JP2004111057A - Conductive paste composition - Google Patents

Conductive paste composition Download PDF

Info

Publication number
JP2004111057A
JP2004111057A JP2002267836A JP2002267836A JP2004111057A JP 2004111057 A JP2004111057 A JP 2004111057A JP 2002267836 A JP2002267836 A JP 2002267836A JP 2002267836 A JP2002267836 A JP 2002267836A JP 2004111057 A JP2004111057 A JP 2004111057A
Authority
JP
Japan
Prior art keywords
silver powder
flaky silver
weight
conductive paste
flaky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002267836A
Other languages
Japanese (ja)
Other versions
JP3955805B2 (en
Inventor
Takayuki Aizawa
相澤 貴之
Kyoji Nomura
野村 恭司
Akio Takigawa
瀧川 章雄
Osamu Kajita
梶田 治
Masato Shimabayashi
嶋林 正人
Motonori Nishida
西田 元紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Nippon Pelnox Corp
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Nippon Pelnox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd, Nippon Pelnox Corp filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2002267836A priority Critical patent/JP3955805B2/en
Publication of JP2004111057A publication Critical patent/JP2004111057A/en
Application granted granted Critical
Publication of JP3955805B2 publication Critical patent/JP3955805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive paste exhibiting high conductivity even when the content of silver powder is low. <P>SOLUTION: The conductive paste composition comprises a flaky silver powder A having an average particle size of 3 to 8 μm, a specific surface area of 1.5 to 4.0 m<SP>2</SP>/g, and an apparent density of 0.4 to 1.1 g/cm<SP>3</SP>, a flaky silver powder B having an average particle size of 3 to 10 μm, an specific surface area of 0.6 to 1.2 m<SP>2</SP>/g, and an apparent density of 1.5 to 2.1 g/cm<SP>3</SP>, and a resin. The conductive paste composition contains the flaky silver powder A of 30 to 95 pts. wt., taking the total weight of the flaky silver powders A and B as 100 parts. The composition contains the flaky silver powders A and B in total at 35 to 85 wt% based on a solid component of the conductive paste. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は導電性ペースト組成物、特に銀粉および樹脂を含有する導電性ペーストに関する。
【0002】
【従来の技術】
従来、導電性ペーストとして、エポキシ樹脂などの熱硬化樹脂からなるバインダーに導電材料を分散したものが知られている。例えば厚さの異なる少なくとも2種類のりん片状金属粉及び樹脂組成物を含むペーストが知られている(例えば特許文献1参照)。ここにおいて、平均粒径が3.2μmで厚さが0.1μmのりん片状銀粉20重量部と平均粒径が7.7μmで厚さが0.5μmのりん片状銀粉80重量部を樹脂に配合している。
【0003】
【特許文献1】
特開2001−261974号公報(第3頁、実施例1)
【0004】
【発明が解決しようとする課題】
高い導電性を得るためにはこの導電性ペースト中の銀粉含有量を85重量%を超えるようにすることが多い。しかし省資源の観点からより低い銀粉含有率で高い導電性が得られる導電性ペーストが要望されている。
【0005】
本発明は、導電性ペースト中の銀粉含有量が低くても高い導電性が得られる導電性ペーストを提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、3〜8μmの平均粒径、1.5〜4.0m/gの比表面積および0.4〜1.1g/cmの見掛け密度を有する薄片状銀粉A、3〜10μmの平均粒径、0.6〜1.2m/gの比表面積および1.5〜2.1g/cmの見掛け密度を有する薄片状銀粉Bならびに樹脂を含有する導電性ペースト組成物であって、薄片状銀粉Aを薄片状銀粉Aと薄片状銀粉Bとの合計重量100部に対して30〜95重量部となる割合で含有し、そして薄片状銀粉Aと薄片状銀粉Bとの合計を導電性ペーストの固形分に対して35〜85重量%となるように含有する導電性ペースト組成物である。
【0007】
本発明の導電材料である銀粉として、3〜8μmの平均粒径、1.5〜4.0m/gの比表面積および0.4〜1.1g/cmの見掛け密度を有する薄片状銀粉Aと、3〜10μmの平均粒径、0.6〜1.2m/gの比表面積および1.5〜2.1g/cmの見掛け密度を有する薄片状銀粉Bを併用する。薄片状銀粉Aの平均粒径が3μm未満であるかまたは8μmを超える場合には、高い導電性が得られ難い。薄片状銀粉Bの平均粒径が3μm未満であるかまたは10μmを超える場合には、高い導電性が得られ難い。また薄片状銀粉Aの比表面積が1.5m/g未満であるかまたは薄片状銀粉Aの見掛け密度が1.1g/cmを超える場合には、塗膜層内での銀粉の重なりが少なくなり、塗膜の体積固有抵抗率が高くなる。また薄片状銀粉Aの比表面積が4.0m/gを超えるかまたは薄片状銀粉Aの見掛け密度が0.4g/cm未満である場合には、導電性ペーストの混練時に薄片状銀粉Aが変形を起こし、塗膜の体積固有抵抗率が高くなることがある。薄片状銀粉Bの比表面積が0.6m/g未満であるかまたは薄片状銀粉Bの見掛け密度が2.1g/cmを超える場合には、塗膜層内での銀粉の重なりが少なくなって塗膜の体積固有抵抗率が高くなる。また薄片状銀粉Bの比表面積が1.2m/gを超えるかまたは薄片状銀粉Bの見掛け密度が1.5g/cm未満である場合には、導電性ペーストの混練時に薄片状銀粉Bが変形を起こし、塗膜の体積固有抵抗率が高くなることがある。
【0008】
薄片状銀粉の原料粉は還元法、電解法、アトマイズ法などによって製造することができる。薄片状銀粉Aの原料粉はアトマイズ法または電解法により製造することが望ましく、薄片状銀粉Bの原料粉は還元法により製造することが望ましい。
【0009】
本発明において、導電性ペースト組成物中に、薄片状銀粉Aの重量は薄片状銀粉Aと薄片状銀粉Bとの合計重量100部に対して30〜95%となる割合で含有される。薄片状銀粉Aの割合が30%未満では体積固有抵抗率が大きくなる。またこの割合が95%を超えると、導電性ペーストの粘度が高くなって作業性が悪くなるまたこの割合が95%を超えると導電性はほぼ飽和するので、相対的にコストの高い薄片状銀粉Aの割合を95%以下にすることでコストダウンにもなる。薄片状銀粉Aのより好ましい割合は70〜95%である。この割合を75〜85%にすることにより硬化温度の変動による体積固有抵抗率の変動率を最も小さくすることができる。またこの割合を85〜95%にすることにより体積固有抵抗率を最も小さくすることができる。
【0010】
薄片状銀粉Bの見掛け密度と前記薄片状銀粉Aの見掛け密度の比が小さ過ぎたり大き過ぎると併用効果が小さくなって体積固有抵抗率が高くなり易くなる。従って薄片状銀粉Bは前記薄片状銀粉Aの見掛け密度の1.5〜5.0倍の見掛け密度を有することが好ましく、2.5〜4.5倍の見掛け密度を有することがより好ましい。これと同様の理由で薄片状銀粉Aは前記薄片状銀粉Bの比表面積の2.0〜5.0倍の比表面積を有することが好ましい。
【0011】
なお、薄片状銀粉の平均粒径はレーザー回折法で測定する。薄片状銀粉の比表面積は(株)島津製作所製 フローソーブII 2300を用いてBET法(気体吸着法)により測定する。また薄片状銀粉の見掛け密度はJIS Z 2504により測定する。なお、薄片状銀粉の厚みd(μm)は、銀の比重を10.5とし、薄片状銀粉の比表面積をS(m/g)として、d=0.19/S から計算することができる。
【0012】
導電性ペーストの固形分中の銀粉含有量が大きいほど得られる塗膜の導電性が高くなる。本発明において、薄片状銀粉Aと薄片状銀粉Bとの合計は導電性ペーストの固形分に対して35〜85重量%となるように含有される。35重量%未満では塗膜の体積固有抵抗率が高くなってしまう。85重量%を超えると、導電性の向上が飽和したり、塗膜の付着性が低下する。より好ましい含有率は50〜80重量%である。
【0013】
本発明において使用するバインダーである樹脂としては、常温で液状である樹脂でもよく、固形の樹脂を溶剤に溶解させたものでもよい。例えばアクリル樹脂、エポキシ樹脂、フェノール樹脂、エポキシ/フェノール樹脂のような熱硬化性樹脂、ポリエステルのような熱可塑性樹脂など一般の有機合成樹脂が使用できる。エポキシ樹脂、フェノール樹脂は固形でも溶剤に溶解させたものであればよい。銀粉の含有率は使用する樹脂の種類により調整させると良い。
【0014】
上記の熱硬化性樹脂に添加される硬化剤としては、アミン類、酸無水物類、イミダゾール、ジシアンジアミドなどの化合物系硬化剤やフェノール樹脂、ポリアミド樹脂等の樹脂系硬化剤が使用できる。
【0015】
固形樹脂を溶解するために、または粘度調整のために使用する溶剤は、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテルなどの有機溶剤を使用し、樹脂組成物に合わせて任意に使用すればよい。溶剤の使用量は、樹脂の種類、塗布方法、塗布厚みなどによって異なるが通常は、樹脂成分に対して20〜50重量%の範囲で用いられる。
【0016】
本発明の導電性ペーストには必要に応じて、カップリング剤、消泡剤などの添加剤を含有させることができる。本発明になる導電性ペーストは薄片状銀粉、樹脂組成物、溶剤、硬化剤および添加剤を、ニーダー、ディスパー、三本ロール等で均一に混合、分散して得られる。
【0017】
得られた導電性ペーストは基材表面に、バーコート法、ディップ法、フロー法、スピンコート法、スプレー法などの塗布方法により、透明プラスチックシート、フィルム、ガラス板などに塗布し、120〜200℃で30秒〜60分間加熱するかまたは電子線、紫外線、可視光線などの照射により硬化される。硬化された導電性塗膜の膜厚は通常、2〜50μmである。例えば電気、電子部品に適用する場合には導電性ペーストを例えば約5μmの最終厚みで電気、電子部品の所定部分に塗布硬化させることにより等価直列抵抗の小さな電極を形成させることができる。
【0018】
【発明の実施の形態】
次に、本発明を実施例及び比較例に基づき詳細に説明する。
【0019】
導電性ペーストには次の材料を使用した。
(1)薄片状銀粉として次のような4種を準備した。これらを表1にまとめて示す。なお薄片状銀粉(B−2)の比表面積は本発明の薄片状銀粉Bの比表面積よりも小さい。
薄片状銀粉(A−1)−−平均粒径5.4μm、比表面積2.34m/g、見かけ密度0.54g/cm、厚み0.08μm、「ナノメルトAg−XF301」福田金属箔粉工業(株)製。
薄片状銀粉(A−2)−−平均粒径4.6μm、比表面積1.95m/g、見かけ密度1.6g/cm、厚さ0.1μm、商品名「TCG1」、(株)徳力化学研究所製。
薄片状銀粉(B−1)−−平均粒径6.3μm、比表面積0.72m/g、見かけ密度1.98g/cm、厚み0.26μm、「シルコートAgC−A」福田金属箔粉工業(株)製。
薄片状銀粉(B−2)−−平均粒径7.7μm、比表面積0.38m/g、見かけ密度2.82g/cm、厚さ0.5μm。
【0020】
(2)樹脂組成物
フェノール樹脂−−「レヂトップPL−2243」、郡栄化学工業(株)製
エポキシ/フェノール樹脂−−エポキシ樹脂(「エピコート−1007」、ジャパンエポキシレジン(株)製)7重量部、フェノール樹脂(「ヒタノール−4010」日立化成工業(株)製)3重量部
ポリエステル樹脂−−「バイロン 200」、東洋紡績(株)製。
(3)溶剤
ジエチレングリコールモノエチルエーテル(「ECR」、ダイセル化学工業(株)製)
ジエチレングリコールモノブチルエーテル(「BCR」、ダイセル化学工業(株)製)
【0021】
[実施例1]
フェノール樹脂組成物を固形分として10重量部、ジエチレングリコールモノエチルエーテル(ECR)3重量部、薄片状銀粉(A−1) 12重量部、薄片状銀粉(B−1) 3重量部を混合攪拌し、三本ロールにて分散させて塗膜固形分中の導電粉含有率60%の導電性ペーストを得た。
【0022】
この導電性ペーストの導電性は次のようにして評価した。ガラス板に幅1mm、長さ163.5mm、厚さ約10μmになるように導電性ペーストを塗布し、その後に150℃、180℃または200℃で30分間加熱して塗膜を硬化させた。その硬化後の塗膜の体積固有抵抗率は次の測定値から算出した。抵抗値および塗膜膜厚はそれぞれデジタルマルチメーター(岩崎通信機(株)製)および表面粗度計(東京精密(株)製)で測定した。
【0023】
150℃、180℃および200℃にて硬化させた塗膜の体積固有抵抗率はそれぞれ0.73×10−4Ω・cm、0.66×10−4Ω・cmおよび0.66×10−4Ω・cmであった。導電性ペーストの配合比および塗膜の体積固有抵抗率を表2にまとめて示す。表中、100*(A−1)/[(A−1)+(B−1)]の欄には薄片状銀粉(A−1)と薄片状銀粉(B−1)との合計重量に対する薄片状銀粉(A−1)重量の比率を百分率で表している。導電性ペーストの固形分重量に対する薄片状銀粉Aと薄片状銀粉Bとの合計重量の割合(百分率)を銀粉含有率(重量%)で示している。また硬化温度150℃、180℃および200℃での体積固有抵抗率について100*[(最高値/最小値)−1]で表した硬化温度による体積固有抵抗率の変動の欄に示している。
【0024】
[実施例2〜4]
表2に示すように薄片状銀粉(A−1)および薄片状銀粉(B−1)の含有率を変えた他は実施例1と同様にして導電性ペーストを作成し、実施例1と同様に評価した。その結果を表2に示す。
【0025】
[比較例1〜3]
表2に示すように薄片状銀粉(A−1)および薄片状銀粉(B−1)の含有率を変えた他は実施例1と同様にして導電性ペーストを作成し、実施例1と同様に評価した。その結果を表2に示す。
【0026】
実施例1〜4では、銀粉含有率を60重量%とし、そして薄片状銀粉(A−1)と薄片状銀粉(B−1)との合計重量に対する薄片状銀粉(A−1)重量の比率を50〜90重量%とした場合、0.58〜0.88×10−4Ω・cmの体積固有抵抗率が得られた。これに対し銀粉含有率を60重量%とし薄片状銀粉(A−1)と薄片状銀粉(B−1)との合計重量に対する薄片状銀粉(A−1)重量の比率を20重量%(本発明の範囲外)とした比較例1で得られる体積固有抵抗率は1.99〜3.40×10−4Ω・cmの高い値を示す。そして上記比率を20重量%に保った場合には銀粉含有率を75重量%まで高くすることによって実施例1〜4と同程度の体積固有抵抗率が得られることが比較例2からわかる。また実施例1〜4の硬化温度による体積固有抵抗率の変動は、比較例1および2での71%および30%に比して、11〜21%と小さい値であった。さらに銀粉含有率を60重量%とし薄片状銀粉(A−1)と薄片状銀粉(B−1)との合計重量に対する薄片状銀粉(A−1)重量の比率を100重量%(本発明の範囲外)とした比較例3では0.60〜0.83×10−4Ω・cmの低い値の体積固有抵抗率が得られるものの、硬化温度による体積固有抵抗率の変動は38%であって実施例1〜4の11〜21%に比して高い値を示す。
【0027】
[比較例4〜5]
薄片状銀粉(A−2)および薄片状銀粉(B−2)を使用し、表3に示すように薄片状銀粉(A−2)および薄片状銀粉(B−2)の含有率を変えた他は実施例1と同様にして導電性ペーストを作成し、実施例1と同様に評価した。その結果を表3に示す。
【0028】
本発明の薄片状銀粉Bの比表面積(0.6〜1.2m/g)よりも小さい比表面積(0.38m/g)を有する薄片状銀粉(B−2)を使用し、銀粉含有率を60重量%とし、そして薄片状銀粉(A−2)と薄片状銀粉(B−2)との合計重量に対する薄片状銀粉(A−2)重量の比率を20重量%(本発明の範囲外)とした比較例4で得られる体積固有抵抗率は2.28〜3.85×10−4Ω・cmの高い値を示す。そして上記比率を20重量%に保った場合には銀粉含有率を75重量%に高くすることによってはじめて実施例1〜4と同程度の体積固有抵抗率が得られることが比較例5からわかる。
【0029】
[実施例5〜7]
表4に示すような配合比で実施例1と同様にして導電性ペーストを作成し、実施例1と同様に評価した。その結果を表4に示す。
【0030】
[実施例8〜12、比較例6〜7]
銀粉含有率を40重量%または55重量%とし、表5に示すような配合比で実施例1と同様にして導電性ペーストを作成し、実施例1と同様に評価した。その結果を表5に示す。
【0031】
実施例8〜12では、銀粉含有率を40重量%とし、そして薄片状銀粉(A−1)と薄片状銀粉(B−1)との合計重量に対する薄片状銀粉(A−1)重量の比率を50〜90重量%とした場合、2.13〜6.60×10−4Ω・cmの体積固有抵抗率が得られる。これに対し銀粉含有率を40重量%とし薄片状銀粉(A−1)と薄片状銀粉(B−1)との合計重量に対する薄片状銀粉(A−1)重量の比率を20重量%(本発明の範囲外)とした比較例6で得られる体積固有抵抗率は11.7〜31.0×10−4Ω・cmの高い値を示す。また実施例8〜12の硬化温度による体積固有抵抗率の変動は、比較例6での165%に比して、18〜38%と小さい値であった。そして上記比率を20重量%に保った場合には銀粉含有率を55重量%に高くすることによってはじめて実施例8〜12と同程度の体積固有抵抗率が得られることが比較例7からわかる。
【0032】
[実施例13〜15、比較例8〜9]
エポキシ/フェノール樹脂を使用し、銀粉含有率を60重量%または85重量%とし、表6に示すような配合比で実施例1と同様にして導電性ペーストを作成し、実施例1と同様に評価した。その結果を表6に示す。
【0033】
実施例13〜15では、銀粉含有率を60重量%とし、そして薄片状銀粉(A−1)と薄片状銀粉(B−1)との合計重量に対する薄片状銀粉(A−1)重量の比率を70〜90重量%とした場合、1.05〜1.97×10−4Ω・cmの体積固有抵抗率が得られる。これに対し銀粉含有率を60重量%とし薄片状銀粉(A−1)と薄片状銀粉(B−1)との合計重量に対する薄片状銀粉(A−1)重量の比率を20重量%(本発明の範囲外)とした比較例8で得られる体積固有抵抗率は9.1〜18.3×10−4Ω・cmの高い値を示す。また実施例13〜15の硬化温度による体積固有抵抗率の変動は、比較例8での101%に比して、30〜48%と小さい値であった。そして上記比率を20重量%に保った場合には銀粉含有率を85重量%まで高くすることによってはじめて実施例13〜15と同程度の体積固有抵抗率が得られることが比較例9からわかる。
【0034】
[実施例16、比較例10]
ポリエステル樹脂を使用し、銀粉含有率を60重量%とし、表7に示すような配合比で実施例1と同様にして導電性ペーストを作成し、実施例1と同様に評価した。その結果を表7に示す。
【0035】
実施例16では銀粉含有率を60重量%とし、そして薄片状銀粉(A−1)と薄片状銀粉(B−1)との合計重量に対する薄片状銀粉(A−1)重量の比率を80重量%とした場合、0.663〜0.752×10−4Ω・cmの体積固有抵抗率が得られる。これに対し銀粉含有率を60重量%とし薄片状銀粉(A−1)と薄片状銀粉(B−1)との合計重量に対する薄片状銀粉(A−1)重量の比率を20重量%(本発明の範囲外)とした比較例10で得られる体積固有抵抗率は2.54〜3.56×10−4Ω・cmの高い値を示す。また実施例16の硬化温度による体積固有抵抗率の変動は、比較例10での40%に比して、13%と小さい値であった。
【0036】
【表1】

Figure 2004111057
【0037】
【表2】
Figure 2004111057
【0038】
【表3】
Figure 2004111057
【0039】
【表4】
Figure 2004111057
【0040】
【表5】
Figure 2004111057
【0041】
【表6】
Figure 2004111057
【0042】
【表7】
Figure 2004111057
【0043】
【発明の効果】
以上に説明した通り、本発明の導電性ペーストは見かけ密度、比表面積などの異なる2種の薄片状銀粉を特定の比率で樹脂中に分散させることにより、従来よりも少量の薄片状銀粉で高い導電性の塗膜が得られ、銀の省資源をはかることができる。また得られる導電性が硬化温度による影響を受けにくいものとなった。さらに、導電ペースト中に比表面積が大きく見掛け密度の小さく嵩高い薄片状銀粉が多く含まれるので、導電ペーストはチクソ性を有し、従って薄片状銀粉が沈降し難く、また再分散性も良好でもし沈降が生じても撹拌により容易に分散する作業性の良い導電性ペーストが得られる。85%を超えて導電材料を含む従来の導電性ペーストと比較して本発明では樹脂量を多くすることができるので、密着性、接着力が向上し、密着性、接着力のバラツキも少なくなる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive paste composition, particularly a conductive paste containing silver powder and a resin.
[0002]
[Prior art]
Conventionally, a conductive paste in which a conductive material is dispersed in a binder made of a thermosetting resin such as an epoxy resin is known. For example, pastes containing at least two types of flaky metal powders having different thicknesses and a resin composition are known (for example, see Patent Document 1). Here, 20 parts by weight of a flaky silver powder having an average particle size of 3.2 μm and a thickness of 0.1 μm and 80 parts by weight of a flaky silver powder having an average particle size of 7.7 μm and a thickness of 0.5 μm were mixed with a resin. It is blended in.
[0003]
[Patent Document 1]
JP 2001-261974 A (page 3, Example 1)
[0004]
[Problems to be solved by the invention]
In order to obtain high conductivity, the silver powder content in the conductive paste is often set to exceed 85% by weight. However, from the viewpoint of resource saving, a conductive paste capable of obtaining high conductivity with a lower silver powder content has been demanded.
[0005]
An object of the present invention is to provide a conductive paste that can obtain high conductivity even when the content of silver powder in the conductive paste is low.
[0006]
[Means for Solving the Problems]
The present invention relates to a flaky silver powder A having an average particle size of 3 to 8 μm, a specific surface area of 1.5 to 4.0 m 2 / g and an apparent density of 0.4 to 1.1 g / cm 3 . A conductive paste composition comprising flaky silver powder B having an average particle size, a specific surface area of 0.6 to 1.2 m 2 / g and an apparent density of 1.5 to 2.1 g / cm 3 , and a resin. The flaky silver powder A contains 30 to 95 parts by weight with respect to 100 parts by weight of the total weight of the flaky silver powder A and the flaky silver powder B, and the total of the flaky silver powder A and the flaky silver powder B is The conductive paste composition contains 35 to 85% by weight based on the solid content of the conductive paste.
[0007]
The flaky silver powder having an average particle diameter of 3 to 8 μm, a specific surface area of 1.5 to 4.0 m 2 / g, and an apparent density of 0.4 to 1.1 g / cm 3 as the silver powder as the conductive material of the present invention. A and flaky silver powder B having an average particle size of 3 to 10 μm, a specific surface area of 0.6 to 1.2 m 2 / g, and an apparent density of 1.5 to 2.1 g / cm 3 are used in combination. When the average particle size of the flaky silver powder A is less than 3 μm or more than 8 μm, it is difficult to obtain high conductivity. When the average particle size of the flaky silver powder B is less than 3 μm or more than 10 μm, it is difficult to obtain high conductivity. When the specific surface area of the flaky silver powder A is less than 1.5 m 2 / g or the apparent density of the flaky silver powder A exceeds 1.1 g / cm 3 , the overlap of the silver powder in the coating film layer may occur. And the volume resistivity of the coating film increases. When the specific surface area of the flaky silver powder A exceeds 4.0 m 2 / g or the apparent density of the flaky silver powder A is less than 0.4 g / cm 3 , the flaky silver powder A is kneaded during kneading of the conductive paste. May be deformed and the volume resistivity of the coating film may increase. When the specific surface area of the flaky silver powder B is less than 0.6 m 2 / g or the apparent density of the flaky silver powder B exceeds 2.1 g / cm 3 , the overlap of the silver powder in the coating layer is small. As a result, the volume resistivity of the coating film increases. When the specific surface area of the flaky silver powder B exceeds 1.2 m 2 / g or the apparent density of the flaky silver powder B is less than 1.5 g / cm 3 , the flaky silver powder B is kneaded during kneading of the conductive paste. May be deformed and the volume resistivity of the coating film may increase.
[0008]
The raw material powder of the flaky silver powder can be produced by a reduction method, an electrolytic method, an atomizing method, or the like. The raw material powder of the flaky silver powder A is preferably produced by an atomizing method or an electrolytic method, and the raw material powder of the flaky silver powder B is preferably produced by a reduction method.
[0009]
In the present invention, the weight of the flaky silver powder A is contained in the conductive paste composition at a ratio of 30 to 95% based on 100 parts by weight of the total weight of the flaky silver powder A and the flaky silver powder B. If the proportion of the flaky silver powder A is less than 30%, the volume resistivity increases. If this ratio exceeds 95%, the viscosity of the conductive paste becomes high and workability deteriorates. If this ratio exceeds 95%, the conductivity is almost saturated, so that the relatively expensive flaky silver powder is used. By reducing the ratio of A to 95% or less, the cost can be reduced. The more preferable ratio of the flaky silver powder A is 70 to 95%. By setting this ratio to 75 to 85%, the rate of change of the volume resistivity due to the change of the curing temperature can be minimized. By setting this ratio to 85 to 95%, the volume specific resistivity can be minimized.
[0010]
If the ratio of the apparent density of the flaky silver powder B to the apparent density of the flaky silver powder A is too small or too large, the combined effect is reduced and the volume specific resistivity tends to increase. Therefore, the flaky silver powder B preferably has an apparent density of 1.5 to 5.0 times the apparent density of the flaky silver powder A, and more preferably has an apparent density of 2.5 to 4.5 times. For the same reason, the flaky silver powder A preferably has a specific surface area that is 2.0 to 5.0 times the specific surface area of the flaky silver powder B.
[0011]
The average particle size of the flaky silver powder is measured by a laser diffraction method. The specific surface area of the flaky silver powder is measured by a BET method (gas adsorption method) using Flowsorb II 2300 manufactured by Shimadzu Corporation. The apparent density of the flaky silver powder is measured according to JIS Z2504. The thickness d (μm) of the flaky silver powder can be calculated from d = 0.19 / S, where the specific gravity of silver is 10.5 and the specific surface area of the flaky silver powder is S (m 2 / g). it can.
[0012]
The larger the silver powder content in the solid content of the conductive paste, the higher the conductivity of the obtained coating film. In the present invention, the total of the flaky silver powder A and the flaky silver powder B is contained so as to be 35 to 85% by weight based on the solid content of the conductive paste. If it is less than 35% by weight, the volume resistivity of the coating film will be high. If it exceeds 85% by weight, the improvement in conductivity is saturated or the adhesion of the coating film is reduced. A more preferred content is 50 to 80% by weight.
[0013]
The resin that is the binder used in the present invention may be a resin that is liquid at room temperature, or a solid resin dissolved in a solvent. For example, general organic synthetic resins such as an acrylic resin, an epoxy resin, a phenol resin, a thermosetting resin such as an epoxy / phenol resin, and a thermoplastic resin such as polyester can be used. The epoxy resin and the phenol resin may be solid as long as they are dissolved in a solvent. The content of silver powder is preferably adjusted according to the type of resin used.
[0014]
As the curing agent added to the thermosetting resin, a compound curing agent such as amines, acid anhydrides, imidazole and dicyandiamide, and a resin curing agent such as phenol resin and polyamide resin can be used.
[0015]
As a solvent used for dissolving the solid resin or for adjusting the viscosity, an organic solvent such as diethylene glycol monobutyl ether or diethylene glycol monoethyl ether may be used, and may be optionally used in accordance with the resin composition. The amount of the solvent used varies depending on the type of the resin, the coating method, the coating thickness and the like, but is usually used in the range of 20 to 50% by weight based on the resin component.
[0016]
The conductive paste of the present invention can contain additives such as a coupling agent and an antifoaming agent, if necessary. The conductive paste according to the present invention is obtained by uniformly mixing and dispersing flaky silver powder, a resin composition, a solvent, a curing agent, and an additive using a kneader, a disper, a three-roll mill, or the like.
[0017]
The obtained conductive paste is applied to a transparent plastic sheet, a film, a glass plate, or the like by a coating method such as a bar coating method, a dipping method, a flow method, a spin coating method, and a spray method on the surface of the base material, and is applied to a surface of 120 to 200. The composition is cured by heating at 30 ° C. for 30 seconds to 60 minutes or by irradiation with electron beams, ultraviolet rays, visible rays, or the like. The thickness of the cured conductive coating is usually 2 to 50 μm. For example, when applied to electric or electronic parts, an electrode having a small equivalent series resistance can be formed by applying and curing a conductive paste on a predetermined part of the electric or electronic part with a final thickness of, for example, about 5 μm.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail based on examples and comparative examples.
[0019]
The following materials were used for the conductive paste.
(1) The following four types were prepared as flaky silver powder. These are summarized in Table 1. The specific surface area of the flaky silver powder (B-2) is smaller than the specific surface area of the flaky silver powder B of the present invention.
Flaky silver powder (A-1) - mean particle size 5.4 [mu] m, a specific surface area of 2.34 m 2 / g, apparent density 0.54 g / cm 3, thickness 0.08 .mu.m, "Nanomeruto Ag-XF301" Fukuda Metal Foil & Powder Manufactured by Kogyo Co., Ltd.
Flaky silver powder (A-2)-average particle size 4.6 μm, specific surface area 1.95 m 2 / g, apparent density 1.6 g / cm 3 , thickness 0.1 μm, trade name “TCG1”, Co., Ltd. Manufactured by Tokuriki Chemical Laboratory.
Flaky silver powder (B-1)-average particle size 6.3 μm, specific surface area 0.72 m 2 / g, apparent density 1.98 g / cm 3 , thickness 0.26 μm, "Silcoat AgCA" Fukuda metal foil powder Manufactured by Kogyo Co., Ltd.
Flaky silver powder (B-2)-average particle size 7.7 μm, specific surface area 0.38 m 2 / g, apparent density 2.82 g / cm 3 , thickness 0.5 μm.
[0020]
(2) Resin composition phenolic resin-"Retop TOP PL-2243", epoxy / phenolic resin manufactured by Gunei Chemical Industry Co., Ltd .-- epoxy resin ("Epicoat-1007", manufactured by Japan Epoxy Resin Co., Ltd.) 7 weight Parts, phenolic resin ("Hitanol-4010", manufactured by Hitachi Chemical Co., Ltd.) 3 parts by weight polyester resin "Byron 200", manufactured by Toyobo Co., Ltd.
(3) Solvent diethylene glycol monoethyl ether ("ECR", manufactured by Daicel Chemical Industries, Ltd.)
Diethylene glycol monobutyl ether ("BCR", manufactured by Daicel Chemical Industries, Ltd.)
[0021]
[Example 1]
10 parts by weight of the phenol resin composition as a solid content, 3 parts by weight of diethylene glycol monoethyl ether (ECR), 12 parts by weight of flaky silver powder (A-1), and 3 parts by weight of flaky silver powder (B-1) are mixed and stirred. Then, the mixture was dispersed by three rolls to obtain a conductive paste having a conductive powder content of 60% in the solid content of the coating film.
[0022]
The conductivity of this conductive paste was evaluated as follows. A conductive paste was applied to a glass plate so as to have a width of 1 mm, a length of 163.5 mm, and a thickness of about 10 μm, and then heated at 150 ° C., 180 ° C., or 200 ° C. for 30 minutes to cure the coating. The volume resistivity of the cured coating film was calculated from the following measured values. The resistance value and the coating film thickness were measured with a digital multimeter (manufactured by Iwasaki Communication Equipment Co., Ltd.) and a surface roughness meter (manufactured by Tokyo Seimitsu Co., Ltd.).
[0023]
The volume resistivity of the coating film cured at 150 ° C., 180 ° C., and 200 ° C. is 0.73 × 10 −4 Ω · cm, 0.66 × 10 −4 Ω · cm, and 0.66 × 10 −, respectively. It was 4 Ω · cm. Table 2 summarizes the mixing ratio of the conductive paste and the volume resistivity of the coating film. In the table, the column of 100 * (A-1) / [(A-1) + (B-1)] is based on the total weight of the flaky silver powder (A-1) and the flaky silver powder (B-1). The ratio of the weight of the flaky silver powder (A-1) is expressed in percentage. The ratio (percentage) of the total weight of the flaky silver powder A and the flaky silver powder B to the solid content weight of the conductive paste is indicated by the silver powder content (% by weight). The volume resistivity at the curing temperatures of 150 ° C., 180 ° C., and 200 ° C. is shown in the column of the variation of the volume resistivity according to the curing temperature expressed by 100 * [(maximum value / minimum value) −1].
[0024]
[Examples 2 to 4]
As shown in Table 2, a conductive paste was prepared in the same manner as in Example 1 except that the contents of the flaky silver powder (A-1) and the flaky silver powder (B-1) were changed. Was evaluated. Table 2 shows the results.
[0025]
[Comparative Examples 1 to 3]
As shown in Table 2, a conductive paste was prepared in the same manner as in Example 1 except that the contents of the flaky silver powder (A-1) and the flaky silver powder (B-1) were changed. Was evaluated. Table 2 shows the results.
[0026]
In Examples 1 to 4, the silver powder content was set to 60% by weight, and the ratio of the flaky silver powder (A-1) weight to the total weight of the flaky silver powder (A-1) and the flaky silver powder (B-1). Was set to 50 to 90% by weight, a volume resistivity of 0.58 to 0.88 × 10 −4 Ω · cm was obtained. On the other hand, the silver powder content was 60% by weight, and the ratio of the weight of the flaky silver powder (A-1) to the total weight of the flaky silver powder (A-1) and the flaky silver powder (B-1) was 20% by weight. The volume resistivity obtained in Comparative Example 1, which was determined to be outside the range of the invention), showed a high value of 1.99 to 3.40 × 10 −4 Ω · cm. Comparative Example 2 shows that when the above ratio is maintained at 20% by weight, the volume resistivity of the same level as in Examples 1 to 4 can be obtained by increasing the silver powder content to 75% by weight. Further, the variation of the volume resistivity due to the curing temperature in Examples 1 to 4 was as small as 11 to 21% as compared with 71% and 30% in Comparative Examples 1 and 2. Further, the silver powder content was 60% by weight, and the ratio of the weight of the flaky silver powder (A-1) to the total weight of the flaky silver powder (A-1) and the flaky silver powder (B-1) was 100% by weight (the present invention). In Comparative Example 3 (outside the range), a low specific volume resistivity of 0.60 to 0.83 × 10 −4 Ω · cm was obtained, but the variation of the specific volume resistivity due to the curing temperature was 38%. Thus, a high value is shown as compared with 11 to 21% of Examples 1 to 4.
[0027]
[Comparative Examples 4 and 5]
Using the flaky silver powder (A-2) and the flaky silver powder (B-2), the contents of the flaky silver powder (A-2) and the flaky silver powder (B-2) were changed as shown in Table 3. Otherwise, a conductive paste was prepared in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 3 shows the results.
[0028]
Using the flaky silver powder having a flaky silver powder specific surface area of B of the present invention (0.6~1.2m 2 / g) smaller specific surface area than (0.38m 2 / g) (B -2), silver powder The content was 60% by weight, and the ratio of the weight of the flaky silver powder (A-2) to the total weight of the flaky silver powder (A-2) and the flaky silver powder (B-2) was 20% by weight (of the present invention). (Out of range), the volume resistivity obtained in Comparative Example 4 shows a high value of 2.28 to 3.85 × 10 −4 Ω · cm. Comparative Example 5 shows that when the above ratio is maintained at 20% by weight, the volume specific resistivity equivalent to that of Examples 1 to 4 can be obtained only by increasing the silver powder content to 75% by weight.
[0029]
[Examples 5 to 7]
A conductive paste was prepared in the same manner as in Example 1 at a compounding ratio as shown in Table 4, and evaluated in the same manner as in Example 1. Table 4 shows the results.
[0030]
[Examples 8 to 12, Comparative Examples 6 and 7]
A silver paste content was set to 40% by weight or 55% by weight, and a conductive paste was prepared in the same manner as in Example 1 at a compounding ratio shown in Table 5, and evaluated in the same manner as in Example 1. Table 5 shows the results.
[0031]
In Examples 8 to 12, the silver powder content was set to 40% by weight, and the ratio of the flaky silver powder (A-1) weight to the total weight of the flaky silver powder (A-1) and the flaky silver powder (B-1). Is 50 to 90% by weight, a volume resistivity of 2.13 to 6.60 × 10 −4 Ω · cm is obtained. On the other hand, the silver powder content was 40% by weight, and the ratio of the weight of the flaky silver powder (A-1) to the total weight of the flaky silver powder (A-1) and the flaky silver powder (B-1) was 20% by weight. The volume resistivity obtained in Comparative Example 6, which was set to be out of the range of the invention, shows a high value of 11.7 to 31.0 × 10 −4 Ω · cm. Further, the variation of the volume resistivity due to the curing temperature in Examples 8 to 12 was a small value of 18 to 38% as compared with 165% in Comparative Example 6. Comparative Example 7 shows that when the above ratio is maintained at 20% by weight, the volume resistivity of the same level as in Examples 8 to 12 can be obtained only by increasing the silver powder content to 55% by weight.
[0032]
[Examples 13 to 15, Comparative Examples 8 to 9]
An epoxy / phenol resin was used, the silver powder content was set to 60% by weight or 85% by weight, and a conductive paste was prepared in the same manner as in Example 1 at a compounding ratio shown in Table 6, and the same as in Example 1. evaluated. Table 6 shows the results.
[0033]
In Examples 13 to 15, the silver powder content was set to 60% by weight, and the ratio of the flaky silver powder (A-1) weight to the total weight of the flaky silver powder (A-1) and the flaky silver powder (B-1). Is set to 70 to 90% by weight, a specific volume resistivity of 1.05 to 1.97 × 10 −4 Ω · cm is obtained. On the other hand, the silver powder content was 60% by weight, and the ratio of the weight of the flaky silver powder (A-1) to the total weight of the flaky silver powder (A-1) and the flaky silver powder (B-1) was 20% by weight. The volume specific resistivity obtained in Comparative Example 8, which was regarded as “outside the scope of the invention”, shows a high value of 9.1 to 18.3 × 10 −4 Ω · cm. Further, the variation in the volume resistivity due to the curing temperature in Examples 13 to 15 was a small value of 30 to 48% as compared with 101% in Comparative Example 8. Comparative Example 9 shows that when the above ratio is maintained at 20% by weight, the same volume specific resistivity as in Examples 13 to 15 can be obtained only by increasing the silver powder content to 85% by weight.
[0034]
[Example 16, Comparative Example 10]
Using a polyester resin, the silver powder content was set to 60% by weight, and a conductive paste was prepared in the same manner as in Example 1 at a compounding ratio shown in Table 7, and evaluated in the same manner as in Example 1. Table 7 shows the results.
[0035]
In Example 16, the silver powder content was 60% by weight, and the ratio of the flaky silver powder (A-1) weight to the total weight of the flaky silver powder (A-1) and the flaky silver powder (B-1) was 80% by weight. %, A volume resistivity of 0.663 to 0.752 × 10 −4 Ω · cm is obtained. On the other hand, the silver powder content was 60% by weight, and the ratio of the weight of the flaky silver powder (A-1) to the total weight of the flaky silver powder (A-1) and the flaky silver powder (B-1) was 20% by weight. The volume resistivity obtained in Comparative Example 10 (outside the scope of the invention) shows a high value of 2.54 to 3.56 × 10 −4 Ω · cm. Further, the variation of the specific volume resistivity due to the curing temperature in Example 16 was a small value of 13% as compared with 40% in Comparative Example 10.
[0036]
[Table 1]
Figure 2004111057
[0037]
[Table 2]
Figure 2004111057
[0038]
[Table 3]
Figure 2004111057
[0039]
[Table 4]
Figure 2004111057
[0040]
[Table 5]
Figure 2004111057
[0041]
[Table 6]
Figure 2004111057
[0042]
[Table 7]
Figure 2004111057
[0043]
【The invention's effect】
As described above, the conductive paste of the present invention has a higher apparent density, a smaller amount of flaky silver powder than before by dispersing two types of flaky silver powder having different specific surface areas in the resin at a specific ratio. A conductive coating film can be obtained, and silver resources can be saved. Further, the obtained conductivity became less affected by the curing temperature. Furthermore, since the conductive paste contains a large amount of flaky silver powder having a large specific surface area and a small apparent density and a large bulk, the conductive paste has a thixotropic property, so that the flaky silver powder is unlikely to settle, and the redispersibility is also good. Even if sedimentation occurs, a conductive paste with good workability that can be easily dispersed by stirring can be obtained. In the present invention, the amount of resin can be increased as compared with a conventional conductive paste containing a conductive material exceeding 85%, so that adhesion and adhesion are improved, and variations in adhesion and adhesion are reduced. .

Claims (4)

3〜8μmの平均粒径、1.5〜4.0m/gの比表面積および0.4〜1.1g/cmの見掛け密度を有する薄片状銀粉A、3〜10μmの平均粒径、0.6〜1.2m/gの比表面積および1.5〜2.1g/cmの見掛け密度を有する薄片状銀粉Bならびに樹脂を含有する導電性ペースト組成物であって、薄片状銀粉Aを薄片状銀粉Aと薄片状銀粉Bとの合計重量100部に対して30〜95重量部となる割合で含有し、そして薄片状銀粉Aと薄片状銀粉Bとの合計を導電性ペーストの固形分に対して35〜85重量%となるように含有する導電性ペースト組成物。Flaky silver powder A having an average particle size of 3 to 8 μm, a specific surface area of 1.5 to 4.0 m 2 / g and an apparent density of 0.4 to 1.1 g / cm 3 , an average particle size of 3 to 10 μm, A conductive paste composition containing flaky silver powder B having a specific surface area of 0.6 to 1.2 m 2 / g and an apparent density of 1.5 to 2.1 g / cm 3 , and a resin, wherein the flaky silver powder is A in an amount of 30 to 95 parts by weight with respect to 100 parts by weight of the total weight of the flaky silver powder A and the flaky silver powder B, and the total of the flaky silver powder A and the flaky silver powder B A conductive paste composition containing 35 to 85% by weight based on the solid content. 前記薄片状銀粉Bは前記薄片状銀粉Aの見掛け密度の1.5〜5.0倍の見掛け密度を有する請求項1記載の導電性ペースト組成物。The conductive paste composition according to claim 1, wherein the flaky silver powder B has an apparent density of 1.5 to 5.0 times the apparent density of the flaky silver powder A. 3. 前記薄片状銀粉Aは前記薄片状銀粉Bの比表面積の2.0〜5.0倍の比表面積を有する請求項1または2記載の導電性ペースト組成物。The conductive paste composition according to claim 1, wherein the flaky silver powder A has a specific surface area that is 2.0 to 5.0 times the specific surface area of the flaky silver powder B. 4. 請求項1〜3のいずれか1項に記載の導電性ペースト組成物を基材に塗布、硬化してなる導電性物品。A conductive article obtained by applying and curing the conductive paste composition according to claim 1 on a substrate.
JP2002267836A 2002-09-13 2002-09-13 Conductive paste composition Expired - Fee Related JP3955805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267836A JP3955805B2 (en) 2002-09-13 2002-09-13 Conductive paste composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267836A JP3955805B2 (en) 2002-09-13 2002-09-13 Conductive paste composition

Publications (2)

Publication Number Publication Date
JP2004111057A true JP2004111057A (en) 2004-04-08
JP3955805B2 JP3955805B2 (en) 2007-08-08

Family

ID=32266223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267836A Expired - Fee Related JP3955805B2 (en) 2002-09-13 2002-09-13 Conductive paste composition

Country Status (1)

Country Link
JP (1) JP3955805B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263859A (en) * 2004-03-16 2005-09-29 Sumitomo Rubber Ind Ltd Electroconductive ink paste
JP2007184213A (en) * 2006-01-10 2007-07-19 Fujitsu Ltd Conductive paste, and method of manufacturing wiring board using it
WO2007097249A1 (en) 2006-02-20 2007-08-30 Daicel Chemical Industries, Ltd. Porous film and layered product including porous film
WO2009025787A2 (en) * 2007-08-20 2009-02-26 Diemat, Inc. Adhesives with thermal conductivity enhanced by mixed silver fillers
WO2010117224A2 (en) * 2009-04-08 2010-10-14 주식회사 엘지화학 Printing paste composition and electrode prepared therefrom
JP2012509965A (en) * 2008-11-24 2012-04-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー High conductivity polymer thick film silver conductor composition for use in RFID and other applications
JP2015178597A (en) * 2014-02-28 2015-10-08 太陽インキ製造株式会社 Conductive composition and conductor
CN105097069A (en) * 2015-07-10 2015-11-25 日照众邦电子有限公司 High-resolution and high-conductivity curved type silver paste and preparation method thereof
EP2942128A4 (en) * 2013-03-29 2016-08-24 Tokusen Kogyo Kk Flake-shaped microparticles
WO2017026130A1 (en) * 2015-08-07 2017-02-16 太陽インキ製造株式会社 Conductive composition, conductor and base
CN112712914A (en) * 2020-12-18 2021-04-27 中国振华集团云科电子有限公司 Ultralow ESR low-temperature curing silver paste and preparation method thereof
US11081263B2 (en) 2017-12-25 2021-08-03 Pelnox, Ltd. Chip-shaped electronic component

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263859A (en) * 2004-03-16 2005-09-29 Sumitomo Rubber Ind Ltd Electroconductive ink paste
JP2007184213A (en) * 2006-01-10 2007-07-19 Fujitsu Ltd Conductive paste, and method of manufacturing wiring board using it
EP2591912A1 (en) 2006-02-20 2013-05-15 Daicel Chemical Industries, Ltd. Multilayer assembly and composite material comprising same
WO2007097249A1 (en) 2006-02-20 2007-08-30 Daicel Chemical Industries, Ltd. Porous film and layered product including porous film
EP2410824A2 (en) 2006-02-20 2012-01-25 Daicel Chemical Industries, Ltd. Porous film and layered product including porous film
EP2487030A2 (en) 2006-02-20 2012-08-15 Daicel Chemical Industries, Ltd. Porous film and layered product including porous film
WO2009025787A2 (en) * 2007-08-20 2009-02-26 Diemat, Inc. Adhesives with thermal conductivity enhanced by mixed silver fillers
WO2009025787A3 (en) * 2007-08-20 2009-04-23 Diemat Inc Adhesives with thermal conductivity enhanced by mixed silver fillers
US8795837B2 (en) 2007-08-20 2014-08-05 Diemat, Inc. Adhesives with thermal conductivity enhanced by mixed silver fillers
JP2012509965A (en) * 2008-11-24 2012-04-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー High conductivity polymer thick film silver conductor composition for use in RFID and other applications
WO2010117224A2 (en) * 2009-04-08 2010-10-14 주식회사 엘지화학 Printing paste composition and electrode prepared therefrom
WO2010117224A3 (en) * 2009-04-08 2011-01-20 주식회사 엘지화학 Printing paste composition and electrode prepared therefrom
US9053840B2 (en) 2009-04-08 2015-06-09 Lg Chem, Ltd. Printing paste composition and electrode prepared therefrom
EP2942128A4 (en) * 2013-03-29 2016-08-24 Tokusen Kogyo Kk Flake-shaped microparticles
JP2015178597A (en) * 2014-02-28 2015-10-08 太陽インキ製造株式会社 Conductive composition and conductor
CN105097069A (en) * 2015-07-10 2015-11-25 日照众邦电子有限公司 High-resolution and high-conductivity curved type silver paste and preparation method thereof
CN105097069B (en) * 2015-07-10 2017-01-25 日照众邦电子有限公司 High-resolution and high-conductivity curved type silver paste and preparation method thereof
WO2017026130A1 (en) * 2015-08-07 2017-02-16 太陽インキ製造株式会社 Conductive composition, conductor and base
US11081263B2 (en) 2017-12-25 2021-08-03 Pelnox, Ltd. Chip-shaped electronic component
CN112712914A (en) * 2020-12-18 2021-04-27 中国振华集团云科电子有限公司 Ultralow ESR low-temperature curing silver paste and preparation method thereof

Also Published As

Publication number Publication date
JP3955805B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP4972955B2 (en) Conductive paste and printed wiring board using the same
JP2010109334A (en) Conductive ink composition and solar cell module formed using the same
JP5839574B2 (en) Heat curable conductive paste composition
JP5488059B2 (en) Conductive paste
JP2010044967A (en) Conductive adhesive and led substrate using it
JP3955805B2 (en) Conductive paste composition
JPWO2013161966A1 (en) Conductive composition
TWI701316B (en) Conductive adhesive composition
KR102328465B1 (en) Conductive paste
KR102111920B1 (en) Conductive paste composition and ceramic electronic component having external electrodes formed using the same
JP2008255186A (en) Heat-conductive resin sheet and power module
JP2010087131A (en) Conductive ink composition and solar cell module formed using the composition
TW201424887A (en) Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit
JP2014120382A (en) Conductive resin paste and electronic element using the same
JP5277844B2 (en) Conductive ink composition and solar cell module formed using the composition
JP2009269976A (en) Conductive resin composition
JP2007277384A (en) Electroconductive adhesive
JP5458862B2 (en) Heat-curable silver paste and conductor film formed using the same
JP6542077B2 (en) Method of producing conductive paste and conductive paste
JP2000003987A (en) Thermally conductive resin paste
JP2010055788A (en) Silver paste
TWI631160B (en) Conductive paste and substrate with conductive film
JP2017152221A (en) Heat hardening type conductive paste composition and cued article thereof
JP4748158B2 (en) Conductive resin cured product and electronic component module
JP5861600B2 (en) Conductive adhesive composition and electronic device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Ref document number: 3955805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees