JP2004119812A - Compact terminal device - Google Patents

Compact terminal device Download PDF

Info

Publication number
JP2004119812A
JP2004119812A JP2002283162A JP2002283162A JP2004119812A JP 2004119812 A JP2004119812 A JP 2004119812A JP 2002283162 A JP2002283162 A JP 2002283162A JP 2002283162 A JP2002283162 A JP 2002283162A JP 2004119812 A JP2004119812 A JP 2004119812A
Authority
JP
Japan
Prior art keywords
heat
circuit board
terminal device
housing
small terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002283162A
Other languages
Japanese (ja)
Inventor
Kazumi Kawano
川野 和美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002283162A priority Critical patent/JP2004119812A/en
Publication of JP2004119812A publication Critical patent/JP2004119812A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To effectively radiate heat in heating components in a compact terminal device having a heat sink. <P>SOLUTION: The compact terminal device comprises: a circuit board 13 where an electronic integrated circuit 12 is packaged; the heat sink 14 in contact with the electronic integrated circuit 12; and a case 11 that incorporates the circuit board 13 and the heat sink 14 and has ventilating holes 16a, 16b, and 16c. In this case, the circuit board 13 and the heat sink 14 are installed in parallel in a gravity direction when the case 11 is installed in a normal use state. The heat sink 14 has a first longitudinal tubular section 15 for surrounding nearly the upper space of a portion in contact with the electronic integrated circuit 12 at one side end. The other side end of the heat sink 14 is set to be a remote position in a horizontal direction to the first tubular section 15. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、消費電力が大きい電子集積回路等の発熱部品が存在している小型端末装置であり、さらに詳しくは、小型端末装置を設置した際に発熱部品を実装している回路基板を重力方向と平行に取り付ける構造、すなわち垂直に立てて配置されるような構成の場合の、自然対流による発熱部品の放熱手段をもつ小型端末装置に関する。
【0002】
【従来の技術】
従来の小型端末装置における自然対流に基づく発熱部品の放熱手段の一例として、たとえば下記のようなものがある。
【0003】
上端部および下面に開口を有する略筒状のヒートシンクの側壁部内面に発熱素子を取り付け、前記ヒートシンクの下面開口を基板に開口された通気用孔に一致させるようにして、基板の上面にヒートシンクを取り付けて成る構成にしている(たとえば、特許文献1 第1図、第2図参照)。
【0004】
ただし、本発明のように回路基板を重力方向と平行に取り付ける構造、すなわち、装置を設置した際に回路基板が垂直に立てられて配置されるような構成の場合とは異なるが、自然対流の空気の流れとしては本発明と同様である。
【0005】
【特許文献1】
実開平01−137595号公報(第1図、第2図)
【0006】
【発明が解決しようとする課題】
しかしながら、上記したような構成の発熱部品の放熱手段では、以下のような問題点を有している。
【0007】
電子集積回路等の発熱部品の消費電力は、端末装置の高性能・高機能化のため一層増大傾向にあり、その発熱量はますます大きくなっている。これに対応するためには、ヒートシンクの包絡体積を大きくして放熱面積を稼ぐ必要がある。
【0008】
しかしその一方で、小型化が推進されている端末装置においては、回路基板の高密度実装化も進んでいること、筐体自体の大型化には制限があること等から、ヒートシンクのための十分なスペースの確保が困難となっている。
【0009】
さらに、ヒートシンクは発熱部品の温度を下げるには有効な手段であるが、ヒートシンクからはたくさんの熱量が放熱されるためヒートシンク周囲の空気が局所的に熱くなり、その結果、自然対流の下流側に位置する筐体表面が熱くなり、使用者に危険を及ぼしたり、あるいは、もし下流側に耐熱温度の低い部品があれば破損を引き起こしてしまう、という波及的な問題が発生する。
【0010】
また、このような場合、筐体に設ける通風孔を自然対流が促進されるような位置に配置する、あるいは通風孔面積を十分確保する、ということも有効手段の一つであるが、見栄えなどデザイン性や異物侵入防止など安全性の問題から、設計者の希望するような通風孔を設けられないことが多い。加えて回路基板上の実装部品の配置や筐体構造によっては、設計者が排気孔と想定して配置した通風孔が逆に吸入孔として作用したりして、設計意図通りの十分な自然対流が促進されない、という問題もある。
【0011】
また、別の手段として、ヒートシンクのようにその周囲だけに局所放熱するのではなく、筐体内全体の温度上昇が均一になるように放熱板を用いて熱を拡散放熱させることがある。
【0012】
しかし一般的に放熱板は、板厚が同じであればその表面積が大きいほど放熱には有利であるが、表面積を増やすことによる端末装置の小型化への影響や、回路基板上の実装部品との干渉、さらには端末装置の重量が増す、という問題がある。
【0013】
そこで本発明は上記問題に留意し、許容される表面積が確保された放熱板において、その放熱効率が向上するよう構成し、あるいはこの放熱板を活用して回路基板からの放熱量を増加させたり筐体内の自然対流を促進させたりするよう構成することで、発熱部品の放熱が効果的に行える小型端末装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
この目的を達成するために本発明は、小型電子集積回路などの発熱部品が実装された回路基板と、前記発熱部品に当接された熱伝導性の良い放熱板と、外気との換気を可能とする通風孔が設けられている筐体を備えており、前記筐体を正常使用状態に設置したとき前記回路基板と前記放熱板が前記筐体内において重力方向に平行に設置される構成としており、さらに前記放熱板の一側端に前記発熱部品との当接部分の概ね上部分の空間を囲むような縦方向の第一の筒状部を形成し、放熱板の他側端が前記第一の筒状部に対し横方向に離れた位置となるようにした小型端末装置とする。
【0015】
本発明による上記構成の小型端末装置は、まず、放熱板の熱拡散効果により熱が筐体内部の空気に分散して放熱されるため、局所的に高温になる個所がないので局部的に筐体の可触部が高温になったり、自然対流の下流側において熱に弱い部品等を破損させたりすることがない。また、前記放熱板の第一の筒状部における煙突効果により、第一の筒状部内の空気の通風力が大きくなって自然対流の促進が図られ、その結果、前記放熱板からの空気への熱伝達量も大きくなり効果的な放熱が可能となる。
【0016】
さらに、前記第一の筒状部を形成したことによって、前記放熱板の総表面積を大きくすることができ、加えて筐体の大きさや形状、さらには隣接する実装部品の配置に合わせて前記第一の筒状部の形状を対応することができるため、設計自由度も高く、したがって筐体の小型化の障害になることはない。
【0017】
以上のことから本発明によれば、発熱部品の有効な放熱手段を有し、かつ、小型化の要求も満足する非常に有益な小型端末装置を提供することができる。
【0018】
【発明の実施の形態】
本発明の請求項1に記載の発明は、電子集積回路で代表されるような発熱部品が実装された回路基板と、前記発熱部品に当接された熱伝導性の良い放熱板と、外気との換気を可能とする通風孔が設けられている筐体を備え、前記筐体を正常使用状態に設置したとき前記回路基板と前記放熱板は前記筐体内において重力方向に平行に設置される構成であって、前記放熱板は一側端に前記発熱部品との当接部分の概ね上部分の空間を囲むような縦方向の第一の筒状部を有し、他側端が前記第一の筒状部に対し横方向に離れた位置となるようにした小型端末装置であり、まず、放熱板の熱拡散効果により熱が筐体内部の空気に分散して放熱されるため局所的に高温になる個所がないので、局部的に筐体の可触部が高温になったり、自然対流の下流側において熱に弱い部品等を破損させたりすることがない。
【0019】
また、前記放熱板の第一の筒状部における煙突効果により、第一の筒状部内の空気の通風力が大きくなり自然対流の促進が図られ、その結果、前記放熱板からの空気への熱伝達量も大きくなり効果的な放熱が可能となる。
【0020】
さらに前記第一の筒状部を形成することによって、前記放熱板の総表面積を大きくすることができ、加えて筐体の大きさや形状さらには隣接する実装部品の配置に合わせて前記第一の筒状部の形状を対応することができるため設計自由度も高く、したがって筐体の小型化の障害になることはない、という作用を有する。
【0021】
本発明の請求項2に記載の発明は、請求項1に記載の小型端末装置の構成において、放熱板は、第一の筒状部に対し横方向に離れている他側端を回路基板側へ折り曲げてなる折り曲げ部を有し、前記回路基板と前記放熱板とにより縦方向の第二の筒状部が形成される構成としたものであり、第二の筒状部においても煙突効果が得られることになり、自然対流が一段と促進され発熱部品の放熱が一層積極的となるという作用を有する。
【0022】
本発明の請求項3に記載の発明は、請求項2に記載の小型端末装置の構成において、回路基板は熱的に導通のあるサーマルビアを有し、放熱板の折り曲げ部の端部が、前記サーマルビアと弾力性のある熱良導体を介して接触するように構成したものであり、前記回路基板から前記放熱板への熱移動が積極的に行われることになり、前記回路基板の温度上昇が抑制される。その結果、前記発熱部品からの前記回路基板への熱移動も積極的に行われることになり、したがって前記発熱部品の放熱がさらに促進される。加えて前記放熱板の温度が上昇することにより前記第一および第二の筒状部内の空気温度もより上昇するため、煙突効果によりさらに一層自然対流が促進され発熱部品の放熱に有利となる、という作用を有する。
【0023】
本発明の請求項4に記載の発明は、本発明の請求項1、2または3のいずれかに記載の小型端末装置の構成において、筐体は側面に排気用通風孔を有しており、放熱板における第一あるいは第二の筒状部の片方の端部を前記排気用通風孔と近接して対峙するように位置構成としたものであり、設計者が設計時点で排気を想定して設けた排気用通風孔が筐体側面に設けられた場合でも、第一あるいは第二の筒状部内の上昇空気を前記排気用通風孔に円滑に誘導できるため、設計者の意図どおりに通風孔を排気孔として作用させることが可能となり、吸入から排気までほぼ設計者が想定した通りの換気が期待できる。
【0024】
また、その結果、筐体内において局所的に温度が高くなるような空気の淀みも解消される。さらにこのように前記第一あるいは第二の筒状部において空気の流路設定をすることにより、前記第一あるいは第二の筒状部の長さを一段と長くすることが可能であれば、放熱板の総表面積が格段に増え放熱に極めて有利となるということに加え、煙突効果による通風力は一層大きくなり、自然対流がさらに促進されることになるという作用を有する。
【0025】
本発明の請求項5に記載の発明は、請求項1、2または3のいずれかに記載の小型端末装置の構成において、筐体は側面に排気用通風孔を有し、放熱板は切り曲げ部を有しており、前記放熱板の切り曲げ部を前記筐体の排気用通風孔と近接して対峙するように位置させたものであり、設計者が設計時点で排気を想定して設けた排気用通風孔が筐体側面に設けられた場合でも、前記放熱板に流入してきた熱を伝導により前記排気用通風孔に円滑に誘導できるため、設計者の意図どおりに通風孔を排気孔として作用させることが可能となり、吸入から排気までほぼ設計者が想定した通りの換気が期待できるという作用を有する。
【0026】
本発明の請求項6に記載の発明は、本発明の請求項1、2または3のいずれかに記載の小型端末装置の構成において、筐体は側面に排気用通風孔を有し、放熱板は絞り部を有しており、前記放熱板の絞り部を前記筐体の排気用通風孔と近接して対峙するように位置させたものであり、設計者が設計時点で排気を想定して設けた排気用通風孔が筐体側面に設けられた場合でも、前記請求項5に記載と同様に吸入から排気までほぼ設計者が想定した通りの換気が期待できる。また、前記絞り部においては空気流路の断面積が徐変して小さくなっているため、前記絞り部を通過する際の空気の風速が大きくなり、前記放熱板から空気への熱伝達量も増え一層放熱効果も向上するという作用を有する。
【0027】
本発明の請求項7に記載の発明は、電子集積回路で代表されるような複数の発熱部品が実装された回路基板と、前記各発熱部品に当接された熱伝導性の良い放熱板と、外気との換気を可能とする通風孔が設けられている筐体を備え、前記筐体を正常使用状態に設置したとき前記回路基板と前記放熱板は前記筐体内において重力方向に平行に設置される構成であって、前記放熱板には前記複数の発熱部品との当接部分の各々の概ね上部分の空間を囲む縦方向の複数の筒状部を形成してあり、かつ、前記複数の発熱部品の間を間仕切るように前記回路基板側への切り曲げ部を設けた小型端末装置であり、前記した請求項1に記載の作用に加え、一つの発熱部品から熱伝達された熱い空気が他方へ拡散することがないため、自己発熱により許容温度上昇値までのマージンがほとんどない発熱部品へ影響を及ぼすこともない。このように、簡単な構成により複数の発熱部品の放熱が安価にかつ効果的に行えるという作用を有する。
【0028】
本発明の請求項8に記載の発明は、請求項7に記載の小型端末装置の構成において、回路基板には貫通孔を設け、放熱板に設けられた切り曲げ部が前記貫通孔を介して回路基板を貫通するように構成したものであり、前記請求項7に記載の作用に加え、一つの発熱部品から他方の発熱部品への前記回路基板を介した熱伝導による熱流入も抑制できるという作用を有する。
【0029】
本発明の請求項9に記載の発明は、請求項7に記載の小型端末装置の構成において、回路基板には熱的に導通のあるサーマルビアを設け、放熱板の切り曲げ部の端部が前記サーマルビアと弾力性のある熱良導体を介して接触するように構成したものであり、前記回路基板から前記放熱板への熱移動が積極的に行われることになり前記回路基板の温度上昇が抑制される。その結果、前記発熱部品からの前記回路基板への熱移動も積極的に行われることになり、したがって前記発熱部品の放熱がさらに促進される。加えて前記放熱板の温度が上昇することにより前記第一および第二の筒状部内の空気温度もより上昇するため、煙突効果によりさらに一層自然対流が促進され発熱部品の放熱に有利となる、という作用を有する。
【0030】
本発明の請求項10に記載の発明は、電子集積回路で代表されるような複数の発熱部品が実装された回路基板と、前記各発熱部品に当接された熱伝導性の良い放熱板と、外気との換気を可能とする通風孔が設けられている筐体を備え、前記筐体を正常使用状態に設置したとき前記回路基板と前記放熱板は前記筐体内において重力方向に平行に設置される構成であって、前記放熱板には前記複数の発熱部品の間を間仕切るように前記回路基板側へ切り曲げた切り曲げ部と、両側端を前記回路基板側へ折り曲げてなる端部折り曲げ部を設けた小型端末装置であり、前記回路基板と前記放熱板とにより、個々の発熱部品をそれぞれ一つづつ含んだ略筒状部が構成されることになり、それぞれの略筒状部において煙突効果による自然対流の促進が可能となるという作用を有する。
【0031】
本発明の請求項11に記載の発明は、請求項10に記載の小型端末装置の構成において、回路基板には貫通孔を設け、放熱板に設けられた切り曲げ部が前記貫通孔を介して回路基板を貫通するように構成したものであり、前記請求項8の記載と同様の作用が得られる。
【0032】
本発明の請求項12に記載の発明は、請求項10に記載の小型端末装置の構成において、回路基板には熱的に導通のあるサーマルビアを設け、放熱板の端部折り曲げ部および切り曲げ部の端部が前記サーマルビアと弾力性のある熱良導体を介して接触するように構成したものであり、前記請求項9に記載と同様の作用が得られる。
【0033】
以下、本発明の実施の形態について、図1から図17を参照しながら説明する。なお、これらの図面において同一の部材には同一の符号を付しており、また、重複した説明は省略されている。
【0034】
(実施の形態1)
図1は、本発明の実施の形態1における小型端末装置の概略構成を示す斜視図、図2(a)は同小型端末装置の要部の側面図、図2(b)は同図2(a)におけるA−A断面図、図2(c)は同図2(a)におけるB−B断面図である。
【0035】
図1および図2に示すように、小型端末装置の筐体11は、内部に破線で示すように消費電力の大きい発熱部品、ここでは電子集積回路12、回路基板13、放熱板14を備えており、回路基板13と放熱板14は筐体11を正常使用状態に設置したとき筐体11内において重力方向に平行になるように、すなわち垂直となるように設置されている。
【0036】
電子集積回路12は回路基板13に実装されており、放熱板14は電子集積回路12に当接して放熱を促進するようになっている。また、放熱板14は、その一側端に電子集積回路12の概ね上方となる部分を筒状型に形成した縦方向の第一の筒状部15を有しており、他側端はこの第一の筒状部15よりx方向(横方向)に離れた位置となるようにしてあり、したがって、許容される限りの表面積が確保されている。筐体11は二点破線で示すように天面、底面、側面に通風孔エリア16a、16b、16cを有している。実際にはこの通風孔エリア16a、16b、16c内に多数個の通風孔を集合させている。
【0037】
図中の17は筐体11を支えているスタンド、18は通風孔エリア16bあるいは通風孔エリア16cより筐体11内部に流入してくる流入空気経路、19は通風孔エリア16aあるいは通風孔エリア16cより筐体11外部へ流出する流出空気経路、20は第一の筒状部15内部の空気経路である。
【0038】
つぎに、このような構成の小型端末装置における電子集積回路12の放熱手段について説明する。
【0039】
まず、小型端末装置はたとえば机上に設置される。この場合、スタンド17により通風孔エリア16bから筐体11内部への空気の流入抵抗が小さくなるよう底面付近の隙間が十分に確保される。この状態で回路基板13および放熱板14は、机上面と垂直に配置された状態である。
【0040】
ここで小型端末装置が稼動し、電子集積回路12からの発熱があると、この熱の一方は電子集積回路12に当接している放熱板14に伝導され、他方は回路基板13に伝導される。前者はさらに放熱板14全体に伝導しながら放熱板14表面に接している空気へ伝達されることになる。このように放熱板14はその表面積全体で空気への熱伝達を行うため、筐体11内部の空気温度は局所的ではなく分散して均一に上昇することになる。また、このとき第一の筒状部15内の空気は、高温となっている放熱板14によって囲まれているため、他個所の空気よりも温度が高い状態となっている。他方、回路基板13に伝導した熱も、その後、回路基板13の銅箔を伝導しながら全体に拡がり、回路基板13表面に接している空気へと伝達されることになる。ただし、この場合、回路基板13の表面は通常熱伝導率の低い絶縁物で構成されるため、回路基板13の銅箔から周囲空気への熱移動に際しては熱抵抗が大きく熱移動量は小さい。
【0041】
このようにして暖められた空気は密度が小さくなり、浮力を生じ自然対流が発生することになるが、第一の筒状部15内部の空気の温度は他個所の空気より高いため、煙突効果により空気経路20で代表される空気の通風力が大きくなり、より大きい風速が得られる。
【0042】
その後、これらの上昇空気は流出空気経路19に代表される経路に従い、通風孔エリア16a、16cを介して筐体11外へ排出されることになる。一方で新しい冷たい空気が、流入空気経路18に代表される経路に従い、通風孔エリア16b、16cを介して筐体11内へ流入してくることになる。
【0043】
このように本発明の実施の形態1における放熱手段は、従来の放熱板の効果、すなわち、熱が筐体11内部に拡散して放熱されるため、局所的に筐体11の可触部が高温になったり、熱に弱い部品等を破損させたりすることもない、ということに加えて、第一の筒状部15においては煙突効果による自然対流の促進が図られ、したがって放熱板14からの熱伝達量も大きくなる。
【0044】
さらに第一の筒状部15を形成することによって、放熱板14の総表面積を大きくすることができ、加えて筐体11の大きさや形状、さらには隣接する実装部品の配置に合わせて第一の筒状部15の形状を対応することができるため、設計自由度も高く、したがって筐体11の小型化の障害になることはなく、効果的な放熱が可能となる。
【0045】
このような放熱板の簡単な構成で、熱伝達量の増加と総表面積の増加という相乗効果が得られ、電子集積回路12の放熱向上が可能となる。
【0046】
(実施の形態2)
図3は、本発明の実施の形態2における小型端末装置の要部の横断面図、図4(a)は本発明の実施の形態2における別例の小型端末装置の要部の横断面図、図4(b)は本発明の実施の形態2における同じく別例の小型端末装置の要部の横断面図である。なお、図4においては小型端末装置のxy平面に平行で前記電子集積回路および前記第一の筒状部を含む平面の断面としている。
【0047】
この小型端末装置は、図3に示すように前記実施の形態1における放熱板14の第一の筒状部15に対し横方向に離れている他側端を回路基板13に向けて折り曲げることで、放熱板14と回路基板13とで第二のたて方向の筒状部21を形成した構成に特徴を有する。
【0048】
このような構成において、電子集積回路12からの熱は実施の形態1と同様にして、放熱板14と回路基板13へと伝導し周囲空気へ伝達されることになる。
このとき第二の筒状部21内の空気は、高温となっている放熱板14と回路基板13によって囲まれているため、実施の形態1で記載した第一の筒状部15と同様に、空気温度は第一および第二の筒状部外の空気温度と比べ高い状態となっている。したがって、第二の筒状部21においても実施の形態1で記載した第一の筒状部15と同様に煙突効果が得られ、第二の筒状部21内の空気の通風力が大きくなり、より大きい風速が得られる。その後の空気流れについては、実施の形態1同様である。
【0049】
このように本発明の実施の形態2における放熱手段においては、より大きな風速を持った空気と接触する放熱板14の表面積を広くできるので、放熱板14の熱伝達率も上昇する。また、このようにして空気の通風力が大きくなることは、筐体11内部における自然対流が促進され換気も盛んになるため、電子集積回路12の放熱効果は一層向上することになる。
【0050】
なお、図4(a)および図4(b)に示すように複数の電子集積回路12a、12bがある場合においても、それぞれの放熱板14a、14bにおける他側端を回路基板13に向けて折り曲げることで、第二の筒状部21a、21bを形成し、上記と同様の効果が可能である。
【0051】
(実施の形態3)
図5は、本発明の実施の形態3における小型端末装置の要部の横断面図である。なお、小型端末装置のxy平面に平行で電子集積回路および第一の筒状部および第二の筒状部を含む平面の断面としている。
【0052】
この小型端末装置は、図5に示すように実施の形態2における回路基板13に熱的に導通のあるサーマルビア31を設け、放熱板14における第二の筒状部21を形成している放熱板14の折り曲げ部の端部を、熱伝導性シート32を介して前記サーマルビア31と接触させた構成に特徴を有する。
【0053】
このような構成において、電子集積回路12からの発熱があると、この熱の一方は電子集積回路12に当接している放熱板14に伝導し、他方は回路基板13に伝導する。前者は実施の形態2と同様に煙突効果を得ながら放熱板14の周囲空気へと伝達されることになる。他方、回路基板13に伝導してきた熱は回路基板13の銅箔を伝導しながら全体に拡がり、実施の形態1同様に回路基板13表面に接している空気へと伝達される熱移動ルートと、サーマルビア31および熱伝導性シート32を介して放熱板14へと伝導する熱移動ルートがある。
【0054】
この場合、実施の形態1でも記載したように前者の場合は空気への熱移動量は小さい。しかし、後者の場合サーマルビア31や熱伝導性シート32の熱伝導率が良いため、放熱板14へ熱が移動する際の熱抵抗は小さい。したがって後者を通じた熱移動が積極的に行われることになり、その結果、回路基板13の温度が下がる。そのため電子集積回路12から回路基板13への熱移動も積極的に行われることになり、結果的に電子集積回路12の温度も下がることになる。
【0055】
このようにして放熱板14へ伝導してきた熱は、その後、実施の形態2と同様にして周囲空気へと伝達される。その後の空気の流れについては、実施の形態2と同様である。
【0056】
このように本発明の実施の形態3における放熱手段においては、回路基板13からの放熱量も向上するため、さらに効果的な電子集積回路12の放熱が可能となる。
【0057】
さらに放熱板14の温度は、回路基板13からの熱伝導によって一層上昇することになる。したがって第一の筒状部15あるいは第二の筒状部21内の空気はより高温となり、煙突効果による通風力もさらに高まることになる。つまり自然対流の一層の促進が期待でき、電子集積回路12の放熱にも極めて有効に作用し得ることになる。
【0058】
なお、たとえば図6に示すように複数の電子集積回路12a、12bがある場合についても、放熱板14a、14bにおける折り曲げ部の端部を、熱伝導性シート32a、32bを介してサーマルビア31a、31bと接触させ、上記同様の効果を得ることが可能である。
【0059】
(実施の形態4)
図7は本発明の実施の形態4における小型端末装置の概略構成を示す斜視図、図8(a)は同小型端末装置の要部の側面図、図8(b)は図8(a)におけるA−A断面図なお、図8はこの小型端末装置のyz平面に平行で前記電子集積回路および筒状部と排気通風孔エリアを含む平面の断面としている。
【0060】
この小型端末装置は、図7および図8に示すように構成されており、すなわち、前記各実施の形態の構成において、筐体11は二点鎖線で示すように、側面で、かつ、上部の位置に、設計者が排気孔として想定して形成された排気通風孔エリア43を有している。電子集積回路12に当接して放熱を促進するための放熱板41は、x方向に許容される限りの表面積を確保しており、また、電子集積回路12の概ね上方部分を筒状型に形成した縦方向の筒状部42を有している。そして、その上端の筒状部排気孔44を排気通風孔エリア43と近接して概ね対峙するように位置させた構成に特徴を有している。
【0061】
図中の45は前記通風孔エリア16bより前記筐体11内部に流入してくる流入空気経路、46aは前記通風孔エリア16aより前記筐体11外部へ流出する流出空気経路、46bは前記排気通風孔エリア43より前記筐体11外部へ流出する流出空気経路、47は前記筒状部42内部の空気経路である。
【0062】
つぎに、このような構成の小型端末装置において、電子集積回路12の放熱手段について説明する。
【0063】
まず、小型端末装置が稼動し電子集積回路12からの発熱があると、この熱は実施の形態1と同様にして、放熱板41と回路基板13へと伝導し周囲空気へ伝達されることになる。このようにして暖められた空気は密度が小さくなり浮力を生じ自然対流が発生することになるが、筒状部42においては実施の形態1同様に煙突効果により空気経路47で代表される空気の通風力が大きくなり、より大きい風速が得られる。
【0064】
その後この筒状部42内の上昇空気は、筒状部排気孔44を通って排気されるが、このとき、筒状部排気孔44と排気通風孔エリア43は近接して概ね対峙した配置となっているので、筒状部排気孔44から排気される空気のほとんどは流出空気経路46bに代表される経路に従い、排気通風孔エリア43を介して筐体11外へ排出されることになる。また筒状部42外の上昇空気は実施の形態1同様に流出空気経路46aあるいは46bに代表される経路に従い、通風孔エリア16aあるいは排気通風孔エリア43を介して筐体11外へ排出されることになる。一方で新しい冷たい空気が、流入空気経路45に代表される経路に従い、通風孔エリア16bを介して筐体11内へ流入してくることになる。
【0065】
このように本発明の実施の形態4における放熱手段においては、設計者が設計時点で排気を想定して設けた排気通風孔エリア43が筐体11の側面に設けられた場合でも、筒状部42内にて暖められた空気をこの排気通風孔エリア43へ円滑に誘導できるため、排気通風孔エリア43において想定外である吸気作用を防止でき、確実な排気作用が実現できる。つまり空気の吸入から排気まで設計意図どおりの換気が可能となり、確実な放熱設計が実施できる。
【0066】
しかも、筒状部42は概ね排気通風孔エリア43に近接する位置まで形成されているので、筒状部42は一段と長い構成となり、その結果、煙突効果による通風力はさらに一層大きくなる。したがって、放熱板41から空気への熱移動量も一層増加し、自然対流も促進されることになる。もちろん、筒状部42が長くなり放熱板41の総表面積が増えたことは、放熱に極めて有利であるということは言うまでもない。
【0067】
以上のように、放熱板41による空気の流路設定、煙突効果促進による筒状部42での熱伝達量増加および放熱板41の総表面積の増加がもたらす相乗効果のため、電子集積回路12の放熱効果は格段と向上する。
【0068】
なお、本実施の形態4は実施の形態1に適用した例を示したが、実施の形態2あるいは3に適用しても何ら問題はない。
【0069】
(実施の形態5)
図9(a)は本発明の実施の形態5における小型端末装置の要部の側面図、図9(b)は同図9(a)におけるA−A断面図である。
【0070】
この小型端末装置は図9に示すように構成されており、すなわち、前記各実施の形態において、筐体11は、側面で、かつ、上部の位置に、設計者が排気孔として想定して形成された排気通風孔エリア53を有している。電子集積回路12に当接して放熱を促進するための放熱板51は、x方向に許容される限りの表面積を確保されており、また、電子集積回路12の概ね上方部分を筒状型に形成した筒状部52を有し、さらに、上部に筐体11の側面側に切り曲げた切り曲げ部54を有している。そして、放熱板51における切り曲げ部54を、筐体11の排気通風孔エリア53と近接して概ね対峙するように位置させた構成に特徴を有する。
【0071】
つぎに、このような構成の小型端末装置において、電子集積回路12の放熱手段について説明する。まず、小型端末装置が稼動し電子集積回路12からの発熱があると、この熱は実施の形態1と同様にして、放熱板51と回路基板13へと流入し、放熱板51に伝導された熱は放熱板51全体より周囲空気へ伝達されることになる。このとき、切り曲げ部54と排気通風孔エリア53は近接して概ね対峙した配置となっているので、切り曲げ部54付近で熱伝達されて暖められた空気は排気通風孔エリア53を介して筐体11外へと排出され易くなる。
【0072】
また、筒状部52においては実施の形態1同様に煙突効果が得られる。
【0073】
さらに、筐体11への他の空気の換気動作については、実施の形態4同様である。
【0074】
このように本発明の実施の形態5における放熱手段では、実施の形態4と同様、筐体11への空気の吸入から排気まで、ほぼ設計者が設計時に想定した通りの換気が期待できる。また、切り曲げ部54は概ね排気通風孔エリア53に近接する位置まで形成されているので、放熱板51の総表面積が増え、放熱に極めて有利であるということは言うまでもない。
【0075】
以上のように、放熱板51の形状を利用した伝導による熱移動路設定、煙突効果による筒状部52での熱伝達量増加および放熱板51の総表面積の増加がもたらす相乗効果のため、電子集積回路12の放熱は格段と向上する。
【0076】
なお、本実施の形態5は実施の形態1に適用した例を示したが、実施の形態2あるいは3に適用しても何ら問題はない。
【0077】
図10は、この実施の形態5の別例を示した図である。このものは、切り曲げ部54の代わりに絞り部55を設けたものである。この構成においては前記した効果に加え、絞り部55において空気流路が徐変しながら狭まるため、上昇空気の流速が一時的に大きくなり、その結果、放熱板から空気への熱伝達量が増えるという効果が得られる。
【0078】
(実施の形態6)
図11は、本発明の実施の形態6における小型端末装置の概略構成を示す斜視図、図12(a)は同小型端末装置の要部の側面図、図12(b)は図12(a)におけるA−A断面図である。なお、図12は側面と、小型端末装置のxy平面に平行で第一の電子集積回路および第一の筒状部と第二の電子集積回路および第二の筒状部とを含む平面の断面としている。
【0079】
この小型端末装置は、図11および図12に示すように構成されている。すなわち、筐体11内に垂直に設けた回路基板13には、破線で示すように許容温度上昇値が大きくかつ消費電力の大きい電子集積回路61aと、同じく破線で示すように許容温度上昇値が小さくかつ消費電力の大きい電子集積回路61bとを横方向に適当間隔をもたせて実装している。筐体11内に垂直に設けられ、かつ、電子集積回路61aおよび61bに当接して放熱を促進するための放熱板62には、電子集積回路61aの概ね上方部分を囲む筒状型に形成した縦方向の第一の筒状部63aと、電子集積回路61bの概ね上方部分を囲む筒状型に形成した縦方向の第二の筒状部63bを形成してあり、さらに、電子集積回路61aと61bとの間に回路基板13側に突出する切り曲げ部64を設けている。
【0080】
つぎに、このような構成の小型端末装置において、電子集積回路61aおよび61bの放熱手段について説明する。まず、小型端末装置が稼動し電子集積回路61aおよび61bからの発熱があると、この熱の一方は電子集積回路61aおよび61bに当接している放熱板62に伝導し、他方は回路基板13に伝導する。前者は更に放熱板62全体に伝導しながら放熱板62表面に接している空気へ伝達されることになる。このとき、放熱板62には切り曲げ部64に相当する分の孔が形成されているため、この部分では断面積が小さく伝導による熱移動の抵抗も大きくなる。したがって、第一の筒状部63aと第二の筒状部63bとの間で熱移動量は小さい。つまり、電子集積回路61aと61bとの間で伝導による熱移動はほとんど行われないことになる。
【0081】
また、第一の筒状部63aおよび第二の筒状部63b内の空気は、高温となっている放熱板62によって囲まれているため、他個所の空気よりも温度が高い状態となっている。他方、回路基板13に伝導した熱も、その後、回路基板13の銅箔を伝導しながら全体に拡がり、回路基板13表面に接している空気へと伝達されることになる。ただしこの場合、回路基板13の表面は通常熱伝導率の低い絶縁物で構成されるため、回路基板13の銅箔から周囲空気への熱移動に際しては熱抵抗が大きく熱移動量は小さい。
【0082】
このようにして暖められた空気は密度が小さくなり浮力を生じ自然対流が発生することになるが、第一の筒状部63aおよび第二の筒状部63b内部の空気の温度は他個所の空気より高いため、煙突効果により通風力が大きくなり、より大きい風速が得られる。また切り曲げ部64において、電子集積回路61aと61bとの間の空気移動を阻止しているため、電子集積回路61aと61bとの間で空気伝達による熱移動はほとんど行われないことになる。
【0083】
その後の筐体11への空気の換気動作については、実施の形態1と同様である。
【0084】
このように、本発明の実施の形態6の放熱手段においては、複数の電子集積回路が存在する場合でも、実施の形態1と同様の放熱効果が得られる。さらに、電子集積回路61aおよび61b間での熱移動を抑制することができるため、自己発熱により許容温度上昇値までのマージンが小さい電子集積回路61bに対する電子集積回路61a側からの熱的影響が削減され、破損を引き起こしたりすることもない。このように一つの放熱板にて複数の電子集積回路の放熱が可能となるので、安価で効果的な放熱が実現できる。
【0085】
また、図13は実施の形態6の別例を示した図である。このものは、放熱板62における切り曲げ部64を、回路基板13に設けた貫通孔65を介して貫通する構成としている。
【0086】
このような構成により、前記した効果に加え、電子集積回路61aと61b間を接続する回路基板13の銅箔距離が長くなるため、銅箔による熱伝導抵抗も大きくなり、電子集積回路61aと61b間の回路基板13内における熱移動量も減少することになる。したがって、一層電子集積回路61a側からの熱的影響が削減できさらに有効である。
【0087】
(実施の形態7)
図14は、本発明の実施の形態7における小型端末装置の要部の横断面図である。なお、図では小型端末装置のxy平面に平行で第一の電子集積回路および第一の筒状部と第二の電子集積回路および第二の筒状部とを含む平面の断面としている。
【0088】
この小型端末装置は、図14に示すように前記実施の形態6における回路基板13に熱的に導通のあるサーマルビア66を設けてあり、放熱板62の切り曲げ部64の端部を熱伝導性シート67を介してサーマルビア66と接触させた構成を特徴としている。
【0089】
このような構成において、電子集積回路61aおよび61bからの発熱があると、この熱の一方は電子集積回路61aおよび61bに当接している放熱板62に伝導し、他方は回路基板13に伝導する。前者は実施の形態6と同様に煙突効果を得ながら放熱板62の周囲空気へと伝達されることになる。他方、回路基板13に伝導されてきた熱は回路基板13の銅箔を伝導しながら全体に拡がり、実施の形態6と同様に回路基板13表面に接している空気へと伝達される熱移動ルートと、サーマルビア66および熱伝導性シート67を介して放熱板62へと伝導する熱移動ルートがある。
【0090】
この場合、実施の形態6でも記載したように前者の場合は空気への熱移動量は小さい。しかし、後者の場合サーマルビア66や熱伝導性シート67の熱伝導率が良いため、放熱板62へ熱が移動する際の熱抵抗は小さい。したがって後者を通じた熱移動が積極的に行われることになり、その結果、回路基板13の温度が下がる。そのため電子集積回路61aおよび61bから回路基板13への熱移動も積極的に行われることになり、結果的に電子集積回路61aおよび61bの温度も下がることになる。
【0091】
このように回路基板13内の銅箔を伝導してきた熱は放熱板62側へと円滑に移動するため、電子集積回路61aと61bとの間での回路基板13内における熱移動量は小さい。このようにして放熱板62へ伝導してきた熱はその後、実施の形態6と同様にして周囲空気へと伝達される。その後の空気の流れについても、実施の形態6と同様である。
【0092】
本発明の実施の形態7における放熱手段では、複数の電子集積回路が存在する場合でも、実施の形態6と同様の放熱効果に加え、電子集積回路61aと61b間の回路基板13内における熱移動量も抑えられ、さらに回路基板13からの放熱量も向上するため、さらに効果的な電子集積回路61aおよび61bの放熱が可能となる。
【0093】
また、実施の形態3と同様にして、放熱板62の温度が回路基板13からの熱伝導によってより上昇し、したがって第一の筒状部63aおよび第二の筒状部63b内の空気はより高温となり、煙突効果による通風力もさらに高まることになる。つまり自然対流の一層の促進が期待でき、電子集積回路61aおよび61bの放熱にも極めて有効に作用し得ることになる。
【0094】
(実施の形態8)
図15(a)は本発明の実施の形態8における小型端末装置の要部の側面図、図15(b)は図15(a)におけるA−A断面図である。なお、図においては小型端末装置のxy平面に平行で二つの電子集積回路と切り曲げ部とを含む平面の断面としている。
【0095】
この小型端末装置は、図15に示すように構成されている。すなわち、筐体11内に垂直に設けた回路基板13には、破線で示すように二つの電子集積回路61aと61bとを横方向に適当間隔をもたせて実装している。筐体11内に垂直に設けられ、かつ、電子集積回路61aおよび61bに当接して放熱を促進するための放熱板62は、二つの電子集積回路61aと61b間に位置して回路基板13側に切り曲げた切り曲げ部64および、両側端を回路基板13側に折り曲げられた端部折り曲げ部71aと71bを有している。そして、端部折り曲げ部71aと切り曲げ部64と回路基板13とで第一の筒状部72aを構成するとともに、端部折り曲げ部71bと切り曲げ部64と回路基板13とで縦方向の第二の筒状部72bを構成したことに特徴を有する。
【0096】
つぎに、このような構成の小型端末装置において、電子集積回路61aおよび61bの放熱手段について説明する。
【0097】
まず、小型端末装置が稼動し電子集積回路61aおよび61bからの発熱があると、この熱の一方は電子集積回路61aおよび61bに当接している放熱板62に伝導し、他方は回路基板13に伝導する。前者は更に放熱板62全体に伝導しながら放熱板62表面に接している空気へ伝達されることになる。このとき実施の形態6同様、第一の筒状部72aと第二の筒状部72bとの間での放熱板62を介した熱伝導による熱移動量は小さい。つまり、電子集積回路61aと61bとの間で伝導による熱移動は少ないことになる。
【0098】
また、第一の筒状部72aおよび第二の筒状部72b内の空気は、高温となっている放熱板62および回路基板13によって囲まれているため、他個所の空気よりも温度が高い状態となっている。したがって、実施の形態6と同様に煙突効果を得ながら放熱板62の周囲空気へと伝達されることになる。他方、回路基板13に伝導した熱についても、実施の形態6と同様である。また、その後の空気の換気動作についても実施の形態6と同様である。
【0099】
このように本発明の実施の形態8における放熱手段では、複数の電子集積回路が存在する場合でも、実施の形態6と同様の放熱効果に加え、放熱板の加工が容易であるため更なる安価な放熱板が構成できる。
【0100】
さらに、図16は実施の形態8の別例を示した図である。このものは、切り曲げ部64を回路基板13に設けた貫通孔65を介して貫通する構成としてあり、前記と同様の効果が得られる。
【0101】
また、図17のように、切り曲げ部64および端部折り曲げ部71aと71bの端面を、それぞれ熱伝導性シート67a、67b、67cを介してサーマルビア66a、66b、66cと接触してなる構成としても何ら問題ない。
【0102】
このような構成により、前記した効果に加え、電子集積回路61aおよび61b間での回路基板13内における熱移動を抑制することができるため、自己発熱により許容温度上昇値までのマージンが小さい電子集積回路61bに対する電子集積回路61a側からの熱的影響が削減され有効である。
【0103】
【発明の効果】
以上の説明より明らかなように、本発明によれば、小型端末装置を設置した際に、電子集積回路で代表されるような発熱部品を実装している回路基板とこの発熱部品に当接されている放熱板とが重力方向と平行に取り付ける構造である場合に、この放熱板に筒状部を形成することで、あるいは放熱板と回路基板とで略筒状部を構成することで、この筒状部において煙突効果が得られて自然対流が促進されるので、放熱効果の向上が可能となる。
【0104】
また、回路基板にサーマルビアを設け、熱良導体を介してこのサーマルビアと放熱板を接触させるよう構成したことで、回路基板から放熱板への熱移動が行われ、回路基板の放熱効果の向上も可能となる。したがって、発熱部品の温度上昇もさらに抑制することができる。
【0105】
さらに、放熱板で構成された筒状部の形状を活用して暖められた空気の排気流路を設定したり、放熱板自体の形状を活用して放熱板に伝導してきた熱の伝導路を設定したりすることで、ほぼ設計意図どおりの空気の換気が可能となり、使用者への危険や部品の故障といった不都合が生じることがなく、安全でかつ信頼性の高い小型端末装置を提供できることになる。
【0106】
さらに、発熱部品が複数存在する場合には、この発熱部品間を間仕切るように前記放熱板から切り曲げ部を構成したり、あるいはこの切り曲げ部は回路基板を貫通する構成としたり、さらには切り曲げ部を熱良導体を介して回路基板に設けられたサーマルビアと接触させるよう構成することで、複数の発熱部品同士でお互いの熱的影響を削減することができる。したがって発熱部品が複数存在しても、一つの放熱板の簡単な構成にて効果的な放熱が可能となり、安価な放熱手段が提供できる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における小型端末装置の概略構成を示す斜視図
【図2】(a)同小型端末装置の要部の側面図
(b)同図2(a)におけるA−A断面図
(c)同図2(a)におけるB−B断面図
【図3】本発明の実施の形態2における小型端末装置の要部の横断面図
【図4】(a)本発明の実施の形態2における別例の小型端末装置の要部の横断面図
(b)本発明の実施の形態2における同じく別例の小型端末装置の要部の横断面図
【図5】本発明の実施の形態3における小型端末装置の要部の横断面図
【図6】本発明の実施の形態3における別例の小型端末装置の要部の横断面図
【図7】本発明の実施の形態4における小型端末装置の概略構成を示す斜視図
【図8】(a)同小型端末装置の要部の側面図
(b)図8(a)におけるA−A断面図
【図9】(a)本発明の実施の形態5における小型端末装置の要部の側面図
(b)同図9(a)におけるA−A断面図
【図10】(a)本発明の実施の形態5における別例の小型端末装置の要部の側面図
(b)図10(a)におけるA−A断面図
【図11】本発明の実施の形態6における小型端末装置の概略構成を示す斜視図
【図12】(a)同小型端末装置の要部の側面図
(b)図12(a)におけるA−A断面図
【図13】本発明の実施の形態6における別例の小型端末装置の要部の横断面図
【図14】本発明の実施の形態7における小型端末装置の要部の横断面図
【図15】(a)本発明の実施の形態8における小型端末装置の要部の側面図
(b)図15(a)におけるA−A断面図
【図16】本発明の実施の形態8における別例の小型端末装置の要部の横断面図
【図17】本発明の実施の形態8における同じく別例の小型端末装置の要部の横断面図
【符号の説明】
11 筐体
12、12a、12b 電子集積回路
13 回路基板
14、14a、14b、41、51、62 放熱板
15、15a、15b、63a、72a 第一の筒状部
16a、16b、16c 通風孔エリア
17 スタンド
18、45 流入空気経路
19、46a、46b 流出空気経路
20、47 空気経路
21、21a、21b、63b、72b 第二の筒状部
31、31a、31b、66、66a、66b、66c サーマルビア
32、32a、32b、67、67a、67b、67c 熱伝導性シート
42、52 筒状部
43、53 排気通風孔エリア
44 筒状部排気孔
54、64 切り曲げ部
55 絞り部
61a 電子集積回路
61b 電子集積回路
65 貫通孔
71a、71b 端部折り曲げ部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a small terminal device in which a heat-generating component such as an electronic integrated circuit having a large power consumption is present. More specifically, when the small terminal device is installed, a circuit board on which the heat-generating component is mounted is moved in the direction of gravity. The present invention relates to a small terminal device having a means for radiating heat-generating components by natural convection in a structure in which the heat-generating component is disposed in a vertical mounting structure, that is, in a configuration in which the terminal device is arranged vertically.
[0002]
[Prior art]
As an example of a heat radiating means of a heat generating component based on natural convection in a conventional small terminal device, there is, for example, the following.
[0003]
A heating element is attached to the inner surface of the side wall of a substantially cylindrical heat sink having openings at the upper end and the lower surface, and the lower surface opening of the heat sink is made to correspond to the ventilation hole opened in the substrate, and the heat sink is mounted on the upper surface of the substrate. It is configured to be attached (see, for example, FIGS. 1 and 2 of Patent Document 1).
[0004]
However, unlike the structure in which the circuit board is attached in parallel with the direction of gravity as in the present invention, that is, the configuration in which the circuit board is set upright when the apparatus is installed, natural convection The air flow is the same as in the present invention.
[0005]
[Patent Document 1]
Japanese Utility Model Publication No. 01-137595 (FIGS. 1 and 2)
[0006]
[Problems to be solved by the invention]
However, the heat radiating means of the heat generating component having the above-described configuration has the following problems.
[0007]
The power consumption of heat-generating components such as electronic integrated circuits tends to increase further due to the higher performance and higher functionality of terminal devices, and the amount of heat generated is increasing. To cope with this, it is necessary to increase the envelope volume of the heat sink to increase the heat radiation area.
[0008]
However, on the other hand, in terminal devices that are being miniaturized, the high density mounting of circuit boards is also progressing, and the size of the housing itself is limited. It is difficult to secure a large space.
[0009]
In addition, the heat sink is an effective means to lower the temperature of the heat-generating components, but the heat sink dissipates a large amount of heat, so that the air around the heat sink becomes locally hot, and as a result, downstream of natural convection There is a ripple problem that the located housing surface becomes hot and poses a danger to the user, or may cause breakage if there is a component having a low heat-resistant temperature on the downstream side.
[0010]
In such a case, it is one of effective means to arrange the ventilation holes provided in the housing at a position where natural convection is promoted, or to secure a sufficient ventilation hole area. Due to safety issues such as design and prevention of foreign matter intrusion, it is often not possible to provide ventilation holes as desired by the designer. In addition, depending on the arrangement of the mounted components on the circuit board and the structure of the housing, the ventilation holes arranged by the designer as exhaust holes may act as suction holes on the contrary, and sufficient natural convection as designed may be achieved. Is not promoted.
[0011]
Further, as another means, instead of local heat radiation only around the heat sink as in the case of a heat sink, heat may be diffused and radiated using a heat radiating plate so that the temperature rise in the entire casing becomes uniform.
[0012]
However, in general, a heatsink is more advantageous for heat dissipation as its surface area is larger if its thickness is the same.However, increasing the surface area affects the miniaturization of terminal devices and reduces the size of mounted components on circuit boards. Interference, and the weight of the terminal device increases.
[0013]
In view of the above, the present invention has been made in consideration of the above problems, and in a radiator plate having an allowable surface area, the heat radiation efficiency is improved, or the heat radiator plate is used to increase a heat radiation amount from a circuit board. It is an object of the present invention to provide a small terminal device capable of effectively dissipating heat of a heat-generating component by being configured to promote natural convection in a housing.
[0014]
[Means for Solving the Problems]
In order to achieve this object, the present invention provides a circuit board on which a heat-generating component such as a small-sized electronic integrated circuit is mounted, a heat-dissipating plate having good heat conductivity in contact with the heat-generating component, and ventilation of outside air. And a circuit board and the heat sink are installed in the housing in parallel to the direction of gravity when the housing is installed in a normal use state. Further, a first cylindrical portion in the vertical direction is formed at one end of the heat radiating plate so as to surround a space substantially above an abutting portion with the heat-generating component, and the other end of the heat radiating plate is formed at the other end. A small terminal device is provided at a position laterally separated from one cylindrical portion.
[0015]
In the small terminal device having the above configuration according to the present invention, first, since heat is dispersed and radiated to the air inside the housing by the heat diffusion effect of the heat sink, there is no place where the temperature becomes locally high. The accessible portion of the body does not become hot, nor does a heat-sensitive component or the like be damaged downstream of natural convection. In addition, due to the chimney effect in the first tubular portion of the radiator plate, the passing wind force of the air in the first tubular portion is increased, and natural convection is promoted. And the amount of heat transfer becomes large, and effective heat dissipation becomes possible.
[0016]
Further, by forming the first cylindrical portion, it is possible to increase the total surface area of the heat sink, and in addition to the size and shape of the housing, and the arrangement of the adjacent mounting parts, Since the shape of one cylindrical portion can be accommodated, the degree of freedom in design is high, and thus there is no obstacle to downsizing of the housing.
[0017]
As described above, according to the present invention, it is possible to provide a very useful small terminal device which has an effective heat radiating means for a heat-generating component and satisfies the demand for miniaturization.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present invention is directed to a circuit board on which a heat-generating component such as an electronic integrated circuit is mounted, a heat-radiating plate having good heat conductivity in contact with the heat-generating component, A structure provided with a ventilation hole that allows ventilation of the circuit board, and wherein the circuit board and the heat sink are installed in the case in parallel with the direction of gravity when the case is installed in a normal use state. Wherein the heat sink has a first cylindrical portion in a vertical direction at one side end so as to surround a space of a substantially upper portion of a contact portion with the heat generating component, and the other end has the first cylindrical portion. This is a small terminal device that is located at a position that is laterally separated from the cylindrical part.First, heat is dispersed to the air inside the housing and radiated by the heat diffusion effect of the radiator plate. Since there is no place where the temperature becomes high, the accessible part of the housing becomes hot locally, or the downstream side of natural convection It is not able to or defeat the weak parts and the like to Oite heat.
[0019]
In addition, due to the chimney effect in the first tubular portion of the radiator plate, the wind power of the air in the first tubular portion is increased, and natural convection is promoted. As a result, the air from the radiator plate to the air is increased. The amount of heat transfer is increased, and effective heat dissipation is possible.
[0020]
Furthermore, by forming the first cylindrical portion, the total surface area of the heat sink can be increased, and in addition to the size and shape of the housing and the arrangement of the adjacent mounting components, Since the shape of the cylindrical portion can be adjusted, the degree of freedom in design is high, and therefore, there is an effect that it does not hinder the miniaturization of the housing.
[0021]
According to a second aspect of the present invention, in the configuration of the small terminal device according to the first aspect, the radiator plate has the other end laterally separated from the first tubular portion on the circuit board side. The circuit board and the heat sink have a bent portion formed in the vertical direction, the second tubular portion is formed by the circuit board and the heat sink, the chimney effect also in the second tubular portion As a result, the natural convection is further promoted, and the heat radiation of the heat-generating component becomes more positive.
[0022]
According to a third aspect of the present invention, in the configuration of the small terminal device according to the second aspect, the circuit board has a thermal via that is thermally conductive, and an end of the bent portion of the heat sink is formed by: The thermal via is configured to be in contact with the thermal via via a resilient thermal conductor, and heat transfer from the circuit board to the heat sink is positively performed, thereby increasing the temperature of the circuit board. Is suppressed. As a result, the heat transfer from the heat-generating component to the circuit board is also positively performed, and thus the heat radiation of the heat-generating component is further promoted. In addition, since the temperature of the radiator plate increases, the air temperature in the first and second cylindrical portions also increases, so that natural convection is further promoted by the chimney effect, which is advantageous for heat radiation of the heat generating component. It has the action of:
[0023]
According to a fourth aspect of the present invention, in the configuration of the small terminal device according to any one of the first, second and third aspects of the present invention, the housing has an exhaust ventilation hole on a side surface, One end of the first or second cylindrical portion of the heat sink is configured to be positioned so as to face and close to the exhaust ventilation hole, and the designer assumes exhaust at the time of design. Even when the provided exhaust ventilation hole is provided on the side surface of the housing, the rising air in the first or second cylindrical portion can be smoothly guided to the exhaust ventilation hole. Can function as an exhaust hole, and ventilation from the intake to the exhaust can be expected almost as expected by the designer.
[0024]
As a result, the stagnation of air that locally increases the temperature in the housing is also eliminated. Further, by setting the air flow path in the first or second cylindrical portion in this way, if the length of the first or second cylindrical portion can be further increased, heat radiation In addition to the fact that the total surface area of the plate is remarkably increased, which is extremely advantageous for heat dissipation, the wind power due to the chimney effect is further increased, and natural convection is further promoted.
[0025]
According to a fifth aspect of the present invention, in the configuration of the small terminal device according to any one of the first, second, and third aspects, the housing has an exhaust ventilation hole on a side surface, and the heat radiation plate is cut and bent. And a cut-and-bent portion of the heat sink is positioned so as to face and close to the exhaust ventilation hole of the housing, and is provided by the designer assuming exhaust at the time of design. Even if the exhaust ventilation hole is provided on the side of the housing, the heat flowing into the heat sink can be smoothly guided to the exhaust ventilation hole by conduction. And it is possible to expect that ventilation from the intake to the exhaust is almost as expected by the designer.
[0026]
According to a sixth aspect of the present invention, in the configuration of the small terminal device according to any one of the first, second, and third aspects of the present invention, the housing has an exhaust ventilation hole on a side surface, and a heat sink. Has a throttle portion, and the throttle portion of the heat sink is positioned so as to face and close to the exhaust ventilation hole of the housing, and the designer assumes exhaust at the time of design. Even in the case where the provided exhaust ventilation holes are provided on the side surface of the housing, ventilation similar to that assumed by the designer can be expected from the intake to the exhaust, almost as expected by the designer. Further, in the throttle portion, since the cross-sectional area of the air flow path gradually changes and decreases, the wind speed of the air when passing through the throttle portion increases, and the heat transfer amount from the heat sink to the air also increases. This has the effect of increasing the heat radiation effect further.
[0027]
According to a seventh aspect of the present invention, there is provided a circuit board on which a plurality of heat-generating components such as an electronic integrated circuit are mounted, and a heat-dissipating plate having good heat conductivity contacting each of the heat-generating components. A housing provided with a ventilation hole that allows ventilation with the outside air, and when the housing is installed in a normal use state, the circuit board and the heat sink are installed in the housing in parallel to the direction of gravity. Wherein the heat sink has a plurality of vertical cylindrical portions surrounding a space of a substantially upper portion of each of the contact portions with the plurality of heat generating components, and 2. A small terminal device provided with a cut-and-bent portion toward the circuit board side so as to partition between heat-generating components of the present invention. Allowable temperature due to self-heating, since air does not diffuse to the other Margin of up to Noborichi be no affect to almost no heat-generating components. As described above, a simple configuration has an effect that heat radiation of a plurality of heat generating components can be performed inexpensively and effectively.
[0028]
According to an eighth aspect of the present invention, in the configuration of the small terminal device according to the seventh aspect, a through hole is provided in the circuit board, and a cut and bent portion provided in the heat sink is provided through the through hole. It is configured so as to penetrate the circuit board, and in addition to the operation according to the seventh aspect, it is possible to suppress heat inflow from one heat-generating component to the other heat-generating component by heat conduction through the circuit board. Has an action.
[0029]
According to a ninth aspect of the present invention, in the configuration of the small terminal device according to the seventh aspect, a thermal via that is thermally conductive is provided on the circuit board, and an end of the cut and bent portion of the heat sink is formed. The thermal vias are configured to be in contact with each other via a resilient thermal conductor, and the heat transfer from the circuit board to the heat sink is positively performed. Be suppressed. As a result, the heat transfer from the heat-generating component to the circuit board is also positively performed, and thus the heat radiation of the heat-generating component is further promoted. In addition, since the temperature of the radiator plate increases, the air temperature in the first and second cylindrical portions also increases, so that natural convection is further promoted by the chimney effect, which is advantageous for heat radiation of the heat generating component. It has the action of:
[0030]
According to a tenth aspect of the present invention, there is provided a circuit board on which a plurality of heat-generating components such as an electronic integrated circuit are mounted, and a heat-radiating plate having good thermal conductivity abutting on each of the heat-generating components. A housing provided with a ventilation hole that allows ventilation with the outside air, and when the housing is installed in a normal use state, the circuit board and the heat sink are installed in the housing in parallel to the direction of gravity. The heat sink has a cut portion bent toward the circuit board so as to partition between the plurality of heat generating components, and an end portion formed by bending both side ends toward the circuit board. A small terminal device provided with a bent portion, wherein the circuit board and the heat radiating plate constitute substantially cylindrical portions each including one heat-generating component. Can promote natural convection due to the chimney effect It has the effect of becoming.
[0031]
According to an eleventh aspect of the present invention, in the configuration of the small terminal device according to the tenth aspect, a through hole is provided in the circuit board, and a cut-and-bent portion provided in the heat sink is provided through the through-hole. It is configured so as to penetrate the circuit board, and the same operation as that of the eighth aspect can be obtained.
[0032]
According to a twelfth aspect of the present invention, in the configuration of the small terminal device according to the tenth aspect, a thermal via that is thermally conductive is provided on the circuit board, and the end portion of the heat sink is bent and cut. The end of the portion is configured to be in contact with the thermal via via a resilient thermal conductor, and the same operation as in the ninth aspect is obtained.
[0033]
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 17. In these drawings, the same members are denoted by the same reference numerals, and redundant description is omitted.
[0034]
(Embodiment 1)
FIG. 1 is a perspective view showing a schematic configuration of a small terminal device according to Embodiment 1 of the present invention, FIG. 2A is a side view of a main part of the small terminal device, and FIG. 2A is a sectional view taken along the line AA, and FIG. 2C is a sectional view taken along the line BB in FIG.
[0035]
As shown in FIGS. 1 and 2, the housing 11 of the small terminal device includes a heat-generating component that consumes a large amount of power, as shown by a broken line, here, an electronic integrated circuit 12, a circuit board 13, and a heat sink 14. The circuit board 13 and the heat radiating plate 14 are arranged so as to be parallel to the direction of gravity in the housing 11 when the housing 11 is normally used, that is, to be vertical.
[0036]
The electronic integrated circuit 12 is mounted on a circuit board 13, and a heat radiating plate 14 contacts the electronic integrated circuit 12 to promote heat radiation. In addition, the heat sink 14 has a first cylindrical portion 15 in a vertical direction in which a portion substantially above the electronic integrated circuit 12 is formed in a cylindrical shape at one end thereof, and the other end is formed of a first cylindrical portion 15. The first cylindrical portion 15 is located away from the first cylindrical portion 15 in the x direction (lateral direction), so that an allowable surface area is secured. The housing 11 has ventilation hole areas 16a, 16b, and 16c on the top surface, the bottom surface, and the side surfaces as indicated by the two-dot broken lines. Actually, a large number of ventilation holes are gathered in the ventilation hole areas 16a, 16b, 16c.
[0037]
In the drawing, reference numeral 17 denotes a stand supporting the housing 11, reference numeral 18 denotes an inflow air path which flows into the housing 11 from the ventilation hole area 16b or 16c, and reference numeral 19 denotes a ventilation hole area 16a or 16c. An outflow air path that flows out more out of the housing 11, and an air path 20 inside the first tubular portion 15.
[0038]
Next, the heat radiating means of the electronic integrated circuit 12 in the small terminal device having such a configuration will be described.
[0039]
First, the small terminal device is installed on a desk, for example. In this case, a sufficient gap near the bottom surface is ensured by the stand 17 so that the resistance of inflow of air from the ventilation hole area 16b to the inside of the housing 11 is reduced. In this state, the circuit board 13 and the heat radiating plate 14 are arranged vertically to the desk surface.
[0040]
Here, when the small terminal device operates and generates heat from the electronic integrated circuit 12, one of the heat is transmitted to the radiator plate 14 in contact with the electronic integrated circuit 12 and the other is transmitted to the circuit board 13. . The former is further transmitted to the air in contact with the surface of the radiator plate 14 while being transmitted to the entire radiator plate 14. As described above, since the heat radiating plate 14 transfers heat to the air over its entire surface area, the temperature of the air inside the housing 11 is not local but dispersed and rises uniformly. At this time, since the air in the first cylindrical portion 15 is surrounded by the radiator plate 14 having a high temperature, the temperature in the first cylindrical portion 15 is higher than the air in other places. On the other hand, the heat conducted to the circuit board 13 also spreads throughout the copper foil of the circuit board 13 thereafter, and is transmitted to the air in contact with the surface of the circuit board 13. However, in this case, since the surface of the circuit board 13 is usually made of an insulator having low thermal conductivity, the heat transfer from the copper foil of the circuit board 13 to the surrounding air has a large thermal resistance and a small heat transfer amount.
[0041]
The air heated in this manner has a low density, generates buoyancy and generates natural convection, but the temperature of the air inside the first tubular portion 15 is higher than the air in other places, so that the chimney effect is obtained. As a result, the passing wind force of the air represented by the air path 20 increases, and a higher wind speed can be obtained.
[0042]
Thereafter, the ascending air is discharged out of the housing 11 through the ventilation hole areas 16a and 16c according to a path represented by the outflow air path 19. On the other hand, new cold air flows into the housing 11 through the ventilation hole areas 16b and 16c according to a path represented by the inflow air path 18.
[0043]
As described above, the heat radiating means according to the first embodiment of the present invention has the effect of the conventional heat radiating plate, that is, since the heat is diffused and radiated into the inside of the housing 11, the accessible portion of the housing 11 is locally In addition to the fact that the temperature does not become high or the heat-sensitive parts are not damaged, natural convection is promoted by the chimney effect in the first tubular portion 15, and therefore, the Also increases the amount of heat transfer.
[0044]
Further, by forming the first cylindrical portion 15, the total surface area of the heat sink 14 can be increased, and in addition, the first surface can be adjusted according to the size and shape of the housing 11 and the arrangement of adjacent mounting components. Since the shape of the cylindrical portion 15 can be adjusted, the degree of freedom in design is high, and therefore, there is no hindrance to downsizing of the housing 11, and effective heat radiation can be achieved.
[0045]
With such a simple structure of the heat radiating plate, a synergistic effect of an increase in the amount of heat transfer and an increase in the total surface area can be obtained, and the heat radiation of the electronic integrated circuit 12 can be improved.
[0046]
(Embodiment 2)
FIG. 3 is a cross-sectional view of main parts of a small terminal device according to Embodiment 2 of the present invention, and FIG. 4A is a cross-sectional view of main parts of another example of a small terminal device according to Embodiment 2 of the present invention. FIG. 4B is a cross-sectional view of a main part of another small terminal device according to the second embodiment of the present invention. In FIG. 4, the cross section is a plane parallel to the xy plane of the small terminal device and including the electronic integrated circuit and the first cylindrical portion.
[0047]
As shown in FIG. 3, the small terminal device is formed by bending the other end of the heat sink 14 in the first embodiment, which is laterally separated from the first tubular portion 15, toward the circuit board 13. The radiator plate 14 and the circuit board 13 form a cylindrical portion 21 in the second vertical direction.
[0048]
In such a configuration, the heat from the electronic integrated circuit 12 is transmitted to the heat radiating plate 14 and the circuit board 13 and transmitted to the surrounding air in the same manner as in the first embodiment.
At this time, since the air in the second tubular portion 21 is surrounded by the heat radiating plate 14 and the circuit board 13, which are at a high temperature, the air is the same as the first tubular portion 15 described in the first embodiment. The air temperature is higher than the air temperatures outside the first and second cylindrical portions. Therefore, the chimney effect is obtained also in the second cylindrical portion 21 in the same manner as in the first cylindrical portion 15 described in the first embodiment, and the wind power of the air in the second cylindrical portion 21 increases. , Higher wind speeds are obtained. The subsequent air flow is the same as in the first embodiment.
[0049]
As described above, in the heat radiating unit according to the second embodiment of the present invention, the surface area of heat radiating plate 14 that comes into contact with air having a higher wind speed can be increased, so that the heat transfer coefficient of heat radiating plate 14 also increases. In addition, the increase in the flow of air through the air promotes natural convection inside the housing 11 and increases ventilation, so that the heat radiation effect of the electronic integrated circuit 12 is further improved.
[0050]
4A and 4B, even when there are a plurality of electronic integrated circuits 12a and 12b, the other ends of the heat sinks 14a and 14b are bent toward the circuit board 13. Thus, the second tubular portions 21a and 21b are formed, and the same effects as above can be achieved.
[0051]
(Embodiment 3)
FIG. 5 is a cross-sectional view of a main part of the small terminal device according to Embodiment 3 of the present invention. The cross section is a plane parallel to the xy plane of the small terminal device and including the electronic integrated circuit and the first and second cylindrical portions.
[0052]
In this small-sized terminal device, as shown in FIG. 5, a thermally conductive thermal via 31 is provided on the circuit board 13 in the second embodiment, and the second tubular portion 21 of the heat dissipation plate 14 is formed. The configuration is characterized in that the end of the bent portion of the plate 14 is brought into contact with the thermal via 31 via the heat conductive sheet 32.
[0053]
In such a configuration, when heat is generated from the electronic integrated circuit 12, one of the heat is transmitted to the radiator plate 14 in contact with the electronic integrated circuit 12, and the other is transmitted to the circuit board 13. The former is transmitted to the surrounding air of the radiator plate 14 while obtaining the chimney effect as in the second embodiment. On the other hand, the heat conducted to the circuit board 13 spreads throughout the copper foil of the circuit board 13 and spreads throughout, and the heat transfer route is transmitted to the air in contact with the surface of the circuit board 13 as in the first embodiment. There is a heat transfer route that conducts to the heat sink 14 via the thermal via 31 and the heat conductive sheet 32.
[0054]
In this case, as described in the first embodiment, in the former case, the amount of heat transfer to the air is small. However, in the latter case, since the thermal conductivity of the thermal via 31 and the thermal conductive sheet 32 is good, the thermal resistance when heat moves to the heat sink 14 is small. Therefore, heat transfer through the latter is positively performed, and as a result, the temperature of the circuit board 13 decreases. Therefore, the heat transfer from the electronic integrated circuit 12 to the circuit board 13 is also positively performed, and as a result, the temperature of the electronic integrated circuit 12 also decreases.
[0055]
The heat thus conducted to heat radiating plate 14 is then transmitted to the surrounding air in the same manner as in the second embodiment. The flow of air thereafter is the same as in the second embodiment.
[0056]
As described above, in the heat radiating means according to the third embodiment of the present invention, the amount of heat radiated from the circuit board 13 is also improved, so that the heat of the electronic integrated circuit 12 can be more effectively radiated.
[0057]
Further, the temperature of the heat sink 14 further rises due to heat conduction from the circuit board 13. Therefore, the temperature of the air in the first cylindrical portion 15 or the second cylindrical portion 21 becomes higher, and the wind power due to the chimney effect is further increased. In other words, natural convection can be expected to be further promoted, and the heat dissipation of the electronic integrated circuit 12 can be extremely effectively acted on.
[0058]
Note that, for example, even when there are a plurality of electronic integrated circuits 12a and 12b as shown in FIG. 6, the ends of the bent portions of the heat sinks 14a and 14b are connected to the thermal vias 31a and 32b via the heat conductive sheets 32a and 32b. It is possible to obtain the same effect as described above by contacting with 31b.
[0059]
(Embodiment 4)
FIG. 7 is a perspective view showing a schematic configuration of a small terminal device according to Embodiment 4 of the present invention, FIG. 8 (a) is a side view of a main part of the small terminal device, and FIG. 8 (b) is FIG. 8 is a cross-sectional view of a plane parallel to the yz plane of the small terminal device and including the electronic integrated circuit, the tubular portion, and the exhaust ventilation hole area.
[0060]
This small terminal device is configured as shown in FIGS. 7 and 8, that is, in the configuration of each of the above-described embodiments, the housing 11 has a side surface and an upper portion as shown by a two-dot chain line. At the position, there is an exhaust ventilation hole area 43 formed by the designer assuming an exhaust hole. A radiator plate 41 for contacting the electronic integrated circuit 12 to promote heat radiation secures a surface area as much as possible in the x direction, and a substantially upper portion of the electronic integrated circuit 12 is formed in a cylindrical shape. It has a vertical cylindrical portion 42. Further, it is characterized in that the cylindrical portion exhaust hole 44 at the upper end thereof is positioned so as to be substantially opposed to the exhaust ventilation hole area 43.
[0061]
In the drawing, 45 is an inflow air path flowing into the housing 11 from the ventilation hole area 16b, 46a is an outflow air path flowing out of the housing 11 from the ventilation hole area 16a, and 46b is the exhaust ventilation. An outflow air path 47 flowing out of the housing 11 from the hole area 43 is an air path inside the tubular portion 42.
[0062]
Next, the heat radiating means of the electronic integrated circuit 12 in the small terminal device having such a configuration will be described.
[0063]
First, when the small terminal device operates and generates heat from the electronic integrated circuit 12, this heat is transmitted to the radiator plate 41 and the circuit board 13 and transmitted to the surrounding air in the same manner as in the first embodiment. Become. The air warmed in this manner has a reduced density, generates buoyancy and generates natural convection. However, in the cylindrical portion 42, as in the first embodiment, the air represented by the air path 47 by the chimney effect is used. The passing wind power increases, and a higher wind speed is obtained.
[0064]
Thereafter, the rising air in the cylindrical portion 42 is exhausted through the cylindrical portion exhaust hole 44, and at this time, the cylindrical portion exhaust hole 44 and the exhaust ventilation hole area 43 are arranged so as to be close to each other and substantially opposed to each other. Therefore, most of the air exhausted from the cylindrical portion exhaust hole 44 follows the path represented by the outflow air path 46b and is discharged to the outside of the housing 11 through the exhaust ventilation hole area 43. Similarly to the first embodiment, the rising air outside the cylindrical portion 42 is discharged to the outside of the housing 11 through the ventilation hole area 16a or the exhaust ventilation hole area 43 according to a path represented by the outflow air path 46a or 46b. Will be. On the other hand, new cold air flows into the housing 11 via the ventilation hole area 16b according to a path represented by the inflow air path 45.
[0065]
As described above, in the heat radiating unit according to the fourth embodiment of the present invention, even when the exhaust ventilation hole area 43 provided by the designer at the time of design assuming the exhaust is provided on the side surface of the housing 11, the cylindrical portion is provided. Since the air warmed in 42 can be smoothly guided to the exhaust ventilation hole area 43, unexpected intake action can be prevented in the exhaust ventilation hole area 43, and a reliable exhaust action can be realized. In other words, ventilation from the intake to exhaust of the air can be performed as designed, and a reliable heat radiation design can be implemented.
[0066]
In addition, since the cylindrical portion 42 is formed almost to a position close to the exhaust ventilation hole area 43, the cylindrical portion 42 has a longer configuration, and as a result, the wind power due to the chimney effect is further increased. Therefore, the amount of heat transfer from the heat radiating plate 41 to the air further increases, and natural convection is promoted. Needless to say, the fact that the cylindrical portion 42 is elongated and the total surface area of the heat radiating plate 41 is increased is extremely advantageous for heat radiation.
[0067]
As described above, due to the synergistic effect of the air flow path setting by the heat radiating plate 41, the increase in the heat transfer amount in the cylindrical portion 42 due to the promotion of the chimney effect, and the increase in the total surface area of the heat radiating plate 41, The heat radiation effect is significantly improved.
[0068]
Although the fourth embodiment shows an example applied to the first embodiment, there is no problem if applied to the second or third embodiment.
[0069]
(Embodiment 5)
FIG. 9A is a side view of a main part of a small terminal device according to Embodiment 5 of the present invention, and FIG. 9B is a sectional view taken along line AA in FIG. 9A.
[0070]
This small terminal device is configured as shown in FIG. 9, that is, in each of the above-described embodiments, the casing 11 is formed on the side surface and at the upper position, assuming that the exhaust hole is provided by the designer. Exhaust vent hole area 53 is provided. The heat radiating plate 51 for contacting the electronic integrated circuit 12 to promote heat radiation has a surface area as long as it is allowed in the x direction, and a substantially upper portion of the electronic integrated circuit 12 is formed in a cylindrical shape. The housing 11 further includes a cut-and-bent portion 54 cut and bent toward the side surface of the housing 11. In addition, the present invention is characterized in that the cut and bent portion 54 of the heat sink 51 is positioned so as to be substantially opposed to the exhaust ventilation hole area 53 of the housing 11.
[0071]
Next, the heat radiating means of the electronic integrated circuit 12 in the small terminal device having such a configuration will be described. First, when the small terminal device operates and generates heat from the electronic integrated circuit 12, this heat flows into the heat radiating plate 51 and the circuit board 13 and is conducted to the heat radiating plate 51 in the same manner as in the first embodiment. The heat is transmitted from the entire heat radiating plate 51 to the surrounding air. At this time, since the cut and bent portion 54 and the exhaust ventilation hole area 53 are disposed close to each other and substantially opposed to each other, the air heated and heated by the heat transfer near the cut and bent portion 54 passes through the exhaust ventilation hole area 53. It is easy to be discharged out of the housing 11.
[0072]
In the cylindrical portion 52, a chimney effect can be obtained as in the first embodiment.
[0073]
Further, the operation of ventilating the other air to the housing 11 is the same as in the fourth embodiment.
[0074]
As described above, in the heat radiating unit according to the fifth embodiment of the present invention, as in the fourth embodiment, from the intake of air to the housing 11 to the exhaust thereof, ventilation substantially as expected by the designer at the time of design can be expected. Further, since the cut-and-bent portion 54 is formed almost to a position close to the exhaust ventilation hole area 53, it goes without saying that the total surface area of the heat radiating plate 51 increases, which is extremely advantageous for heat radiation.
[0075]
As described above, since the heat transfer path is set by conduction using the shape of the heat sink 51, the amount of heat transfer in the tubular portion 52 is increased by the chimney effect, and the total surface area of the heat sink 51 is increased, a The heat radiation of the integrated circuit 12 is significantly improved.
[0076]
Although the fifth embodiment shows an example applied to the first embodiment, there is no problem if applied to the second or third embodiment.
[0077]
FIG. 10 is a diagram showing another example of the fifth embodiment. In this embodiment, a narrowed portion 55 is provided instead of the cut and bent portion 54. In this configuration, in addition to the above-described effects, the air flow path gradually narrows in the throttle portion 55, so that the flow velocity of the rising air temporarily increases, and as a result, the amount of heat transfer from the heat sink to the air increases. The effect is obtained.
[0078]
(Embodiment 6)
FIG. 11 is a perspective view showing a schematic configuration of a small terminal device according to Embodiment 6 of the present invention, FIG. 12 (a) is a side view of a main part of the small terminal device, and FIG. 12 (b) is FIG. FIG. FIG. 12 is a cross-sectional view of a side surface and a plane parallel to the xy plane of the small terminal device and including the first electronic integrated circuit and the first cylindrical portion, and the second electronic integrated circuit and the second cylindrical portion. And
[0079]
This small terminal device is configured as shown in FIGS. That is, the circuit board 13 provided vertically in the housing 11 has an electronic integrated circuit 61a having a large allowable temperature rise value and large power consumption as shown by a broken line, and an electronic integrated circuit 61a having a large allowable temperature rise value as also shown by a broken line. The electronic integrated circuit 61b, which is small and consumes a large amount of power, is mounted at an appropriate distance in the horizontal direction. A radiator plate 62 that is provided vertically in the housing 11 and that contacts the electronic integrated circuits 61a and 61b to promote heat radiation is formed in a cylindrical shape that substantially surrounds an upper portion of the electronic integrated circuit 61a. A vertical first cylindrical portion 63a and a vertical second cylindrical portion 63b formed in a cylindrical shape substantially surrounding an upper portion of the electronic integrated circuit 61b are formed. A cutting bent portion 64 protruding toward the circuit board 13 is provided between the first bent portion 61b and the second bent portion 61b.
[0080]
Next, the heat radiating means of the electronic integrated circuits 61a and 61b in the small terminal device having such a configuration will be described. First, when the small terminal device operates and generates heat from the electronic integrated circuits 61a and 61b, one of the heat is conducted to the radiator plate 62 in contact with the electronic integrated circuits 61a and 61b, and the other to the circuit board 13. Conduct. The former is further transmitted to the air in contact with the surface of the heat radiating plate 62 while conducting to the entire heat radiating plate 62. At this time, since a hole corresponding to the cut-and-bent portion 64 is formed in the heat sink 62, the cross-sectional area is small at this portion, and the resistance to heat transfer due to conduction increases. Therefore, the amount of heat transfer between the first tubular portion 63a and the second tubular portion 63b is small. That is, heat transfer due to conduction is hardly performed between the electronic integrated circuits 61a and 61b.
[0081]
Further, since the air in the first tubular portion 63a and the second tubular portion 63b is surrounded by the high-temperature radiator plate 62, the temperature is higher than the air in other places. I have. On the other hand, the heat conducted to the circuit board 13 also spreads throughout the copper foil of the circuit board 13 thereafter, and is transmitted to the air in contact with the surface of the circuit board 13. However, in this case, since the surface of the circuit board 13 is usually made of an insulator having a low thermal conductivity, heat transfer is large and heat transfer is small when transferring heat from the copper foil of the circuit board 13 to the surrounding air.
[0082]
The air warmed in this manner has a reduced density, generates buoyancy and generates natural convection, but the temperature of the air inside the first cylindrical portion 63a and the second cylindrical portion 63b is different from that of the other portions. Since it is higher than air, the wind power is increased due to the chimney effect, and a higher wind speed is obtained. Further, since the air movement between the electronic integrated circuits 61a and 61b is prevented at the cut and bent portion 64, heat transfer by air transmission between the electronic integrated circuits 61a and 61b is hardly performed.
[0083]
The subsequent operation of ventilating the air into the housing 11 is the same as in the first embodiment.
[0084]
As described above, in the heat radiating unit according to the sixth embodiment of the present invention, the same heat radiating effect as that of the first embodiment can be obtained even when a plurality of electronic integrated circuits exist. Further, since heat transfer between the electronic integrated circuits 61a and 61b can be suppressed, the thermal effect from the electronic integrated circuit 61a side to the electronic integrated circuit 61b having a small margin to the allowable temperature rise value due to self-heating is reduced. It does not cause any damage. As described above, heat radiation of a plurality of electronic integrated circuits can be performed by one heat radiation plate, so that inexpensive and effective heat radiation can be realized.
[0085]
FIG. 13 shows another example of the sixth embodiment. This is configured such that the cut-and-bent portion 64 of the heat sink 62 penetrates through a through hole 65 provided in the circuit board 13.
[0086]
With such a configuration, in addition to the above-described effects, the copper foil distance of the circuit board 13 connecting the electronic integrated circuits 61a and 61b is increased, so that the heat conduction resistance of the copper foil is increased, and the electronic integrated circuits 61a and 61b The amount of heat transfer in the circuit board 13 between them also decreases. Therefore, the thermal effect from the electronic integrated circuit 61a can be further reduced, which is more effective.
[0087]
(Embodiment 7)
FIG. 14 is a cross-sectional view of a main part of a small terminal device according to Embodiment 7 of the present invention. In the drawing, a cross section of a plane parallel to the xy plane of the small terminal device and including the first electronic integrated circuit and the first cylindrical portion and the second electronic integrated circuit and the second cylindrical portion is shown.
[0088]
In this small terminal device, as shown in FIG. 14, a thermally conductive thermal via 66 is provided on the circuit board 13 according to the sixth embodiment, and the end of the cut-and-bent portion 64 of the heat sink 62 is thermally conductive. It is characterized in that it is in contact with the thermal via 66 via the conductive sheet 67.
[0089]
In such a configuration, when heat is generated from the electronic integrated circuits 61a and 61b, one of the heat is transmitted to the radiator plate 62 in contact with the electronic integrated circuits 61a and 61b, and the other is transmitted to the circuit board 13. . The former is transmitted to the surrounding air of the heat radiating plate 62 while obtaining the chimney effect similarly to the sixth embodiment. On the other hand, the heat conducted to the circuit board 13 spreads throughout the copper foil of the circuit board 13 and spreads, and the heat transfer route is transmitted to the air in contact with the surface of the circuit board 13 as in the sixth embodiment. And a heat transfer route for conducting heat to the heat sink 62 via the thermal via 66 and the heat conductive sheet 67.
[0090]
In this case, as described in the sixth embodiment, in the former case, the amount of heat transfer to the air is small. However, in the latter case, since the thermal conductivity of the thermal via 66 and the thermal conductive sheet 67 is good, the thermal resistance when heat is transferred to the heat radiating plate 62 is small. Therefore, heat transfer through the latter is positively performed, and as a result, the temperature of the circuit board 13 decreases. Therefore, the heat transfer from the electronic integrated circuits 61a and 61b to the circuit board 13 is also positively performed, and as a result, the temperature of the electronic integrated circuits 61a and 61b also decreases.
[0091]
As described above, the heat conducted through the copper foil in the circuit board 13 smoothly moves to the heat radiating plate 62 side, so that the amount of heat transfer in the circuit board 13 between the electronic integrated circuits 61a and 61b is small. The heat thus conducted to heat radiating plate 62 is then transmitted to the surrounding air in the same manner as in the sixth embodiment. The subsequent air flow is the same as in the sixth embodiment.
[0092]
According to the heat radiating means in the seventh embodiment of the present invention, even when a plurality of electronic integrated circuits are present, in addition to the same heat radiating effect as in the sixth embodiment, heat transfer in the circuit board 13 between the electronic integrated circuits 61a and 61b is achieved. Since the amount of heat is suppressed and the amount of heat radiation from the circuit board 13 is also improved, more effective heat radiation of the electronic integrated circuits 61a and 61b becomes possible.
[0093]
Further, in the same manner as in the third embodiment, the temperature of radiator plate 62 further rises due to heat conduction from circuit board 13, so that the air in first cylindrical portion 63a and second cylindrical portion 63b becomes more As the temperature rises, the wind power due to the chimney effect will increase further. That is, further promotion of natural convection can be expected, and the heat dissipation of the electronic integrated circuits 61a and 61b can be extremely effectively acted.
[0094]
(Embodiment 8)
15 (a) is a side view of a main part of a small terminal device according to Embodiment 8 of the present invention, and FIG. 15 (b) is a cross-sectional view along AA in FIG. 15 (a). In the figure, the cross section is a plane parallel to the xy plane of the small terminal device and including the two electronic integrated circuits and the cut and bent portion.
[0095]
This small terminal device is configured as shown in FIG. That is, the two electronic integrated circuits 61a and 61b are mounted on the circuit board 13 provided vertically in the housing 11 with an appropriate space in the horizontal direction as shown by broken lines. A heat radiating plate 62 provided vertically in the housing 11 and abutting on the electronic integrated circuits 61a and 61b to promote heat radiation is located between the two electronic integrated circuits 61a and 61b and located on the circuit board 13 side. And bent end portions 71a and 71b whose both ends are bent toward the circuit board 13 side. The first bent portion 71a, the cut bent portion 64, and the circuit board 13 constitute a first tubular portion 72a, and the end bent portion 71b, the cut bent portion 64, and the circuit board 13 form a first cylindrical portion. It is characterized in that the second cylindrical portion 72b is formed.
[0096]
Next, the heat radiating means of the electronic integrated circuits 61a and 61b in the small terminal device having such a configuration will be described.
[0097]
First, when the small terminal device operates and generates heat from the electronic integrated circuits 61a and 61b, one of the heat is conducted to the radiator plate 62 in contact with the electronic integrated circuits 61a and 61b, and the other to the circuit board 13. Conduct. The former is further transmitted to the air in contact with the surface of the heat radiating plate 62 while conducting to the entire heat radiating plate 62. At this time, as in the sixth embodiment, the amount of heat transfer due to heat conduction between the first tubular portion 72a and the second tubular portion 72b via the heat dissipation plate 62 is small. That is, heat transfer due to conduction between the electronic integrated circuits 61a and 61b is small.
[0098]
Further, since the air in the first tubular portion 72a and the second tubular portion 72b is surrounded by the radiating plate 62 and the circuit board 13, which are at high temperatures, the temperature is higher than the air in other places. It is in a state. Therefore, the heat is transmitted to the surrounding air of the heat sink 62 while obtaining the chimney effect as in the sixth embodiment. On the other hand, the heat conducted to the circuit board 13 is the same as in the sixth embodiment. The subsequent ventilation operation of the air is the same as in the sixth embodiment.
[0099]
As described above, in the heat radiating means according to the eighth embodiment of the present invention, even when a plurality of electronic integrated circuits exist, in addition to the heat radiating effect similar to that of the sixth embodiment, the processing of the heat radiating plate is easy, so that the cost is further reduced. A heat sink can be configured.
[0100]
FIG. 16 is a diagram showing another example of the eighth embodiment. This has a configuration in which the cut-and-bent portion 64 is penetrated through the through-hole 65 provided in the circuit board 13, and the same effects as described above can be obtained.
[0101]
Also, as shown in FIG. 17, the end faces of the cut portion 64 and the end bent portions 71a and 71b are in contact with the thermal vias 66a, 66b and 66c via the heat conductive sheets 67a, 67b and 67c, respectively. There is no problem at all.
[0102]
With such a configuration, in addition to the above-described effects, heat transfer in the circuit board 13 between the electronic integrated circuits 61a and 61b can be suppressed, so that a margin to an allowable temperature rise value due to self-heating is small. The thermal effect from the electronic integrated circuit 61a side on the circuit 61b is reduced and effective.
[0103]
【The invention's effect】
As is clear from the above description, according to the present invention, when a small terminal device is installed, a circuit board on which a heat-generating component such as an electronic integrated circuit is mounted is brought into contact with the heat-generating component. In the case where the heat radiating plate and the heat radiating plate are configured to be attached in parallel with the direction of gravity, the heat radiating plate may be formed into a tubular portion, or the heat radiating plate and the circuit board may constitute a substantially cylindrical portion. Since the chimney effect is obtained in the cylindrical portion and natural convection is promoted, the heat radiation effect can be improved.
[0104]
In addition, by providing thermal vias on the circuit board and contacting the thermal vias and the heatsink via a good conductor, heat is transferred from the circuit board to the heatsink, improving the heat dissipation effect of the circuit board. Is also possible. Therefore, the temperature rise of the heat generating component can be further suppressed.
[0105]
Furthermore, utilizing the shape of the cylindrical portion composed of the heat sink, it is possible to set the exhaust air flow path of the warmed air, and to utilize the shape of the heat sink itself to form the heat conduction path that has conducted to the heat sink. By doing so, it is possible to provide a small terminal device that is safe and reliable without causing inconveniences such as danger to users and failure of parts without allowing air to be ventilated almost as designed. Become.
[0106]
Furthermore, when there are a plurality of heat generating components, a cut and bent portion is formed from the heat sink so as to partition between the heat generating components, or the cut and bent portion is configured to penetrate the circuit board, or By configuring the cut-and-bent portion to be in contact with a thermal via provided on the circuit board via a good thermal conductor, it is possible to reduce the thermal influence of the plurality of heat-generating components. Therefore, even if there are a plurality of heat generating components, effective heat radiation can be achieved with a simple configuration of one heat radiating plate, and inexpensive heat radiating means can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a schematic configuration of a small terminal device according to Embodiment 1 of the present invention.
FIG. 2A is a side view of a main part of the small terminal device.
(B) AA cross-sectional view in FIG.
(C) BB sectional view in FIG.
FIG. 3 is a cross-sectional view of a main part of the small terminal device according to the second embodiment of the present invention.
FIG. 4A is a cross-sectional view of a main part of another example of a small terminal device according to the second embodiment of the present invention.
(B) Cross-sectional view of main parts of another small terminal device according to the second embodiment of the present invention.
FIG. 5 is a cross-sectional view of a main part of a small terminal device according to Embodiment 3 of the present invention.
FIG. 6 is a cross-sectional view of a main part of another example of a small terminal device according to the third embodiment of the present invention;
FIG. 7 is a perspective view showing a schematic configuration of a small terminal device according to Embodiment 4 of the present invention.
FIG. 8A is a side view of a main part of the small terminal device.
(B) AA sectional view in FIG.
FIG. 9A is a side view of a main part of a small terminal device according to Embodiment 5 of the present invention.
(B) AA sectional view in FIG.
FIG. 10A is a side view of a main part of another example of a small terminal device according to the fifth embodiment of the present invention.
(B) AA sectional view in FIG.
FIG. 11 is a perspective view showing a schematic configuration of a small terminal device according to Embodiment 6 of the present invention.
FIG. 12A is a side view of a main part of the small terminal device.
(B) AA sectional view in FIG.
FIG. 13 is a cross-sectional view of a main part of another example of a small terminal device according to the sixth embodiment of the present invention.
FIG. 14 is a cross-sectional view of a main part of a small terminal device according to Embodiment 7 of the present invention.
FIG. 15 (a) is a side view of a main part of a small terminal device according to Embodiment 8 of the present invention.
(B) AA sectional view in FIG.
FIG. 16 is a cross-sectional view of a main part of another example of a small terminal device according to the eighth embodiment of the present invention.
FIG. 17 is a cross-sectional view of a main part of another small terminal device according to the eighth embodiment of the present invention;
[Explanation of symbols]
11 Case
12, 12a, 12b Electronic integrated circuit
13 Circuit board
14, 14a, 14b, 41, 51, 62 heat sink
15, 15a, 15b, 63a, 72a First cylindrical portion
16a, 16b, 16c Ventilation area
17 Stand
18, 45 Inflow air path
19, 46a, 46b Outflow air path
20, 47 Air path
21, 21a, 21b, 63b, 72b Second cylindrical part
31, 31a, 31b, 66, 66a, 66b, 66c Thermal via
32, 32a, 32b, 67, 67a, 67b, 67c Thermal conductive sheet
42, 52 tubular part
43, 53 Exhaust vent area
44 Cylindrical exhaust hole
54, 64 Cut and bent part
55 Aperture
61a Electronic Integrated Circuit
61b Electronic Integrated Circuit
65 Through hole
71a, 71b End bent part

Claims (12)

電子集積回路で代表されるような発熱部品が実装された回路基板と、前記発熱部品に当接された熱伝導性の良い放熱板と、外気との換気を可能とする通風孔が設けられている筐体を備え、前記筐体を正常使用状態に設置したとき前記回路基板と前記放熱板は前記筐体内において重力方向に平行に設置される構成であって、前記放熱板は一側端に前記発熱部品との当接部分の概ね上部分の空間を囲むような縦方向の第一の筒状部を有し、他側端が前記第一の筒状部に対し横方向に離れた位置になるようにしたことを特徴とする小型端末装置。A circuit board on which a heat-generating component such as an electronic integrated circuit is mounted, a heat-radiating plate having good heat conductivity in contact with the heat-generating component, and a ventilation hole that allows ventilation with outside air are provided. When the housing is installed in a normal use state, the circuit board and the heat radiating plate are configured to be installed in the housing in parallel with the direction of gravity, and the heat radiating plate is provided at one end. A first cylindrical portion in a vertical direction so as to surround a space of a substantially upper portion of the contact portion with the heat-generating component, and a position where the other side end is laterally separated from the first cylindrical portion; A small terminal device characterized in that it is made to be. 放熱板は、第一の筒状部に対し横方向に離れている他側端を回路基板側へ折り曲げてなる折り曲げ部を有し、前記回路基板と前記放熱板とにより縦方向の第二の筒状部が形成される構成としたことを特徴とする請求項1記載の小型端末装置。The radiator plate has a bent portion formed by bending the other end laterally separated from the first tubular portion toward the circuit board, and the circuit board and the radiator plate form a second longitudinal portion. 2. The small terminal device according to claim 1, wherein a cylindrical portion is formed. 回路基板は熱的に導通のあるサーマルビアを有し、放熱板の折り曲げ部の端部が、前記サーマルビアと弾力性のある熱良導体を介して接触するように構成したことを特徴とする請求項2記載の小型端末装置。The circuit board has a thermally conductive thermal via, and an end of a bent portion of the heat sink is configured to be in contact with the thermal via via a resilient thermal conductor. Item 3. The small terminal device according to Item 2. 筐体は側面に排気用通風孔を有しており、放熱板における第一あるいは第二の筒状部の片方の端部を前記排気用通風孔と近接して対峙するように位置させたことを特徴とする請求項1、2または3のいずれかに記載の小型端末装置。The housing has an exhaust ventilation hole on the side surface, and one end of the first or second cylindrical portion of the heat sink is positioned so as to be close to and facing the exhaust ventilation hole. The small terminal device according to any one of claims 1, 2 and 3, wherein 筐体は側面に排気用通風孔を有し、放熱板は切り曲げ部を有しており、前記放熱板の切り曲げ部を前記筐体の排気用通風孔と近接して対峙するように位置させたことを特徴とする請求項1、2または3のいずれかに記載の小型端末装置。The housing has an exhaust ventilation hole on the side surface, and the heat sink has a cut-and-bent portion, and the cut-and-bent portion of the heat sink is positioned so as to face and close to the exhaust air-hole of the housing. The small terminal device according to any one of claims 1 to 3, wherein 筐体は側面に排気用通風孔を有し、放熱板は絞り部を有しており、前記放熱板の絞り部を前記筐体の排気用通風孔と近接して対峙するように位置させたことを特徴とする請求項1、2または3のいずれかに記載の小型端末装置。The housing has an exhaust ventilation hole on the side surface, the heat sink has a throttle, and the throttle of the heat sink is positioned so as to be close to and facing the exhaust ventilation hole of the housing. The small terminal device according to any one of claims 1, 2 and 3, wherein: 電子集積回路で代表されるような複数の発熱部品が実装された回路基板と、前記各発熱部品に当接された熱伝導性の良い放熱板と、外気との換気を可能とする通風孔が設けられている筐体を備え、前記筐体を正常使用状態に設置したとき前記回路基板と前記放熱板は前記筐体内において重力方向に平行に設置される構成であって、前記放熱板には前記複数の発熱部品との当接部分の各々の概ね上部分の空間を囲む縦方向の複数の筒状部を形成してあり、かつ、前記複数の発熱部品の間を間仕切るように前記回路基板側への切り曲げ部を設けたことを特徴とする小型端末装置。A circuit board on which a plurality of heat-generating components such as an electronic integrated circuit is mounted, a heat-radiating plate having good heat conductivity in contact with each of the heat-generating components, and a ventilation hole for ventilating outside air are provided. The circuit board and the heat radiating plate are provided to be provided in the housing in parallel to the direction of gravity when the housing is provided in a normal use state, and the heat radiating plate includes A plurality of vertical cylindrical portions surrounding a space of a substantially upper portion of each of the abutting portions with the plurality of heat generating components are formed, and the circuit is configured to partition between the plurality of heat generating components. A small terminal device having a cut-and-bent portion toward a substrate. 回路基板には貫通孔を設け、放熱板に設けられた切り曲げ部が前記貫通孔を介して回路基板を貫通するよう構成したことを特徴とする請求項7記載の小型端末装置。The small terminal device according to claim 7, wherein a through hole is provided in the circuit board, and a cut-and-bent portion provided in the heat sink penetrates the circuit board through the through hole. 回路基板には熱的に導通のあるサーマルビアを設け、放熱板の切り曲げ部の端部が前記サーマルビアと弾力性のある熱良導体を介して接触するよう構成したことを特徴とする請求項7記載の小型端末装置。The circuit board is provided with a thermally conductive thermal via, and an end of a cut and bent portion of the heat radiating plate is configured to be in contact with the thermal via via an elastic thermal conductor. 7. The small terminal device according to 7. 電子集積回路で代表されるような複数の発熱部品が実装された回路基板と、前記各発熱部品に当接された熱伝導性の良い放熱板と、外気との換気を可能とする通風孔が設けられている筐体を備え、前記筐体を正常使用状態に設置したとき前記回路基板と前記放熱板は前記筐体内において重力方向に平行に設置される構成であって、前記放熱板には前記複数の発熱部品の間を間仕切るように前記回路基板側へ切り曲げた切り曲げ部と、両側端を前記回路基板側へ折り曲げてなる端部折り曲げ部を設けたことを特徴とする小型端末装置。A circuit board on which a plurality of heat-generating components such as an electronic integrated circuit is mounted, a heat-radiating plate having good heat conductivity in contact with each of the heat-generating components, and a ventilation hole for ventilating outside air are provided. The circuit board and the heat radiating plate are provided to be provided in the housing in parallel to the direction of gravity when the housing is provided in a normal use state, and the heat radiating plate includes A small terminal provided with a cut portion bent toward the circuit board so as to partition between the plurality of heat generating components, and an end bent portion formed by bending both side ends toward the circuit board. apparatus. 回路基板には貫通孔を設け、放熱板に設けられた切り曲げ部が前記貫通孔を介して回路基板を貫通するよう構成したことを特徴とする請求項10記載の小型端末装置。The small terminal device according to claim 10, wherein a through-hole is provided in the circuit board, and a cut-and-bent portion provided in the heat sink penetrates the circuit board through the through-hole. 回路基板には熱的に導通のあるサーマルビアを設け、放熱板の端部折り曲げ部および切り曲げ部の端部が前記サーマルビアと弾力性のある熱良導体を介して接触するよう構成したことを特徴とする請求項10記載の小型端末装置。The circuit board is provided with a thermally conductive thermal via, and the end portion of the end portion of the heat radiating plate and the end portion of the cut portion are configured to be in contact with the thermal via via a resilient thermal conductor. The small terminal device according to claim 10, wherein:
JP2002283162A 2002-09-27 2002-09-27 Compact terminal device Pending JP2004119812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283162A JP2004119812A (en) 2002-09-27 2002-09-27 Compact terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283162A JP2004119812A (en) 2002-09-27 2002-09-27 Compact terminal device

Publications (1)

Publication Number Publication Date
JP2004119812A true JP2004119812A (en) 2004-04-15

Family

ID=32277104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283162A Pending JP2004119812A (en) 2002-09-27 2002-09-27 Compact terminal device

Country Status (1)

Country Link
JP (1) JP2004119812A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123641A (en) * 2005-10-28 2007-05-17 Digital Electronics Corp Electronic device and case therefor
JP2008141930A (en) * 2006-12-05 2008-06-19 Auto Network Gijutsu Kenkyusho:Kk Electrical connection box
CN102110664A (en) * 2010-12-30 2011-06-29 广东易事特电源股份有限公司 Heat radiation structure for MOS transistors of high-power inverter
JP2011529268A (en) * 2008-07-25 2011-12-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Cooling device for cooling semiconductor dies
JP5208331B1 (en) * 2012-08-02 2013-06-12 三菱電機株式会社 Heat sink
JP2016143027A (en) * 2015-02-05 2016-08-08 三菱電機株式会社 Heat radiation body of heating element, and monitoring camera device including the same
JP2018114866A (en) * 2017-01-19 2018-07-26 株式会社ザクティ Drive recorder device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123641A (en) * 2005-10-28 2007-05-17 Digital Electronics Corp Electronic device and case therefor
JP4558627B2 (en) * 2005-10-28 2010-10-06 株式会社デジタル Electronic device casing and electronic device
JP2008141930A (en) * 2006-12-05 2008-06-19 Auto Network Gijutsu Kenkyusho:Kk Electrical connection box
JP2011529268A (en) * 2008-07-25 2011-12-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Cooling device for cooling semiconductor dies
CN102110664A (en) * 2010-12-30 2011-06-29 广东易事特电源股份有限公司 Heat radiation structure for MOS transistors of high-power inverter
JP5208331B1 (en) * 2012-08-02 2013-06-12 三菱電機株式会社 Heat sink
WO2014020748A1 (en) * 2012-08-02 2014-02-06 三菱電機株式会社 Heat dissipation plate
CN104509229A (en) * 2012-08-02 2015-04-08 三菱电机株式会社 Heat dissipation plate
JP2016143027A (en) * 2015-02-05 2016-08-08 三菱電機株式会社 Heat radiation body of heating element, and monitoring camera device including the same
JP2018114866A (en) * 2017-01-19 2018-07-26 株式会社ザクティ Drive recorder device

Similar Documents

Publication Publication Date Title
US7474527B2 (en) Desktop personal computer and thermal module thereof
CN109673139B (en) Heat dissipation system and aircraft with same
JP2001119181A (en) Cooling unit for electronic component and electronic apparatus
JP4039316B2 (en) Electronic equipment cooling structure
JP2004119812A (en) Compact terminal device
JP2007027520A (en) Radiator
JP2007049015A (en) Electronic device structure and electronic device using the same
JP2006019711A (en) Electrical junction box
JP6311222B2 (en) Electronic device and heat dissipation method
JP2006339223A (en) Heat dissipation structure of cpu
JP2001015969A (en) Cooling apparatus
JP2001257494A (en) Electronic apparatus
JP2002271073A (en) Cooling device for electronic equipment case body
JPH0374864A (en) Cooling structure of printed-circuit board
US20050199377A1 (en) Heat dissipation module with heat pipes
JP2005057070A (en) Heat radiating structure of electronic equipment
JPH10107192A (en) Heat sink
WO2016058396A1 (en) Communication system and communication device therefor
JP3540562B2 (en) Cooling system
JP2017157686A (en) Electronic device and storage device
JP4635670B2 (en) Cooling structure of electronic equipment unit
JP2005093969A (en) Semiconductor device cooler
JP4200876B2 (en) Electronic equipment cooling structure
JP3960102B2 (en) Cooling module
JP2005340745A (en) Electric and electronic device power supply unit