JP2004108577A - Hydraulic pressure type damper - Google Patents

Hydraulic pressure type damper Download PDF

Info

Publication number
JP2004108577A
JP2004108577A JP2003293180A JP2003293180A JP2004108577A JP 2004108577 A JP2004108577 A JP 2004108577A JP 2003293180 A JP2003293180 A JP 2003293180A JP 2003293180 A JP2003293180 A JP 2003293180A JP 2004108577 A JP2004108577 A JP 2004108577A
Authority
JP
Japan
Prior art keywords
outer ring
bearing
shaft
ring member
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003293180A
Other languages
Japanese (ja)
Inventor
Yuji Kotake
小竹 祐治
Takayuki Suzuki
鈴木 隆之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senqcia Corp
Original Assignee
Hitachi Metals Techno Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Techno Ltd filed Critical Hitachi Metals Techno Ltd
Priority to JP2003293180A priority Critical patent/JP2004108577A/en
Publication of JP2004108577A publication Critical patent/JP2004108577A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Support Of The Bearing (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic pressure type damper capable of surely eliminating any plays between component members even when a spherical bearing is used on a connecting part with a building structure. <P>SOLUTION: In this hydraulic pressure type damper using the spherical bearing 70 on the connecting part with the building structure 57, an outer face of a bearing outer ring member 79 of the spherical bearing 70 and an inner face of an outer ring supporting member 77 kept into contact with the outer face to support the bearing outer ring member 79 respectively have the taper shape corresponding to each other. As the play between the members of the spherical bearing and the like can be surely eliminated, the hydraulic pressure type damper can generate the damping force from the beginning even when the reciprocating external force of small amplitude such as swinging by wind is added, which prevents a person from feeling the uncomfortable swing. Further a deterioration in performance to reduce the external force, of the hydraulic pressure type damper in earthquake and the like can be prevented. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は油圧式制震ダンパに関し、特にその両端部の建物側に連結される連結部の構造に関するものである。 The present invention relates to a hydraulic damper, and more particularly to a structure of a connecting portion connected to a building at both ends.

 第1の従来の油圧式制震ダンパとしては、例えば図21に示すようなものがある。同図に示す従来の油圧式制震ダンパ30は、内部に一対の油圧室32a,32bを有する油圧シリンダ32、ピストンロッド34の軸方向に往復移動するピストン36、油圧室32a,32bの圧力差をコントロールするコントロールバルブ40aを有するコントロールバルブ部40、油圧シリンダ32の一端部に連結されたボールジョイント42、このボールジョイント42の回転を自在に支持するボール支持部45、ピストンロッド34の上記ボールジョイント42と反対側の端部に連結されたボールジョイント43、及びこのボールジョイント43の回転を自在に支持するボール支持部46等から構成されている。 と し て As a first conventional hydraulic damper, for example, there is one as shown in FIG. A conventional hydraulic damper 30 shown in FIG. 1 includes a hydraulic cylinder 32 having a pair of hydraulic chambers 32a and 32b therein, a piston 36 reciprocating in the axial direction of a piston rod 34, and a pressure difference between the hydraulic chambers 32a and 32b. Control valve section 40 having a control valve 40a for controlling the pressure, a ball joint 42 connected to one end of a hydraulic cylinder 32, a ball support section 45 for freely supporting the rotation of the ball joint 42, and the ball joint for the piston rod 34 The ball joint 43 includes a ball joint 43 connected to the end opposite to the end 42, and a ball support 46 that freely supports the rotation of the ball joint 43.

 そしてボール支持部45,46には、これらが支持する各ボールジョイント42,43を球面で受けるホルダ部47,48が、それらに隙間なく接触して各ボールジョイント42,43を保持するようになっている。このような油圧式制震ダンパ30は、その一端部を建築構造体に連結し、その他端部を筋交いの一端部等に連結するようになっている。 The ball support portions 45 and 46 hold the ball joints 42 and 43 supported by the respective ball joints 42 and 43 with spherical surfaces, and the holder portions 47 and 48 come into contact with the ball joints 42 and 43 without gaps and hold the ball joints 42 and 43. ing. One end of such a hydraulic damper 30 is connected to a building structure, and the other end is connected to one end of a brace.

 第2の従来の油圧式制震ダンパとしては、例えば図22ないし図24に示すようなものがある。図22に示す従来の油圧式制震ダンパ50は、その油圧シリンダ32の一端部に連結部材52の一端部が連結されており、この連結部材52の他端部は図23に示すように、球面軸受60を介して建築構造体の一方のブラケット57に連結されている。 As a second conventional hydraulic damper, there is, for example, one shown in FIGS. In the conventional hydraulic damper 50 shown in FIG. 22, one end of a connecting member 52 is connected to one end of a hydraulic cylinder 32, and the other end of the connecting member 52 is, as shown in FIG. It is connected to one bracket 57 of the building structure via a spherical bearing 60.

 他方、油圧シリンダ32に対して上記連結部材52と反対側のピストンロッド34の先端部は、図22に示すように、球面軸受60を介して建築構造体の他方のブラケット58に連結されている。 On the other hand, the distal end of the piston rod 34 opposite to the connecting member 52 with respect to the hydraulic cylinder 32 is connected to the other bracket 58 of the building structure via a spherical bearing 60 as shown in FIG. .

 球面軸受60は、図24に示すように、建築構造体のブラケット57と、前記連結部材52の先端部に固定されて上記ブラケット57を挟むようにその両側に配置された一対の軸支持部材61に両端部が支持された、軸部材63との間に設けられて、軸支持部材61とブラケット57との間の回動が自在となるようにそれらを連結している。 As shown in FIG. 24, the spherical bearing 60 includes a bracket 57 of the building structure and a pair of shaft support members 61 fixed to the distal end of the connecting member 52 and arranged on both sides of the bracket 57 so as to sandwich the bracket 57. The shaft support member 61 and the bracket 57 are provided between the shaft support member 63 and both ends thereof are connected to each other so that the shaft support member 61 and the bracket 57 can rotate freely.

 すなわち球面軸受60は、その軸孔が軸部材63に嵌合しその外周面に凸球状面が形成された軸受内輪部材65と、外周部が外輪支持部材67に支持され内周面に上記軸受内輪部材65の凸球状面と摺接可能な凹球状面が形成された軸受外輪部材69により構成されている。 That is, the spherical bearing 60 includes a bearing inner ring member 65 having a shaft hole fitted into the shaft member 63 and a convex spherical surface formed on the outer peripheral surface thereof, and the bearing inner ring member having an outer peripheral portion supported by the outer ring supporting member 67 and the inner peripheral surface having the bearing. It is constituted by a bearing outer ring member 69 having a concave spherical surface which can slide on the convex spherical surface of the inner ring member 65.

 前記建築構造体において、上記のような油圧式制震ダンパ30,50にその軸線方向に地震等の外力が加わった場合、油圧シリンダ32とピストン36との間には相対移動が発生し、ピストン36の端面には移動の向きとは反対の向きに油圧室32a,32b間の圧力差に比例した減衰力が加わることとなり、この減衰力により油圧式制震ダンパ30,50は制震動作を発揮することができる。 In the building structure, when an external force such as an earthquake is applied to the hydraulic dampers 30 and 50 in the axial direction as described above, relative movement occurs between the hydraulic cylinder 32 and the piston 36, and the piston moves. A damping force proportional to the pressure difference between the hydraulic chambers 32a and 32b is applied to the end face of the cylinder 36 in a direction opposite to the direction of movement, and the damping forces cause the hydraulic dampers 30 and 50 to perform the damping operation. Can be demonstrated.

 ところで、前記第1の従来の油圧式制震ダンパにあっては、図21に示すように、ホルダ部47,48をボール支持部45,46にネジ部材により締付けることにより、その凹球状面をボールジョイント42,43の凸球状面に接触させ、このことによりボールジョイント42,43とホルダ部47,48との間のガタを容易に除くことができる。 By the way, in the first conventional hydraulic damper, as shown in FIG. 21, the holder spherical portions 47, 48 are tightened to the ball support portions 45, 46 by screw members, so that the concave spherical surfaces thereof are formed. The contact between the ball joints 42, 43 and the holder portions 47, 48 can be easily eliminated by bringing the ball joints 42, 43 into contact with the convex spherical surfaces.

 しかしながら前記第2の従来の油圧式制震ダンパ50にあっては、図24に示すように、軸部材63と軸受内輪部材65との接触部C1、軸受内輪部材65と軸受外輪部材69との接触部C2、軸受外輪部材69と外輪支持部材67との接触部C3、さらには軸部材63と軸支持部材61との接触部C4にガタがあり、これらのガタが累積してさらに大きなガタとして作用する。しかもこのガタは、前記第1の従来の油圧式制震ダンパ30のボールジョイント42,43とホルダ部47,48との間のガタのようにネジ部材の締付け等により容易に除くことができない構造となっている。 However, in the second conventional hydraulic vibration damper 50, as shown in FIG. 24, a contact portion C1 between the shaft member 63 and the bearing inner ring member 65, and a contact portion C1 between the bearing inner ring member 65 and the bearing outer ring member 69 are formed. The contact portion C2, the contact portion C3 between the bearing outer ring member 69 and the outer ring support member 67, and the contact portion C4 between the shaft member 63 and the shaft support member 61 have backlash, and these backlashes accumulate as larger backlash. Works. In addition, the play cannot be easily removed by tightening a screw member or the like, as in the play between the ball joints 42, 43 and the holders 47, 48 of the first conventional hydraulic damper 30. It has become.

 上記球面軸受60のように、累積されて大きなガタが存在すると、油圧式制震ダンパ50に往復方向に加わる外力の方向が逆方向に切換ったときに、そのガタ分だけブラケット57と軸支持部材61間が相対変位する当初の間は油圧式制震ダンパ50には減衰力が全く生じないことになる。 If the accumulated large backlash exists like the spherical bearing 60, when the direction of the external force applied to the hydraulic damper 50 in the reciprocating direction is switched to the opposite direction, the bracket 57 and the shaft support are supported by the backlash. During the initial stage of relative displacement between the members 61, no damping force is generated in the hydraulic damper 50.

 このため、風揺れのような、上記累積されるガタと同じ位の振幅の小さな外力が加わったときは油圧式制震ダンパ50には減衰力が全く生じないので、人に不快な揺れを体感させることが防止できないと共に、地震のような振幅が大きな外力が加わったときはそのエネルギー吸収量が低下して、油圧式制震ダンパ50が外力を抑える能力が、上記ガタがない場合よりも低下してしまうという問題があった。 For this reason, when a small external force, such as a wind sway, having the same amplitude as the accumulated backlash is applied, no damping force is generated in the hydraulic damper 50, so that a person may experience uncomfortable sway. When an external force having a large amplitude such as an earthquake is applied, the energy absorption decreases, and the ability of the hydraulic damper 50 to suppress the external force is lower than that without the backlash. There was a problem of doing it.

 そこで本発明は、上記問題点に鑑みて、建築構造体との連結部に球面軸受を用いた場合でも各構成部材間のガタを確実に除去することができる油圧式制震ダンパを提供することを課題とするものである。 Accordingly, the present invention has been made in view of the above problems, and provides a hydraulic damper that can reliably remove backlash between components even when a spherical bearing is used in a connection portion with a building structure. Is the subject.

 上記課題を解決するために本発明は、
 建築構造体との連結部に球面軸受を用いた油圧式制震ダンパにおいて、
 前記球面軸受の軸受外輪部材の外側面と、この外側面に接触して軸受外輪部材を支持する外輪支持部材の内側面の、双方に互いに対応するテーパ形状を形成した構成としたものである。
In order to solve the above problems, the present invention
Hydraulic vibration dampers that use spherical bearings at the connection to the building structure
The outer surface of the bearing outer ring member of the spherical bearing and the inner surface of the outer ring supporting member that contacts the outer surface and supports the bearing outer ring member are formed with tapered shapes corresponding to each other.

 以上説明したように、本発明によれば、建築構造体との連結部に球面軸受を用いた場合でも各部材間のガタを確実に除去することができるため、風揺れのような振幅が小さな往復外力が加わったときでも、その方向の切換り時に当初から油圧式制震ダンパが減衰力を生じさせることができるので、人に不快な揺れを体感させることを防止することができる。また、地震等のときに油圧式制震ダンパが外力を抑える能力が低下することを防止することができる。 As described above, according to the present invention, even when a spherical bearing is used for the connection with the building structure, the play between the members can be reliably removed. Even when a reciprocating external force is applied, the hydraulic vibration damper can generate a damping force from the beginning when the direction is switched, so that it is possible to prevent a person from experiencing unpleasant shaking. In addition, it is possible to prevent the ability of the hydraulic damper to suppress an external force from decreasing in the event of an earthquake or the like.

 以下、本発明の実施の形態について、図面に基づいて具体的に説明する。
 図1ないし図6は、本発明の第1の実施の形態に係る油圧式制震ダンパについて説明するために参照する図である。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
FIGS. 1 to 6 are diagrams referred to for explaining a hydraulic damper according to a first embodiment of the present invention.

 この実施の形態に係る油圧式制震ダンパの連結部に用いられる球面軸受70は、図1に示すように、軸部材73が軸受内輪部材75の軸孔の周面に密着するように圧入されているので、軸部材73と軸受内輪部材75の接触部C1にはガタが全く生じないように構成されている。 As shown in FIG. 1, the spherical bearing 70 used in the connecting portion of the hydraulic damper according to this embodiment is press-fitted so that the shaft member 73 is in close contact with the peripheral surface of the shaft hole of the bearing inner ring member 75. Therefore, the contact portion C1 between the shaft member 73 and the bearing inner ring member 75 is configured such that no backlash occurs.

 軸受内輪部材75の外周の凸球状面に接触する凹球状面を有する軸受外輪部材79は、その外周面にテーパ形状が形成されている。外周面がブラケット57に溶接により固定された外輪支持部材77の内周面には、軸受外輪部材79の外周面のテーパ形状に接触するテーパ形状が形成されている。 軸 受 A bearing outer ring member 79 having a concave spherical surface that comes into contact with the convex spherical surface on the outer periphery of the bearing inner ring member 75 has a tapered outer peripheral surface. A tapered shape is formed on the inner peripheral surface of the outer ring support member 77 whose outer peripheral surface is fixed to the bracket 57 by welding so as to contact the tapered shape of the outer peripheral surface of the bearing outer ring member 79.

 軸受外輪部材79は、図3ないし図5に示すように、その円周方向に略180°間隔をおいた2箇所のスリット79aにより切断されて互いに2つに分割されている。図3に示すように、軸受外輪部材79のスリット79aの伸びる方向は軸受外輪部材79の軸方向に一致した方向となっている。 (3) As shown in FIGS. 3 to 5, the bearing outer ring member 79 is cut by two slits 79a at intervals of approximately 180 degrees in the circumferential direction and is divided into two parts. As shown in FIG. 3, the direction in which the slit 79 a of the bearing outer ring member 79 extends is the direction coinciding with the axial direction of the bearing outer ring member 79.

 一方図1に示すように、軸部材73の両端部にはテーパ形状が形成され、この軸部材73の両端部と軸支持部材61との間には、図示するような断面のくさび形部材81が設けられている。そしてこのくさび形部材81は、その円周方向の1箇所以上の位置にスリットを有し、このために半径方向に加わる外力により径が拡縮自在となっている。 On the other hand, as shown in FIG. 1, a tapered shape is formed at both ends of the shaft member 73, and a wedge-shaped member 81 having a cross section as shown in the drawing is provided between both ends of the shaft member 73 and the shaft support member 61. Is provided. The wedge-shaped member 81 has slits at one or more positions in the circumferential direction, so that the diameter of the wedge-shaped member 81 can be freely expanded and reduced by an external force applied in a radial direction.

 くさび形部材81の軸支持部材61より外側に突出したその端面には円板状の押圧板83が当接され、この押圧板83の中心孔から挿し込んだボルト85のネジ部を軸部材73の中心のネジ孔に締付けることにより、押圧板83を介してくさび形部材81を軸部材73と軸支持部材61との間にくい込ませるようになっている。 A disc-shaped pressing plate 83 is in contact with an end surface of the wedge-shaped member 81 protruding outward from the shaft supporting member 61, and a screw portion of a bolt 85 inserted from a center hole of the pressing plate 83 is used as a shaft member 73. The wedge-shaped member 81 is hardly inserted between the shaft member 73 and the shaft support member 61 via the pressing plate 83 by being screwed into the screw hole at the center of the shaft member 73.

 このような実施の形態によれば、軸受内輪部材75と外輪支持部材77との間の軸受外輪部材79を、環状雄ネジ部材87を締付けることにより図1中下方に押し込んでいくと、軸受外輪部材79は軸受内輪部材75と外輪支持部材77に密着して接触部C2,C3のガタを確実に除くことができる。 According to such an embodiment, when the bearing outer ring member 79 between the bearing inner ring member 75 and the outer ring support member 77 is pushed downward in FIG. The member 79 is in close contact with the bearing inner ring member 75 and the outer ring support member 77, so that play at the contact portions C2 and C3 can be reliably removed.

 このとき軸受外輪部材79は、図3,4に示すように2つに分割されているので、その外周テーパ面が外輪支持部材77の内周テーパ面により半径内方に押されてその径を縮少させるため、その内周の凹球状面を軸受内輪部材75の外周の凸球状面に密着させることができる。 At this time, since the bearing outer ring member 79 is divided into two as shown in FIGS. 3 and 4, the outer peripheral taper surface is pressed inward by the inner peripheral taper surface of the outer ring support member 77 to reduce the diameter. In order to reduce the diameter, the concave spherical surface on the inner periphery can be brought into close contact with the convex spherical surface on the outer periphery of the bearing inner ring member 75.

 またボルト85を締付けることにより、押圧板83を介してくさび形部材81を軸部材73と軸支持部材61との間にくい込ませるようになっているので、くさび形部材81は軸支持部材61と軸部材73に密着してそれらとくさび形部材81の間の接触部C4,C5のガタを確実に除くことができる。 Further, by tightening the bolt 85, the wedge-shaped member 81 can be hardly inserted between the shaft member 73 and the shaft support member 61 via the pressing plate 83, so that the wedge-shaped member 81 is connected to the shaft support member 61. The contact portions C4 and C5 between the wedge-shaped members 81 and the shaft members 73 can be securely removed.

 このため、風揺れのような振幅が小さな往復外力が加わったときでも、その方向の切換り時に当初から油圧式制震ダンパ50が減衰力を生じさせることができるので、人に不快な揺れを体感させることを防止することができる。また、地震等のときに油圧式制震ダンパ50が外力を抑える能力が低下することを防止することができる。 For this reason, even when a reciprocating external force having a small amplitude such as wind sway is applied, the hydraulic damper 50 can generate a damping force from the beginning when the direction is switched, so that uncomfortable sway is given to a person. It is possible to prevent the user from experiencing it. In addition, it is possible to prevent the ability of the hydraulic damper 50 to suppress the external force from being reduced in the event of an earthquake or the like.

 例えば図6(a)に示すように、上記実施の形態に係る油圧式制震ダンパのように各接触部C1〜C5においてガタが全くない場合には、その外力の往復方向の切換り時に当初から油圧式制震ダンパ50が減衰力を生じさせることができると共に、図中斜線の面積で表されるエネルギー吸収量E1は全く低下しない。 For example, as shown in FIG. 6A, when there is no backlash in each of the contact portions C1 to C5 as in the hydraulic damper according to the above embodiment, the external force is initially switched when the reciprocating direction is switched. As a result, the hydraulic damper 50 can generate a damping force, and the energy absorption E1 represented by the hatched area in the figure does not decrease at all.

 これに対し図24に示すような、前記第2の従来例の球面軸受60やその周辺の各接触部C1〜C4においてガタがある場合は、図6(b)に示すように、外力の往復方向の切換り時にそのガタGの分だけブラケット57と軸支持部材61間が相対変位する当初の間は油圧式制震ダンパ50は減衰力を生じさせることができないと共に、図中斜線の面積で表されるエネルギー吸収量E2も低下してしまうことになる。 On the other hand, when there is play in the spherical bearing 60 of the second conventional example and the respective contact portions C1 to C4 around the same as shown in FIG. 24, reciprocation of the external force is performed as shown in FIG. During the initial switching of the direction between the bracket 57 and the shaft support member 61 by the amount of the play G, the hydraulic vibration damper 50 cannot generate a damping force. The expressed energy absorption E2 will also decrease.

 なお、前記実施の形態においては、図3に示すように、軸受外輪部材79のスリット79aの伸びる方向が軸受外輪部材79の軸線の方向と一致するようになっていたが、図7に示すように、軸受外輪部材79のスリット79bの伸びる方向が軸受外輪部材79の軸線に対して斜め方向になるようにしてもよい。 In the above-described embodiment, as shown in FIG. 3, the direction in which the slit 79a of the bearing outer ring member 79 extends matches the direction of the axis of the bearing outer ring member 79, but as shown in FIG. Alternatively, the direction in which the slit 79 b of the bearing outer ring member 79 extends may be oblique to the axis of the bearing outer ring member 79.

 また前記実施の形態においては、図4に示すように、軸受外輪部材79の円周方向の2箇所のスリット79aにより軸受外輪部材79が2つに分割されていたが、図8に示すように、軸受外輪部材79にその円周方向の1箇所のスリット79cだけを設けるようにしてもよく、その場合も軸受外輪部材79の径を拡縮自在にすることができる。 Further, in the above-described embodiment, as shown in FIG. 4, the bearing outer ring member 79 is divided into two by two circumferential slits 79a of the bearing outer ring member 79, but as shown in FIG. Alternatively, the bearing outer ring member 79 may be provided with only one slit 79c in the circumferential direction thereof, and in this case, the diameter of the bearing outer ring member 79 can be freely increased or decreased.

 図9,10は、本発明の第2の実施の形態に係る油圧式制震ダンパについて説明するために参照する図である。
 この実施の形態に係る球面軸受90は、外周面にテーパ形状のない軸受外輪部材99と、軸部材73に嵌合する軸孔を有する軸受内輪部材75から構成される。軸受外輪部材99と外輪支持部材77との間にはくさび形部材100が介装され、このくさび形部材100の外周面には、外輪支持部材77の内周のテーパ形状に対応するテーパ形状が形成されている。
FIGS. 9 and 10 are diagrams referred to for explaining a hydraulic damper according to a second embodiment of the present invention.
The spherical bearing 90 according to this embodiment includes a bearing outer ring member 99 having no tapered outer peripheral surface and a bearing inner ring member 75 having a shaft hole that fits into the shaft member 73. A wedge-shaped member 100 is interposed between the bearing outer ring member 99 and the outer ring support member 77, and a tapered shape corresponding to the tapered shape of the inner periphery of the outer ring support member 77 is formed on the outer peripheral surface of the wedge-shaped member 100. Is formed.

 そして図10に示すように、くさび形部材100のテーパ形状が形成されたテーパ部100aは、その円周方向の1箇所以上にスリット100bが設けられているので、その径が拡縮自在となっている。そしてテーパ部100aと一体の環状雄ネジ部100cが、外輪支持部材77の一端側のメスネジにネジ結合するようになっている。また軸受外輪部材99は、前記第1の実施の形態の軸受外輪部材79と同様にその径が拡縮自在となっている。 As shown in FIG. 10, the tapered portion 100a of the wedge-shaped member 100 in which the tapered shape is formed is provided with the slit 100b at one or more positions in the circumferential direction, so that the diameter thereof can be expanded and contracted. I have. An annular male screw portion 100c integral with the tapered portion 100a is screw-coupled to a female screw at one end of the outer ring support member 77. Further, the diameter of the bearing outer ring member 99 is freely expandable and contractible similarly to the bearing outer ring member 79 of the first embodiment.

 このような実施の形態によれば、くさび形部材100の環状雄ネジ部100cを締付けることによりそのテーパ部100aが図9中下方に押し込まれ、テーパ部100aは軸受外輪部材99と外輪支持部材77に密着して接触部C3,C4のガタを確実に除くことができる。 According to such an embodiment, by tightening the annular male screw portion 100c of the wedge-shaped member 100, the tapered portion 100a is pushed downward in FIG. 9, and the tapered portion 100a is formed by the bearing outer ring member 99 and the outer ring support member 77. And the backlash of the contact portions C3 and C4 can be reliably removed.

 このときくさび形部材100はその外周が外輪支持部材77の内周により半径内方に押されてその径を縮少させるため、その内周面を軸受外輪部材99の外周面に密着させることができる。そして軸受外輪部材99はその外周がくさび形状部材100の内周により半径内方に押されてその径を縮少させるため、その内周面を軸受内輪部材75の外周面に密着させて、接触部C2のガタを確実に除くことができる。なお、くさび形部材100は、テーパ部100aと環状雄ネジ部100cとに分割する構成としてもよい。 At this time, the outer periphery of the wedge-shaped member 100 is pushed inward by the inner periphery of the outer ring supporting member 77 to reduce the diameter, and therefore, the inner peripheral surface of the wedge-shaped member 100 may be brought into close contact with the outer peripheral surface of the bearing outer ring member 99. it can. Since the outer circumference of the bearing outer ring member 99 is pressed inward by the inner circumference of the wedge-shaped member 100 to reduce its diameter, the inner circumferential surface thereof is brought into close contact with the outer circumferential surface of the bearing inner ring member 75 to make contact. The play of the portion C2 can be reliably removed. In addition, the wedge-shaped member 100 may be configured to be divided into a tapered portion 100a and an annular male screw portion 100c.

 またボルト85を締付けることにより、押圧板83を介してくさび形部材81を軸部材73と軸支持部材61との間にくい込ませるようになっているので、くさび形部材81は軸支持部材61と軸部材73に密着してそれらとくさび形部材81の間の接触部C5,C6のガタをも確実に除くことができる。また軸部材73は軸受内輪部材75の軸孔に圧入することにより接触部C1のガタをも確実に除くことができる。 Further, by tightening the bolt 85, the wedge-shaped member 81 can be hardly inserted between the shaft member 73 and the shaft support member 61 via the pressing plate 83, so that the wedge-shaped member 81 is connected to the shaft support member 61. The contact portions C5 and C6 between the wedge-shaped members 81 and the shaft members 73 can be securely removed from the contact portions. Further, the shaft member 73 is pressed into the shaft hole of the bearing inner ring member 75, so that the backlash of the contact portion C1 can be surely removed.

 このため、この第2の実施の形態によっても前記第1の実施の形態と同様の効果を得ることができる。 Therefore, the second embodiment can provide the same effects as those of the first embodiment.

 図11は、本発明の第3の実施の形態に係る油圧式制震ダンパについて説明するために参照する図である。
 前記実施の形態においては軸部材73の両端部にテーパ形状が形成されていたのに対し、この第3の実施の形態に係る球面軸受110は、その軸部材73の一方の(図中上方の)端部にのみ、くさび形部材81の内側テーパ面と接触するテーパ形状が形成されており、その他方の端部には、図中下方の軸支持部材61の孔に嵌合する嵌合部73cと、これより外側に、嵌合部73cより大径のフランジ部73dが形成されている。
FIG. 11 is a diagram referred to for describing a hydraulic damper according to a third embodiment of the present invention.
In the above-described embodiment, the tapered shape is formed at both ends of the shaft member 73. On the other hand, the spherical bearing 110 according to the third embodiment includes one of the shaft members 73 (upper part in the drawing). Only at one end, a tapered shape is formed to be in contact with the inner tapered surface of the wedge-shaped member 81, and at the other end, a fitting portion that fits into a hole of the shaft support member 61 below in the figure. 73c, and a flange portion 73d having a larger diameter than the fitting portion 73c are formed outside of the flange portion 73c.

 このような構成の球面軸受110によれば、前記実施の形態においては軸部材73の両端部のテーパ面と接触する計2つのくさび形部材81が必要であったのに対し、この第3の実施の形態においては軸部材73の一端部のテーパ形状と接触するくさび形部材81が1つで足りるので、部品数が減ってコストダウンを図ることができる。 According to the spherical bearing 110 having such a configuration, a total of two wedge-shaped members 81 that come into contact with the tapered surfaces at both ends of the shaft member 73 are required in the above-described embodiment. In the embodiment, since only one wedge-shaped member 81 is required to be in contact with the tapered shape at one end of the shaft member 73, the number of parts can be reduced and cost can be reduced.

 また、前記実施の形態においては、軸部材73の両端部にテーパ形状が形成されているため、一対の軸支持部材61に対して軸部材73の位置合わせが多少難しいので、これらの部材の組立てが多少難しいのに対し、この第3の実施の形態においては、軸部材73のテーパ形状が形成されていない方の端部の嵌合部73cを一方の軸支持部材61の孔に嵌合させて、フランジ部73dを外側から軸支持部材61に突き当てるだけで、軸支持部材61に対して軸部材73の位置合わせが容易にできるので、これらの部材の組立ても容易となる。 Further, in the above-described embodiment, since the tapered shape is formed at both ends of the shaft member 73, it is somewhat difficult to align the shaft member 73 with the pair of shaft support members 61. However, in the third embodiment, the fitting portion 73c at the end of the shaft member 73 where the tapered shape is not formed is fitted into the hole of the one shaft support member 61 in the third embodiment. Then, just by abutting the flange portion 73d against the shaft support member 61 from the outside, the positioning of the shaft member 73 with respect to the shaft support member 61 can be easily performed, so that the assembly of these members is also facilitated.

 さて、図12ないし20は、軸部材73と軸支持部材61の一方又は両方(少なくとも一方)にテーパ部Tを形成した場合の、それぞれのテーパ部Tの形成状態の種々の類型を示す摸式図である。 FIGS. 12 to 20 are schematic diagrams showing various types of tapered portions T when tapered portions T are formed on one or both (at least one) of the shaft member 73 and the shaft supporting member 61. FIG.

 図12に示す類型は、軸部材73の図中上下両端部73a,73bにテーパ部Tが形成されていて、軸支持部材61の図中上下両方の部材61a,61bにはテーパ部Tが形成されていないもので、この類型は本発明の前記第1,第2の実施の形態に該当するものである。 In the type shown in FIG. 12, tapered portions T are formed at upper and lower ends 73a and 73b of the shaft member 73 in the drawing, and tapered portions T are formed at both upper and lower members 61a and 61b of the shaft supporting member 61 in the drawing. This type does not correspond to the first and second embodiments of the present invention.

 図13に示す類型は、軸部材73の図中上方の端部73aにテーパ部Tが形成されていて、軸部材73の図中下方の端部73bと、軸支持部材61の図中上下両方の部材61a,61bにはテーパ部Tが形成されていないもので、この類型は本発明の前記第2の実施の形態に該当するものである。 In the type shown in FIG. 13, a tapered portion T is formed at an upper end 73 a of the shaft member 73 in the figure, and both a lower end 73 b of the shaft member 73 in the figure and an upper and lower part of the shaft support member 61 in the figure. The members 61a and 61b have no tapered portion T, and this type corresponds to the second embodiment of the present invention.

 図14に示す類型は、軸部材73の図中上下両端部73a,73bと、軸支持部材61の図中上方の部材61aにテーパ部Tが形成されていて、軸支持部材61の図中下方の部材61bにはテーパ部Tが形成されていないものである。 In the type shown in FIG. 14, the shaft member 73 has upper and lower ends 73a and 73b in the figure and a shaft support member 61 formed with a tapered portion T in an upper part 61a in the figure, and a lower part of the shaft support member 61 in the figure. The member 61b has no tapered portion T.

図15に示す類型は、軸部材73の図中上下両端部73a,73bと、軸支持部材61の図中上下両方の部材61a,61bにテーパ部Tが形成されているものである。 The type shown in FIG. 15 is such that tapered portions T are formed on both upper and lower ends 73a and 73b of the shaft member 73 in the drawing and both upper and lower members 61a and 61b of the shaft support member 61 in the drawing.

 図16に示す類型は、軸部材73の図中上方の端部73aと、軸支持部材61の図中上方の部材61aにテーパ部Tが形成されていて、軸部材73の図中下方の端部73bと、軸支持部材61の図中下方の部材61bにはテーパ部Tが形成されていないものである。 The type shown in FIG. 16 has a tapered portion T formed at an upper end 73a of the shaft member 73 in the drawing and an upper member 61a of the shaft support member 61 in the drawing, and a lower end of the shaft member 73 in the drawing. The tapered portion T is not formed in the portion 73b and the member 61b below the shaft support member 61 in the drawing.

 図17に示す類型は、軸部材73の図中上方の端部73aと、軸支持部材61の図中下方の部材61bにテーパ部Tが形成されていて、軸部材73の図中下方の端部73bと、軸支持部材61の図中上方の部材61aにはテーパ部Tが形成されていないものである。 In the type shown in FIG. 17, a tapered portion T is formed on an upper end 73a of the shaft member 73 in the figure and a lower member 61b of the shaft support member 61 in the figure. The tapered portion T is not formed in the portion 73b and the member 61a above the shaft support member 61 in the figure.

 図18に示す類型は、軸部材73の図中上方の端部73aと、軸支持部材61の図中上下両方の部材61a,61bにテーパ部Tが形成されていて、軸部材73の図中下方の端部73bにはテーパ部Tが形成されていないものである。 In the type shown in FIG. 18, the upper end 73a of the shaft member 73 in the figure and the upper and lower members 61a and 61b of the shaft support member 61 in the figure are formed with tapered portions T. The tapered portion T is not formed at the lower end 73b.

 図19に示す類型は、軸支持部材61の図中上方の部材61aにテーパ部Tが形成されていて、軸支持部材61の図中下方の部材61bと、軸部材73の図中上下両端部73a,73bにはテーパ部Tが形成されていないものである。 In the type shown in FIG. 19, a taper portion T is formed in a member 61a in the upper part of the shaft support member 61 in the figure, and a lower member 61b in the figure of the shaft support member 61 and upper and lower ends of the shaft member 73 in the figure. The tapered portions T are not formed in 73a and 73b.

 図20に示す類型は、軸支持部材61の図中上下両方の部材61a,61bにテーパ部Tが形成されていて、軸部材73の図中上下両端部にはテーパ部Tが形成されていないものである。 In the type shown in FIG. 20, tapered portions T are formed on both upper and lower members 61a and 61b of the shaft support member 61 in the drawing, and no tapered portions T are formed on both upper and lower ends of the shaft member 73 in the drawing. Things.

 このような類型の他に、細かく言えば、上記図13,16,17を逆さまにしたものも含まれるかもしれないが、いずれにしても以上において触れた類型はすべて本発明に含まれるものである。 In addition to these types, in detail, there may be included those obtained by inverting the above-mentioned FIGS. 13, 16, and 17, but in any case, all the types mentioned above are included in the present invention. is there.

本発明の第1の実施の形態に係る油圧式制震ダンパの連結構造を示す断面図である。It is a sectional view showing the connection structure of the hydraulic damper concerning a 1st embodiment of the present invention. 図1における軸受外輪部材79と軸受内輪部材75の断面図である。It is sectional drawing of the bearing outer ring member 79 and the bearing inner ring member 75 in FIG. 図2における軸受外輪部材79と軸受内輪部材75の側面図である。FIG. 3 is a side view of a bearing outer ring member 79 and a bearing inner ring member 75 in FIG. 2. 図3における軸受外輪部材79と軸受内輪部材75のA矢視図である。FIG. 4 is a view of a bearing outer ring member 79 and a bearing inner ring member 75 in FIG. 図4における軸受外輪部材79と軸受内輪部材75の分解図である。FIG. 5 is an exploded view of a bearing outer ring member 79 and a bearing inner ring member 75 in FIG. 4. 油圧式制震ダンパの減衰力と、油圧シリンダ32とピストン36の相対変位の関係からエネルギー吸収量を示す特性図であり、図6(a)は油圧式制震ダンパの連結部にガタがないときの特性図、図6(b)はその連結部にガタがあるときの特性図である。FIG. 6A is a characteristic diagram showing the amount of energy absorption based on the relationship between the damping force of the hydraulic vibration damper and the relative displacement between the hydraulic cylinder 32 and the piston 36. FIG. 6A shows no play in the connection portion of the hydraulic vibration damper. FIG. 6B is a characteristic diagram when there is a backlash in the connection portion. 本発明の第1の実施の形態に係る油圧式制震ダンパの他の実施例を示す図である。It is a figure showing other examples of a hydraulic damper concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る油圧式制震ダンパの他の実施例を示す図である。It is a figure showing other examples of a hydraulic damper concerning a 1st embodiment of the present invention. 本発明の第2の実施の形態に係る油圧式制震ダンパの連結構造を示す断面図である。It is sectional drawing which shows the connection structure of the hydraulic damper which concerns on 2nd Embodiment of this invention. 図9におけるくさび形部材100の側面図である。It is a side view of the wedge-shaped member 100 in FIG. 本発明の第3の実施の形態に係る油圧式制震ダンパの連結構造を示す断面図である。It is sectional drawing which shows the connection structure of the hydraulic damper which concerns on 3rd Embodiment of this invention. 軸部材73と軸支持部材61の一方又は両方のテーパ部Tの形成状態の一つの類型を示す模式図である。It is a schematic diagram which shows one type of the formation state of one or both taper parts T of the shaft member 73 and the shaft support member 61. やはりテーパ部Tの形成状態の一つの類型を示す模式図である。It is also a schematic diagram showing one type of the formation state of the tapered portion T. やはりテーパ部Tの形成状態の一つの類型を示す模式図である。It is also a schematic diagram showing one type of the formation state of the tapered portion T. やはりテーパ部Tの形成状態の一つの類型を示す模式図である。It is also a schematic diagram showing one type of the formation state of the tapered portion T. やはりテーパ部Tの形成状態の一つの類型を示す模式図である。It is also a schematic diagram showing one type of the formation state of the tapered portion T. やはりテーパ部Tの形成状態の一つの類型を示す模式図である。It is also a schematic diagram showing one type of the formation state of the tapered portion T. やはりテーパ部Tの形成状態の一つの類型を示す模式図である。It is also a schematic diagram showing one type of the formation state of the tapered portion T. やはりテーパ部Tの形成状態の一つの類型を示す模式図である。It is also a schematic diagram showing one type of the formation state of the tapered portion T. やはりテーパ部Tの形成状態の一つの類型を示す模式図である。It is also a schematic diagram showing one type of the formation state of the tapered portion T. 第1の従来の油圧式制震ダンパ30を示す断面図である。It is sectional drawing which shows the 1st conventional hydraulic damper 30. 第2の従来の油圧式制震ダンパ50を建築構造体に設けた状態を示す図である。It is a figure showing the state where the 2nd conventional hydraulic damper 50 was provided in the building structure. 図22における連結部材52とブラケット57との連結部の拡大図である。FIG. 23 is an enlarged view of a connecting portion between the connecting member 52 and the bracket 57 in FIG. 22. 図23における連結部材52とブラケット57との連結部の構造を示す拡大断面図である。FIG. 24 is an enlarged cross-sectional view showing a structure of a connecting portion between a connecting member 52 and a bracket 57 in FIG. 23.

符号の説明Explanation of reference numerals

 30 油圧式制震ダンパ
 32 油圧シリンダ
 32a,32b 油圧室
 34 ピストンロッド
 36 ピストン
 40 コントロールバルブ部
 40a コントロールバルブ
 42,43 ボールジョイント
 45,46 ボール支持部
 47,48 ホルダ部
 50 油圧式制震ダンパ
 52 連結部材
 57,58 ブラケット
 60 球面軸受
 61 軸支持部材
 63 軸部材
 65 軸受内輪部材
 67 外輪支持部材
 69 軸受外輪部材
 70 球面軸受
 73 軸部材
 75 軸受内輪部材
 77 外輪支持部材
 79 軸受外輪部材
 79a〜79c スリット
 81 くさび形部材
 83 押圧板
 85 ボルト
 87 環状雄ネジ部
 90 球面軸受
 99 軸受外輪部材
 100 くさび形部材
 100a テーパ部
 100b スリット
 100c 環状雄ネジ部
 C1〜C6 接触部

Reference Signs List 30 Hydraulic vibration damper 32 Hydraulic cylinder 32a, 32b Hydraulic chamber 34 Piston rod 36 Piston 40 Control valve part 40a Control valve 42,43 Ball joint 45,46 Ball support part 47,48 Holder part 50 Hydraulic vibration damper 52 Connection Member 57, 58 Bracket 60 Spherical bearing 61 Shaft support member 63 Shaft member 65 Bearing inner ring member 67 Outer ring support member 69 Bearing outer ring member 70 Spherical bearing 73 Shaft member 75 Bearing inner ring member 77 Outer ring support member 79 Bearing outer ring member 79a to 79c Slit 81 Wedge-shaped member 83 Pressing plate 85 Bolt 87 Annular male screw part 90 Spherical bearing 99 Bearing outer ring member 100 Wedge-shaped member 100a Tapered part 100b Slit 100c Annular male screw part C1-C6 Contact part

Claims (6)

建築構造体との連結部に球面軸受を用いた油圧式制震ダンパにおいて、
 前記球面軸受の軸受外輪部材の外側面と、この外側面に接触して軸受外輪部材を支持する外輪支持部材の内側面の、双方に互に対応するテーパ形状を形成したことを特徴とする油圧式制震ダンパ。
Hydraulic vibration dampers that use spherical bearings at the connection to the building structure
A hydraulic pressure characterized by forming tapered shapes corresponding to both the outer surface of a bearing outer ring member of the spherical bearing and the inner surface of an outer ring support member that contacts the outer surface and supports the bearing outer ring member. Type vibration damper.
建築構造体との連結部に球面軸受を用いた油圧式制震ダンパにおいて、
 前記球面軸受の軸受外輪部材の外側面と、この外側面に接触して軸受外輪部材を支持する外輪支持部材の内側面の一方にテーパ形状を形成し、
 前記軸受外輪部材の外側面と前記外輪支持部材の内側面との間に、前記テーパ形状に対応するテーパ形状が形成されたくさび形部材を設けたことを特徴とする
油圧式制震ダンパ。
Hydraulic vibration dampers that use spherical bearings at the connection to the building structure
An outer surface of a bearing outer ring member of the spherical bearing, and a tapered shape formed on one of inner surfaces of an outer ring support member that contacts the outer surface and supports the bearing outer ring member,
A hydraulic damper characterized in that a wedge-shaped member having a tapered shape corresponding to the tapered shape is provided between an outer surface of the bearing outer ring member and an inner surface of the outer ring supporting member.
前記軸受外輪部材を、この軸方向に伸びるスリット、もしくは前記軸方向に対して斜め方向に伸びるスリットにより分割した請求項1または2に記載の油圧式制震ダンパ。 3. The hydraulic vibration damper according to claim 1, wherein the bearing outer ring member is divided by a slit extending in the axial direction or a slit extending in a direction oblique to the axial direction. 前記軸受外輪部材の円周方向の1箇所に、この外輪部材の軸方向、もしくはこの軸方向に対して斜め方向に伸びるスリットが形成された請求項1または2に記載の油圧式制震ダンパ。 The hydraulic damper according to claim 1, wherein a slit extending in an axial direction of the outer ring member or in an oblique direction with respect to the axial direction is formed at one circumferential position of the outer ring member. 前記球面軸受の軸受内輪部材の軸孔に嵌合する軸部材と、この軸部材を支持する軸支持部材の、少なくとも一方にテーパ形状を形成し、前記軸部材と前記軸支持部材との間に、前記テーパ形状に対応するテーパ形状が形成されたくさび形部材を介装するようにした請求項1または2に記載の油圧式制震ダンパ。 A shaft member that fits into a shaft hole of the bearing inner ring member of the spherical bearing, and a shaft support member that supports the shaft member, at least one of which has a tapered shape, between the shaft member and the shaft support member. The hydraulic damper according to claim 1 or 2, wherein a wedge-shaped member having a tapered shape corresponding to the tapered shape is interposed. 前記球面軸受の軸受内輪部材の軸孔に嵌合する軸部材をこの軸孔に圧入するようにした請求項1または2に記載の油圧式制震ダンパ。

3. The hydraulic vibration damper according to claim 1, wherein a shaft member fitted into a shaft hole of a bearing inner race member of the spherical bearing is press-fitted into the shaft hole.

JP2003293180A 2002-08-26 2003-08-13 Hydraulic pressure type damper Pending JP2004108577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003293180A JP2004108577A (en) 2002-08-26 2003-08-13 Hydraulic pressure type damper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002245306 2002-08-26
JP2003293180A JP2004108577A (en) 2002-08-26 2003-08-13 Hydraulic pressure type damper

Publications (1)

Publication Number Publication Date
JP2004108577A true JP2004108577A (en) 2004-04-08

Family

ID=32301179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003293180A Pending JP2004108577A (en) 2002-08-26 2003-08-13 Hydraulic pressure type damper

Country Status (1)

Country Link
JP (1) JP2004108577A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004048828A1 (en) * 2004-10-07 2006-04-20 Zf Friedrichshafen Ag Air spring with a ball joint
JP2008014068A (en) * 2006-07-07 2008-01-24 Hitachi Metals Techno Ltd Damper connecting structure
JP2013096574A (en) * 2011-11-04 2013-05-20 Honeywell Internatl Inc Mounting system for structural member, fastening assembly thereof, and vibration isolation system including the same
KR101288614B1 (en) 2011-08-11 2013-07-22 주식회사 만도 Protecting tool for eye of shock absorber
CN106838027A (en) * 2017-03-31 2017-06-13 福建龙溪轴承(集团)股份有限公司 The solidification equipment and its curing of precise control bearing no-load staring torque
CN109210076A (en) * 2018-09-12 2019-01-15 福建龙溪轴承(集团)股份有限公司 A kind of integrated oscillating bearing unit of dismounting
CN109210060A (en) * 2018-09-12 2019-01-15 福建龙溪轴承(集团)股份有限公司 A kind of elastic collar structure and a kind of inner-outer sleeve disassembly and assembly structure
CN111771072A (en) * 2018-03-20 2020-10-13 舍弗勒技术股份两合公司 Torsional vibration damper
CN113983072A (en) * 2021-11-10 2022-01-28 国家石油天然气管网集团有限公司 Axial limiting device for torque shaft

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004048828A1 (en) * 2004-10-07 2006-04-20 Zf Friedrichshafen Ag Air spring with a ball joint
JP2008014068A (en) * 2006-07-07 2008-01-24 Hitachi Metals Techno Ltd Damper connecting structure
JP4579201B2 (en) * 2006-07-07 2010-11-10 日立機材株式会社 Damper connection structure
KR101288614B1 (en) 2011-08-11 2013-07-22 주식회사 만도 Protecting tool for eye of shock absorber
JP2017180839A (en) * 2011-11-04 2017-10-05 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Mounting system for structural member, fastening assembly thereof, and vibration isolation system including the same
JP2013096574A (en) * 2011-11-04 2013-05-20 Honeywell Internatl Inc Mounting system for structural member, fastening assembly thereof, and vibration isolation system including the same
CN106838027A (en) * 2017-03-31 2017-06-13 福建龙溪轴承(集团)股份有限公司 The solidification equipment and its curing of precise control bearing no-load staring torque
CN111771072A (en) * 2018-03-20 2020-10-13 舍弗勒技术股份两合公司 Torsional vibration damper
CN111771072B (en) * 2018-03-20 2022-03-11 舍弗勒技术股份两合公司 Torsional vibration damper
CN109210076A (en) * 2018-09-12 2019-01-15 福建龙溪轴承(集团)股份有限公司 A kind of integrated oscillating bearing unit of dismounting
CN109210060A (en) * 2018-09-12 2019-01-15 福建龙溪轴承(集团)股份有限公司 A kind of elastic collar structure and a kind of inner-outer sleeve disassembly and assembly structure
CN113983072A (en) * 2021-11-10 2022-01-28 国家石油天然气管网集团有限公司 Axial limiting device for torque shaft
CN113983072B (en) * 2021-11-10 2023-10-27 国家石油天然气管网集团有限公司 Axial limiting device for torque shaft

Similar Documents

Publication Publication Date Title
JP2004108577A (en) Hydraulic pressure type damper
JP2008520918A (en) Joint device and / or bearing device
CN110030260A (en) Combined elastic body and cylindrical slid bearing
JP4217002B2 (en) End seal assembly with stationary seal ring
JP2004517289A (en) Constant velocity joint and its mechanical transmission member
JP2003322165A (en) Bush bearing
JP2011505943A (en) Artificial disc, especially for the cervical spine
JP4512879B2 (en) Locking washer device
JP2640205B2 (en) Tripod type universal joint
GB2060812A (en) Vibration isolators
JP4579201B2 (en) Damper connection structure
JP2004526107A (en) Method of forming a tapered roller bearing assembly
CA2933142A1 (en) Joint yoke for a universal joint and universal joint
JP2005201383A (en) Hydraulic damper for seismic response control
JP2002339947A (en) Spherical bearing
JP2016211601A (en) Seal structure of swivel bearing and swivel bearing
CN207661145U (en) Sealing element
JP2605157Y2 (en) damper
JPH08260752A (en) Vibration control device for structural body
JP7331477B2 (en) cross joint
JPH07208549A (en) Torsional vibration damper
JP2591965Y2 (en) Sealing device
JP2015215040A (en) Ball screw device
JPH08114220A (en) Bearing device for steering
JP2681583B2 (en) Pin support structure of three-dimensional system truss structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20051130

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516