 150 through the first compression by a pressure difference between the intermediate pressure in the oil storage unit 114 and the suction pressure of the first compression unit 120. The lubrication in the first compression section 120 is provided in the section 120.
[0029]
Part of the refrigerant compressed by the first compression unit 120 is temporarily diffused into the motor chamber 111 from the motor chamber discharge unit 141 to cool the motor unit 190, and from the second compression suction unit 142 to the second compression unit 130. Is inhaled. When the refrigerant is diffused in the motor chamber 111, the lubricating oil contained in the refrigerant is separated and stored in the oil reservoir 114 through the lubricating oil holes 132 and 122. In addition, the refrigerant that passes through the connection pipe 160 from the first compression unit 120 flows into the second compression unit 130 while containing the lubricating oil, and performs lubrication in the second compression unit 130.
[0030]
As described above, the refrigerant flowing from the second compression suction section 142 and the connection pipe 160 is mixed, and the second compression is performed by the second compression section 130. The compressed refrigerant further flows into the separation cylinder 182 from the discharge side of the second compression section 130 via the introduction passage 184 of the lubricating oil separator 180. At this time, the refrigerant flows downward while turning between the separation pipe 181 and the separation tube 182, and the refrigerant having a low specific gravity flows into the separation pipe 181 and flows out from the discharge port 113.
[0031]
On the other hand, the lubricating oil having a large specific gravity in the refrigerant is separated on the inner peripheral wall side of the separation tube 182 by centrifugal force and descends by gravity, and the pressure in the separation tube 182 (the discharge pressure of the second compression unit 130) and the oil storage unit Due to the difference from the pressure (intermediate pressure) in 114, the fluid flows out from throttle portion 183 to oil storage portion 114 through lubricating oil hole 122 and is stored.
[0032]
As described above, in the present invention, by providing the lubricating oil separator 180 on the discharge side of the second compression unit 130, when the refrigerant is compressed and discharged from the two-stage compressor 100 to the condenser side of the refrigeration cycle device, The lubricating oil can be substantially not included in the refrigeration cycle device, so that the efficiency of the refrigeration cycle device can be improved by preventing the efficiency of the heat exchanger in the refrigeration cycle device from decreasing and the pressure loss in the piping system from increasing. .
[0033]
As the lubricating oil separator 180, a centrifugal separator is used, and it can be easily handled with an inexpensive structure.
[0034]
Further, the inside of the housing 110 serving as the intermediate pressure region can be the lubricating oil storage portion 114 separated by the lubricating oil separator 180, and the separated lubricating oil is separated from the lubricating oil supply pipe 150 by the first compression by the pressure difference. It is supplied to the suction side of the part 120 and further supplied to the second compression part 130 by the connection pipe 160, so that the first compression part 120 and the second compression part 130 can be repeatedly lubricated.
[0035]
Further, by introducing the lubricating oil from the lubricating oil separator 180 to the oil storage unit 114, the pressure difference can be reduced as compared with the case where the lubricating oil is directly returned to the first compression unit 120. It is not necessary to provide an extremely small hole as the narrowed portion 183 for this, and processing can be facilitated.
[0036]
(2nd Embodiment)
FIG. 4 shows a second embodiment of the present invention. The second embodiment differs from the first embodiment in that the connection pipe 160 is eliminated and a suction pipe 170 is provided instead.
[0037]
The suction pipe 170 forms a suction flow path of the present invention, and is a flow path connected from the bottom (oil storage section 114) in the housing 110 to the side wall of the second compression suction section 142.
[0038]
In the second embodiment, the entire amount of the refrigerant compressed by the first compression section 120 flows out and diffuses from the motor chamber discharge section 141 into the motor chamber 111 once. At this time, the lubricating oil in the refrigerant is separated by this diffusion and is stored in the oil storage section 114 through the lubricating oil holes 132 and 122. The refrigerant is drawn into the second compression section 130 from the second compression suction section 142.
[0039]
The lubricating oil stored in the oil storage unit 114 is sucked into the second compression unit 130 through the suction pipe 170 by the negative pressure generated when the refrigerant is sucked into the second compression suction unit 142, and the second compression unit Performs lubrication in 130.
[0040]
As described above, by allowing the entire amount of the refrigerant from the first compression unit 120 to flow into the motor chamber 111, the effect of cooling the motor unit 190 can be enhanced. The lubricating oil can be supplied to the second compression unit 130 by the suction pipe 170, so that the lubrication of the second compression unit 130 can be satisfied.
[0041]
(Third embodiment)
FIG. 5 shows a third embodiment of the present invention. In the third embodiment, the two-stage compressor 100 is applied to a reciprocating two-stage compressor in which the crank chamber 111a has an intermediate pressure.
[0042]
The two-stage compressor 100 forms compression units 120 and 130 in which a piston 124 is reciprocated by a crank mechanism (mechanism) 123 in which a swash plate 123b is fixed to a shaft 123a. The piston 124 is a cylindrical member having a concave portion 124c formed in the center, and is connected to the swash plate 123b via the shoe 125. A large-diameter portion (compression member) 124a and a small-diameter portion (compression member) 124b are formed at both ends in the longitudinal direction of the piston 124, and are inserted into cylinders 115a and 115b provided in the housing 110. The first compression section 120 is configured on the diameter section 124a side, and the second compression section 130 is configured on the small diameter section 124b side. The swash plate 123b of the crank mechanism 123 and the vicinity of the recess 124c of the piston 124 are accommodated in a space formed between the first compression section 120 and the second compression section 130, that is, in the crank chamber 111a.
[0043]
The crank chamber 111a is communicated with the first-stage discharge chamber 126 of the first compression unit 120 by the first discharge channel 127, and is connected to the second-stage suction chamber of the second compression unit 130 by the suction channel 133. And 134. Therefore, the crank chamber 111a corresponds to an intermediate pressure region where the suction pressure of the first compression unit 120 and the discharge pressure of the second compression unit 130 are intermediate.
[0044]
Further, a lubricating oil separator 180 similar to that of the first embodiment is provided on the discharge side of the second compression section 130, that is, on the downstream side of the second-stage discharge chamber 135. An oil storage chamber 114a is provided below the lubricating oil separator 180, and communicates with the inside of the separation cylinder 182. Further, the inside of the oil storage chamber 114a is communicated with the inside of the crank chamber 111a by a lubricating oil return flow path 116 having a throttle portion 117.
[0045]
In the two-stage compressor 100 configured as described above, the refrigerant sucked from the suction port 112 is compressed in the first stage by the first compression unit 120, and is discharged from the first stage discharge chamber 126 to the first discharge flow. It flows into the crank chamber 111a through the path 127. Then, the refrigerant flows into the second compression section 130 from the suction passage 133 through the second-stage suction chamber 134, and the second-stage compression is performed. At this time, lubrication between the small diameter portion 124b of the piston 124 and the cylinder 115b is achieved by the lubricating oil in the refrigerant. Thereafter, the refrigerant flows into the lubricating oil separator 180, and the lubricating oil in the refrigerant is separated and stored in the oil storage chamber 114a from the separation cylinder 182. Note that the refrigerant is discharged from the discharge port 113 to the condenser side of the refrigeration cycle device.
[0046]
The lubricating oil stored in the oil storage chamber 114a is subjected to a lubricating oil return flow path 116 and a throttle section due to a pressure difference between the pressure in the oil storage chamber 114a (second discharge pressure) and the pressure in the crank chamber 111a (intermediate pressure). 117 and is introduced into the crank chamber 111a. The lubricating oil lubricates the crank mechanism 123 (the rotation supporting portion of the shaft 123a and the connecting portion of the swash plate 123b with the piston 124). Further, the lubricating oil is also supplied between the large-diameter portion 124a of the piston 124 and the cylinder 115a due to the pressure difference between the crank chamber 111a and the suction side of the first compression portion 120, and performs lubrication at that portion.
[0047]
Accordingly, the lubrication of the first and second compression units 120 and 130 and the crank mechanism 123 can be performed, and the refrigerant discharged by the lubricating oil separator 180 can be substantially free of lubricating oil. The efficiency of the cycle device can be improved.
[0048]
(Other embodiments)
In the first and second embodiments, the lubricating oil separated by the lubricating oil separator 180 is introduced into the oil storage section 114 as an intermediate pressure area. However, the present invention is not limited to this. A flow path connected to the side may be provided to directly lead to the first compression unit 120.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a two-stage compressor according to a first embodiment of the present invention.
FIG. 2 is a sectional view showing the lubricating oil separator in FIG.
FIG. 3 is a sectional view showing an AA section in FIG. 2;
FIG. 4 is a sectional view showing a two-stage compressor according to a second embodiment of the present invention.
FIG. 5 is a sectional view showing a two-stage compressor according to a third embodiment of the present invention.
[Explanation of symbols]
100 Two-stage compressor 110 Housing (container)
114 Oil storage section (intermediate pressure area)
120 first compression section 123 crank mechanism (mechanism)
124a Large diameter part (compression member)
124b Small diameter part (compression member)
130 second compression section 150 lubricating oil supply pipe (supply flow path)
160 Connection pipe (connection flow path)
170 Suction pipe (suction channel)
180 Lubricating oil separator 190 Motor part

Claims (7)

冷凍サイクル中の冷媒を圧縮する第1圧縮部(120)と、
前記第1圧縮部(120)で圧縮された冷媒を更に圧縮する第2圧縮部(130)とが容器(110)内に収容されて成る2段圧縮機において、
前記第2圧縮部(130)の吐出側に前記冷媒中に含まれる潤滑油を分離する潤滑油分離器(180)が設けられたことを特徴とする2段圧縮機。
A first compressor (120) for compressing the refrigerant in the refrigeration cycle;
In a two-stage compressor, a second compressor (130) for further compressing the refrigerant compressed in the first compressor (120) is housed in a container (110).
A two-stage compressor, wherein a lubricating oil separator (180) for separating lubricating oil contained in the refrigerant is provided on a discharge side of the second compression section (130).
前記潤滑油分離器(180)は、遠心分離式であることを特徴とする請求項1に記載の2段圧縮機。The two-stage compressor according to claim 1, wherein the lubricating oil separator (180) is of a centrifugal type. 前記容器(110)内には、前記第1圧縮部(120)の吸入圧力と前記第2圧縮部(130)の吐出圧力との中間圧力となる中間圧力領域(111、114、111a)が形成され、
分離された前記潤滑油は、前記中間圧力領域(114、111a)に導入されることを特徴とする請求項1または請求項2のいずれかに記載の2段圧縮機。
In the container (110), intermediate pressure regions (111, 114, 111a) are formed, which are intermediate pressures between the suction pressure of the first compression section (120) and the discharge pressure of the second compression section (130). And
The two-stage compressor according to claim 1 or 2, wherein the separated lubricating oil is introduced into the intermediate pressure region (114, 111a).
分離された前記潤滑油を前記中間圧力領域(114)との圧力差によって前記第1圧縮部(120)の吸入側に供給する供給流路(150)と、
前記第1圧縮部(120)の吐出側と前記第2圧縮部(130)の吸入側とを接続する接続流路(160)とが設けられたことを特徴とする請求項3に記載の2段圧縮機。
A supply channel (150) for supplying the separated lubricating oil to the suction side of the first compression section (120) by a pressure difference from the intermediate pressure region (114);
The connection according to claim 3, wherein a connection flow path (160) is provided for connecting a discharge side of the first compression section (120) and a suction side of the second compression section (130). Stage compressor.
分離された前記潤滑油を前記中間圧力領域(114)との圧力差によって前記第1圧縮部(120)の吸入側に供給する供給流路(150)と、
分離された前記潤滑油を前記第2圧縮部(130)の冷媒吸入時に生ずる負圧によってこの第2圧縮部(130)に吸引する吸引流路(170)とが設けられたことを特徴とする請求項3に記載の2段圧縮機。
A supply channel (150) for supplying the separated lubricating oil to the suction side of the first compression section (120) by a pressure difference from the intermediate pressure region (114);
A suction channel (170) is provided for sucking the separated lubricating oil into the second compression section (130) by negative pressure generated when the refrigerant is sucked into the second compression section (130). The two-stage compressor according to claim 3.
前記第1圧縮部(120)および前記第2圧縮部(130)を作動させるモータ部(190)を有し、
前記モータ部(190)は、前記中間圧力領域(111)に収容されたことを特徴とする請求項3〜請求項5のいずれかに記載の2段圧縮機。
A motor unit (190) for operating the first compression unit (120) and the second compression unit (130);
The two-stage compressor according to any one of claims 3 to 5, wherein the motor unit (190) is housed in the intermediate pressure region (111).
前記第1圧縮部(120)および前記第2圧縮部(130)の各圧縮部材(124a、124b)を往復動させる機構(123)を有し、
前記機構(123)は、前記中間圧力領域(111a)に収容されたことを特徴とする請求項3に記載の2段圧縮機。
A mechanism (123) for reciprocating the compression members (124a, 124b) of the first compression section (120) and the second compression section (130);
The two-stage compressor according to claim 3, wherein the mechanism (123) is housed in the intermediate pressure area (111a).
JP2002289791A 2002-10-02 2002-10-02 2-stage compressor Expired - Fee Related JP3838186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289791A JP3838186B2 (en) 2002-10-02 2002-10-02 2-stage compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289791A JP3838186B2 (en) 2002-10-02 2002-10-02 2-stage compressor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006162875A Division JP4470914B2 (en) 2006-06-12 2006-06-12 2-stage compressor

Publications (2)

Publication Number Publication Date
JP2004124804A true JP2004124804A (en) 2004-04-22
JP3838186B2 JP3838186B2 (en) 2006-10-25

Family

ID=32281853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289791A Expired - Fee Related JP3838186B2 (en) 2002-10-02 2002-10-02 2-stage compressor

Country Status (1)

Country Link
JP (1) JP3838186B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105986A (en) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd Vertical rotary compressor
JP2007315366A (en) * 2006-05-29 2007-12-06 Denso Corp Compressor
JP2012052437A (en) * 2010-08-31 2012-03-15 Sanyo Electric Co Ltd Rotary compressor
JP2012072716A (en) * 2010-09-29 2012-04-12 Sanyo Electric Co Ltd Rotary compressor and method for manufacturing the same
CN102996456A (en) * 2011-09-15 2013-03-27 安徽美芝精密制造有限公司 Rotation type compressor oil pump apparatus
CN103089628A (en) * 2011-11-07 2013-05-08 三洋电机株式会社 Rotary compressor
WO2015120630A1 (en) * 2014-02-17 2015-08-20 广东美芝制冷设备有限公司 Rotary compressor and refrigeration circulation apparatus having same
CN108087276A (en) * 2017-12-28 2018-05-29 广东美芝制冷设备有限公司 Low back pressure compressor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105986A (en) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd Vertical rotary compressor
JP2007315366A (en) * 2006-05-29 2007-12-06 Denso Corp Compressor
JP2012052437A (en) * 2010-08-31 2012-03-15 Sanyo Electric Co Ltd Rotary compressor
JP2012072716A (en) * 2010-09-29 2012-04-12 Sanyo Electric Co Ltd Rotary compressor and method for manufacturing the same
CN102996456A (en) * 2011-09-15 2013-03-27 安徽美芝精密制造有限公司 Rotation type compressor oil pump apparatus
CN102996456B (en) * 2011-09-15 2015-05-06 安徽美芝精密制造有限公司 Rotation type compressor oil pump apparatus
CN103089628A (en) * 2011-11-07 2013-05-08 三洋电机株式会社 Rotary compressor
CN103089628B (en) * 2011-11-07 2016-03-16 三洋电机株式会社 Rotary compressor
WO2015120630A1 (en) * 2014-02-17 2015-08-20 广东美芝制冷设备有限公司 Rotary compressor and refrigeration circulation apparatus having same
CN108087276A (en) * 2017-12-28 2018-05-29 广东美芝制冷设备有限公司 Low back pressure compressor
CN108087276B (en) * 2017-12-28 2024-02-13 广东美芝制冷设备有限公司 Low back pressure compressor

Also Published As

Publication number Publication date
JP3838186B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
US8992191B2 (en) Scroll compressor with differential pressure hole
JP3370046B2 (en) Multi-stage compressor
JP4470914B2 (en) 2-stage compressor
US8037712B2 (en) Hermetic compressor and refrigeration cycle having the same
JP2004060605A (en) Electric compressor
JP2009030612A (en) Hermetic compressor and refrigerating cycle device having the same
KR101964962B1 (en) Compressor having a structure for preventing reverse flow of refrigerant
JP2004124804A (en) Two-stage compressor
JP2005146987A (en) Heat exchanger integral type horizontal compressor with built-in accumulator
JP2009030611A (en) Compressor
KR20190001070A (en) Compressor having enhanced structure for discharging refrigerant
JP2005146986A (en) Heat exchanger integral type compressor with built-in accumulator
JPH11294355A (en) Rolling piston type rotary compressor
JP2008008263A (en) Electric compressor
JP2005171819A (en) Refrigerating compressor
JP2001082368A (en) Two-stage compression type rotary compressor
EP4174318A1 (en) Rotary compressor and refrigeration cycle device
JP4797548B2 (en) Hermetic electric compressor
KR101990137B1 (en) Accumulator and Compression Unit including the same
JPH11230070A (en) Compressor
JP2008031976A (en) Electric compressor
KR101002555B1 (en) Multi-stage rotary compressor and refrigeration cycle having the same
JP4162123B2 (en) Gas compressor
JP2003113790A (en) Gas compressor
JP2005076527A (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Ref document number: 3838186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees