JP2004121132A - Method for screening anticancer agent - Google Patents

Method for screening anticancer agent Download PDF

Info

Publication number
JP2004121132A
JP2004121132A JP2002291960A JP2002291960A JP2004121132A JP 2004121132 A JP2004121132 A JP 2004121132A JP 2002291960 A JP2002291960 A JP 2002291960A JP 2002291960 A JP2002291960 A JP 2002291960A JP 2004121132 A JP2004121132 A JP 2004121132A
Authority
JP
Japan
Prior art keywords
gdp
rcc1
ran
anticancer agent
screening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002291960A
Other languages
Japanese (ja)
Inventor
Takeji Nishimoto
西本 毅治
Hitoshi Nishijima
西嶋 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu TLO Co Ltd
Original Assignee
Kyushu TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu TLO Co Ltd filed Critical Kyushu TLO Co Ltd
Priority to JP2002291960A priority Critical patent/JP2004121132A/en
Publication of JP2004121132A publication Critical patent/JP2004121132A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for screening an anticancer agent by which a material such as a compound to be the anticancer agent is readily selected. <P>SOLUTION: A testing material is selected as a candidate for the anticancer agent or a precursor thereof when RCC1 (a promotor of GDP-GDT exchange reaction, an exchange factor of guanine nucleotide) is reacted with Ran bonded to GDP (guanosine-5'-diphosphate) in the presence of the testing material, and a GDP-GTP (guanosine-5'-triphosphate) exchange reaction by the RCC is inhibited. It is further measured whether or not the selected testing material causes immature chromosomal condensation in a culture cell phased to a specific stage of a cell cycle as an additional step for confirmation. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、制がん剤(抗がん剤)となり得る物質を簡便に選択することのできる制がん剤のスクリーニング方法に関する。
【0002】
【従来の技術】
がん治療において化学療法は重要な地位を占めており、現在臨床で用いられている制がん剤は50種以上にものぼるが、未だ充分ではなく、新しい制がん剤の開発が日夜続けられている。
【0003】
制がん剤の効率的な開発のためには、本格的な薬理学的試験や臨床試験の前に、提示された物質が制がん剤となり得るか否かということをインビトロ(in vitro)で簡便に判別するためのスクリーニング方法が不可欠である。しかし、この目的から案出された具体的な方法は数少ない。
【0004】
最近、細胞機能や細胞周期を制御するシグナル伝達、特に、プログラム細胞死と言われるアポトーシスに至るシグナル伝達の機構とがんとの関連を解明する研究が盛んに行なわれている。このような探索研究は、既存の薬剤を母体としてそれを単に修飾する従来の開発手法とは異なり、新しい作用機序に基づく新しいタイプの制がん剤を導くものとして期待される。しかし、その研究成果を制がん剤のスクリーニング方法に適用した例は殆ど見当らない。
【0005】
【発明が解決しようとする課題】
本発明の目的は、制がん剤となり得る化合物等の物質を簡便に選択することのできる新規な制がん剤スクリーニング方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、検討を重ねた結果、核と細胞質との間の物質輸送のためのシグナル伝達系に関与する低分子量Gタンパク質として知られるRanのGEF(グアニンヌクレオチド交換因子:GDP−GTP交換反応促進因子)であるRCC1の酵素活性をインビトロ測定することにより、上記の目的を達成し、本発明を導き出した。
【0007】
かくして、本発明は、被験物質の存在下に、GDPが結合されたRanにRCC1を反応させ、そのRCC1によるGDP−GTP交換反応が阻害された場合に、当該被験物質を制がん剤の候補またはその前駆体として選択することを特徴とする制がん剤のスクリーニング方法を提供するものである。
【0008】
【発明の実施の形態】
本発明に従う制がん剤のスクリーニング方法において使用されるRCC1とは、RanのGEF(グアニンヌクレオチド交換因子:GDP−GTP交換反応促進因子)である。ここで、Ranは、Rasに類似する低分子量Gタンパク質(GTP結合タンパク質:GTPアーゼ)であり、よく知られているように、そのオン−オフサイクルに応じて細胞質と核との間のタンパク質やRNAの輸送を制御している。
【0009】
このようなRanの作用は、そのGEFであるRCC1が核内に局在するとともに、RanのGAP(GTPアーゼ活性化タンパク質)が細胞質に局在することによって支えられている。すなわち、RCC1はクロマチンに結合して核内にしか存在しないため、核内においてのみRanはGTP型となり、このGTP型のRanが核外輸送受容体であるCrml/exportin1に結合する。Crm1は核質内の核外輸送シグナル配列をもつ分子(cargo)を認識して結合しており、Ranとの三者複合体が形成される。するとCrm1は核膜孔のタンパク質であるヌクレオポリン(uncleoporin)に結合できるようになり、複合体のままで核膜孔を通過する。一方、RanのGAPは細胞質や核膜孔の細胞質側に局在するので、そこでRanはただちにGDP型になり、cargoが解離され、cargoの核外への輸送が完了する。細胞質で形成されたGDP型のRanはNTF2/p10というGDI様の制御因子に結合することにより、再び核膜孔を通って核内に返還される。一方、cargoが解離したCrm1は再び核膜孔を通って核内に返還される。このようにして、物質の核外輸送が行なわれる。細胞質から核内への物質の逆輸送にもRanが重要な働きをしている。
【0010】
RCC1は、Ranについて知られた唯一のGEFであり、上述したように、核膜孔を通る物質の輸送において重要な役割を占める。RCC1については、その遺伝子を欠損し細胞周期のS期に同調された培養細胞がアポトーシスの前兆である未成熟染色体凝縮を起こす(T. Nishimoto他、Cell 15, 475−483 (1978))ことから、細胞周期の進行を制御することに関与していると考えられるが、その詳細については未だ充分に明らかにされてはいない。
【0011】
一方、がんの化学療法の観点から、制がん剤の開発に際して検討されている最近の大きなテーマの一つは、がん細胞にアポトーシスを誘導させてがん細胞を排除し得るような物質を見出すことである。すなわち、がん細胞に潜在しているアポトーシス(細胞死プログラム)の活性化を図ることができれば、がん細胞を効率的に死滅排除でき、有効な治療効果が期待される。
【0012】
しかし、実際には、細胞周期のチェックポイントコントロール機構に基づきがん細胞に獲得されているアポトーシス耐性機構に阻まれ所期の効果を奏し得ないことが多い。そこで、細胞周期のチェックポイントコントロールに打ち克ちアポトーシスに導くような物質は制がん剤と成る可能性を与えるとともに、該物質によってアポトーシスが導かれることが確認された系は、制がん剤となり得る他の物質を選別する手段としても利用することができると考えられる。
【0013】
如上の点に関し、カフェインは、多くの薬理学的効果を呈することで知られているが、特に、がんの化学療法に関する研究においては、細胞周期のチェックポイントコントロールに打ち克ち未成熟染色体凝縮を起こしてアポトーシスを導くことから、制がん作用を調べる標準的な物質として用いられている。すなわち、高濃度のカフェインは、細胞周期の共役機構を乱し、S期に同調(停止)させた培養細胞の分裂を開始させアポトーシスに導くことが知られている(例えば、C.E. Canman, Curr. Biol. 11, R121−124 (2001))。本発明者は、このたび、RCC1が不活性化されることによっても同様の現象が起こり得ることに注目し、被験物質の存在下におけるRCC1活性の阻害の有無が、当該被験物質の制がん剤としての当否の判断の1つの基礎になり得るものと考え、本発明を導き出したものである。
【0014】
かくして、本発明に従えば、インビトロで、被験物質の存在下に、GDPが結合されたRanにRCC1を反応させ、そのRCC1のGDP−GTP交換反応に対する阻害の有無を測定するという極めて簡単な方法により、制がん剤の候補またはその前駆体を選択することができる。測定に用いられるRanやRCC1は、既知の遺伝子組換え技術により、大腸菌で発現させ精製することによりヒト由来の実質的に純粋なタンパク質として入手することができる(例えば、M. Dasso, T. Nishimoto他、EMBO . 13, 5732 (1994)参照)。
【0015】
Ranに対するRCC1のGDP−GTP交換反応は、RCC1を含有する適当な緩衝溶液に、被験物質、および標識(ラベル)を付けたGDPが結合されたRanを添加して、所定時間反応させ、標識信号を追跡することにより簡単に測定することができる。GDPの標識化には、当該分野で周知の各種の方法が適用可能であるが、一般的には、トリチウムで標識された[H]GDPまたは蛍光性のGDPアナログ(2’,3’−bis−O−(N−メチルアンスラニロイル)グアノシンジフォスフェート:mantGDP)(Molecular Probes社から入手できる)を用い、これを精製されたRanと適当な緩衝溶液中で混合することにより、GDPが結合されたRan(Ran−[H]GDPまたはRan−mantGDP)が得られる。
【0016】
本発明に従えば、以上のようなインビトロ実験系において、反応終了後、残留しているRan−GDPを測定する、例えば、Ran−[H]GDPを用いた場合にはその放射活性を測定し、また、Ran−mantGDPを用いた場合にはその蛍光強度を測定することにより、RCC1によるGDP−GTP交換反応が阻害されているか否かを知ることができる。すなわち、RCC1がGDP−GTP交換反応に対して酵素活性を発揮していれば、Ran−GDPは少なくなり放射活性や蛍光強度が減少するが、反対にRCC1の活性が阻害されていればGDPの標識に由来する信号は変化しないことになる。
【0017】
このようにして、本発明の制がん剤のスクリーニング方法においては、RCC1によるGDP−GTP交換反応が阻害された場合に、用いた被験物質を制がん剤の候補またはその前駆体として選択する。すなわち、制がん剤候補として、更なる薬理学的試験や臨床試験に供して薬剤としての適否を調べる。あるいは、選択した被験物質を前駆体としその化学構造を修飾した誘導体を制がん剤候補として改良を図る。例えば、本発明に従うスクリーニング法において更に少量の投与量でもRCC1活性を阻害するように化学構造を改変したものを更なる薬理学的試験や臨床試験に供して制がん剤としての適否を調べる。
【0018】
本発明は、如上の簡便なインビトロ試験により、制がん剤となり得る物質を選択することのできる、制がん剤の一次スクリーニング法を提供するものである。さらに、本発明の好ましい態様として、選択された被験物質は、細胞周期の特定段階に同調された(停止された)培養細胞に未成熟染色体凝縮を起こすか否かを測定する工程に供される。この追加の工程は、上述したようなインビトロ試験による一次スクリーニング法に対して確認のための二次スクリーニング法としての意義を有し、このインビボ(in vivo)試験において培養細胞に未成熟染色体凝縮を起こす被験物質は制がん剤となり得る可能性がより高いことを示すことになる。
【0019】
本発明に従うこの追加工程には、細胞周期の特定段階に同調(停止)された培養細胞として従来より提示されているような各種のものが原理的には使用できるが、一般的には、ハムスターやマウスなどのげっ歯類由来の培養細胞(例えば、BHK−21細胞やCHO細胞など)であって、細胞周期のS期に同調されたものが好ましく、特に、未成熟染色体凝縮の観察の容易なBHK−21細胞が好ましい。
【0020】
【実施例】
本発明の特徴を更に明らかにするため、以下に実施例を記すが、本発明はこれらの実施例によって制限されるものではない。
実施例1は、本発明に従い制がん剤候補またはその前駆体を選択するためにインビトロでRCC1の阻害活性を測定する具体的方法を例示するとともに、アポトーシスを誘導する制がん作用の標準的物質として従来より知られているカフェインおよびその類縁化合物がRCC1酵素活性を阻害することを示すものである。
また、実施例2は、実施例1のようなインビトロ試験で選択された物質について実施するインビボの追加工程の具体的方法を例示するものであり、インビトロ試験でRCC1阻害活性を有することが明らかにされた物質は培養細胞に未成熟染色体凝縮を起こし得ることを示している。
【0021】
実施例1:RCC1活性の測定
大腸菌でRCC1、Ranを発現させて高度に精製した。このヒト由来のRCC1およびRanを用いて次の実験を行なった:所定濃度のRCC1を反応液(20mMのTris(pH7.4)、25mMのNaCl、5mMのMgCl、1mMのCHAPS、15μMのDTT、5mMのGTPを含有)に加えた。この反応液に最終濃度5mMのカフェイン(caffeine)、アデニン(adenine)および2’−デオキシアデノシン(2−dA)を加えた混合液、またはなんの薬剤も加えないサンプル(buffer)を作成し、これに[H]GDPを結合したRan−[H]GDP(最終濃度、50nM)を加え37℃で20分間、反応させた。反応は氷冷した反応終止液(20mMのTris(pH7.5)、2.5mMのMgClおよび100mMのNaClを含有)を加えることで停止させた。反応終了後、反応液をニトロセルロースフィルター(0.45μm、NC45、Schleicher & Schuell)でろ過してRan−[H]GDPを回収し残留している放射活性を液体シンチレーションカウンターで測定した。
測定結果を図1に示す。横軸には用いたRCC1の濃度(fmol)を示し、縦軸には使用したRCC1濃度で反応させた後に残留しているRan−[H]GDPの放射活性を示している。この結果より、カフェインおよび2’−デオキシアデノシンはRCC1の酵素活性であるRan−GDP/GTP交換機能を阻止することが理解される。
【0022】
実施例2:未成熟染色体凝縮の測定
ハムスター由来BHK−21細胞をイソロイシン欠損培地で28時間培養してG1期に同調した後に、DNA合成阻害剤であるハイロドキシウレア(HU)を2.5mM(最終濃度)添加した培地で16時間培養してS期にBHK−21細胞を同調した。これらS期に同調したBHK−21細胞にカフェインを加え、さらに所定量のRCC1を注入して5時間培養した。
その後、未成熟染色体凝縮(PCC)が起こったか否かを調べた。すなわち、細胞を−20℃のメタノールで固定しhoechst 33342でDNA染色を行ない、DNAが凝縮して円くなっている細胞の割合(%)を測定した。測定結果を図2に示す。図2に示されるように、カフェインはS期に同調されたBHK−21細胞に未成熟染色体凝縮(PCC)を起こすが、このカフェインで誘導されたPCCはRCC1によって防止され、PCCの一因がRCC1活性が阻害されることにあることが理解される。
【図面の簡単な説明】
【図1】本発明に従い抗がん剤をスクリーニングするために行なうRCC1の活性測定の結果の1例を示す。
【図2】本発明に従い抗がん剤をスクリーニングするために行なう未成熟染色体凝縮測定結果の1例を示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for screening for an anticancer agent that can easily select a substance that can serve as an anticancer agent (anticancer agent).
[0002]
[Prior art]
Chemotherapy occupies an important position in cancer treatment, and currently more than 50 types of anticancer drugs are being used in the clinic, but they are still insufficient, and the development of new anticancer drugs continues day and night. Have been.
[0003]
Before the full-scale pharmacological and clinical trials, it is important to evaluate whether a given substance can be used as an anti-cancer agent in vitro. Therefore, a screening method for easy discrimination is indispensable. However, there are few concrete methods devised for this purpose.
[0004]
Recently, researches on signal transduction that regulates cell function and cell cycle, particularly the mechanism of signal transduction leading to apoptosis, which is called programmed cell death, and elucidation of the relationship with cancer have been actively conducted. Such an exploratory study is expected to lead to a new type of anticancer drug based on a new mechanism of action, unlike the conventional development method in which an existing drug is simply modified from the parent drug. However, there are few examples of applying the research results to screening methods for anticancer drugs.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel anticancer drug screening method capable of easily selecting a substance such as a compound that can be an anticancer drug.
[0006]
[Means for Solving the Problems]
As a result of repeated studies, the present invention has been developed to improve the GEF (guanine nucleotide exchange factor: GDP-GTP exchange reaction) of Ran known as a low-molecular-weight G protein involved in a signal transduction system for transporting substances between the nucleus and the cytoplasm. The above object was achieved by in vitro measurement of the enzymatic activity of RCC1, which is a factor, and the present invention was derived.
[0007]
Thus, the present invention provides a method of reacting RCC1 with a GDP-bound Ran in the presence of a test substance and, when the GDP-GTP exchange reaction by the RCC1 is inhibited, converts the test substance into a candidate for an anticancer agent. Another object of the present invention is to provide a method for screening for an anticancer agent, which is selected as a precursor thereof.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
RCC1 used in the method of screening for an anticancer agent according to the present invention is Ran GEF (guanine nucleotide exchange factor: GDP-GTP exchange reaction promoting factor). Here, Ran is a low-molecular-weight G protein (GTP binding protein: GTPase) similar to Ras, and as is well known, a protein between the cytoplasm and the nucleus depending on its on-off cycle. It controls the transport of RNA.
[0009]
Such action of Ran is supported by the fact that its GEF, RCCl, is localized in the nucleus, and that Ran's GAP (GTPase activating protein) is localized in the cytoplasm. That is, since RCC1 binds to chromatin and exists only in the nucleus, Ran becomes GTP-type only in the nucleus, and this GTP-type Ran binds to Crml / exportin1, which is a nuclear export receptor. Crm1 recognizes and binds to a molecule (cargo) having a nuclear export signal sequence in the nucleoplasm, and a tripartite complex with Ran is formed. Then, Crm1 can bind to nucleoporin, which is a protein of the nuclear pore, and passes through the nuclear pore as a complex. On the other hand, since Ran's GAP is localized on the cytoplasm or the cytoplasmic side of the nuclear pore, Ran immediately becomes GDP-type, cargo is dissociated, and transport of cargo out of the nucleus is completed. GDP-type ran formed in the cytoplasm is returned to the nucleus again through the nuclear pore by binding to a GDI-like regulator called NTF2 / p10. On the other hand, Crm1 from which cargo has dissociated is returned to the nucleus again through the nuclear pore. In this way, the nuclear export of the substance takes place. Ran also plays an important role in reverse transport of substances from the cytoplasm to the nucleus.
[0010]
RCCl is the only GEF known for Ran and, as mentioned above, plays an important role in transporting substances through nuclear pores. For RCC1, cultured cells deficient in that gene and synchronized in the S phase of the cell cycle cause immature chromosome condensation, a precursor of apoptosis (T. Nishimoto et al., Cell 15, 475-483 (1978)). It is thought to be involved in controlling the progress of the cell cycle, but the details thereof have not yet been sufficiently clarified.
[0011]
On the other hand, from the perspective of cancer chemotherapy, one of the recent major themes being studied when developing anticancer drugs is a substance that can induce cancer cells to induce apoptosis and eliminate cancer cells. Is to find That is, if apoptosis (cell death program) latent in cancer cells can be activated, cancer cells can be efficiently killed and eliminated, and an effective therapeutic effect is expected.
[0012]
However, in practice, it is often impossible to achieve the desired effect due to the apoptosis resistance mechanism acquired by cancer cells based on the cell cycle checkpoint control mechanism. Therefore, a substance that overcomes the cell cycle checkpoint control and leads to apoptosis gives the possibility of becoming an anticancer agent, and a system that has been confirmed to induce apoptosis by this substance has been proposed as an anticancer agent. It can be considered that it can also be used as a means for selecting other substances that can become the following.
[0013]
In this regard, caffeine is known to have many pharmacological effects, but especially in cancer chemotherapy research, overcoming cell cycle checkpoint controls to overcome immature chromosomes. Since it induces apoptosis by condensing, it is used as a standard substance for examining anticancer effects. That is, it is known that a high concentration of caffeine disrupts the coupling mechanism of the cell cycle, initiates the division of cultured cells synchronized (stopped) in the S phase, and leads to apoptosis (for example, C.E. Canman, Curr. Biol . 11 , R121-124 (2001)). The present inventor has noted that a similar phenomenon may also occur when RCC1 is inactivated, and the presence or absence of inhibition of RCC1 activity in the presence of a test substance indicates that the test substance is an anticancer drug. The present invention has been deduced because it is considered to be one basis for determining whether or not the agent is acceptable.
[0014]
Thus, according to the present invention, a very simple method of reacting RCC1 with GDP-bound Ran in vitro in the presence of a test substance and measuring the presence or absence of inhibition of the RCC1 on the GDP-GTP exchange reaction. Thus, a candidate for a cancer drug or a precursor thereof can be selected. Ran and RCC1 used for the measurement can be obtained as a substantially pure protein of human origin by expressing and purifying it in Escherichia coli by a known gene recombination technique (for example, M. Dasso, T. Nishimoto). EMBO J. 13 , 5732 (1994)).
[0015]
The GDP-GTP exchange reaction of RCC1 with respect to Ran is performed by adding a test substance and Ran to which a labeled (labeled) GDP is bound to an appropriate buffer solution containing RCC1, reacting for a predetermined time, and reacting a labeled signal. Tracking can be easily measured. Various methods known in the art can be applied for labeling GDP, but generally, [ 3 H] GDP labeled with tritium or a fluorescent GDP analog (2 ′, 3′-) is used. By using bis-O- (N-methylanthraniloyl) guanosine diphosphate (mant GDP) (available from Molecular Probes) and mixing it with purified Ran in a suitable buffer solution, GDP is reduced. combined Ran (Ran- [3 H] GDP or Ran-mantGDP) is obtained.
[0016]
According to the present invention, in the above in vitro experimental system, after the reaction is completed, the remaining Ran-GDP is measured. For example, when Ran- [ 3 H] GDP is used, its radioactivity is measured. In addition, when Ran-mant GDP is used, it is possible to know whether or not the GDP-GTP exchange reaction by RCC1 is inhibited by measuring the fluorescence intensity. That is, if RCC1 exerts an enzymatic activity on the GDP-GTP exchange reaction, Ran-GDP decreases and radioactivity and fluorescence intensity decrease. Conversely, if RCC1 activity is inhibited, GDP of RCC1 decreases. The signal from the label will not change.
[0017]
Thus, in the method for screening for an anticancer agent of the present invention, when the GDP-GTP exchange reaction by RCC1 is inhibited, the test substance used is selected as a candidate for an anticancer agent or a precursor thereof. . That is, as a candidate for an anticancer drug, the drug is subjected to further pharmacological tests and clinical tests to determine the suitability of the drug. Alternatively, a derivative in which the selected test substance is used as a precursor and the chemical structure of which is modified is improved as an anticancer drug candidate. For example, in a screening method according to the present invention, a compound whose chemical structure has been modified so as to inhibit RCC1 activity even at a smaller dose is subjected to further pharmacological tests and clinical tests to determine its suitability as an anticancer agent.
[0018]
The present invention provides a primary screening method for an anticancer agent, which can select a substance that can serve as an anticancer agent by the above simple in vitro test. Further, as a preferred embodiment of the present invention, the selected test substance is subjected to a step of determining whether or not a cultured cell synchronized (arrested) at a specific stage of the cell cycle causes immature chromosome condensation. . This additional step has a significance as a secondary screening method for confirmation over the primary screening method by the in vitro test as described above, and in this in vivo test, immature chromosome condensation occurs in cultured cells. The test substance that provokes is more likely to be an anticancer drug.
[0019]
In this additional step according to the invention, in principle any of the various types of culture cells that have been presented as culture cells synchronized (arrested) at a particular stage of the cell cycle can be used, but in general hamsters And cultured cells derived from rodents such as mice and mice (eg, BHK-21 cells and CHO cells), which are synchronized with the S phase of the cell cycle, and are particularly easy to observe for immature chromosome condensation. BHK-21 cells are preferred.
[0020]
【Example】
Examples are described below to further clarify the features of the present invention, but the present invention is not limited by these examples.
Example 1 exemplifies a specific method for measuring the inhibitory activity of RCC1 in vitro to select an anticancer drug candidate or a precursor thereof according to the present invention, and furthermore, a standard method for inducing apoptosis by a standard anticancer effect. It shows that caffeine and its related compounds conventionally known as substances inhibit RCC1 enzyme activity.
Example 2 also exemplifies a specific method of an additional step in vivo to be performed on a substance selected in an in vitro test as in Example 1, and it is apparent that the compound has RCC1 inhibitory activity in an in vitro test. This indicates that the substances identified can cause premature chromosome condensation in cultured cells.
[0021]
Example 1: Measurement of RCCl activity RCCl and Ran were expressed in Escherichia coli and highly purified. The following experiment was performed using this human-derived RCC1 and Ran: a predetermined concentration of RCC1 was added to a reaction solution (20 mM Tris (pH 7.4), 25 mM NaCl, 5 mM MgCl 2 , 1 mM CHAPS, 15 μM DTT). , Containing 5 mM GTP). A reaction mixture containing caffeine (caffeine), adenine (adenine) and 2'-deoxyadenosine (2-dA) at a final concentration of 5 mM or a sample (buffer) without any drug was prepared. [3 H] Ran- bound to GDP [3 H] GDP (final concentration, 50 nM) was added 37 ° C. for 20 minutes to react. The reaction was stopped by adding ice-cold reaction termination solution (containing 20 mM Tris (pH 7.5), 2.5 mM MgCl 2 and 100 mM NaCl). After completion of the reaction, the reaction solution was filtered through a nitrocellulose filter (0.45 μm, NC45, Schleicher & Schuell) to collect Ran- [ 3 H] GDP, and the remaining radioactivity was measured with a liquid scintillation counter.
FIG. 1 shows the measurement results. The abscissa indicates the concentration (fmol) of RCC1 used, and the ordinate indicates the radioactivity of Ran- [ 3 H] GDP remaining after the reaction at the used RCC1 concentration. From these results, it is understood that caffeine and 2'-deoxyadenosine block the Ran-GDP / GTP exchange function, which is the enzymatic activity of RCCl.
[0022]
Example 2: Measurement of immature chromosome condensation Hamster-derived BHK-21 cells were cultured in an isoleucine-deficient medium for 28 hours, synchronized with the G1 phase, and then a DNA synthesis inhibitor, hydroxydoxyurea (HU). Was cultured in a medium supplemented with 2.5 mM (final concentration) for 16 hours to synchronize BHK-21 cells in the S phase. Caffeine was added to the BHK-21 cells synchronized in the S phase, and a predetermined amount of RCC1 was further injected and cultured for 5 hours.
Thereafter, it was determined whether immature chromosome condensation (PCC) had occurred. That is, the cells were fixed with methanol at −20 ° C., stained with DNA using hoechst 33342, and the percentage (%) of cells in which DNA was condensed and rounded was measured. FIG. 2 shows the measurement results. As shown in FIG. 2, caffeine causes immature chromosome condensation (PCC) in BHK-21 cells synchronized in S phase, but this caffeine-induced PCC is prevented by RCCl and one of the PCCs It is understood that the cause is that RCC1 activity is inhibited.
[Brief description of the drawings]
FIG. 1 shows an example of the result of RCC1 activity measurement performed for screening an anticancer agent according to the present invention.
FIG. 2 shows one example of a result of immature chromosome condensation measurement performed for screening an anticancer agent according to the present invention.

Claims (2)

被験物質の存在下に、GDPが結合されたRanにRCC1を反応させ、そのRCC1によるGDP−GTP交換反応が阻害された場合に、当該被験物質を制がん剤の候補またはその前駆体として選択することを特徴とする制がん剤のスクリーニング方法。In the presence of a test substance, RCC1 is caused to react with GDP-bound Ran, and when the GDP-GTP exchange reaction by the RCC1 is inhibited, the test substance is selected as a candidate for a cancer drug or a precursor thereof. A method of screening for an anticancer agent. 選択された被験物質が、細胞周期の特定段階に同調された培養細胞に未成熟染色体凝縮を起こすか否かを測定する工程を追加することを特徴とする請求項1の制がん剤のスクリーニング方法。2. A screening method for an anticancer drug according to claim 1, further comprising a step of measuring whether or not the selected test substance causes immature chromosome condensation in cultured cells synchronized with a specific stage of the cell cycle. Method.
JP2002291960A 2002-10-04 2002-10-04 Method for screening anticancer agent Pending JP2004121132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291960A JP2004121132A (en) 2002-10-04 2002-10-04 Method for screening anticancer agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291960A JP2004121132A (en) 2002-10-04 2002-10-04 Method for screening anticancer agent

Publications (1)

Publication Number Publication Date
JP2004121132A true JP2004121132A (en) 2004-04-22

Family

ID=32283367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291960A Pending JP2004121132A (en) 2002-10-04 2002-10-04 Method for screening anticancer agent

Country Status (1)

Country Link
JP (1) JP2004121132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153636A (en) * 2010-12-14 2011-08-17 中国科学院遗传与发育生物学研究所 Low-temperature resistant plant protein TCF1 (transcription factor1) and encoding genes and application thereof
GB2549798A (en) * 2016-04-29 2017-11-01 Univ Bradford Peptides and nanoparticle formulations thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153636A (en) * 2010-12-14 2011-08-17 中国科学院遗传与发育生物学研究所 Low-temperature resistant plant protein TCF1 (transcription factor1) and encoding genes and application thereof
CN102153636B (en) * 2010-12-14 2013-08-14 中国科学院遗传与发育生物学研究所 Low-temperature resistant plant protein TCF1 (transcription factor1) and encoding genes and application thereof
GB2549798A (en) * 2016-04-29 2017-11-01 Univ Bradford Peptides and nanoparticle formulations thereof
WO2017187206A1 (en) * 2016-04-29 2017-11-02 University Of Bradford Peptides and nanoparticle formulations thereof
CN109415424A (en) * 2016-04-29 2019-03-01 布拉德福德大学 Peptide and its nanoparticle formulations
CN109415424B (en) * 2016-04-29 2022-08-30 布拉德福德大学 Peptides and nanoparticle formulations thereof
US11999770B2 (en) 2016-04-29 2024-06-04 University Of Bradford Peptides and nanoparticle formulations thereof

Similar Documents

Publication Publication Date Title
JP7051920B2 (en) Use of the FGFR Mutant Panel in Identifying Cancer Patients Responsive to Treatment with FGFR Inhibitors
Lim et al. Nuclear-localized focal adhesion kinase regulates inflammatory VCAM-1 expression
Real et al. Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2
Trost et al. Premature senescence is a primary fail-safe mechanism of ERBB2-driven tumorigenesis in breast carcinoma cells
AU2022200059B2 (en) Methods of stratifying patients for treatment with retinoic acid receptor-alpha agonists
JP2022527476A (en) Treatment of cancer with identified adenosine fingerprints
JP2019508496A (en) TAF1 inhibitors for the treatment of cancer
US20210239710A1 (en) Flow cytometry for monitoring histone h3 methylation status
KR20220034129A (en) Estrogen receptor antagonist therapy
JP2015534584A (en) Cancer treatment by targeting quiescent cancer cells
Yin et al. METTL3-mediated m6A modification of LINC00839 maintains glioma stem cells and radiation resistance by activating Wnt/β-catenin signaling
Kawano et al. MUC1 oncoprotein regulates Bcr-Abl stability and pathogenesis in chronic myelogenous leukemia cells
US11274349B2 (en) Methods for diagnosing cancer
WO2021104442A1 (en) Method and compositions for predicting anti-cancer efficacy of compounds targeting apoptosis pathway
US20210371935A1 (en) Identification of pde3 modulator responsive cancers
JP2004121132A (en) Method for screening anticancer agent
Velez et al. Discovery of the First-in-class G9a/GLP PROTAC Degrader
US20230124700A1 (en) Oxazole and thioazole-type cullin ring ubiquitin ligase compounds and uses thereof
WO2021074418A1 (en) Carbazole-type cullin ring ubiquitin ligase compounds and uses thereof
Chouhan et al. SHP2 as a primordial epigenetic enzyme expunges histone H3 pTyr-54 to amend androgen receptor homeostasis
Figueiredo et al. Molecular mechanisms of head and neck cancer
Rai et al. Importance of targeted therapies in acute myeloid leukemia
JPWO2006043691A1 (en) Drug discovery target protein and target gene, and screening method
Spriano et al. Assessment of lisavanbulin (BAL101553) as an anti-lymphoma agent
WO2023203172A1 (en) Heterocyclic cullin ring ubiquitin ligase compounds and uses thereof