JP2004100308A - Vibration damper used for vibration damping seismic isolation building - Google Patents

Vibration damper used for vibration damping seismic isolation building Download PDF

Info

Publication number
JP2004100308A
JP2004100308A JP2002264713A JP2002264713A JP2004100308A JP 2004100308 A JP2004100308 A JP 2004100308A JP 2002264713 A JP2002264713 A JP 2002264713A JP 2002264713 A JP2002264713 A JP 2002264713A JP 2004100308 A JP2004100308 A JP 2004100308A
Authority
JP
Japan
Prior art keywords
viscous
movable plate
vibration
upper structure
vibration damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002264713A
Other languages
Japanese (ja)
Other versions
JP3849624B2 (en
Inventor
Takashi Fujita
藤田 ▲隆▼史
Nobuyasu Kawai
川井 伸泰
Yuji Funayama
舟山 勇司
Masaki Mochimaru
持丸 昌己
Shinji Sato
佐藤 新治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Okumura Corp
Original Assignee
Oiles Industry Co Ltd
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd, Okumura Corp filed Critical Oiles Industry Co Ltd
Priority to JP2002264713A priority Critical patent/JP3849624B2/en
Publication of JP2004100308A publication Critical patent/JP2004100308A/en
Application granted granted Critical
Publication of JP3849624B2 publication Critical patent/JP3849624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration damper proper for a seismic isolation building, in which an upper structure is borne on a lower structure through a seismic isolator with an isolator base-isolation operated to vibrations by an earthquake and an elasto-plastic system or friction system vibration damper damping vibrations, capable of effectively damping even micro-vibrations by wind or the like at an early stage and capable of imparting a vibration-control effect in the case of strong wind to the seismic isolation building. <P>SOLUTION: This vibration damping seismic isolation building 1 has a foundation 2 made of concrete fixed and installed on a ground by piles or the like, the seismic isolator 5 composed of the isolator 4 embedded with a lead support 3, the upper structure 6 supported to the foundation 2 through the seismic isolator 5 and the vibration damper 7 arranged between the foundation 2 and the upper structure 6. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、免震装置で免震化された事務所ビル、集合住宅又は戸建住宅等の上部構造物の風等による微小振動を効果的に減衰させて強風時の制振効果を得るようにした制振型免震建物に用いるための振動減衰装置に関する。
【0002】
【従来の技術】
従来から、地震を対象にした免震建物は、建物の基部を地震による振動に対して免震作動するアイソレータと振動を減衰させるダンパーとからなる免震装置により基礎上に支承されている。斯かる免震建物では、元来、地震の他に小変位の交通振動や風による揺れについては考慮されないのが普通であり、例えば、ロック機構により所定の水平荷重を越える地震が作用するまでは免震装置を不作動にし、それより大きな水平荷重が発生すると、ロック機構を解除して免震装置を作動させるようにしたものが一般的である。
【0003】
ところで、都市に建設される高層建物では、地震の他に小変位の交通振動や風の揺れを減衰させて居住性を改良することが要求されるようになっているが、単に、ロック機構を省いて、小変位の交通振動や風による揺れをも免震装置のダンパーにより減衰させようとしても、斯かる免震装置に用いられるダンパーの多くは弾塑性ダンパー(例えば、特許文献1参照)又は摩擦ダンパー(例えば、特許文献2参照)であって、これらは、その特性上、小変位における振動エネルギの吸収効率が低いために、交通振動や風による揺れを効果的に早期に減衰させることが困難である。
【0004】
【特許文献1】
特公平6−86776号公報
【特許文献2】
特開平11−324401号公報
【0005】
【発明が解決しようとする課題】
本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、地震による振動に対して免震作動するアイソレータと振動を減衰させる弾塑性系又は摩擦系の振動減衰装置とを具備した免震装置を介して上部構造物を下部構造物上で支承してなる免震建物に用いて好適であって、風等による微小振動をも効果的に早期に減衰できて強風時の制振効果を免震建物に与えることができる振動減衰装置を提供することにある。
【0006】
【課題を解決するための手段】
地震による振動に対して免震作動するアイソレータと振動を減衰させる弾塑性系又は摩擦系の振動減衰装置とを具備した免震装置を介して上部構造物を下部構造物上で支承してなる免震建物に用いるための本発明の第一の態様の粘性系の振動減衰装置は、上部構造物及び下部構造物のうちの一方に固着されるようになっており、上部構造物及び下部構造物のうちの他方に粘性抵抗力により連結されるようになっている粘性ダンパーと、下部構造物に対して上部構造物が相対的に所定の水平変位を越えると、該粘性抵抗力による連結を解除する解除機構とを具備しており、上部構造物に対する振動減衰に関して、所定の水平変位を越えない小さな振動に対しては粘性抵抗力による連結を維持して免震装置と共に粘性ダンパーを作動させ、所定の水平変位を越える大きな振動に対しては粘性抵抗力による連結を解除して免震装置のみを作動させるようになっている。
【0007】
第一の態様の振動減衰装置によれば、粘性ダンパーが上部構造物に対する振動減衰に関して、小さな振動に対しては免震装置と共に作動するようになっているために、風等による上部構造物の微小振動を効果的に早期に減衰できて強風時の制振効果を免震建物に与えることができ、しかも、所定の水平変位を越える地震による大きな振動に対しては解除機構により免震装置のみを作動させることができるために、風や交通振動等の小さな振動から地震による大きな振動まで効果的に制振することができる。
【0008】
斯かる本発明の振動減衰装置において、その第二の態様のように、粘性ダンパーは、固定板と、固定板に対して隙間をもって水平方向に可動に粘性体内に配されている可動板と、固定板と可動板との間の隙間に配された粘性体と、可動板を囲繞する囲繞体とを有しており、解除機構は、上下方向に移動自在であって上部構造物の水平方向の振動と共に水平方向に振動するように、上部構造物に連結されるようになっていると共に、可動板との間に微小隙間をもって可動板に対面した粘性抵抗部材と、微小隙間に配された粘性体と、可動板に設けられていると共に、可動板に対する粘性抵抗部材の水平方向の移動で可動板から粘性抵抗部材を離反させる離反体とを具備しており、粘性抵抗部材は、可動板の囲繞体への当接で、可動板に対して水平方向に移動されるようになっていてもよく、斯かる第二の態様の振動減衰装置において、解除機構は、好ましくは、第三の態様のそれのように、可動板と粘性抵抗部材との間の微小隙間に粘性体が残存する程度に、粘性抵抗部材を可動板に向かって弾性的に付勢する弾性部材を更に具備しており、粘性抵抗部材は、第四の態様のそれのように、微小隙間への粘性体の流入を許容する貫通孔を有しており、また、離反体は、第五の態様のそれのように、粘性抵抗部材の外縁の周りに配されている。
【0009】
本発明において、免震装置は、好ましくは、剛性層及び弾性層が交互に積層された積層ゴムからなるアイソレータと、この積層ゴムに埋設された鉛支柱からなる振動減衰装置とを具備しており、また上部構造物は、好ましくは、事務所ビル、集合住宅又は戸建住宅であるが、本発明はこれに限定されず、その他の上部構造物であってもよい。
【0010】
次に本発明及びその実施の形態を制振型免震建物に用いた例について、図を参照して更に詳細に説明する。なお、本発明はこれら実施の形態に何等限定されないのである。
【0011】
【発明の実施の形態】
図1から図3において、本例の制振型免震建物1は、地盤に杭等により固定されて設置されたコンクリート製の基礎2と、鉛支柱3入りのアイソレータ4からなる免震装置5と、免震装置5を介して基礎2に支持された上部構造物6と、基礎2と上部構造物6との間に配された振動減衰装置7とを具備している。
【0012】
下部構造物としての基礎2と上部構造物6との間に介在されて、上部構造物6の上下方向(鉛直方向)Vの荷重を支持すると共に、地震による水平方向Hの振動に対して上部構造物6に関して免震作動と弾塑性系の振動減衰作動とを行う免震装置5は、鋼板等からなる複数の剛性層11及びゴム等からなる複数の弾性層12が上下方向Vに交互に積層されている積層ゴムからなると共に免震作動を行うアイソレータ4と、アイソレータ4に埋設されていると共に弾塑性系の振動減衰作動を行う鉛支柱3と、アイソレータ4を挟持していると共に基礎2と上部構造物6の事務所ビル15との夫々にアンカーボルト等を介して固着された上下取り付け鋼板13及び14とを具備している。斯かる免震装置5は、上部構造物6の荷重を受けるべく、基礎2上に適当に分散されて複数個配されている。
【0013】
上部構造物6は、本例では、高層の事務所ビル15と、事務所ビル15の下面16にボルト等により固着されている取り付け板部128及び取り付け板部128に溶接等により固着された円柱部129を有した係合部材127とを具備している。
【0014】
免震装置5を介して基礎2に対して水平方向Hの振動に関して基礎2上で免震支持された上部構造物6の当該水平方向Hの振動を減衰させる粘性系の振動減衰装置7は、上部構造物6に粘性抵抗力により連結されていると共に、基礎2に対する上部構造物6の所定の水平変位、例えば略100mm以下の強風等による微小の水平変位では、粘性抵抗力による上部構造物6への連結を維持されて、上部構造物6に対する振動減衰に関して鉛支柱3と共に作動し、上部構造物6の水平方向Hの振動を減衰させる粘性ダンパー131と、地震に起因して基礎2に対して上部構造物6が相対的に所定の水平変位、例えば略100mmを越えると、該粘性抵抗力による連結を解除する解除機構132とを具備している。
【0015】
粘性ダンパー131は、厚肉部135及び薄肉部136を有する円板状の可動板137と、可動板137を囲繞する囲繞体としての円筒部138を有した容器139と、円筒部138内に配されて容器139内に収容された粘性体140と、可動板137を偏倚した位置から元の位置(図2及び図3に示す位置)に戻す戻し機構141とを具備している。
【0016】
容器139は、固定板としてのその底板部145でアンカーボルト等を介して基礎2に固着されている。
【0017】
水平方向に可動に粘性体140内に配された可動板137は、隙間146をもって容器139の底板部145と対面しており、可動板137と容器139の底板部145との間には、底板部145に固着されていると共に可動板137が摺動自在に接触した複数個のスペーサ147が設けられており、スペーサ147により隙間146が保持されている。
【0018】
可動板137は、その水平方向Hの移動により隙間146に配された粘性体140に粘性剪断変形を生じさせ、斯かる粘性体140の粘性剪断変形でその水平方向Hの移動に抗する抵抗力を発生し、而して、その水平方向Hの移動を減衰させるようになっている。
【0019】
粘性ダンパー131は、可動板137の水平方向Hの移動で、可動板137と底板部145との間の隙間146に配された粘性体140に粘性剪断変形を生じさせて減衰力を発生し、而して、可動板137の水平方向Hの移動を減衰させ、延いては上部構造物6の水平方向Hの移動を減衰させる。
【0020】
解除機構132は、上下方向Vに移動自在であって上部構造物6の水平方向Hの振動と共に水平方向Hに振動するように、上部構造物6の係合部材127の円柱部129を上下方向Vに移動自在に受容して当該円柱部129に係合して上部構造物6に連結されている円筒部151に加えて、当該円筒部151が固着されていると共に、可動板137の厚肉部135の上面154との間に微小隙間をもって可動板137に対面した粘性抵抗発生板部152を有する粘性抵抗部材153と、可動板137と粘性抵抗発生板部152との間の微小隙間に配された粘性体140と、上部構造物6の円柱部129と粘性抵抗部材153の粘性抵抗発生板部152との間に介在されていると共に、粘性抵抗部材153の粘性抵抗発生板部152を可動板137の厚肉部135の上面154に向かって、当該上面154と粘性抵抗発生板部152との間の微小隙間に粘性体140が残存する程度の弱い弾性力をもって付勢する弾性部材155と、粘性抵抗部材153の粘性抵抗発生板部152が対面する厚肉部135の上面154に設けられていると共に、可動板137に対する粘性抵抗部材153の所定量以上の水平方向Hの移動で可動板137の厚肉部135から粘性抵抗部材153を図6に示すように離反させる離反体156とを具備している。
【0021】
粘性抵抗発生板部152は、その外周側の下面にテーパ面からなる環状の案内面160と、その上面側と下面側とを連通して、上面154と粘性抵抗発生板部152との間の微小隙間への粘性体140の流入を許容する複数の貫通孔161とを有しており、案内面160は、図6に示すような粘性抵抗発生板部152の離反体156への乗り上げを容易にし、粘性抵抗発生板部152の上下面を連通している貫通孔161は、粘性抵抗発生板部152の離反体156への乗り上げに際して、上面154と粘性抵抗発生板部152との間の微小隙間に粘性体140を供給して、可動板137の厚肉部135の上面154からの粘性抵抗部材153の上方への離反を容易にする。
【0022】
本例では板ばねからなる弾性部材155は、その弾性的な圧縮により可動板137からの粘性抵抗部材153の離反を可能にしている。なお、斯かる弾性部材155を省いて、粘性抵抗部材153の自重でもって、粘性体140が残存する微小隙間が粘性抵抗発生板部152と上面154との間に生じるようにしてもよい。
【0023】
離反体156は、厚肉部135の上面154に一体的に形成されていると共に、粘性抵抗発生板部152の外縁の周りに配されている環状の断面半円形の突起からなる。
【0024】
粘性抵抗発生板部152と上面154との間の微小隙間に残存する粘性体140は、粘性抵抗発生板部152の水平方向Hの移動において粘性剪断変形されて斯かる水平方向Hの移動に抗する粘性抵抗力であって、上部構造物6の水平方向Hの所定振幅以下の振動に起因して可動板137により発生される抵抗力よりも大きな粘性抵抗力を粘性抵抗発生板部152に与えて、斯かる粘性抵抗力により上部構造物6に粘性ダンパー131を連結するようになっており、而して、粘性体140を間にして可動板137と対面して配されている粘性抵抗部材153の粘性抵抗発生板部152は、上部構造物6の水平方向Hの所定振幅以下の振動に起因して可動板137により発生される抵抗力では、水平方向Hの移動と共に可動板137を水平方向Hに移動させることができる一方、上部構造物6の水平方向Hの所定振幅を超える振動に起因して可動板137の円筒部138への当接により発生される抵抗力では、可動板137に対して独立に水平方向Hに移動できるようになっていると共に、この移動で離反体156へ乗り上げて粘性体140から受ける粘性抵抗力を減少させて上部構造物6と粘性ダンパー131との粘性抵抗力による連結を解除するようになっている。
【0025】
戻し機構141は、一端が可動板137の厚肉部135に、他端が円筒部138に球面継手等を介して夫々連結された複数のコイルばね171を具備しており、図2及び図3に示す位置から偏倚した位置に移動した可動板137をコイルばね171の弾性力により図2及び図3に示す元の位置に戻すようになっている。
【0026】
以上の上部構造物6を有すると共に免震装置5でもって上部構造物6が免震支持されてなる制振型免震建物1に用いられている振動減衰装置7では、通常時、図2及び図3に示すように、初期状態では、可動板137は、水平方向Hに関して容器139の中央部に配されており、粘性抵抗部材153は、同じく水平方向Hに関して可動板137の中央部に配されている。この状態で、強風が生じて免震装置5の弾性層12の剪断変形により基礎2に対して上部構造物6が水平方向Hに振動される場合であって、その振動が強風等による上部構造物6の水平方向Hの所定振幅以下の小さな振動の場合は、粘性ダンパー131が可動板137と粘性抵抗発生板部152との間の粘性抵抗力を介して上部構造物6に連結されている結果、上部構造物6の水平方向Hの移動が粘性抵抗発生板部152と可動板137の上面との間に介在する薄膜状の粘性体140を介して可動板137に伝達され、これにより可動板137も上部構造物6の水平方向Hの移動と共に水平方向Hに移動されて、可動板137の水平方向Hの移動により可動板137と底板部145との間の隙間146の粘性体140が粘性剪断変形され、粘性ダンパー131におけるこの粘性剪断変形に起因する抵抗力は、可動板137の水平方向Hの振動を減衰させ、而して、上部構造物6の水平方向Hの振動を減衰させる。強風が収まると、免震装置5の弾性層12による原点復帰機能により制振型免震建物1は、図1に示す状態に戻されると共に、可動板137及び粘性抵抗部材153の夫々もまた、水平方向Hに関して容器139及び可動板137の夫々の中央部に戻される。
【0027】
地震が生じて免震装置5の弾性層12の剪断変形により基礎2に対して上部構造物6が水平方向Hに振動される場合であって、その振動が所定振幅を越える場合には、解除機構132が可動板137を所定振幅まで水平方向Hに移動させた後に、図4に示すように、可動板137の薄肉部136が円筒部138へ当接して可動板137が水平方向Hに移動できなくなる結果、粘性ダンパー131は、上部構造物6の水平方向Hの振動に対する減衰動作を行い得ないようになる一方、粘性抵抗発生板部152は、当該粘性抵抗発生板部152と可動板137との間の微小隙間に存在する粘性体140の粘性剪断変形に起因する粘性抵抗力に打ち勝って、可動板137に対して独立に水平方向Hに移動されて、図5に示すように、離反体156に当接した後に、図6に示すように、弾性部材155の弱い弾性力に抗して離反体156に乗り上げて可動板137から離反して、可動板137との間に大きな隙間を形成して、この隙間に介在する粘性体140で生じる粘性剪断変形に起因する粘性抵抗力を減少し、これにより上部構造物6の水平方向Hの振動が粘性ダンパー131からの粘性剪断変形に起因する抵抗力及び粘性抵抗発生板部152と可動板137の上面154との間に存在する粘性体140に起因する抵抗力を受けることなしに許容されるようになり、而して、更なる上部構造物6の水平方向Hの移動では、鉛支柱3が十分に変形されるために、鉛支柱3のこの変形でもって上部構造物6の水平方向Hの大きな移動が好ましく早期に減衰されることになる。
【0028】
水平方向Hに所定振幅を越えて最大まで変位した上部構造物6が水平方向Hにおいて前記と逆方向に移動すると、粘性抵抗発生板部152は、粘性抵抗発生板部152と可動板137との間に存在する粘性体140の粘性により、離反体156に乗り上げた状態での離間が可動板137の上面154との間で維持されて、換言すれば可動板137の上面154から大きく離間された状態をもって、上部構造物6と共に水平方向Hにおいて前記と逆方向に移動される。以下、上記の動作が繰り返されて、地震が収まると、免震装置5の弾性層12による原点復帰機能により上部構造物6は、図1に示す状態に戻されると共に、粘性抵抗発生板部152もまた、その自重と弾性部材155の弾性力により粘性体140の粘性に抗して徐々にゆっくりと下降されて、上面154との間に薄膜状の粘性体140が介在する程度の微小隙間を残して図2及び図3に示す状態に戻される。また、可動板137は、粘性抵抗発生板部152がその自重と弾性部材155の弾性力により粘性体140の粘性に抗して徐々に下降される間に、戻し機構141の弾性力でもって図4から図6に示す偏倚した位置から図2及び図3に示す状態に戻される。
【0029】
図2及び図3に示す振動減衰装置7は、上部構造物6には解除機構132を介して解除自在に粘性抵抗力により連結され、基礎2には容器139及びアンカーボルト等を介して連結されていると共に、基礎2に対して上部構造物6が相対的に所定の水平変位を越えると上部構造物6に対する連結を解除する解除機構132を備えており、上部構造物6に対する振動減衰に関して、所定の水平変位を越えない地震や風、交通振動等による小さな振動に対しては鉛支柱3と粘性ダンパー131とを共に作動させ、所定の水平変位を越える地震による大きな振動に対しては鉛支柱3のみを作動させるようになっており、粘性系の解除機構132は、上部構造物6が所定の水平変位を越えると、粘性抵抗発生板部152と可動板137との間の微小隙間に存在する粘性体140の粘性剪断変形に起因する粘性抵抗力に打ち勝って粘性抵抗発生板部152が可動板137に対して独立に水平方向Hに移動可能となって、上部構造物6と粘性ダンパー131との間を連結していた粘性抵抗力を減少させて、而して、解除機構132を介する上部構造物6と振動減衰装置7との連結を解除するようになっている。
【0030】
ところで、一般に、減衰率(h)が零の場合(h=0)の高層の免震建物は、風による上部構造物の応答加速度(cm/sec)と層(階数)との関係の一例を示す図7において曲線aで示すように、上部構造物と基礎とを剛に結合した場合(非免震であって図7において曲線bで示す)よりも風により大きく揺れるのであるが、振動減衰装置7を具備した本例の制振型免震建物1によれば、曲線cで示すように風による揺れを極めて小さくできる。
【0031】
即ち、振動減衰装置7によれば、粘性ダンパー131が上部構造物6に対する振動減衰に関して、小さな振動変位に対しては鉛支柱3と共に作動させるようになっているために、上部構造物6の風等による微小振動を効果的に早期に減衰できて強風時の制振効果を制振型免震建物1に与えることができ、しかも、所定の水平変位を越える地震による大きな振動に対しては解除機構132により鉛支柱3のみを作動させるようにしているために、風や交通振動等の小さな振動から地震による大きな振動まで効果的に制振することができる上に、大きな振動変位に対しても作動することができるように水平方向Hのストロークを長大にする必要もなく、したがって、小型に構成できて上部構造物6と基礎2との間に小さなスペースをもって設置できる。
【0032】
なお、鉛支柱3を用いる代わりに、摩擦系の振動減衰作動を行うものを用いた免震装置を介して支承された免震建物に本発明の振動減衰装置を適用してもよく、また、基礎2に対して上部構造物6が相対的に所定の水平変位を越える場合に、上部構造物6との連結を解除する代わりに、基礎2との連結を解除するように振動減衰装置7を構成してもよい。
【0033】
【発明の効果】
本発明によれば、地震による振動に対して免震作動するアイソレータと振動を減衰させる弾塑性系又は摩擦系の振動減衰装置とを具備した免震装置を介して上部構造物を下部構造物上で支承してなる免震建物に用いて好適であって、斯かる免震建物の風等による微小振動を効果的に早期に減衰できて強風時の制振効果を免震建物に与えることができ、しかも、解除機構により所定の水平変位を越える地震による大きな振動に対しては上部構造物に対する振動減衰に関して免震装置のみを作動させることができるために、風や交通振動等の小さな振動から地震による大きな振動まで効果的に制振することができる振動減衰装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施態様の好ましい例を制振型免震建物に適用した正面説明図である。
【図2】図1に示す例の正面説明図である。
【図3】図2に示すIII−III線矢視説明図である。
【図4】図2に示す例の動作説明図である。
【図5】図2に示す例の動作説明図である。
【図6】図2に示す例の動作説明図である。
【図7】図1に示す制振型免震建物の作用説明図である。
【符号の説明】
1 制振型免震建物
2 基礎
3 鉛支柱
4 アイソレータ
5 免震装置
6 上部構造物
7 振動減衰装置
131 粘性ダンパー
132 解除機構
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention effectively attenuates minute vibrations caused by wind or the like of an upper structure such as an office building, an apartment house or a detached house seismically isolated by a seismic isolation device, and obtains a vibration damping effect in a strong wind. The present invention relates to a vibration damping device for use in a vibration-damping type seismic isolation building.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a base-isolated building for an earthquake is supported on a foundation by a base-isolation device including an isolator that operates to isolate the base of the building against the vibration caused by the earthquake and a damper that attenuates the vibration. In such a base-isolated building, originally, it is normal that the vibration due to traffic and wind of small displacement is not considered in addition to the earthquake.For example, until an earthquake exceeding a predetermined horizontal load is applied by a lock mechanism. Generally, when the seismic isolation device is deactivated and a horizontal load greater than that is generated, the locking mechanism is released to activate the seismic isolation device.
[0003]
By the way, in high-rise buildings constructed in cities, it is required to improve the livability by attenuating traffic vibration of small displacement and wind sway in addition to earthquakes, but it is only necessary to use a lock mechanism. Even if it is omitted and the vibration of small displacement and the vibration due to the wind are also attenuated by the damper of the seismic isolation device, most of the dampers used in the seismic isolation device are elasto-plastic dampers (for example, see Patent Document 1) or Friction dampers (for example, refer to Patent Document 2), which have a low efficiency of absorbing vibration energy at a small displacement due to their characteristics, so that they can effectively attenuate traffic vibrations and wind-induced shaking effectively and early. Have difficulty.
[0004]
[Patent Document 1]
Japanese Patent Publication No. 6-86776 [Patent Document 2]
JP-A-11-324401
[Problems to be solved by the invention]
The present invention has been made in view of the above-described points, and an object thereof is to provide an isolator that operates to be isolated from vibration due to an earthquake and an elasto-plastic or friction-based vibration damping device that dampens the vibration. It is suitable for use in seismic isolation buildings where the upper structure is supported on the lower structure via seismic isolation devices equipped with An object of the present invention is to provide a vibration damping device capable of giving a vibration-damping effect to a base-isolated building.
[0006]
[Means for Solving the Problems]
A seismic isolation system in which an upper structure is supported on a lower structure through a seismic isolator equipped with an isolator that operates to be isolated from vibrations caused by an earthquake and an elasto-plastic or frictional vibration damping device that attenuates the vibration The viscous vibration damping device according to the first aspect of the present invention for use in a seismic building is fixed to one of an upper structure and a lower structure, and the upper structure and the lower structure The viscous damper, which is connected to the other of them by viscous resistance, and the connection by viscous resistance is released when the upper structure relative to the lower structure exceeds a predetermined horizontal displacement. With respect to vibration damping to the upper structure, for a small vibration that does not exceed a predetermined horizontal displacement, maintain the connection by viscous resistance force and operate the viscous damper together with the seismic isolation device, Predetermined For large vibrations exceeding the flat displacement and is adapted to operate only isolator to release the connection by the viscous resistance force.
[0007]
According to the vibration damping device of the first aspect, regarding the vibration damping of the upper structure, the viscous damper operates together with the seismic isolation device for small vibrations. It can effectively attenuate small vibrations early and give a vibration-damping effect to a seismic isolated building in the case of strong wind.In addition, for large vibration caused by an earthquake exceeding a predetermined horizontal displacement, only a seismic isolation device is provided by a release mechanism. Can be effectively controlled from small vibrations such as wind and traffic vibrations to large vibrations due to earthquakes.
[0008]
In such a vibration damping device of the present invention, as in the second aspect, the viscous damper includes a fixed plate, and a movable plate disposed in the viscous body so as to be movable in a horizontal direction with a gap with respect to the fixed plate, It has a viscous body disposed in a gap between the fixed plate and the movable plate, and a surrounding body surrounding the movable plate, and the release mechanism is movable in the vertical direction, and the release mechanism is movable in the horizontal direction of the upper structure. The viscous resistance member facing the movable plate with a small gap between the movable plate and the viscous resistance member, and is arranged in the small gap so as to vibrate in the horizontal direction together with the vibration of the movable plate. A viscous body, and a separating member provided on the movable plate and separating the viscous resistance member from the movable plate by moving the viscous resistance member relative to the movable plate in a horizontal direction. Contact with the surrounding body, In the vibration damping device of the second aspect, the release mechanism is preferably provided between the movable plate and the viscous resistance member, as in the third aspect. An elastic member for elastically biasing the viscous resistance member toward the movable plate to such an extent that the viscous body remains in the minute gap between them is further provided, and the viscous resistance member is similar to that of the fourth embodiment. In addition, a through hole that allows the viscous body to flow into the minute gap is provided, and the separating body is arranged around the outer edge of the viscous resistance member as in the fifth embodiment.
[0009]
In the present invention, the seismic isolation device preferably includes an isolator made of laminated rubber in which rigid layers and elastic layers are alternately laminated, and a vibration damping device composed of a lead post embedded in the laminated rubber. The superstructure is preferably an office building, an apartment house or a detached house, but the present invention is not limited to this, and may be another superstructure.
[0010]
Next, an example in which the present invention and its embodiments are used in a vibration-damping type seismic isolation building will be described in more detail with reference to the drawings. It should be noted that the present invention is not limited to these embodiments.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 3, a vibration-damping type seismic isolation building 1 of the present example is a seismic isolation device 5 including a concrete foundation 2 fixed and installed on a ground with a pile or the like and an isolator 4 containing a lead support 3. And an upper structure 6 supported on the foundation 2 via the seismic isolation device 5, and a vibration damping device 7 disposed between the foundation 2 and the upper structure 6.
[0012]
It is interposed between the foundation 2 as a lower structure and the upper structure 6 to support a load in the vertical direction (vertical direction) V of the upper structure 6 and to be capable of supporting the upper part against horizontal vibration H caused by an earthquake. The seismic isolation device 5 that performs the seismic isolation operation and the elasto-plastic vibration damping operation with respect to the structure 6 includes a plurality of rigid layers 11 made of a steel plate or the like and a plurality of elastic layers 12 made of a rubber or the like alternately in the vertical direction V. An isolator 4 made of laminated rubber and performing a seismic isolation operation, a lead column 3 embedded in the isolator 4 and performing an elasto-plastic vibration damping operation, and a base 2 holding and holding the isolator 4 And upper and lower mounting steel plates 13 and 14 secured to the upper structure 6 and the office building 15 via anchor bolts and the like, respectively. A plurality of such seismic isolation devices 5 are appropriately dispersed on the foundation 2 to receive the load of the upper structure 6.
[0013]
In this example, the upper structure 6 is a high-rise office building 15, a mounting plate 128 fixed to the lower surface 16 of the office building 15 with bolts or the like, and a column fixed to the mounting plate 128 by welding or the like. And an engagement member 127 having a portion 129.
[0014]
The viscous vibration damping device 7 for damping the vibration in the horizontal direction H of the upper structure 6 supported on the foundation 2 with respect to the vibration in the horizontal direction H with respect to the foundation 2 via the seismic isolation device 5 includes: In addition to being connected to the upper structure 6 by viscous resistance, a predetermined horizontal displacement of the upper structure 6 with respect to the foundation 2, for example, a minute horizontal displacement due to a strong wind of about 100 mm or less, causes the upper structure 6 to be viscous resistance. And a viscous damper 131 that works with the lead struts 3 for vibration damping to the superstructure 6 to dampen horizontal H vibrations of the superstructure 6 and to the foundation 2 due to the earthquake. When the upper structure 6 relatively exceeds a predetermined horizontal displacement, for example, approximately 100 mm, a release mechanism 132 is provided to release the connection due to the viscous resistance.
[0015]
The viscous damper 131 is disposed in a circular plate-shaped movable plate 137 having a thick portion 135 and a thin portion 136, a container 139 having a cylindrical portion 138 as a surrounding body surrounding the movable plate 137, and a cylindrical member 138. The viscous body 140 is accommodated in the container 139 and a return mechanism 141 for returning the movable plate 137 from the biased position to the original position (the position shown in FIGS. 2 and 3).
[0016]
The container 139 is fixed to the foundation 2 at its bottom plate portion 145 as a fixing plate via an anchor bolt or the like.
[0017]
A movable plate 137 movably disposed in the viscous body 140 in the horizontal direction faces the bottom plate 145 of the container 139 with a gap 146, and a bottom plate is provided between the movable plate 137 and the bottom plate 145 of the container 139. A plurality of spacers 147 fixed to the portion 145 and slidably in contact with the movable plate 137 are provided, and the spacers 147 hold gaps 146.
[0018]
The movable plate 137 causes the viscous body 140 disposed in the gap 146 to undergo viscous shearing deformation by the movement in the horizontal direction H, and resists the viscous shearing deformation of the viscous body 140 against the movement in the horizontal direction H. Is generated, and the movement in the horizontal direction H is attenuated.
[0019]
The viscous damper 131 causes the viscous shearing deformation of the viscous body 140 disposed in the gap 146 between the movable plate 137 and the bottom plate 145 by the movement of the movable plate 137 in the horizontal direction H to generate a damping force. Thus, the movement of the movable plate 137 in the horizontal direction H is attenuated, and thus the movement of the upper structure 6 in the horizontal direction H is attenuated.
[0020]
The release mechanism 132 moves the column 129 of the engaging member 127 of the upper structure 6 in the vertical direction so that the release mechanism 132 is movable in the vertical direction V and vibrates in the horizontal direction H together with the vibration of the upper structure 6 in the horizontal direction H. In addition to the cylindrical portion 151 movably received by the V and engaged with the cylindrical portion 129 and connected to the upper structure 6, the cylindrical portion 151 is fixed and the movable plate 137 has a thick wall. A viscous resistance member 153 having a viscous resistance generating plate portion 152 facing the movable plate 137 with a minute gap between the upper surface 154 of the portion 135 and a minute gap between the movable plate 137 and the viscous resistance generating plate portion 152. The viscous body 140, the viscous resistance generating plate 152 of the viscous resistance member 153, and the viscous resistance generating plate 152 of the viscous resistance member 153 are movable. Board 1 7, an elastic member 155 urged toward the upper surface 154 of the thick portion 135 with a weak elastic force such that the viscous body 140 remains in a minute gap between the upper surface 154 and the viscous resistance generating plate portion 152; The viscous resistance generating plate portion 152 of the viscous resistance member 153 is provided on the upper surface 154 of the thick portion 135 facing thereto, and the movable plate 137 is moved by a predetermined amount or more of the viscous resistance member 153 relative to the movable plate 137 in the horizontal direction H. And a separating body 156 for separating the viscous resistance member 153 from the thick portion 135 of FIG.
[0021]
The viscous resistance generating plate portion 152 communicates with the annular guide surface 160 formed of a tapered surface on the lower surface on the outer peripheral side thereof, and communicates between the upper surface side and the lower surface side. It has a plurality of through holes 161 that allow the viscous body 140 to flow into the minute gap, and the guide surface 160 makes it easy for the viscous resistance generating plate portion 152 to climb onto the separating body 156 as shown in FIG. The through-hole 161 communicating the upper and lower surfaces of the viscous resistance generating plate 152 has a small size between the upper surface 154 and the viscous resistance generating plate 152 when the viscous resistance generating plate 152 rides on the separating body 156. The viscous body 140 is supplied to the gap to facilitate the upward separation of the viscous resistance member 153 from the upper surface 154 of the thick portion 135 of the movable plate 137.
[0022]
In this example, the elastic member 155 made of a leaf spring enables the viscous resistance member 153 to separate from the movable plate 137 by its elastic compression. The elastic member 155 may be omitted, and a minute gap in which the viscous body 140 remains may be generated between the viscous resistance generating plate portion 152 and the upper surface 154 by the weight of the viscous resistance member 153.
[0023]
The separating body 156 is formed integrally with the upper surface 154 of the thick portion 135 and is formed of an annular semicircular projection disposed around the outer edge of the viscous resistance generating plate portion 152.
[0024]
The viscous body 140 remaining in the minute gap between the viscous resistance generating plate portion 152 and the upper surface 154 undergoes viscous shear deformation when the viscous resistance generating plate portion 152 moves in the horizontal direction H, and resists the movement in the horizontal direction H. The viscous resistance generated by the movable plate 137 due to the vibration of the upper structure 6 having a predetermined amplitude or less in the horizontal direction H is applied to the viscous resistance generating plate 152. Thus, the viscous damper 131 is connected to the upper structure 6 by the viscous resistance force. Therefore, the viscous resistance member disposed facing the movable plate 137 with the viscous body 140 interposed therebetween. The viscous resistance generating plate portion 153 moves the movable plate 137 horizontally with the movement in the horizontal direction H by the resistance force generated by the movable plate 137 due to the vibration of the upper structure 6 having a predetermined amplitude or less in the horizontal direction H. direction On the other hand, the resistance generated by the contact of the movable plate 137 with the cylindrical portion 138 due to the vibration of the upper structure 6 exceeding the predetermined amplitude in the horizontal direction H causes the movable plate 137 The viscous drag between the upper structure 6 and the viscous damper 131 can be reduced by reducing the viscous drag force received from the viscous member 140 by riding on the separating body 156 by this movement. To release the connection.
[0025]
The return mechanism 141 includes a plurality of coil springs 171 each having one end connected to the thick portion 135 of the movable plate 137 and the other end connected to the cylindrical portion 138 via a spherical joint or the like. The movable plate 137 moved to a position deviated from the position shown in FIG. 2 is returned to the original position shown in FIGS. 2 and 3 by the elastic force of the coil spring 171.
[0026]
The vibration damping device 7 used in the vibration-damping type seismic isolation building 1 having the above upper structure 6 and having the upper structure 6 supported by the seismic isolation device 5 is normally used in FIGS. As shown in FIG. 3, in the initial state, the movable plate 137 is disposed at the center of the container 139 in the horizontal direction H, and the viscous resistance member 153 is also disposed at the center of the movable plate 137 in the horizontal direction H. Have been. In this state, a strong wind is generated and the upper structure 6 is vibrated in the horizontal direction H with respect to the foundation 2 due to the shear deformation of the elastic layer 12 of the seismic isolation device 5, and the vibration is caused by the strong wind or the like. In the case of a small vibration of the object 6 in the horizontal direction H having a predetermined amplitude or less, the viscous damper 131 is connected to the upper structure 6 via a viscous resistance force between the movable plate 137 and the viscous resistance generating plate portion 152. As a result, the movement of the upper structure 6 in the horizontal direction H is transmitted to the movable plate 137 via the thin film-like viscous body 140 interposed between the viscous resistance generating plate portion 152 and the upper surface of the movable plate 137, thereby moving the upper structure 6. The plate 137 is also moved in the horizontal direction H together with the movement of the upper structure 6 in the horizontal direction H, and the movement of the movable plate 137 in the horizontal direction H causes the viscous body 140 in the gap 146 between the movable plate 137 and the bottom plate portion 145 to move. Viscous shear deformation Resistance caused by the viscosity shear deformation in the damper 131 attenuates the vibration in the horizontal direction H of the movable plate 137, and Thus, damping vibrations in the horizontal direction H of the upper structure 6. When the strong wind stops, the vibration-damping type seismic isolation building 1 is returned to the state shown in FIG. 1 by the return-to-origin function by the elastic layer 12 of the seismic isolation device 5, and the movable plate 137 and the viscous resistance member 153 also The container 139 and the movable plate 137 are returned to the respective center portions in the horizontal direction H.
[0027]
If the upper structure 6 is vibrated in the horizontal direction H with respect to the foundation 2 due to the shear deformation of the elastic layer 12 of the seismic isolation device 5 due to the occurrence of an earthquake, and the vibration exceeds a predetermined amplitude, the release is performed. After the mechanism 132 moves the movable plate 137 to the predetermined amplitude in the horizontal direction H, as shown in FIG. 4, the thin portion 136 of the movable plate 137 contacts the cylindrical portion 138 and the movable plate 137 moves in the horizontal direction H. As a result, the viscous damper 131 cannot perform the damping operation with respect to the vibration of the upper structure 6 in the horizontal direction H, while the viscous resistance generating plate portion 152 is connected to the viscous resistance generating plate portion 152 and the movable plate 137. 5, the viscous body 140 overcomes the viscous resistance caused by the viscous shear deformation of the viscous body 140 existing in the minute gap between the movable plate 137 and the movable plate 137. To body 156 After the contact, as shown in FIG. 6, the movable member 156 rides on the separating body 156 against the weak elastic force of the elastic member 155, separates from the movable plate 137, and forms a large gap with the movable plate 137. The viscous resistance caused by the viscous shear deformation generated by the viscous body 140 interposed in the gap is reduced, so that the vibration of the upper structure 6 in the horizontal direction H is reduced by the resistance force caused by the viscous shear deformation from the viscous damper 131 and The viscous-resistance generating plate portion 152 and the upper surface 154 of the movable plate 137 are allowed to be received without receiving a resistance force caused by the viscous body 140, so that the further upper structure 6 In the movement in the horizontal direction H, since the lead column 3 is sufficiently deformed, a large movement of the upper structure 6 in the horizontal direction H is preferably attenuated early by this deformation of the lead column 3.
[0028]
When the upper structure 6 displaced to the maximum beyond the predetermined amplitude in the horizontal direction H moves in the opposite direction in the horizontal direction H, the viscous resistance generating plate 152 Due to the viscosity of the viscous body 140 present between the movable plate 137 and the upper surface 154 of the movable plate 137, the distance between the movable plate 137 and the upper surface 154 of the movable plate 137 is largely separated from the upper surface 154 of the movable plate 137. With the state, the upper structure 6 is moved in the horizontal direction H in the opposite direction to the above. Thereafter, when the above operation is repeated and the earthquake subsides, the upper structure 6 is returned to the state shown in FIG. 1 by the return-to-origin function by the elastic layer 12 of the seismic isolation device 5, and the viscous resistance generating plate portion 152 Also, by virtue of its own weight and the elastic force of the elastic member 155, it is gradually and slowly descended against the viscosity of the viscous body 140, and a minute gap is formed between the upper surface 154 and the thin film-like viscous body 140. The state is returned to the state shown in FIGS. Further, the movable plate 137 is moved by the elastic force of the return mechanism 141 while the viscous resistance generating plate portion 152 is gradually lowered against its own weight and the elastic force of the elastic member 155 against the viscosity of the viscous body 140. 4 is returned from the deviated position shown in FIG. 6 to the state shown in FIGS.
[0029]
The vibration damping device 7 shown in FIGS. 2 and 3 is releasably connected to the upper structure 6 via a release mechanism 132 by viscous resistance, and connected to the base 2 via a container 139 and anchor bolts. And a release mechanism 132 that releases the connection to the upper structure 6 when the upper structure 6 exceeds a predetermined horizontal displacement relative to the foundation 2. The lead column 3 and the viscous damper 131 are operated together for a small vibration caused by an earthquake, wind, traffic vibration or the like which does not exceed a predetermined horizontal displacement, and a lead column is used for a large vibration caused by an earthquake exceeding a predetermined horizontal displacement. 3 is activated, and the viscous release mechanism 132 provides a small gap between the viscous resistance generating plate 152 and the movable plate 137 when the upper structure 6 exceeds a predetermined horizontal displacement. The viscous resistance generating plate portion 152 can move in the horizontal direction H independently of the movable plate 137 by overcoming the viscous resistance force caused by the viscous shear deformation of the viscous body 140 existing in the upper structure 6, and the viscous resistance generating plate portion 152 becomes viscous with the upper structure 6. The viscous resistance force connected to the damper 131 is reduced, so that the connection between the upper structure 6 and the vibration damping device 7 via the release mechanism 132 is released.
[0030]
By the way, in general, a high-rise base-isolated building with a damping rate (h) of zero (h = 0) is an example of the relationship between the response acceleration (cm / sec 2 ) of the upper structure due to the wind and the story (floor number). As shown by a curve a in FIG. 7 which shows that the upper structure and the foundation are rigidly coupled (the base structure is not seismically isolated and is greatly shaken by the wind than in the case of a curve b in FIG. 7). According to the vibration-damping type seismic isolation building 1 of this example provided with the damping device 7, the sway caused by the wind can be extremely reduced as shown by the curve c.
[0031]
That is, according to the vibration damping device 7, the viscous damper 131 operates with the lead column 3 for a small vibration displacement with respect to the vibration damping of the upper structure 6. Can effectively attenuate small vibrations at an early stage, giving a vibration-damping effect in strong winds to the vibration-isolated building 1 and canceling large vibrations caused by an earthquake exceeding a predetermined horizontal displacement. Since only the lead post 3 is operated by the mechanism 132, it is possible to effectively control vibrations from small vibrations such as wind and traffic vibrations to large vibrations due to earthquakes, and also to a large vibration displacement. It is not necessary to lengthen the stroke in the horizontal direction H to be able to operate, and therefore, it can be configured to be small and can be installed with a small space between the superstructure 6 and the foundation 2. That.
[0032]
Instead of using the lead pillar 3, the vibration damping device of the present invention may be applied to a seismic isolation building supported through a seismic isolation device that uses a vibration damping operation of a friction system. When the upper structure 6 relatively exceeds a predetermined horizontal displacement with respect to the foundation 2, instead of disconnecting the upper structure 6, the vibration damping device 7 is disconnected so as to release the connection with the foundation 2. You may comprise.
[0033]
【The invention's effect】
According to the present invention, the upper structure is placed on the lower structure through the seismic isolation device including the isolator that operates to isolate the vibration from the earthquake and the elasto-plastic or frictional vibration damping device that dampens the vibration. It is suitable for use in seismic isolation buildings supported by the above, and it is possible to effectively attenuate minute vibrations due to the wind or the like of such seismic isolation buildings at an early stage and to provide the seismic isolation building with a strong wind in a strong wind. It is possible to operate only the seismic isolation device with respect to the vibration damping to the upper structure against the large vibration due to the earthquake exceeding the predetermined horizontal displacement by the release mechanism. It is possible to provide a vibration damping device capable of effectively damping even large vibrations caused by an earthquake.
[Brief description of the drawings]
FIG. 1 is an explanatory front view of a preferred example of an embodiment of the present invention applied to a vibration-damping type seismic isolation building.
FIG. 2 is an explanatory front view of the example shown in FIG. 1;
FIG. 3 is an explanatory view taken along line III-III shown in FIG. 2;
FIG. 4 is an operation explanatory diagram of the example shown in FIG. 2;
FIG. 5 is an operation explanatory diagram of the example shown in FIG. 2;
FIG. 6 is an operation explanatory diagram of the example shown in FIG. 2;
FIG. 7 is an operation explanatory view of the vibration-damping type seismic isolation building shown in FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Damping type seismic isolation building 2 Foundation 3 Lead support 4 Isolator 5 Isolation device 6 Upper structure 7 Vibration damping device 131 Viscous damper 132 Release mechanism

Claims (5)

地震による振動に対して免震作動するアイソレータと振動を減衰させる弾塑性系又は摩擦系の振動減衰装置とを具備した免震装置を介して上部構造物を下部構造物上で支承してなる免震建物に用いるための粘性系の振動減衰装置であって、上部構造物及び下部構造物のうちの一方に固着されるようになっており、上部構造物及び下部構造物のうちの他方に粘性抵抗力により連結されるようになっている粘性ダンパーと、下部構造物に対して上部構造物が相対的に所定の水平変位を越えると、該粘性抵抗力による連結を解除する解除機構とを具備しており、上部構造物に対する振動減衰に関して、所定の水平変位を越えない小さな振動に対しては粘性抵抗力による連結を維持して免震装置と共に粘性ダンパーを作動させ、所定の水平変位を越える大きな振動に対しては粘性抵抗力による連結を解除して免震装置のみを作動させるようになっている振動減衰装置。A seismic isolation system in which an upper structure is supported on a lower structure through a seismic isolator equipped with an isolator that operates to be isolated from vibrations caused by an earthquake and an elasto-plastic or frictional vibration damping device that attenuates the vibration A viscous vibration damping device for use in a seismic building, which is fixed to one of an upper structure and a lower structure, and a viscous vibration damper is attached to the other of the upper structure and the lower structure. A viscous damper adapted to be connected by resistance, and a release mechanism for releasing the connection by viscous resistance when the upper structure exceeds a predetermined horizontal displacement relative to the lower structure. Regarding vibration damping to the upper structure, for small vibrations that do not exceed the predetermined horizontal displacement, maintain the connection by viscous resistance and operate the viscous damper together with the seismic isolation device to exceed the predetermined horizontal displacement. Vibration damping device adapted to actuate only the seismic isolation device to release the connection by viscous drag forces against large vibrations. 粘性ダンパーは、固定板と、固定板に対して隙間をもって水平方向に可動に粘性体内に配されている可動板と、固定板と可動板との間の隙間に配された粘性体と、可動板を囲繞する囲繞体とを有しており、解除機構は、上下方向に移動自在であって上部構造物の水平方向の振動と共に水平方向に振動するように、上部構造物に連結されるようになっていると共に、可動板との間に微小隙間をもって可動板に対面した粘性抵抗部材と、微小隙間に配された粘性体と、可動板に設けられていると共に、可動板に対する粘性抵抗部材の水平方向の移動で可動板から粘性抵抗部材を離反させる離反体とを具備しており、粘性抵抗部材は、可動板の囲繞体への当接で、可動板に対して水平方向に移動されるようになっている請求項1に記載の振動減衰装置。The viscous damper includes a fixed plate, a movable plate disposed in the viscous body movably in the horizontal direction with a gap with respect to the fixed plate, a viscous body disposed in a gap between the fixed plate and the movable plate, And a surrounding body surrounding the plate, wherein the release mechanism is connected to the upper structure so as to be movable in the vertical direction and vibrate in the horizontal direction together with the horizontal vibration of the upper structure. And a viscous resistance member facing the movable plate with a minute gap between the movable plate, a viscous body disposed in the minute gap, and a viscous resistance member provided on the movable plate and for the movable plate. A separating member that separates the viscous resistance member from the movable plate by horizontal movement of the movable plate, and the viscous resistance member is moved in the horizontal direction with respect to the movable plate by abutment of the movable plate on the surrounding body. The vibration damping device according to claim 1, wherein . 解除機構は、可動板と粘性抵抗部材との間の微小隙間に粘性体が残存する程度に、粘性抵抗部材を可動板に向かって弾性的に付勢する弾性部材を更に具備している請求項2に記載の振動減衰装置。The release mechanism further includes an elastic member that elastically urges the viscous resistance member toward the movable plate to such an extent that the viscous body remains in the minute gap between the movable plate and the viscous resistance member. 3. The vibration damping device according to 2. 粘性抵抗部材は、微小隙間への粘性体の流入を許容する貫通孔を有している請求項2又は3に記載の振動減衰装置。The vibration damping device according to claim 2, wherein the viscous resistance member has a through hole that allows the viscous body to flow into the minute gap. 離反体は、粘性抵抗部材の外縁の周りに配されている請求項2から4のいずれか一項に記載の振動減衰装置。The vibration damping device according to any one of claims 2 to 4, wherein the separating body is disposed around an outer edge of the viscous resistance member.
JP2002264713A 2002-09-10 2002-09-10 Vibration damping device for use in damping type seismic isolation buildings Expired - Fee Related JP3849624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002264713A JP3849624B2 (en) 2002-09-10 2002-09-10 Vibration damping device for use in damping type seismic isolation buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002264713A JP3849624B2 (en) 2002-09-10 2002-09-10 Vibration damping device for use in damping type seismic isolation buildings

Publications (2)

Publication Number Publication Date
JP2004100308A true JP2004100308A (en) 2004-04-02
JP3849624B2 JP3849624B2 (en) 2006-11-22

Family

ID=32264073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002264713A Expired - Fee Related JP3849624B2 (en) 2002-09-10 2002-09-10 Vibration damping device for use in damping type seismic isolation buildings

Country Status (1)

Country Link
JP (1) JP3849624B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031837A (en) * 2012-08-03 2014-02-20 Oiles Ind Co Ltd Viscous damper
WO2016007104A1 (en) * 2014-07-06 2016-01-14 Dogan Adnan Earthquake isolator
CN106284729A (en) * 2016-10-03 2017-01-04 刘进 Shock isolation system and building
CN117966923A (en) * 2024-04-01 2024-05-03 正民建设集团有限公司 Building structure design shock insulation fire prevention device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031837A (en) * 2012-08-03 2014-02-20 Oiles Ind Co Ltd Viscous damper
WO2016007104A1 (en) * 2014-07-06 2016-01-14 Dogan Adnan Earthquake isolator
CN106284729A (en) * 2016-10-03 2017-01-04 刘进 Shock isolation system and building
CN106284729B (en) * 2016-10-03 2018-07-06 广东栩诺建筑科技有限公司 Shock isolation system and building
CN117966923A (en) * 2024-04-01 2024-05-03 正民建设集团有限公司 Building structure design shock insulation fire prevention device
CN117966923B (en) * 2024-04-01 2024-06-07 正民建设集团有限公司 Building structure design shock insulation fire prevention device

Also Published As

Publication number Publication date
JP3849624B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
JP6372034B2 (en) Anti-vibration vibration reduction device
JP4893061B2 (en) Viscous vibration damping device and base-isolated building equipped with the same
KR101702449B1 (en) Earthquake-Resistant Mount for Distributing Board Using Vibration Proof Pad
JP5621101B1 (en) Seismic foundation for buildings
JPH01322061A (en) Earthquake isolating device
JP2004100308A (en) Vibration damper used for vibration damping seismic isolation building
JP2001241502A (en) Sliding brace for isolating seismic vibrations
JP4029685B2 (en) Damping type seismic isolation building and vibration damping device used therefor
JP3888887B2 (en) Seismic isolation device
JP2711298B2 (en) Vibration suppression device for structures
JP3747282B2 (en) Hybrid seismic isolation device
JP4022313B2 (en) Seismic isolation / vibration isolation structure with suspension and sliding
JP4803620B2 (en) Seismic isolation structure with damping function
JP2005249210A (en) Damping apparatus
JP3254919B2 (en) Three-dimensional seismic isolation device
US20020166295A1 (en) Earthquake-protective building buffer
JP4030447B2 (en) Unit type building with seismic isolation device
JP2024090144A (en) Vibration-damping structure
JP4085825B2 (en) Seismic isolation structure fixing device
JPH0259262B2 (en)
JPH02147739A (en) Swaying damper device for structure
JP2004316420A (en) Base-isolated structure
JPH0557238U (en) Vibration isolation device
JPH02209647A (en) Earthquake-proof device
JP3844265B2 (en) Steel structure shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Ref document number: 3849624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150908

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees