JP2004108078A - Construction method for underwater shaft, underwater shaft, connection method for shaft and adit, and pit structure - Google Patents

Construction method for underwater shaft, underwater shaft, connection method for shaft and adit, and pit structure Download PDF

Info

Publication number
JP2004108078A
JP2004108078A JP2002274556A JP2002274556A JP2004108078A JP 2004108078 A JP2004108078 A JP 2004108078A JP 2002274556 A JP2002274556 A JP 2002274556A JP 2002274556 A JP2002274556 A JP 2002274556A JP 2004108078 A JP2004108078 A JP 2004108078A
Authority
JP
Japan
Prior art keywords
shaft
underwater
pipe
water
sheet pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002274556A
Other languages
Japanese (ja)
Other versions
JP4260448B2 (en
Inventor
Toyofumi Ikematsu
池松 豊文
Kiyomi Aikawa
相河 清実
Satoshi Takeuchi
竹内 聡
Kenji Okubo
大久保 憲二
Hisao Kondo
今藤 久夫
Natsuki Matsumura
松村 夏樹
Original Assignee
Kajima Corp
鹿島建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, 鹿島建設株式会社 filed Critical Kajima Corp
Priority to JP2002274556A priority Critical patent/JP4260448B2/en
Publication of JP2004108078A publication Critical patent/JP2004108078A/en
Application granted granted Critical
Publication of JP4260448B2 publication Critical patent/JP4260448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction method for an underwater shaft, an underwater shaft, a connection method for a shaft and an adit, and a pit structure that enable safety construction with no temporary structure and little influence on the environment. <P>SOLUTION: Steel pipe sheet piles 15 are erected in a seabed 19 so that upper ends are positioned in the water, a wale 25 is arranged along an inner circumference of a steel pipe well 16, and the inside of the steel pipe well 16 is excavated to form the underwater shaft 30. A J pipe 43 with a steel frame 45 is installed in the underwater shaft 30, a separating sheet 49 is set on steel pipe sheet piles 15b, and underwater concrete 63 is placed to fix the steel frame 45 and the J pipe 43 in the underwater shaft 30. The steel pipe sheet piles 15b with the separating sheet 49 are partly cut away, and a shield tunnel 75 is passed from the side of the underwater shaft 30. An arrival fitting 55 arranged at an end of the J pipe 43 is used to connect the shield tunnel 75 and the J pipe 43, and an outlet 77 is arranged at an upper end of the J pipe 43. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水中立坑の構築方法、水中立坑、立坑と横坑の連結方法、坑構造に関するものである。
【0002】
【従来の技術】
従来、海底などの水底下に構造物を構築する場合には、(1)上端部が海面上に露出した鋼管矢板仮締切りを構築するか、築島し仮設ケーソンを沈設することにより作業空間を形成し、気中施工により構造物を構築する(例えば、特許文献1参照)。または、(2)海底を浚渫してプレキャスト部材等を設置して構造物を構築する(例えば、特許文献2参照)。
【0003】
【特許文献1】
特開2001−342640
【0004】
特開平8−158354
【0005】
【発明が解決しようとする課題】
しかしながら、(1)の方法では、海上に仮設構造物が突出し、内部を排水して施工するため、仮設構造物に波圧、水圧等による力が加わり、仮設構造物に必要以上の強度を設定しなければならない。また、(2)の方法は、水底で大きな面積を掘削する必要があり、環境への影響が大きい。
【0006】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、大規模な仮設構造物を省略でき、環境への影響が少なく、安全に施工できる水中立坑の構築方法、水中立坑、立坑と横坑の連結方法、坑構造を提供することにある。
【0007】
【課題を解決するための手段】
前述した目的を達成するための第1の発明は、上端部が水中に位置するように水底に矢板を設置する工程と、前記矢板の表面に沿って腹起こしを設置する工程と、前記矢板に囲まれた部分を掘削する工程とを具備することを特徴とする水中立坑の構築方法である。
【0008】
矢板には、例えば鋼管矢板を使用する。矢板は、上端部が水底面付近の水中に位置するように水底の地盤に打ち込まれる。矢板の上端部は、潮流による漂砂が矢板に囲まれた部分に流入するのを避けることができる高さとする。腹起こしは、例えば、H鋼とする。腹起こしの寸法は矢板の周囲の土圧によって決定される。第1の発明では、矢板に波力が作用しないため、また、水中掘削により矢板に水圧が作用しないため、従来のように矢板の上端部が水上に位置する場合よりも、支保工を簡略化できる。
【0009】
第1の発明では、上端部が水中に位置するように水底に矢板を設置し、矢板の表面に沿って腹起こしを設置した後、矢板に囲まれた部分を掘削する。
【0010】
第2の発明は、第1の発明の水中立坑の構築方法を用いて構築された水中立坑である。
【0011】
第3の発明は、水底に矢板を設置して立坑を形成する工程(a)と、前記立坑内に、位置決め用部材が設けられた管を設置する工程(b)と、前記位置決め用部材を立坑内に固定する工程(c)と、水底内に掘削した横坑を、連結手段を用いて前記管に連結する工程(d)とを具備することを特徴とする立坑と横坑の連結方法である。
【0012】
立坑は、第1の発明の水中立坑の構築方法を用いて形成するのが好ましい。立坑内に設置される管は、例えばJ字型であり、曲部が下端になるように配置される。管には、立坑内での管の設置位置を決定するための位置決め部材が設けられる。位置決め部材は、例えば、管の周囲に設けられた鋼材である。位置決め部材および管は、水中コンクリート等によって立坑内に固定される。
【0013】
横坑とは、水底に掘削されたシールドトンネル等である。連結手段は、例えば、J字型の管の曲線部の端部に設けられ、コンクリートが充填されたさや管と隔壁からなる。水底に掘削されたシールドトンネル等の横坑は、連結部材のさや管に到達し、管に連結される。但し、シールド機の通過予定位置では、工程(c)の前に、矢板の表面に縁切り材を設置し、矢板の所定の部分を水中で切断して撤去しておく。工程(d)の後、管の上端に取放水口を設置することにより、連結された立坑と横坑を発電所や工場等の取放水口として用いることができる。
【0014】
第3の発明では、水底に矢板を設置して立坑を形成し、立坑内に位置決め用部材が設けられた管を設置し、位置決め用部材を立坑内に固定する。なお、位置決め部材の固定前に、横坑の通過予定位置では、矢板の表面に縁切り材を設置し、矢板の所定の部分を水中で切断して撤去しておく。そして、水底内に掘進した横坑を、矢板を撤去した部分を通して、管の端部に到達させる。さらに、連結手段を用いて横坑を管に連結し、必要に応じて、管の上端に取放水口を設置する。
【0015】
第4の発明は、第3の発明の立坑と横坑の連結方法を用いて連結された立坑と横坑である。
なお、第1から第4の発明は、海、湖沼等において用いられる。
【0016】
【発明の実施の形態】
以下、図面に基づいて、本発明の第1の実施の形態を詳細に説明する。第1の実施の形態では、水底に水中立坑を構築する方法について述べる。図1は、海底19に鋼管矢板15を打設する工程を示す立面図である。海底19に立坑を構築するための作業架台には、例えば、自己昇降式作業架台7を使用する。自己昇降式作業架台7は、架台8、複数の脚9、張出し台車11等からなる。
【0017】
自己昇降式作業架台7では、ジャッキ(図示せず)を用いて、脚9に沿って架台8を昇降させることができる。自己昇降式作業架台7は、位置を固定する場合には、図1に示すように脚9を海底19に固定する。移動させる場合には、脚9を海底19から解放して、曳船等で曳航する。
【0018】
海底19に水中立坑を構築するには、図1に示すように、まず、海底19の所定の位置に打ち込んだガイド杭(図示せず)を基準として、海底19の矢板設置予定位置1付近に水中導材3を設置する。そして、水中導材固定杭5で水中導材3を海底19に固定する。水中導材3は、鋼管矢板15の設置位置を決定するために設置される。水中導材3は、例えば環状の部材であり、矢板設置予定位置1の内周に沿って配置される水中導材3aと、外周に沿って配置される水中導材3bとからなる。
【0019】
次に、架台8上に設置したクレーン13で水中バイブロハンマ21を吊下げ、張出し台車11上に上部導材23を設置する。水中バイブロハンマ21は、海底19の矢板設置予定位置1に鋼管矢板15を打ち込む。上部導材23は、鋼管矢板15の上端部の位置決めを行う。図1に示すように、鋼管矢板15の上端部を上部導材23に、下端部を海底19に設置された水中導材3に添わせた状態で、水中バイブロハンマ21を用いて鋼管矢板15を海底19に圧入する。
【0020】
図2は、鋼管井筒16に沿って腹起こし25を設置する工程を示す立面図である。全ての鋼管矢板15を図1の鋼管矢板15aに示す程度まで打ち込んだ後、水中導材3および水中導材固定杭5を海底19から撤去する。そして、架台8上に設置したクレーン13に、水中バイブロハンマ21のかわりに水中油圧ハンマ(図示せず)を取り付け、図2に示す程度まで鋼管矢板15を打ち込み、筒状の鋼管井筒16を形成する。
【0021】
鋼管井筒16は、複数の鋼管矢板15からなり、隣接する鋼管矢板15は、継手29(図3)で連結される。鋼管矢板15の上端部は、潮流による漂砂が鋼管井筒16内に流入するのを避けるため、海底19より高い位置とする。
【0022】
次に、図2に示すように、鋼管井筒16内の海底19の地盤を、腹起こし下端レベル27まで掘削する。そして、クレーン13で腹起こし25を吊り下ろし、鋼管井筒16の内周面に沿って腹起こし25を設置する。腹起こし25は、例えば、H鋼であり、H鋼の寸法は鋼管矢板15の周囲の土圧に応じて決定する。腹起こし25の設置段数は、水深によらず、掘削深さに応じて決定する。掘削深さが26m程度の場合、図2に示すように、腹起こし25は一段でよい。
【0023】
図3は、腹起こし25および鋼管矢板15付近の拡大断面図である。図3は、図2のA−Aによる断面図である。腹起こし25を設置した後、クレーン13にバケット(図示せず)を吊下げ、ホッパー、水中シュート等(図示せず)を用いて、鋼管井筒16と腹起こし25との間に間詰めコンクリート31を打設する。
【0024】
さらに、グラブ浚渫船(図示せず)等を用いて鋼管井筒16内を図2に示す底面レベル28まで掘削し、水中立坑30を形成する。鋼管井筒16内を掘削する際には、鋼管井筒16周辺に、掘削土による汚濁防止のための対策を講じる。例えば、鋼管井筒16周辺の水中にシルトプロテクタ(図示せず)を設置して、鋼管井筒16内の掘削を行う。
【0025】
このように、第1の実施の形態では、鋼管矢板15の上端面を海底19近くに配置するので、鋼管矢板15に波力が作用せず、また、水中掘削であるため、水圧が作用せず、鋼管井筒16内を掘削する際の支保工を簡略化できる。例えば、図2に示すように、腹起こし25の設置段数を1段とできる。また、鋼管矢板15の水中切断の手間が省け、材料も節約できる。
【0026】
さらに、浚渫の場合と比較して、水域の占有面積が狭く、環境への影響が少ない。また、掘削の範囲が鋼管井筒16内に限られるため、掘削時の汚濁防止対策の実施が容易である。
【0027】
なお、第1の実施の形態の各工程において、自己昇降式作業架台7以外の作業架台や台船等を用いてもよい。また、水中導材3の形状や設置位置は上述したものに限らない。水中導材3の代わりに水面17上に気中導材を設置して、鋼管矢板15の設置予定を決定してもよい。水中道材3や気中導材の形状は、構築される立坑の形状に応じて決定される。
【0028】
第1の実施の形態の方法で構築した水中立坑30は、発電所および工場等の取放水口、橋脚等を構築する場合に用いることができる。また、第1の実施の形態では、海底19に水中立坑30を構築したが、同様の方法で湖沼や河川等の水底に水中立坑を構築してもよい。
【0029】
次に、第2の実施の形態について説明する。第2の実施の形態では、水面下に放水口を設置する方法について説明する。図4は、鋼管井筒16内に水中導材35を設置する工程を示す立面図である。水面17の下方に放水口を設置するには、まず、図4に示すように、海底19に水中立坑30を構築する。水中立坑30は、第1の実施の形態の方法で構築するのが好ましい。
【0030】
鋼管井筒16内を掘削して水中立坑30を構築した後、図4に示すように、鋼管井筒16内に砕石33を敷き均す。砕石33は、浮泥発生防止及び掘削面を均すためのものである。
【0031】
図5は、基礎コンクリート41を打設する工程を示す立面図である。砕石33を敷き均した後、図5に示すように、砕石33の上方に基礎コンクリート41を打設する。
【0032】
図6は、水中立坑30内にJ管43を設置し、固定する工程を示す立面図である。基礎コンクリート41を打設した後、周囲に鉄骨45を有するJ管43を水中立坑30内に配置する。鉄骨45は、J管43の位置決めおよび支持のための部材である。鉄骨45およびJ管43は、造船場等で事前に一体化されたプレキャスト部材とする。
【0033】
J管43の上端部には、仮止水フタ47が設けられる。また、J管43の下部の曲部60の端部には、横坑としてのシールドトンネル75(図8)との連結手段である到達用金物55が設けられる。到達用金物55は、さや管57とJ管43の端部の隔壁であるバルクヘッド61とで構成される。バルクヘッド61とさや管57との接触部は溶接される。さや管57の内部には、コンクリート59が充填される。このコンクリート59は、鉄骨45設置後に打設する水中コンクリート63と兼ねてもよい。
【0034】
J管43および鉄骨45は、到達用金物55がシールドトンネル75(図8)の到達予定位置に位置するように配置される。到達用金物55のさや管57の端面と対面する鋼管矢板15bには、縁切り工が施される。図6では、縁切り工として、縁切りシート49が鋼管矢板15bの表面に設置されている。他に、鋼管矢板15bにグリスを塗布する方法等を用いてもよい。
【0035】
縁切りシート49の設置等の縁切り工を行った後、架台8上に設置したクレーン13でバケット51を吊下げ、張出し台車11にトレミー管53を設置する。そして、水中立坑30内に水中コンクリート63を打設し、J管43および鉄骨45を鋼管矢板15に固定する。
【0036】
図7は、鋼管矢板15bの一部を切断して撤去する工程を示す立面図である。図6に示す状態から、鋼管カッタ等(図示せず)を用いて、鋼管矢板15bを切断位置65で切断し、切断した鋼管矢板15bをクレーン13で吊上げる。そして、切断部66がさや管57の上端のレベルに達した後、鋼管井筒上端67の位置で鋼管矢板15bを再度切断する。鋼管矢板15bの撤去部68は、水中から撤去される。
【0037】
縁切りシート49を設置すると、水中コンクリート63の打設後も鋼管矢板15bが鉄骨45およびJ管43と一体化されないため、クレーン13で鋼管矢板15bを吊上げるのが容易になる。なお、鋼管矢板15bのうち、さや管57と対面する部分は、置換材69で置き換えられる。置換材69には、例えばセメントベントナイトのように、自立性があり、硬化までに比較的時間を要する材料を用いる。
【0038】
次に、鋼管井筒16の上端付近の周囲を浚渫し、洗掘防止被覆工71を設置する。浚渫時には、鋼管井筒16内の掘削時と同様に、水中にシルトプロテクタ等を設置して、掘削による水の汚濁を防止する。
【0039】
図8は、シールドトンネル75をさや管57に到達させ、放水口77を設置する工程を示す立面図である。図7に示す状態から、シールド機73でシールドトンネル75を形成し、シールド機73をさや管57に到達させる。図8に示すように、シールド機73は、鋼管矢板15bと置き換えられた置換材69、さや管57内のコンクリート59を削り、バルクへット61の手前で停止する。
【0040】
次に、J管43の上端部に放水口77を配置し、鉄骨45およびJ管43に固定する。さらに、水中コンクリート63の上方に、根固めコンクリート79を打設する。そして、バルクヘッド61の2ヶ所に孔を設け、J管43内の水を空気と入れ替える。J管43内の水は、矢印Bに示すように、シールド機73の排泥管83を用いて排出される。シールドトンネル内の空気は、矢印Aに示すように、送泥管81用いてJ管43内に流入する。
【0041】
図9は、バルクヘッド61を撤去し、シールドトンネル75内に注水する工程を示す断面図である。シールド機73からの止水注入及び貼付凍結による仮止水を行った後、送泥管81、排泥管83を用いてJ管43内の水位を下げ、図8に示すように、シールド機73を解体し、止水鉄板(図示せず)を取り付けてさや管57とスキンプレート85との間の止水を行う。そして、バルクヘッド61を撤去し、シールドトンネル75とスキンプレート85の内周に二次覆工コンクリート87を設置する。
【0042】
次に、仮止水フタ47のバルブ89のうち少なくとも2ヶ所を開放し、放水口77の上部にハッチ91を設け、開放したバルブ89の一部と水面17の上空をつなぐ空気抜き配管93を設置する。そして、矢印Cに示すように、シールドトンネル75の上流からシールドトンネル75内に注水する。J管43内の空気は、空気抜き配管93から排出される。
【0043】
図10は、通水を開始する工程を示す立面図である。シールドトンネル75とJ管43内に注水した後、J管43の仮止水フタ47を撤去し、矢印Cから矢印Eに示す方向への通水を開始する。
【0044】
このように、第2の実施の形態では、水中立坑30内に、J管43および鉄骨45を設置して水中コンクリート63を打設し、海底19に掘削されたシールドトンネル75と水中立坑30とを連結する。J管43および鉄骨45はプレキャスト部材である。
【0045】
第2の実施の形態では、立坑である水中立坑30と横坑であるシールドトンネル75を連結し、放水口77を設置するための全工程を水中施工で行うため、気中施工の場合と比較して安全に施工できる。また、ジャケットや仮設ケーソン等の大規模な構造物を使用しないため、水域の占有面積が狭く、環境への影響が比較的少なくなると同時に、外洋の波浪の影響を受けにくい。さらに、ニューマチックケーソン等を使用して放水口を設置する場合より、短い工期で取放水口を設置できる。
【0046】
なお、鋼管矢板15の上端位置は、放水口77の設置に支障のない高さとする。または、水中立坑30の掘削時には鋼管矢板15の上端位置を周辺地盤からの埋め戻りを防止できる高さとしておき、放水口77の設置前に鋼管矢板15の上端を切断してもよい。また、第2の実施の形態の立坑と横坑の連結方法は、水底に放水口77以外の構造物を設置する場合にも用いられる。さらに、第1の実施の形態と同様に、実施場所は海底19に限らない。
【0047】
【発明の効果】
以上、詳細に説明したように、本発明によれば、仮設構造物を省略でき、環境への影響が少なく、安全に施工できる水中立坑の構築方法、水中立坑、立坑と横坑の連結方法、坑構造を提供できる。
【図面の簡単な説明】
【図1】海底19に鋼管矢板15を打設する工程を示す立面図
【図2】鋼管井筒16に沿って腹起こし25を設置する工程を示す立面図
【図3】腹起こし25および鋼管矢板15付近の拡大断面図
【図4】鋼管井筒16内に水中導材35を設置する工程を示す立面図
【図5】基礎コンクリート41を打設する工程を示す立面図
【図6】水中立坑30内にJ管43を設置し、固定する工程を示す立面図
【図7】鋼管矢板15の一部を切断して撤去する工程を示す立面図
【図8】シールドトンネル75をさや管57に到達させ、放水口77を設置する工程を示す立面図
【図9】バルクヘッド61を撤去し、シールドトンネル75内に注水する工程を示す断面図
【図10】通水を開始する工程を示す立面図
【符号の説明】
1………矢板設置予定位置
15………鋼管矢板
16………鋼管井筒
19………海底
25………腹起こし
30………水中立坑
41………基礎コンクリート
43………J管
45………鉄骨
49………縁切りシート
55………到達用金物
57………さや管
59………コンクリート
60………曲部
61………バルクヘッド
63………水中コンクリート
65………切断位置
73………シールド機
75………シールドトンネル
77………放水口
85………スキンプレート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for constructing an underwater shaft, an underwater shaft, a method for connecting a shaft and a horizontal shaft, and a structure of the shaft.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, when constructing a structure below the bottom of the sea, such as the seabed, (1) a work space is formed by constructing a temporary cutoff of steel pipe sheet piles whose upper end is exposed above the sea surface, or by constructing a temporary caisson by laying an island. Then, a structure is constructed by aerial construction (for example, see Patent Document 1). Alternatively, (2) a structure is constructed by dredging the seabed and installing a precast member or the like (for example, see Patent Document 2).
[0003]
[Patent Document 1]
JP-A-2001-342640
[0004]
JP-A-8-158354
[0005]
[Problems to be solved by the invention]
However, in the method (1), since the temporary structure protrudes above the sea and drains the inside to perform construction, a force due to wave pressure, water pressure, or the like is applied to the temporary structure, and the temporary structure is set to an unnecessary strength. Must. In addition, the method (2) requires excavation of a large area at the bottom of the water, which has a large environmental impact.
[0006]
The present invention has been made in view of such a problem, and a purpose thereof is to omit a large-scale temporary structure, to reduce the influence on the environment, and to construct a submerged shaft that can be safely constructed, It is an object of the present invention to provide an underwater shaft, a method for connecting a shaft and a shaft, and a shaft structure.
[0007]
[Means for Solving the Problems]
A first invention for achieving the above-described object is a step of installing a sheet pile on a water bottom such that an upper end portion is located in water, a step of installing a prow along the surface of the sheet pile, Excavating an enclosed portion.
[0008]
For the sheet pile, for example, a steel pipe sheet pile is used. The sheet pile is driven into the ground at the bottom of the water so that the upper end is located in the water near the bottom of the water. The upper end of the sheet pile is set at a height that can prevent the sand drift due to the tide from flowing into the portion surrounded by the sheet pile. The abdomen is, for example, H steel. The size of the upset is determined by the earth pressure around the sheet pile. In the first invention, since no wave force acts on the sheet pile and no water pressure acts on the sheet pile due to underwater excavation, the support work is simplified as compared with the conventional case where the upper end of the sheet pile is located on the water. it can.
[0009]
In the first invention, a sheet pile is installed on the bottom of the water so that the upper end portion is located in the water, a belly is installed along the surface of the sheet pile, and a portion surrounded by the sheet pile is excavated.
[0010]
A second invention is an underwater shaft constructed using the underwater shaft construction method of the first invention.
[0011]
According to a third aspect of the present invention, a step (a) of setting a sheet pile on a water bottom to form a shaft, a step (b) of installing a pipe provided with a positioning member in the shaft, and A method of connecting a shaft and a shaft, comprising a step (c) of fixing the shaft in a shaft and a step (d) of connecting a shaft excavated in the water bottom to the pipe using a connecting means. It is.
[0012]
The shaft is preferably formed using the underwater shaft construction method of the first invention. The pipe installed in the shaft is, for example, J-shaped, and is arranged so that the curved portion is located at the lower end. The pipe is provided with a positioning member for determining the installation position of the pipe in the shaft. The positioning member is, for example, a steel material provided around the pipe. The positioning member and the pipe are fixed in the shaft by underwater concrete or the like.
[0013]
The horizontal shaft is a shield tunnel or the like excavated at the bottom of the water. The connecting means is provided, for example, at the end of the curved portion of the J-shaped pipe, and is composed of a sheath filled with concrete and a partition. A horizontal shaft such as a shield tunnel excavated at the bottom of the water reaches the sheath of the connecting member and is connected to the tube. However, at the scheduled passage position of the shield machine, before step (c), an edge-cutting material is installed on the surface of the sheet pile, and a predetermined portion of the sheet pile is cut off in water and removed. After the step (d), by installing a water discharge port at the upper end of the pipe, the connected shaft and horizontal shaft can be used as a water discharge port of a power plant or a factory.
[0014]
In the third invention, a pile is formed on the bottom of the water to form a shaft, a pipe provided with a positioning member is installed in the shaft, and the positioning member is fixed in the shaft. In addition, before the positioning member is fixed, at the expected passage position of the horizontal shaft, an edge cutting material is installed on the surface of the sheet pile, and a predetermined portion of the sheet pile is cut off in water and removed. Then, the horizontal shaft excavated into the water bottom reaches the end of the pipe through the portion from which the sheet pile has been removed. Further, the horizontal shaft is connected to the pipe using a connecting means, and a water discharge port is provided at the upper end of the pipe as necessary.
[0015]
A fourth aspect of the present invention is a vertical shaft and a horizontal shaft connected using the method for connecting a vertical shaft and a horizontal shaft according to the third invention.
The first to fourth inventions are used in seas, lakes and marshes.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings. In the first embodiment, a method for constructing an underwater shaft on the water floor will be described. FIG. 1 is an elevational view showing a step of placing a steel pipe sheet pile 15 on a seabed 19. As a work stand for constructing a shaft on the seabed 19, for example, the self-elevating work stand 7 is used. The self-elevating work platform 7 includes a platform 8, a plurality of legs 9, an overhanging trolley 11, and the like.
[0017]
The self-elevating work platform 7 can raise and lower the platform 8 along the legs 9 using jacks (not shown). When fixing the position of the self-elevating work table 7, the leg 9 is fixed to the seabed 19 as shown in FIG. When moving, the leg 9 is released from the seabed 19 and towed by a tugboat or the like.
[0018]
In order to construct an underwater shaft on the seabed 19, first, as shown in FIG. 1, a guide pile (not shown) driven into a predetermined position on the seabed 19 is used as a reference, and the vicinity of the sheet pile installation position 1 on the seabed 19 is set. The underwater conductor 3 is installed. Then, the underwater conductor 3 is fixed to the seabed 19 by the underwater conductor fixing pile 5. The underwater conductor 3 is installed to determine the installation position of the steel pipe sheet pile 15. The underwater conductor 3 is, for example, an annular member, and includes an underwater conductor 3a arranged along the inner periphery of the sheet pile planned installation position 1 and an underwater conductor 3b arranged along the outer periphery.
[0019]
Next, the underwater vibratory hammer 21 is suspended by the crane 13 installed on the gantry 8, and the upper guide 23 is installed on the overhanging trolley 11. The underwater vibratory hammer 21 drives the steel pipe sheet pile 15 into the sheet pile installation position 1 on the seabed 19. The upper guide 23 positions the upper end of the steel pipe sheet pile 15. As shown in FIG. 1, with the upper end of the steel pipe sheet pile 15 attached to the upper conductor 23 and the lower end attached to the underwater conductor 3 installed on the seabed 19, the steel pipe sheet pile 15 is attached using the underwater vibratory hammer 21. Press into the seabed 19.
[0020]
FIG. 2 is an elevational view showing a process of installing the bulge 25 along the steel pipe well 16. After driving all the steel pipe sheet piles 15 to the extent shown in the steel pipe sheet piles 15 a in FIG. 1, the underwater conductor 3 and the underwater conductor fixing pile 5 are removed from the seabed 19. Then, a submersible hydraulic hammer (not shown) is attached to the crane 13 installed on the gantry 8 instead of the submersible vibratory hammer 21, and the steel pipe sheet pile 15 is driven to the extent shown in FIG. .
[0021]
The steel pipe well 16 is composed of a plurality of steel pipe sheet piles 15, and adjacent steel pipe sheet piles 15 are connected by a joint 29 (FIG. 3). The upper end of the steel pipe sheet pile 15 is positioned higher than the seabed 19 in order to prevent drifting sand caused by the tidal current from flowing into the steel pipe well 16.
[0022]
Next, as shown in FIG. 2, the ground on the seabed 19 in the steel pipe well 16 is excavated to the lower end level 27. Then, the belly 25 is hung down by the crane 13, and the belly 25 is installed along the inner peripheral surface of the steel tube well 16. The upset 25 is, for example, H steel, and the dimensions of the H steel are determined according to the earth pressure around the steel pipe sheet pile 15. The number of installation steps of the upset 25 is determined according to the excavation depth without depending on the water depth. In the case where the excavation depth is about 26 m, as shown in FIG.
[0023]
FIG. 3 is an enlarged sectional view of the vicinity of the belly 25 and the steel pipe sheet pile 15. FIG. 3 is a cross-sectional view along AA in FIG. After the erection 25 is installed, a bucket (not shown) is hung on the crane 13 and the concrete 31 between the steel pipe well 16 and the erection 25 is filled with a hopper, an underwater chute or the like (not shown). Cast in.
[0024]
Further, the inside of the steel pipe well 16 is excavated to the bottom level 28 shown in FIG. 2 using a glove dredger (not shown) or the like to form an underwater shaft 30. When the inside of the steel pipe well 16 is excavated, measures are taken around the steel pipe well 16 to prevent pollution by excavated soil. For example, a silt protector (not shown) is installed in the water around the steel pipe well 16 to excavate the inside of the steel pipe well 16.
[0025]
As described above, in the first embodiment, since the upper end surface of the steel pipe sheet pile 15 is arranged near the seabed 19, no wave force acts on the steel pipe sheet pile 15 and, since the excavation is underwater, the water pressure acts. Instead, it is possible to simplify the support when excavating the inside of the steel pipe well 16. For example, as shown in FIG. 2, the number of installation steps of the belly upset 25 can be one. Further, the labor for cutting the steel pipe sheet pile 15 underwater can be omitted, and the material can be saved.
[0026]
Furthermore, compared to the case of dredging, the occupied area of the water area is smaller and the impact on the environment is less. In addition, since the range of excavation is limited to the inside of the steel tube well 16, it is easy to take measures for preventing pollution during excavation.
[0027]
In each step of the first embodiment, a work platform other than the self-elevating work platform 7 or a barge may be used. Further, the shape and installation position of the underwater conductor 3 are not limited to those described above. The installation schedule of the steel pipe sheet pile 15 may be determined by installing an airborne conductor on the water surface 17 instead of the underwater conductor 3. The shapes of the underwater road material 3 and the airborne material are determined according to the shape of the shaft to be constructed.
[0028]
The underwater shaft 30 constructed by the method of the first embodiment can be used when constructing water outlets and piers of power plants and factories. Further, in the first embodiment, the underwater shaft 30 is constructed on the seabed 19; however, the underwater shaft may be constructed on the bottom of a lake or a river in the same manner.
[0029]
Next, a second embodiment will be described. In the second embodiment, a method of installing a water outlet below the water surface will be described. FIG. 4 is an elevation view showing a process of installing the underwater conductor 35 in the steel tube well 16. In order to install a water outlet below the water surface 17, first, as shown in FIG. The underwater shaft 30 is preferably constructed by the method of the first embodiment.
[0030]
After constructing the underwater shaft 30 by excavating the inside of the steel tube well 16, crushed stones 33 are spread in the steel tube well 16 as shown in FIG. 4. The crushed stones 33 are for preventing generation of floating mud and leveling the excavated surface.
[0031]
FIG. 5 is an elevation view showing a step of placing the foundation concrete 41. After laying the crushed stones 33, as shown in FIG. 5, a foundation concrete 41 is poured over the crushed stones 33.
[0032]
FIG. 6 is an elevation view showing a process of installing and fixing the J pipe 43 in the underwater shaft 30. After the foundation concrete 41 is cast, a J pipe 43 having a steel frame 45 around it is placed in the underwater shaft 30. The steel frame 45 is a member for positioning and supporting the J pipe 43. The steel frame 45 and the J pipe 43 are precast members integrated in advance at a shipyard or the like.
[0033]
At the upper end of the J pipe 43, a temporary water stop lid 47 is provided. At the end of the curved portion 60 at the lower part of the J pipe 43, a reaching hardware 55 is provided as a connecting means with a shield tunnel 75 (FIG. 8) as a horizontal shaft. The reaching hardware 55 includes a sheath tube 57 and a bulkhead 61 which is a partition at an end of the J tube 43. The contact portion between the bulkhead 61 and the sheath tube 57 is welded. The inside of the sheath tube 57 is filled with concrete 59. The concrete 59 may also serve as the underwater concrete 63 that is cast after the steel frame 45 is installed.
[0034]
The J pipe 43 and the steel frame 45 are arranged such that the reaching hardware 55 is located at the expected position of the shield tunnel 75 (FIG. 8). The steel pipe sheet pile 15b facing the end surface of the sheath 55 of the reaching hardware 55 is subjected to beveling. In FIG. 6, as an edge cutting work, an edge cutting sheet 49 is provided on the surface of the steel pipe sheet pile 15b. Alternatively, a method of applying grease to the steel pipe sheet pile 15b may be used.
[0035]
After performing the edging work such as the installation of the edging sheet 49, the bucket 51 is hung by the crane 13 installed on the gantry 8, and the tremy tube 53 is installed on the overhanging trolley 11. Then, the underwater concrete 63 is poured into the underwater shaft 30, and the J pipe 43 and the steel frame 45 are fixed to the steel pipe sheet pile 15.
[0036]
FIG. 7 is an elevation view showing a step of cutting and removing a part of the steel pipe sheet pile 15b. 6, the steel pipe sheet pile 15b is cut at the cutting position 65 using a steel pipe cutter or the like (not shown), and the cut steel pipe sheet pile 15b is lifted by the crane 13. Then, after the cutting section 66 reaches the level of the upper end of the sheath pipe 57, the steel pipe sheet pile 15b is cut again at the position of the steel pipe well upper end 67. The removal section 68 of the steel pipe sheet pile 15b is removed from the water.
[0037]
When the edging sheet 49 is installed, the steel pipe sheet pile 15b is not integrated with the steel frame 45 and the J pipe 43 even after the underwater concrete 63 is cast, so that the steel pipe sheet pile 15b can be easily lifted by the crane 13. The portion of the steel sheet pile 15b facing the sheath tube 57 is replaced with a replacement material 69. As the replacement material 69, a material that is self-supporting and requires a relatively long time to harden, such as cement bentonite, is used.
[0038]
Next, the periphery near the upper end of the steel pipe well 16 is dredged, and a scouring prevention coating 71 is installed. At the time of dredging, a silt protector or the like is installed in the water as in the case of excavation in the steel pipe well 16 to prevent water contamination due to excavation.
[0039]
FIG. 8 is an elevational view showing a process in which the shield tunnel 75 reaches the sheath pipe 57 and the water outlet 77 is installed. From the state shown in FIG. 7, a shield tunnel 75 is formed by the shield machine 73, and the shield machine 73 reaches the sheath pipe 57. As shown in FIG. 8, the shield machine 73 cuts the replacement material 69 replaced with the steel pipe sheet pile 15 b and the concrete 59 in the sheath pipe 57, and stops just before the bulkhead 61.
[0040]
Next, the water outlet 77 is arranged at the upper end of the J pipe 43 and fixed to the steel frame 45 and the J pipe 43. In addition, a concrete 79 is laid above the underwater concrete 63. Then, two holes are provided in the bulkhead 61, and the water in the J tube 43 is replaced with air. The water in the J pipe 43 is discharged using the mud discharge pipe 83 of the shield machine 73 as shown by the arrow B. The air in the shield tunnel flows into the J pipe 43 using the mud feed pipe 81 as shown by the arrow A.
[0041]
FIG. 9 is a cross-sectional view illustrating a process of removing the bulkhead 61 and injecting water into the shield tunnel 75. After injecting water from the shield machine 73 and temporarily stopping the water by sticking and freezing, the water level in the J pipe 43 is lowered using a mud feed pipe 81 and a drain pipe 83, and as shown in FIG. 73 is disassembled, and a water stop iron plate (not shown) is attached to stop water between the sheath tube 57 and the skin plate 85. Then, the bulkhead 61 is removed, and the secondary lining concrete 87 is placed on the inner periphery of the shield tunnel 75 and the skin plate 85.
[0042]
Next, at least two of the valves 89 of the temporary water stop lid 47 are opened, a hatch 91 is provided above the water discharge port 77, and an air vent pipe 93 is provided to connect a part of the opened valve 89 to the sky above the water surface 17. I do. Then, as shown by an arrow C, water is injected into the shield tunnel 75 from the upstream of the shield tunnel 75. The air in the J pipe 43 is discharged from the air vent pipe 93.
[0043]
FIG. 10 is an elevation view illustrating a step of starting water passage. After injecting water into the shield tunnel 75 and the J pipe 43, the temporary water stopping lid 47 of the J pipe 43 is removed, and the flow of water from the arrow C to the direction indicated by the arrow E is started.
[0044]
As described above, in the second embodiment, the J pipe 43 and the steel frame 45 are installed in the underwater shaft 30, the underwater concrete 63 is cast, and the shield tunnel 75 excavated on the seabed 19 and the underwater shaft 30 are connected to each other. Concatenate. The J pipe 43 and the steel frame 45 are precast members.
[0045]
In the second embodiment, since the entire process for connecting the underwater shaft 30 as the shaft and the shield tunnel 75 as the horizontal shaft and installing the outlet 77 is performed by underwater construction, the second embodiment is compared with the case of aerial construction. And can be constructed safely. In addition, since large-scale structures such as jackets and temporary caisson are not used, the occupation area of the water area is small, the influence on the environment is relatively small, and at the same time, it is hard to be affected by ocean waves. Furthermore, the water discharge port can be installed in a shorter construction period than when the water discharge port is installed using a pneumatic caisson or the like.
[0046]
In addition, the upper end position of the steel pipe sheet pile 15 is set to a height that does not hinder the installation of the water outlet 77. Alternatively, when excavating the underwater shaft 30, the upper end position of the steel pipe sheet pile 15 may be set to a height that can prevent backfilling from the surrounding ground, and the upper end of the steel pipe sheet pile 15 may be cut before the water outlet 77 is installed. Further, the method of connecting the shaft and the horizontal shaft according to the second embodiment is also used when a structure other than the water discharge port 77 is installed on the water bottom. Further, the implementation place is not limited to the seabed 19 as in the first embodiment.
[0047]
【The invention's effect】
As described above in detail, according to the present invention, a temporary structure can be omitted, the impact on the environment is small, a method for constructing an underwater shaft that can be safely constructed, an underwater shaft, a method for connecting a shaft and a horizontal shaft, A pit structure can be provided.
[Brief description of the drawings]
FIG. 1 is an elevational view showing a step of placing a steel pipe sheet pile 15 on a seabed 19; FIG. 2 is an elevational view showing a step of installing an upright 25 along a steel pipe well 16; FIG. FIG. 4 is an elevational view showing the process of installing the underwater conductor 35 in the steel pipe well 16 FIG. 5 is an elevational view showing the process of placing the foundation concrete 41 FIG. FIG. 7 is an elevation view showing a process of installing and fixing the J pipe 43 in the underwater shaft 30. FIG. 7 is an elevation view showing a process of cutting and removing a part of the steel pipe sheet pile 15 FIG. FIG. 9 is an elevational view showing a step of allowing the water to reach a sheath pipe 57 and installing a water discharge port 77. FIG. 9 is a sectional view showing a step of removing a bulkhead 61 and pouring water into a shield tunnel 75. FIG. Elevation view showing the process to start [Explanation of reference numerals]
1 ... sheet pile installation position 15 ... steel pipe sheet pile 16 ... steel pipe well 19 ... seabed 25 ... erection 30 ... underwater shaft 41 ... foundation concrete 43 ... J pipe 45 ... steel frame 49 ... trimming sheet 55 ... reaching hardware 57 ... sheath tube 59 ... concrete 60 ... curved part 61 ... bulkhead 63 ... underwater concrete 65 ... Cutting position 73 Shield machine 75 Shield tunnel 77 Water outlet 85 Skin plate

Claims (9)

  1. 上端部が水中に位置するように水底に矢板を設置する工程と、
    前記矢板の表面に沿って腹起こしを設置する工程と、
    前記矢板に囲まれた部分を掘削する工程と、
    を具備することを特徴とする水中立坑の構築方法。
    Installing a sheet pile on the bottom of the water so that the upper end is located in the water,
    Installing a prow along the surface of the sheet pile;
    Excavating a portion surrounded by the sheet pile;
    A method for constructing an underwater shaft, comprising:
  2. 前記矢板は鋼管矢板であることを特徴とする請求項1記載の水中立坑の構築方法。The method according to claim 1, wherein the sheet pile is a steel pipe sheet pile.
  3. 請求項1または請求項2に記載された水中立坑の構築方法により構築されたことを特徴とする水中立坑。An underwater shaft constructed by the underwater shaft construction method according to claim 1.
  4. 水底に矢板を設置して立坑を形成する工程(a)と、
    前記立坑内に、位置決め用部材が設けられた管を設置する工程(b)と、
    前記位置決め用部材を立坑内に固定する工程(c)と、
    水底内に掘削した横坑を、連結手段を用いて前記管に連結する工程(d)と、を具備することを特徴とする立坑と横坑の連結方法。
    (A) setting a sheet pile on the bottom of the water to form a shaft;
    (B) installing a pipe provided with a positioning member in the shaft;
    Fixing the positioning member in a shaft (c);
    (D) connecting a horizontal shaft excavated in the water bottom to the pipe using a connecting means.
  5. 前記矢板の表面に縁切り材を設置する工程(e)をさらに具備することを特徴とする請求項4記載の立坑と横坑の連結方法。5. The method according to claim 4, further comprising a step (e) of installing an edge-cutting material on the surface of the sheet pile.
  6. 前記矢板の所定の部分を水中で切断して撤去する工程(f)をさらに具備することを特徴とする請求項5記載の立坑と横坑の連結方法。The method according to claim 5, further comprising the step (f) of cutting and removing a predetermined portion of the sheet pile in water.
  7. 前記管の上端に放水口を設置する工程(g)をさらに具備することを特徴とする請求項4記載の立坑と横坑の連結方法。The method according to claim 4, further comprising a step (g) of installing a water outlet at an upper end of the pipe.
  8. 前記連結手段は、前記管の端部に設けられ、コンクリートが充填されたさや管と隔壁からなることを特徴とする請求項4記載の立坑と横坑の連結方法。The method according to claim 4, wherein the connecting means is provided at an end of the pipe, and comprises a sheath filled with concrete and a partition.
  9. 請求項4から請求項8のいずれかに記載された立坑と横坑の連結方法により連結されたことを特徴とする坑構造。A pit structure connected by the method of connecting a vertical shaft and a horizontal shaft according to any one of claims 4 to 8.
JP2002274556A 2002-09-20 2002-09-20 Connection method and structure of submerged shaft and horizontal shaft Active JP4260448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002274556A JP4260448B2 (en) 2002-09-20 2002-09-20 Connection method and structure of submerged shaft and horizontal shaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002274556A JP4260448B2 (en) 2002-09-20 2002-09-20 Connection method and structure of submerged shaft and horizontal shaft
TW92125842A TWI267575B (en) 2002-09-20 2003-09-19 Method for constituting a vertical well in water, vertical well in water, method for connection of a vertical well and a horizontal well, and construction of a well

Publications (2)

Publication Number Publication Date
JP2004108078A true JP2004108078A (en) 2004-04-08
JP4260448B2 JP4260448B2 (en) 2009-04-30

Family

ID=32270994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002274556A Active JP4260448B2 (en) 2002-09-20 2002-09-20 Connection method and structure of submerged shaft and horizontal shaft

Country Status (2)

Country Link
JP (1) JP4260448B2 (en)
TW (1) TWI267575B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202450A (en) * 2010-03-26 2011-10-13 Nishimatsu Constr Co Ltd Pile placing system
CN106013094A (en) * 2016-06-17 2016-10-12 四川公路桥梁建设集团有限公司 Method applicable to pouring of concrete for artificial excavating pile body
KR20180079732A (en) * 2017-01-02 2018-07-11 한국수력원자력 주식회사 Dismantle method of bulkhead in underwater water intake tunnel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101211811B1 (en) 2010-08-02 2012-12-12 김상훈 Cast in concrete pile With precast type Caisson
TWI551773B (en) * 2014-12-23 2016-10-01 林向榮 Hoist and backfill construction method of shaft

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103637A (en) * 1975-03-10 1976-09-13 Akimi Morii
JPH06307579A (en) * 1993-04-23 1994-11-01 Sekisui Chem Co Ltd Pipe buring method
JPH0748842A (en) * 1993-08-06 1995-02-21 Nishimatsu Constr Co Ltd Press-in type open caisson method
JPH1162469A (en) * 1997-08-12 1999-03-05 Chubu Electric Power Co Inc Structure of earth retaining wall in shield pit, and starting and reaching method of shield machine
JP2001317043A (en) * 2000-05-11 2001-11-16 Kyushu Regional Bureau Ministry Of Land Infrastructure & Transport Sheet-pile wall for separation against settlement
JP2001342640A (en) * 2000-06-01 2001-12-14 Kajima Corp Construction method for underground structure below water bottom and underground structure below water bottom
JP2003214086A (en) * 2002-01-21 2003-07-30 Zenitaka Corp Sheathing construction method for shield excavation of sheet pile shaft and steel sheet pile for shield excavation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103637A (en) * 1975-03-10 1976-09-13 Akimi Morii
JPH06307579A (en) * 1993-04-23 1994-11-01 Sekisui Chem Co Ltd Pipe buring method
JPH0748842A (en) * 1993-08-06 1995-02-21 Nishimatsu Constr Co Ltd Press-in type open caisson method
JPH1162469A (en) * 1997-08-12 1999-03-05 Chubu Electric Power Co Inc Structure of earth retaining wall in shield pit, and starting and reaching method of shield machine
JP2001317043A (en) * 2000-05-11 2001-11-16 Kyushu Regional Bureau Ministry Of Land Infrastructure & Transport Sheet-pile wall for separation against settlement
JP2001342640A (en) * 2000-06-01 2001-12-14 Kajima Corp Construction method for underground structure below water bottom and underground structure below water bottom
JP2003214086A (en) * 2002-01-21 2003-07-30 Zenitaka Corp Sheathing construction method for shield excavation of sheet pile shaft and steel sheet pile for shield excavation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
新原雄二、相河清実: "台湾龍門(核四)原子力発電所放水口立坑の設計施工 世界初の水中施工による海底鋼管矢板井筒立坑", 土木学会誌, vol. 88, no. 9, JPN6008017418, 15 September 2003 (2003-09-15), JP, pages 53 - 56, ISSN: 0001024290 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202450A (en) * 2010-03-26 2011-10-13 Nishimatsu Constr Co Ltd Pile placing system
CN106013094A (en) * 2016-06-17 2016-10-12 四川公路桥梁建设集团有限公司 Method applicable to pouring of concrete for artificial excavating pile body
KR20180079732A (en) * 2017-01-02 2018-07-11 한국수력원자력 주식회사 Dismantle method of bulkhead in underwater water intake tunnel
KR101952950B1 (en) * 2017-01-02 2019-02-27 한국수력원자력 주식회사 Dismantle method of bulkhead in underwater water intake tunnel

Also Published As

Publication number Publication date
TW200417661A (en) 2004-09-16
JP4260448B2 (en) 2009-04-30
TWI267575B (en) 2006-12-01

Similar Documents

Publication Publication Date Title
US20150071711A1 (en) Partially floating marine platform for offshore wind-power, bridges and marine buildings, and construction method
JP6010070B2 (en) Temporary closing method for existing underwater structures
US6139225A (en) Method for building an underground continuous wall
CN104775446B (en) Barrel pier for fixing water structure and installation and construction method thereof
KR101256274B1 (en) Reverse Drill Method With precast type Caisson and Jacket
TWI267575B (en) Method for constituting a vertical well in water, vertical well in water, method for connection of a vertical well and a horizontal well, and construction of a well
JP3599431B2 (en) Construction method of temporary deadline
Rasmussen Concrete immersed tunnels—forty years of experience
KR100621410B1 (en) Dry Construction Method of Underwater Structure Using Watertight Caisson
KR100914650B1 (en) The well foundation method for which a steel caisson for pier reinforcement was used
JP3453664B2 (en) Shaft construction method
CN102561371A (en) Steel caisson enclosure structure at island-tunnel combination part
JP3024932B2 (en) Dry work method and work box used for it
JP4206165B2 (en) Temporary deadline construction method
KR100422216B1 (en) The method of construction prevening a waterflow of cassion basis for a bridge
TW201908570A (en) Method of using caissons and piles to construct underwater foundation capable of achieving beneficial effects of saving the construction cost and reducing the engineering risk
KR20140092217A (en) Construction method of the pier with the working bardge
JP2004244974A (en) Precast concrete armor unit type offshore breakwater and its construction method
JP4277181B2 (en) Tunnel construction method with manhole
AU2012313196B2 (en) Partially floating marine platform for offshore wind-power, bridges and marine buildings, and construction method
JP3310452B2 (en) Method of constructing continuous wall in water area and guide device for construction
EP2537987B1 (en) Method of proofing waste sites
JP3209502B2 (en) Water intake / discharge equipment underwater construction method
KR101245334B1 (en) caisson foundation concrete curing method using temperature maintaining sea water membrane
JP2726611B2 (en) How to set up an open caisson

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4260448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250