JP2004098719A - Stern tube bearing and its manufacturing method - Google Patents

Stern tube bearing and its manufacturing method Download PDF

Info

Publication number
JP2004098719A
JP2004098719A JP2002259196A JP2002259196A JP2004098719A JP 2004098719 A JP2004098719 A JP 2004098719A JP 2002259196 A JP2002259196 A JP 2002259196A JP 2002259196 A JP2002259196 A JP 2002259196A JP 2004098719 A JP2004098719 A JP 2004098719A
Authority
JP
Japan
Prior art keywords
bearing
stern
stern tube
oil supply
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002259196A
Other languages
Japanese (ja)
Other versions
JP3962664B2 (en
Inventor
Takero Makino
牧野 武朗
Tomohiro Tateishi
立石 智裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002259196A priority Critical patent/JP3962664B2/en
Publication of JP2004098719A publication Critical patent/JP2004098719A/en
Application granted granted Critical
Publication of JP3962664B2 publication Critical patent/JP3962664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact stern tube bearing capable of preventing occurrence of thermal damage of a bearing or a propeller shaft for reducing frequency and cost of maintenance work of the stern tube bearing by simultaneously responding to both a load in the direction of gravity of the propeller shaft and a propeller and a horizontal load due to the fluid power at the time of vessel turning in the stern tube bearing supporting the propeller shaft of a vessel and provided with an oil supply groove and an oil supplying hole in an axial direction of a bearing inner surface. <P>SOLUTION: Either or the both of taper boring machining and slope boring machining is given to the stern side of the bearing, and those center of curvatures are provided off the axial center of the bearing. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、船舶の、軸受内面に給油溝と給油孔とを備えたプロペラ軸受に用いられ、テーパーボーリング加工、又はスロープボーリング加工を施された船尾管軸受、或いは静圧ポケットを備えた船尾管軸受及びその製造方法に関する。
【0002】
【従来の技術】
船尾管軸受が使用される船舶の船尾構造を図5に示す。船体6の船尾に船尾管軸受1が設置され、プロペラ軸2が該船尾管軸受1と船体船尾部を貫通している。該船体船尾部は船尾管シール装置3によって封止され、船内への海水の流入と軸受で使用する潤滑油の海中への流出とを防止している。該プロペラ軸2の船尾側端部にプロペラ4が装着される。該プロペラ4より船尾側に舵5が、船体6に設置される。
以上のような船尾構造においては、プロペラ4の重量が大きい場合、プロペラ4の自重によってプロペラ軸2が撓み、該プロペラ軸2は船尾管軸受1の船尾側で片当たりし易かった。また、船舶の旋回時には、舵5と船体6の形状の相互作用によりプロペラ4に流入する海水の流れに偏流が生じてプロペラ4を水平方向へ移動させる大きな力が働き、プロペラ軸2が船尾管軸受1の船尾側で片当たりし易かった。そこで、従来は、これら重力方向、水平方向又はそれらの合成方向への片当たりを緩和するために、船尾管軸受の船尾側の内面形状を工夫していた。その例について次に述べる。
【0003】
図6は、テーパー軸受面9が船尾側に向かって広がるように、船首側の軸受面16の途中からテーパー状に軸受内面を加工した船尾管軸受である。(a)が軸心線に沿う断面図、(b)がCから見た側面図である。前記加工をテーパーボーリングという。該テーパーボーリングは前記船尾管軸受1の船尾側の軸方向L´の範囲に、且つ全周に施されている。Rは軸受面の曲率半径であり、Rはテーパー軸受面の曲率半径であり、それらの曲率中心はCで一致している。前記テーパーボーリング加工を施すことによって、船尾側に向かうにつれて撓んでいくプロペラ軸2の傾斜に対応してテーパー軸受面9の径が大きくなっていくので、プロペラ軸2の外周面とテーパー軸受面9の隙間を船尾側に向かって確保できる。その結果、船尾側での片当たりを緩和できる。
【0004】
図7は、軸受内面と同じ曲率半径Rで、船首側の軸受面16の途中からスロープ状に内面を加工した船尾管軸受である。(a)が軸心線に沿う断面図、(b)がDから見た側面図である。前記加工をスロープボーリングという。該スロープボーリングは前記船尾管軸受1の船尾側の軸方向L´の範囲に、且つ下半面に施されている。εは、該船尾管軸受1の船尾側端部における軸受面16の曲率中心Cとスロープ軸受面10の曲率中心Cとの距離である。
前記スロープボーリング加工を施すことによって、特に、重量の大きなプロペラ4を装着した場合に、船尾側に向かうにつれて撓んでいくプロペラ軸2の傾斜に対応して、軸受の軸中心線からスロープ軸受面10までの距離を船尾側に向かって大きく取れるので、プロペラ軸2の外周面とスロープ軸受面10の隙間を船尾側に向かって確保できる。その結果、船尾側での片当たりを緩和できる。
【0005】
図8は、油圧でプロペラ軸2を支持する静圧ポケット11を軸受内面に設けた船尾管軸受である。(a)が縦断面図、(b)がEから見た側面図である。
静圧ポケット11には、船尾管軸受1の外周面に連通する高圧給油管12が接続され、該外周面からは高圧配管13が接続され、コントロールバルブ14を介してポンプ15が接続されている。ポンプ15から静圧ポケット11に油圧を印加し、該静圧ポケット11内部の潤滑油を軸受面に供給することによってプロペラ軸荷重を支え、プロペラ軸2の片当たりを緩和する。
以上の図6ないし図8の何れかに示した船尾管軸受においては、軸受内側の両側面には軸方向に給油溝7が設けられ、各給油溝には複数の給油孔8が穿孔されている。船舶運航時には、該給油孔8から該給油溝7へ潤滑油が供給される。該潤滑油は、給油溝7に沿って軸方向に広がると共に、プロペラ軸と軸受内面の隙間に入り込みプロペラ軸の回転に伴って軸受内面全周に広がり、プロペラ軸と軸受内面との潤滑機能を果たす。その結果、プロペラ軸又は軸受内面の熱的損傷を防止している。
【0006】
油圧を利用する軸受装置は、特許文献1(特開平8−091292号公報)に開示されている。かかる公報においては、軸受の内面全周に渡って複数の給油孔を設け、プロペラ軸の低回転域において静圧を印加し、軸受負荷容量を確保している。
また、特許文献2(特開平6−321185号公報)には、二重反転プロペラ軸受構造において、プロペラ内軸を支持する軸受の内部に多数のオイル供給管路を設け、該管路の口が軸受内面全周に渡って開口している軸受装置が開示されている。該軸受自体もプロペラ内軸とは反対方向に回転している。このとき、回転している該軸受内部の該オイル供給管路が軸受装置の下面に来たときにオイルが供給されるように、オイル供給系を構成し、プロペラ軸荷重の大きい重力方向の軸受面の潤滑を確実にしている。
プロペラ軸の軸受については、非特許文献1(「1級舶用機関整備士指導書」(日本財団事業成果ライブラリー、日本舶用機関整備協会、平成8年度))に詳しく述べられている。
【0007】
【特許文献1】
特開平8−091292号公報
【特許文献2】
特開平6−321185号公報
【非特許文献1】
1級舶用機関整備士指導書(日本財団事業成果ライブラリー、日本舶用機関整備協会、平成8年度)
【0008】
【発明が解決しようとする課題】
以上に示した従来技術に係わる船尾管軸受においては、次のような問題点がある。通常、船尾管軸受の設計は、プロペラ軸とプロペラとを据え付ける時の静的な状態を想定して行われる。従って、プロペラ軸とプロペラとの重量に起因する船尾管軸受へのプロペラ軸の片当たりについては、軸受すきまの設定や該軸受の船体に対する設置角度などで対応することができる。しかし、船舶運航時の旋回に伴って流体力が発生する場合には、片当たりする方向が運転状態によって変化するので、設計時の軸受の設置角度の調整などでは対応困難である。特に、高速で回転するプロペラを備えた船舶の場合、プロペラが受ける荷重は、重力方向よりも流体力に起因する水平方向の方が大きくなる。従って、プロペラ軸の撓みは水平方向に大きくなるので、より船尾側でプロペラ軸荷重を支持する必要が生じる。
【0009】
以上の条件に対して、特許文献1及び特許文献2に示す軸受装置の場合、もしくは図6に示すテーパーボーリング加工を施す場合、船舶旋回時の流体力に対応してテーパー角度を最適化すると、該角度は船舶直進時のプロペラ軸とプロペラとの自重による片当たりに対応するよりも過剰となる。従って、軸受の船尾側端部よりも内部に油膜厚さが薄い部分ができ、軸受の潤滑が不十分となり、軸受又はプロペラ軸が熱的損傷を受ける場合がある。また、特許文献1及び特許文献2に示す軸受装置の場合、図7に示すスロープボーリング加工を施す場合、及び図8に示す静圧ポケットを設ける場合、プロペラ軸とプロペラとの重力方向荷重に対しては有効であるが、船舶旋回時の流体力に起因する水平方向荷重に対応できない。
【0010】
本発明は、かかる従来技術の欠点に鑑み、船舶のプロペラ軸を支持し、軸受内面の軸方向に給油溝と給油孔とを設けた船尾管軸受において、プロペラ軸とプロペラとの重力方向荷重と船舶旋回時の流体力に起因する水平方向荷重との両荷重に同時に対応することによって、軸受又はプロペラ軸の熱的損傷の発生を防止でき、これによって船尾管軸受のメンテナンス作業頻度や作業コストの低減を図った船尾管軸受を、更にはコンパクトな船尾管軸受の提供を目的とする。
【0011】
【課題を解決するための手段】
本発明は係る課題を解決するため、請求項1記載の発明として、船舶のプロペラ軸を支持し、軸受内面の軸方向に給油溝と該給油溝に連通される給油孔とを設けた船尾管軸受において、軸受の船尾側に、曲率中心を前記軸受の軸中心から外して設定したテーパーボーリングによって形成された軸受面及びスロープボーリングによって形成された軸受面の何れか一方または双方を設けたことを特徴とする船尾管軸受を提案する。
請求項1記載の発明によれば、船舶旋回時に水平方向荷重が負荷された場合、前記軸受の軸受面に対して、プロペラ軸荷重が軸方向に均等に負荷されるので、潤滑油膜圧力を軸受面に均等に分散させることができる。その結果、軸受又はプロペラ軸の熱的損傷の発生を防止でき、船尾管軸受のメンテナンス作業頻度や作業コストの低減を実現できる。
【0012】
請求項2記載の発明は、請求項1記載の発明において、軸受内面の軸受すきま母線18とテーパーボーリングによって形成された軸受面の軸受すきま母線18とを一致させたことを特徴とする船尾管軸受を提案する。
請求項2記載の発明によれば、請求項1に加えて、船舶静止時若しくは直進時の重力方向の荷重に対しては、前記軸受を船体に傾斜させて据え付けることと軸受すきまの設定とで対応でき、船舶旋回時に水平方向荷重が負荷された場合には、前記軸受のテーパーボーリングされた軸受面に対して、プロペラ軸荷重が軸方向に均等に負荷されるので、潤滑油膜圧力を軸受面に均等に分散させることができる。その結果、軸受又はプロペラ軸の熱的損傷の発生を防止でき、船尾管軸受のメンテナンス作業頻度や作業コストの低減を実現できる。
【0013】
請求項3記載の発明は、請求項1記載の発明において、スロープボーリングによって形成された軸受面の曲率半径を軸受内面の曲率半径と同一とするとともに、該スロープボーリングによって形成された軸受面の曲率中心を該軸受の軸中心から外して2箇所に設けたことを特徴とする船尾管軸受を提案する。
請求項3記載の発明によれば、請求項1に加えて、船舶静止時若しくは直進時の重力方向の荷重に対しては、前記軸受を船体に傾斜させて据え付けることと軸受すきまの設定とで対応でき、船舶旋回時に水平方向荷重が負荷された場合には、前記軸受のスロープボーリングされた軸受面に対して、プロペラ軸荷重が軸方向に均等に負荷されるので、潤滑油膜圧力を軸受面に均等に分散させることができる。その結果、軸受又はプロペラ軸の熱的損傷の発生を防止でき、船尾管軸受のメンテナンス作業頻度や作業コストの低減を実現できる。
【0014】
請求項10ないし11の何れかに記載の発明は、請求項1ないし3の何れかに記載の船尾管軸受の製造方法に係るものである。
請求項10に記載の発明は、ボーリング加工の曲率中心位置は該軸受の曲率中心位置から外した位置に固定して、該加工の曲率半径を、前記軸受の船尾側端部では該軸受の曲率半径より大きく設定し、船首側に向かうに従って前記軸受の曲率半径に一致するまで小さくなるように設定し、ボーリング加工工具を軸方向に送ることによってテーパーボーリング加工を施したことを特徴とする船尾管軸受の製造方法を提案する。
請求項11に記載の発明は、ボーリング加工の曲率半径は該軸受の曲率半径と同一として、該加工の曲率中心位置を、前記軸受の船尾側端部では軸中心から外して設定し、船首側に向かうに従って前記軸受の軸中心位置に一致するまで径方向に移動させるように設定し、ボーリング加工工具を軸方向に送ることによってスロープボーリング加工を施したことを特徴とする船尾管軸受の製造方法を提案する。
【0015】
請求項10ないし11の何れかに記載の発明によれば、船舶静止時若しくは直進時の重力方向の荷重に、及び船舶旋回時の水平方向荷重に起因するプロペラ軸の片当たりが予想される方向の軸受内面をテーパーボーリング加工できるので、前記重力方向荷重及び前記水平方向荷重が前記プロペラ軸に負荷された場合でも、該プロペラ軸荷重が前記軸受の軸方向に均等に負荷されるので、潤滑油膜圧力を軸受面に均等に分散させることができる。その結果、軸受又はプロペラ軸の熱的損傷の発生を防止でき、船尾管軸受のメンテナンス作業頻度や作業コストの低減を実現できる。
【0016】
請求項4記載の発明として、船舶のプロペラ軸を支持し、軸受内面の軸方向に給油溝と該給油溝に連通される給油孔とを設けた船尾管軸受において、該軸受の船尾側内面の下面から船尾側の側面に向けて連通した静圧ポケットを設けたことを特徴とする船尾管軸受を提案する。
請求項4記載の発明によれば、船舶静止時若しくは直進時の重力方向の荷重に対して、及び船舶旋回時の水平方向荷重に対して、前記軸受に設けた静圧ポケットに印加する油圧によってプロペラ軸を支持できるので、プロペラ軸の片当たりを防止できる。その結果、軸受又はプロペラ軸の熱的損傷の発生を防止でき、船尾管軸受のメンテナンス作業頻度や作業コストの低減を実現できる。
【0017】
請求項5記載の発明として、船舶のプロペラ軸を支持し、軸受内面の軸方向に給油溝と該給油溝に連通される給油孔とを設けた船尾管軸受において、該軸受の船尾側内面に複数の静圧ポケットを設けたことを特徴とする船尾管軸受を提案する。
請求項5記載の発明によれば、船舶静止時若しくは直進時の重力方向の荷重に対しては下面に設けた静圧ポケットに印加する油圧によって、また、船舶旋回時の水平方向荷重に対しては側面に設けた静圧ポケットに印加する油圧によってプロペラ軸を支持できるので、プロペラ軸の片当たりを防止できる。その結果、軸受又はプロペラ軸の熱的損傷の発生を防止でき、船尾管軸受のメンテナンス作業頻度や作業コストの低減を実現できる。
【0018】
請求項6記載の発明として、請求項5記載の発明において、静圧ポケットを側面及び下面に設けるとともに、側面に設ける静圧ポケットの位置を下面に設ける静圧ポケットの位置よりも船尾側に配置したことを特徴とする船尾管軸受を提案する。
請求項6記載の発明によれば、請求項5に加えて、特に、船舶旋回時の水平方向荷重が船舶静止時若しくは直進時の重力方向の荷重よりも大きい場合に、船舶旋回時の水平方向荷重に対してはより船尾側に設けた静圧ポケットに印加する油圧によってプロペラ軸を支持できるので、プロペラ軸の片当たりを防止できる。その結果、軸受又はプロペラ軸の熱的損傷の発生を防止でき、船尾管軸受のメンテナンス作業頻度や作業コストの低減を実現できる。
【0019】
請求項7ないし9に記載の発明は、請求項1ないし3の何れかの項に記載の発明において、船尾管軸受の船尾側内面に静圧ポケットを設けたことを特徴とする船尾管軸受を提案する。
請求項7においては、好ましくは請求項8のように、該軸受の下面から船尾側の側面に向けて静圧ポケットを設けたことを特徴とする。また、好ましくは請求項9のように、側面の静圧ポケットの設置位置を下面の静圧ポケットの設置位置よりも船尾側に配置するのがよい。
請求項7ないし9に記載の発明によれば、請求項1ないし3の何れかの項に加えて、前記軸受に設けた静圧ポケットに油圧を印加する方法によってプロペラ軸を支持できるので、該軸受をコンパクトに設計できる。その結果、船尾管軸受の製造コストの低減、該軸受の設置スペースの節約、メンテナンス作業コストの低減を実現できる。
【0020】
【発明の実施形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対位置などは、特定的な記載が特にない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
【0021】
(実施形態1)
図1(a)は本願発明の実施形態1に係る船尾管軸受の構成を示す説明図であり、(a)は軸心線に沿う断面図、(b)はAから見た側面図である。
図1(a)において、円筒状の船尾管軸受1の船尾側端部にはフランジ17が加工されており、該船尾管軸受1を前記船尾管シール装置3又は船体6(図5参照)へ固定するために利用される。軸受面16内の対向する両側面に給油溝7が加工され、該給油溝7へは複数の給油孔8が、前記船尾管軸受1の外周面と連通するように穿孔されている。該給油孔8へは給油管(不図示)が接続され、プロペラ軸2と前記軸受面16との潤滑を図る潤滑油が供給される。
【0022】
図1の各記号はそれぞれ以下を示す。Lは船尾管軸受1の軸方向の全長を、Rは軸受面16の曲率半径を、Rは船尾側端部におけるテーパーボーリングの曲率半径を、L´はテーパーボーリングを施工する軸方向長さを示す。ここで、R>Rである。また、実線で示したプロペラ軸2は、船舶航行時に重力と船舶旋回時の水平方向荷重とによって、該プロペラ軸中心がCeから外れた様子を示している。一点鎖線で示すプロペラ軸2は、該プロペラ軸2を前期船尾管軸受1に取付ける時の初期位置を、つまり、該プロペラ軸中心位置と該船尾管軸受1の軸中心位置Ceとが一致している様子を示す。
【0023】
本実施形態では、テーパーボーリングの曲率中心位置Cを船尾管軸受1の軸中心位置Cから上方へ外して設定した。上方へ外す距離は、該船尾管軸受1の船尾側端部において、軸受面16の軸受すきま母線18とテーパー軸受面9の軸受すきま母線18とが一致する距離とした。このようなテーパーボーリング加工を施すことによって、該船尾管軸受1の船尾側下面の軸受面の曲率半径はRであり、下面から両側面へ向かうにつれて、その曲率半径がRまで徐々に大きくなるテーパー軸受面9を構成する。但し、テーパーボーリングを施工する箇所は、両側面の給油溝7までとし、上部半面には施工しないので、上部半面の軸受面の曲率半径はRである。
以上のように、船舶静止時若しくは直進時の、プロペラ軸2とプロペラ4との重力方向の荷重に対しては、船尾管軸受1を船体に傾斜させて据え付けることと軸受すきまの設定とで対応でき、船舶旋回時に水平方向荷重が負荷された場合には、前記軸受のテーパーボーリングされた軸受面に対して、プロペラ軸荷重が軸方向に均等に負荷されるので、潤滑油膜圧力を軸受面に均等に分散させることができる。その結果、軸受又はプロペラ軸の熱的損傷の発生を防止でき、船尾管軸受のメンテナンス作業頻度や作業コストの低減を実現できる。
【0024】
以下に、テーパーボーリング加工法について示す。船尾管軸受1には、軸受面16、給油溝7及び給油孔8を予め加工しておく。次に、該軸受1を、大型回転テーブル上に、該軸受1の軸心線が該テーブル面と垂直方向になるように、かつ、該軸受1の軸中心Cと該テーブルの回転中心とが一致するように設置する。
この時、該軸受の船首側端面が該テーブル面に接するように設置する。次に、該軸受1の船尾側端部に保持した加工工具を軸受内面に当て、大型回転テーブルを回転させることによって、軸受内面を切削し、テーパーボーリング加工を進める。
ここで、テーパーボーリング曲率中心位置Cは、前記テーブルの回転中心位置とずらして設定する。切削距離は、予め設計したテーパーボーリング曲率半径とテーパー角度に則り決める。テーパー角度は、軸受面16とテーパー軸受面9とがなす角度である。該角度とテーパーボーリング曲率半径とによって、テーパーボーリングを施工する軸方向長さL´が決まる。
ここで、船尾管軸受の半面にテーパーボーリングを施工する場合、例えば、図1(b)に示すように、該軸受の下半面に施工する場合は、切削の開始位置を一方の給油溝7とし、終了位置を反対側の給油溝7とする。切削の開始位置と終了位置を給油溝7とすることで、加工工具の当てと逃げとの空間を確保できる。
【0025】
(実施形態2)
図2は本願発明の実施形態2に係る船尾管軸受の構成を示す説明図であり、船尾管軸受を船尾側端部から見た図を示している。
円筒状の船尾管軸受1にフランジ17、給油溝7及び給油孔8が加工されているのは実施形態1と同様である。
図2の各記号はそれぞれ以下を示す。図1と同じ記号は同じものを示す。Rは軸受面16とスロープボーリングとの曲率半径を、Cはスロープボーリングの曲率中心位置を、εは該Cと船尾管軸受1の軸中心Cとの距離を示す。
【0026】
本実施形態では、前記船尾管軸受1に施工するスロープボーリングの曲率中心位置Cを、船尾管軸受1の軸中心Cから左右側面側下方に2箇所に外して設定した。このように加工することによって、該船尾管軸受1の船尾側端部の軸受面の曲率半径はRであるが、下面から両側面へ向かうにつれて、軸中心Cから軸受面までの距離は最大R+εに長くなり、スロープ軸受面10を構成する。但し、スロープボーリングを施工する箇所は、両側面の給油溝7までとし、上部半面には施工しないので、上部半面の軸受面の曲率半径はRである。
以上のように、船舶静止時若しくは直進時の、プロペラ軸2とプロペラ4との重力方向の荷重に対しては、船尾管軸受1を船体に傾斜させて据え付けることと軸受すきまの設定とで対応でき、船舶旋回時に水平方向荷重が負荷された場合には、該軸受のスロープボーリングされた軸受面に対して、プロペラ軸荷重が軸方向に均等に負荷されるので、潤滑油膜圧力を軸受面に均等に分散させることができる。その結果、軸受又はプロペラ軸の熱的損傷の発生を防止でき、船尾管軸受のメンテナンス作業頻度や作業コストの低減を実現できる。
【0027】
以下に、スロープボーリング加工法について示す。船尾管軸受1には、軸受面16、給油溝7及び給油孔8を予め加工しておく。次に、該軸受1を、大型回転テーブル上に、該軸受1の軸心線が該テーブル面と垂直方向になるように、かつ、該軸受1の軸中心Cと該テーブルの回転中心とが一致するように設置する。この時、該軸受1の船首側端面が該テーブル面に接するように設置する。次に、前記大型回転テーブルを切削方向に対して傾斜させる。前記軸受1の船尾側端部に保持した加工工具を軸受内面に当て、前記大型回転テーブルを回転させることによって、軸受内面を切削し、スロープボーリング加工を進める。
ここで、スロープボーリング曲率半径Rは、前記軸受1の軸受面16の曲率半径Rと同じとする。前記大型回転テーブルを切削方向に対して傾斜させる角度は、図2に示すように、前記軸受1の船尾側端部において、スロープ軸受面10の曲率中心Cを軸中心Cからずらした距離εと、予め設計したスロープ軸受面10の軸方向距離とから決める。
【0028】
(実施形態3)
図3は本願発明の実施形態3に係る船尾管軸受の構成を示す説明図であり、船尾管軸受の軸心線に沿う断面図である。
円筒状の船尾管軸受1にフランジ17、給油溝7及び給油孔8が加工されているのは実施形態1と同様である。
本実施形態では、前記船尾管軸受1の船尾側の軸受面16に静圧ポケット11を設け、そこに該船尾管軸受1の外周面と連通する高圧給油管12を穿孔し、更に、高圧配管13とコントロールバルブ14とを介してポンプ15に配管接続した。ここで、静圧ポケット11は軸受面16において略長矩形の開口を有し、船尾管軸受1の下面から、より船尾側の両側面に向けて施工される。船舶運行時には、ポンプ15を用いて静圧ポケット11に潤滑油を加圧し、プロペラ軸2荷重を支える。加圧の程度は、該荷重の増減に対応してコントロールバルブ14の開度によって調整する。
【0029】
静圧ポケット11を軸受下面から、より船尾側の両側面に設けたので、船舶静止時若しくは直進時のプロペラ軸2とプロペラ4との重力方向の荷重に対して、及び船舶旋回の水平方向荷重に対して、静圧ポケットに印加する潤滑油の油圧を調整することによってプロペラ軸を支持できるので、プロペラ軸の片当たりを防止できる。特に、高速回転するプロペラ4を利用する場合には、水平方向荷重が負荷された時の片当たりの大きさが重力方向の荷重が負荷された時よりも大きくなり易い。つまり、プロペラ軸2は水平方向により大きく撓むので、油膜の最大圧力が船尾寄りの側面で必要になる。そこで、静圧ポケット11を側面に近づくほど船尾側に設けることにより、プロペラ軸2の撓みに対する復元力を大きくすることができる。その結果、軸受又はプロペラ軸の熱的損傷の発生を防止でき、船尾管軸受のメンテナンス作業頻度や作業コストの低減を実現できる。
【0030】
(実施形態4)
図4は本願発明の実施形態4に係る船尾管軸受の構成を示す説明図であり、(a)は船尾管軸受の軸心線に沿う断面図、(b)はBから見た側面図である。
円筒状の船尾管軸受1にフランジ17、給油溝7及び給油孔8が加工されているのは実施形態1と同様である。
本実施形態では、前記船尾管軸受1の船尾側の下面に下面静圧ポケット11aを、より船尾側の両側面に側面静圧ポケット11bを設け、それぞれの静圧ポケットに該船尾管軸受1の外周面と連通する高圧給油管12を穿孔し、更に、高圧配管13とコントロールバルブ14とを介してポンプ15に配管接続した。ここで、静圧ポケット11aと11bとは、軸受面16において船尾管軸受1の周方向に長辺をもつ略矩形の開口を有する。
【0031】
このように構成することによって、ポンプ15によって潤滑油を静圧ポケット11aと11bとに加圧し、重力方向の荷重に対しては主に下面静圧ポケット11aに印加する油圧で、水平方向の荷重に対しては主に側面静圧ポケット11bに印加する油圧でプロペラ軸2を支える。加圧の程度は、各荷重の増減に対応して各々のコントロールバルブ14の開度によって調整する。
静圧ポケット11aと11bとを、軸受下面とより船尾側の両側面とに独立させて設けたので、船舶静止時若しくは直進時のプロペラ軸2とプロペラ4との重力方向の荷重に対しては軸受下面に設けた静圧ポケット11aに印加する潤滑油の油圧を、又、船舶旋回時の水平方向荷重に対しては両側面に設けた静圧ポケット11bに印加する潤滑油の油圧を調整することによってプロペラ軸を支持できるので、プロペラ軸の片当たりを防止できる。
【0032】
特に、高速回転するプロペラ4を利用する場合には、水平方向荷重が負荷された時の片当たりの大きさが重力方向の荷重が負荷された時よりも大きくなり易い。つまり、プロペラ軸2は重力方向よりも水平方向により大きく撓むので、油膜の最大圧力が船尾寄りの側面で必要になる。そこで、静圧ポケット11を側面に近づくほど船尾側に設けることにより、プロペラ軸2の撓みに対する復元力を大きくすることができる。
更に、船舶運行時に想定される軸荷重に適して、静圧ポケットの位置、個数、開口寸法、深さ等を設計すれば、コンパクトな船尾管軸受を製造できる。テーパーボーリング、スロープボーリング、及び周方向に角度を持った静圧ポケットのように、その作用を機能させるためにある程度の構造的な大きさを必要としないからである。その結果、軸受又はプロペラ軸の熱的損傷の発生を防止でき、船尾管軸受のメンテナンス作業頻度や作業コストの低減を実現できる。更に、コンパクトな船尾管軸受を製造できるので、該軸受の製造コストの低減、該軸受の設置スペースの節約、メンテナンス作業コストの低減を実現できる。
【0033】
(実施形態5)
図示を省略した本発明の実施形態5は、実施形態1と実施形態3或いは実施形態4とを組み合わせた構造とする。または、実施形態2と実施形態3或いは実施形態4とを組み合わせた構造とする。
実施形態1に述べたテーパーボーリング、又は実施形態2に述べたスロープボーリングの施工に加えて、静圧ポケット11を設け、静圧ポケット11に印加する潤滑油の油圧を調整するので、船尾管軸受1が対応できる軸荷重の大きさの範囲が広がる。従って、同じ大きさの船尾管軸受1ならば対応できる軸荷重が大きくなる、同じ軸荷重ならば該軸受をコンパクトに構成できる。その結果、軸受又はプロペラ軸の熱的損傷の発生を防止でき、船尾管軸受のメンテナンス作業頻度や作業コストの低減を実現できる。更に、コンパクトな船尾管軸受を製造できるので、該軸受の製造コストの低減、該軸受の設置スペースの節約、メンテナンス作業コストの低減を実現できる。
【0034】
【発明の効果】
以上記載の如く、請求項1ないし3及び請求項10ないし11の発明によれば、船尾管軸受の船尾側にテーパーボーリング及びスロープボーリングの何れか一方または双方を施し、それらの曲率中心を該軸受の軸中心から外して設定したので、船舶旋回時に水平方向荷重が負荷された場合、該軸受の軸受面に対して、プロペラ軸荷重が軸方向に均等に負荷され、潤滑油膜圧力を軸受面に均等に分散させることができる。これにより、軸受又はプロペラ軸の熱的損傷の発生を防止でき、船尾管軸受のメンテナンス作業頻度や作業コストの低減に寄与する。
【0035】
また、請求項4の発明によれば、船尾管軸受の船尾側内面の下面から、より船尾側の両側面に向けて連通した静圧ポケットを設けたので、船舶静止時若しくは直進時の重力方向の荷重に対して、及び船舶旋回時の水平方向荷重に対して、該軸受に設けた静圧ポケットに印加する油圧によってプロペラ軸を支持でき、プロペラ軸の片当たりを防止できる。これにより、軸受又はプロペラ軸の熱的損傷の発生を防止でき、船尾管軸受のメンテナンス作業頻度や作業コストの低減に寄与する。
【0036】
また、請求項5ないし6の発明によれば、船尾管軸受の船尾側内面に複数の静圧ポケットを設けたので、船舶静止時若しくは直進時の重力方向の荷重に対しては下面に設けた静圧ポケットに印加する油圧によって、また、船舶旋回時の水平方向荷重に対しては側面に設けた静圧ポケットに印加する油圧によってプロペラ軸を支持できるので、プロペラ軸の片当たりを防止できる。これにより、軸受又はプロペラ軸の熱的損傷の発生を防止でき、船尾管軸受のメンテナンス作業頻度や作業コストの低減を実現できる。
【0037】
また、請求項7ないし9の発明によれば、請求項1ないし3の何れかの項に記載の発明において、船尾管軸受の船尾側内面に静圧ポケットを設け、好ましくは、該軸受の下面からより船尾側の側面に向けて静圧ポケットを設けたので、また、好ましくは、複数の静圧ポケットを設け、側面の静圧ポケットの設置位置を下面の静圧ポケットの設置位置よりも船尾側に配置したので、該静圧ポケットに油圧を印加する方法によってプロペラ軸を支持でき、該軸受をコンパクトに設計できる。これにより、船尾管軸受の製造コストの低減、該軸受の設置スペースの節約、メンテナンス作業コストの低減を実現できる。
【0038】
【図面の簡単な説明】
【図1】本発明の実施形態1にかかる船尾管軸受の構成を示す説明図である。
【図2】本発明の実施形態2にかかる船尾管軸受の構成を示す説明図である。
【図3】本発明の実施形態3にかかる船尾管軸受の構成を示す説明図である。
【図4】本発明の実施形態4にかかる船尾管軸受の構成を示す説明図である。
【図5】船尾管軸受を設置する船体後部の構成を示す説明図である。
【図6】船尾管軸受の従来技術を示す説明図である。
【図7】船尾管軸受の従来技術を示す説明図である。
【図8】船尾管軸受の従来技術を示す説明図である。
【符号の説明】
1  船尾管軸受
9  テーパー軸受面
10  スロープ軸受面
11  静圧ポケット
11a 下面静圧ポケット
11b 側面静圧ポケット
16  軸受面
18  軸受すきま母線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is used for a propeller bearing provided with an oil supply groove and an oil supply hole on a bearing inner surface of a ship, and a stern tube bearing provided with tapered boring or slope boring, or a stern tube provided with a static pressure pocket. The present invention relates to a bearing and a method for manufacturing the bearing.
[0002]
[Prior art]
FIG. 5 shows a stern structure of a ship using a stern tube bearing. The stern tube bearing 1 is installed at the stern of the hull 6, and the propeller shaft 2 passes through the stern tube bearing 1 and the stern of the hull. The hull stern is sealed by a stern tube seal device 3 to prevent seawater from flowing into the ship and lubricating oil used in bearings from flowing into the sea. A propeller 4 is mounted on the stern-side end of the propeller shaft 2. A rudder 5 is mounted on the hull 6 on the stern side of the propeller 4.
In the stern structure as described above, when the weight of the propeller 4 is large, the propeller shaft 2 bends due to the weight of the propeller 4, and the propeller shaft 2 is likely to hit one side of the stern tube bearing 1 on the stern side. Further, when the ship turns, the flow of seawater flowing into the propeller 4 is deflected due to the interaction between the rudder 5 and the hull 6 so that a large force acts to move the propeller 4 in the horizontal direction, and the propeller shaft 2 moves the stern tube. It was easy to hit the stern side of the bearing 1. Therefore, conventionally, in order to reduce the one-side contact in the gravity direction, the horizontal direction, or the combined direction thereof, the inner surface shape of the stern tube bearing on the stern side is devised. An example is described below.
[0003]
FIG. 6 shows a stern tube bearing in which a bearing inner surface is machined in a tapered shape from the middle of the bow-side bearing surface 16 so that the tapered bearing surface 9 expands toward the stern side. (A) is a cross-sectional view along the axis, and (b) is a side view as viewed from C. The above processing is called tapered boring. The tapered boring is provided in the axial direction L ′ on the stern side of the stern tube bearing 1 and over the entire circumference. R 2 Is the radius of curvature of the bearing surface, and R 1 Is the radius of curvature of the tapered bearing surface and their center of curvature is C e Matches. By performing the tapered boring process, the diameter of the tapered bearing surface 9 increases in accordance with the inclination of the propeller shaft 2 that bends toward the stern side, so that the outer peripheral surface of the propeller shaft 2 and the tapered bearing surface 9 Can be secured toward the stern side. As a result, it is possible to reduce the one-side hit on the stern side.
[0004]
FIG. 7 shows the same curvature radius R as the inner surface of the bearing. 2 A stern tube bearing whose inner surface is machined in a slope shape from the middle of the bow-side bearing surface 16. (A) is a sectional view along an axis, and (b) is a side view as viewed from D. The above processing is called slope boring. The slope boring is provided in the axial direction L ′ on the stern side of the stern tube bearing 1 and on the lower half surface. ε is the center of curvature C of the bearing surface 16 at the stern end of the stern tube bearing 1. e And the center of curvature C of the slope bearing surface 10 2 Is the distance.
By performing the above-mentioned slope boring processing, especially when the heavy propeller 4 is mounted, the slope bearing surface 10 can be moved from the shaft center line to the inclination of the propeller shaft 2 which bends toward the stern side. Is increased toward the stern side, so that a gap between the outer peripheral surface of the propeller shaft 2 and the slope bearing surface 10 can be secured toward the stern side. As a result, it is possible to reduce the one-side hit on the stern side.
[0005]
FIG. 8 shows a stern tube bearing in which a hydrostatic pocket 11 for supporting the propeller shaft 2 by hydraulic pressure is provided on the inner surface of the bearing. (A) is a longitudinal sectional view, (b) is a side view as viewed from E.
A high pressure oil supply pipe 12 communicating with the outer peripheral surface of the stern tube bearing 1 is connected to the static pressure pocket 11, a high pressure pipe 13 is connected from the outer peripheral surface, and a pump 15 is connected via a control valve 14. . A hydraulic pressure is applied to the static pressure pocket 11 from the pump 15, and the lubricating oil inside the static pressure pocket 11 is supplied to the bearing surface to support the propeller shaft load and reduce the contact of the propeller shaft 2 with one side.
In the stern tube bearing shown in any of FIGS. 6 to 8 described above, an oil supply groove 7 is provided in both sides on the inner side of the bearing in the axial direction, and a plurality of oil supply holes 8 are formed in each oil supply groove. I have. During operation of the ship, lubricating oil is supplied from the oil supply hole 8 to the oil supply groove 7. The lubricating oil spreads in the axial direction along the oil supply groove 7, enters the gap between the propeller shaft and the inner surface of the bearing, and spreads over the entire inner surface of the bearing with the rotation of the propeller shaft, thereby providing a lubricating function between the propeller shaft and the inner surface of the bearing. Fulfill. As a result, thermal damage to the propeller shaft or the inner surface of the bearing is prevented.
[0006]
A bearing device using hydraulic pressure is disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. Hei 8-091292). In this publication, a plurality of oil supply holes are provided around the entire inner surface of the bearing, and a static pressure is applied in a low rotation range of the propeller shaft to secure a bearing load capacity.
Patent Document 2 (Japanese Patent Application Laid-Open No. 6-321185) discloses that in a contra-rotating propeller bearing structure, a large number of oil supply pipes are provided inside a bearing that supports the propeller inner shaft, and the ports of the pipes are closed. A bearing device that is open around the entire inner surface of the bearing is disclosed. The bearing itself also rotates in the direction opposite to the propeller inner shaft. At this time, an oil supply system is configured so that oil is supplied when the oil supply pipe inside the rotating bearing comes to the lower surface of the bearing device, and the bearing in the gravitational direction with a large propeller shaft load. Ensures surface lubrication.
The bearing of the propeller shaft is described in detail in Non-Patent Document 1 ("Grade 1 Marine Engine Mechanic Guide" (Nippon Foundation Business Result Library, Japan Marine Engine Maintenance Association, 1996)).
[0007]
[Patent Document 1]
JP-A-8-091292
[Patent Document 2]
JP-A-6-321185
[Non-patent document 1]
First Class Marine Engine Mechanic Guidance Book (Nippon Foundation Business Result Library, Japan Marine Engine Maintenance Association, 1996)
[0008]
[Problems to be solved by the invention]
The stern tube bearing according to the conventional technique described above has the following problems. Usually, the design of the stern tube bearing is performed on the assumption of a static state when the propeller shaft and the propeller are installed. Therefore, the partial contact of the propeller shaft with the stern tube bearing due to the weight of the propeller shaft and the propeller can be dealt with by setting the bearing clearance, setting the bearing with respect to the hull, and the like. However, in the case where fluid force is generated along with the turning during the operation of the ship, the direction of the one-sided contact varies depending on the operation state, and it is difficult to cope with the problem by adjusting the installation angle of the bearing at the time of design. In particular, in the case of a ship provided with a propeller rotating at high speed, the load received by the propeller is greater in the horizontal direction due to the fluid force than in the direction of gravity. Therefore, since the deflection of the propeller shaft increases in the horizontal direction, it is necessary to support the propeller shaft load more on the stern side.
[0009]
With respect to the above conditions, in the case of the bearing device disclosed in Patent Document 1 and Patent Document 2, or in the case of performing the tapered boring shown in FIG. 6, when the taper angle is optimized corresponding to the fluid force at the time of turning the ship, The angle is more than the angle corresponding to the one-sided contact due to the weight of the propeller shaft and the propeller when the ship goes straight. Therefore, a portion having a smaller oil film thickness is formed inside the stern-side end of the bearing, and lubrication of the bearing becomes insufficient, and the bearing or the propeller shaft may be thermally damaged. Further, in the case of the bearing device shown in Patent Document 1 and Patent Document 2, when the slope boring shown in FIG. 7 is performed, and when the static pressure pocket shown in FIG. 8 is provided, the load in the gravitational direction between the propeller shaft and the propeller is reduced. However, it cannot cope with the horizontal load caused by the fluid force when turning the ship.
[0010]
In view of the drawbacks of the prior art, the present invention provides a stern tube bearing that supports a propeller shaft of a marine vessel and has an oil supply groove and an oil supply hole in the axial direction of the bearing inner surface, and the gravitational load between the propeller shaft and the propeller is reduced. By simultaneously responding to both horizontal load and horizontal load caused by fluid force at the time of ship turning, thermal damage to bearings or propeller shafts can be prevented, thereby reducing the maintenance work frequency and working cost of stern tube bearings. It is an object of the present invention to provide a reduced stern tube bearing and a more compact stern tube bearing.
[0011]
[Means for Solving the Problems]
In order to solve the problem, the present invention provides a stern tube supporting a propeller shaft of a ship and having an oil supply groove in an axial direction of an inner surface of a bearing and an oil supply hole communicating with the oil supply groove. In the bearing, one or both of a bearing surface formed by tapered boring and a bearing surface formed by slope boring set with the center of curvature deviated from the shaft center of the bearing are provided on the stern side of the bearing. A stern tube bearing is proposed.
According to the first aspect of the present invention, when a horizontal load is applied at the time of turning a ship, the propeller shaft load is uniformly applied to the bearing surface of the bearing in the axial direction. It can be evenly distributed on the surface. As a result, thermal damage to the bearing or the propeller shaft can be prevented, and the frequency of maintenance work and the cost of the stern tube bearing can be reduced.
[0012]
According to a second aspect of the present invention, in the first aspect of the present invention, the stern tube bearing is characterized in that the bearing clearance bus 18 on the inner surface of the bearing coincides with the bearing clearance bus 18 on the bearing surface formed by tapered boring. Suggest.
According to the second aspect of the present invention, in addition to the first aspect, with respect to a load in the gravitational direction when the ship is stationary or moving straight, the bearing can be inclinedly installed on the hull and the bearing clearance can be set. If a horizontal load is applied when turning the ship, the propeller shaft load is evenly applied in the axial direction to the tapered bored bearing surface of the bearing. Can be evenly distributed. As a result, thermal damage to the bearing or the propeller shaft can be prevented, and the frequency of maintenance work and the cost of the stern tube bearing can be reduced.
[0013]
According to a third aspect of the present invention, in the first aspect, the radius of curvature of the bearing surface formed by the slope boring is equal to the radius of curvature of the inner surface of the bearing, and the curvature of the bearing surface formed by the slope boring is set. A stern tube bearing is proposed in which the center is provided at two positions off the shaft center of the bearing.
According to the third aspect of the present invention, in addition to the first aspect, with respect to a load in a gravitational direction when the boat is stationary or when the boat is traveling straight, the bearing can be installed at an angle to the hull and the bearing clearance can be set. If a horizontal load is applied when the vessel is turning, the propeller shaft load is evenly applied in the axial direction to the slope-bored bearing surface of the bearing. Can be evenly distributed. As a result, thermal damage to the bearing or the propeller shaft can be prevented, and the frequency of maintenance work and the cost of the stern tube bearing can be reduced.
[0014]
The invention according to any one of claims 10 to 11 relates to a method for manufacturing a stern tube bearing according to any one of claims 1 to 3.
According to a tenth aspect of the present invention, the center of curvature of boring is fixed at a position deviated from the center of curvature of the bearing, and the radius of curvature of the machining is set at the stern-side end of the bearing. A stern tube characterized in that the stern tube is set to be larger than the radius, set so as to become smaller toward the bow side until it matches the radius of curvature of the bearing, and is fed by a boring tool in the axial direction. A method of manufacturing a bearing is proposed.
According to an eleventh aspect of the present invention, the radius of curvature of boring is set to be the same as the radius of curvature of the bearing, and the center of curvature of the boring is set off the center of the shaft at the aft end of the bearing. Characterized in that the stern tube bearing is set so that it is moved in the radial direction until it coincides with the axial center position of the bearing toward Suggest.
[0015]
According to the invention as set forth in any one of claims 10 to 11, a direction in which it is anticipated that the load in the direction of gravity when the ship is stationary or straight ahead and the propeller shaft is partially hit due to the horizontal load when the ship turns. Since the inner surface of the bearing can be tapered, even when the gravitational load and the horizontal load are applied to the propeller shaft, the propeller shaft load is uniformly applied in the axial direction of the bearing. Pressure can be evenly distributed on the bearing surface. As a result, thermal damage to the bearing or the propeller shaft can be prevented, and the frequency of maintenance work and the cost of the stern tube bearing can be reduced.
[0016]
According to a fourth aspect of the present invention, there is provided a stern tube bearing which supports a propeller shaft of a ship and has an oil supply groove and an oil supply hole communicating with the oil supply groove in an axial direction of the inner surface of the bearing. A stern tube bearing characterized by providing a static pressure pocket communicating from a lower surface toward a stern side surface is proposed.
According to the invention described in claim 4, with respect to the load in the direction of gravity when the ship is stationary or straight ahead, and with respect to the horizontal load when the ship turns, the hydraulic pressure applied to the static pressure pocket provided in the bearing is used. Since the propeller shaft can be supported, it is possible to prevent the propeller shaft from hitting one side. As a result, thermal damage to the bearing or the propeller shaft can be prevented, and the frequency of maintenance work and the cost of the stern tube bearing can be reduced.
[0017]
As a fifth aspect of the present invention, in a stern tube bearing which supports a propeller shaft of a ship and has an oil supply groove and an oil supply hole communicating with the oil supply groove in an axial direction of the inner surface of the bearing, the stern side inner surface of the bearing is provided. A stern tube bearing characterized by providing a plurality of static pressure pockets is proposed.
According to the invention as set forth in claim 5, with respect to the load in the direction of gravity when the ship is stationary or straight ahead, the hydraulic pressure applied to the static pressure pocket provided on the lower surface, and with respect to the horizontal load when turning the ship. Since the propeller shaft can be supported by the hydraulic pressure applied to the static pressure pocket provided on the side surface, it is possible to prevent the propeller shaft from hitting one side. As a result, thermal damage to the bearing or the propeller shaft can be prevented, and the frequency of maintenance work and the cost of the stern tube bearing can be reduced.
[0018]
According to a sixth aspect of the present invention, in the fifth aspect of the present invention, the static pressure pockets are provided on the side surface and the lower surface, and the position of the static pressure pocket provided on the side surface is arranged more aft than the position of the static pressure pocket provided on the lower surface. We propose a stern tube bearing characterized by the following.
According to the invention described in claim 6, in addition to claim 5, in particular, when the horizontal load at the time of turning the ship is larger than the load in the direction of gravity when the ship is stationary or straight ahead, the horizontal direction at the time of turning the ship With respect to the load, the propeller shaft can be supported by the hydraulic pressure applied to the static pressure pocket provided on the stern side, so that the propeller shaft can be prevented from hitting one side. As a result, thermal damage to the bearing or the propeller shaft can be prevented, and the frequency of maintenance work and the cost of the stern tube bearing can be reduced.
[0019]
According to a seventh aspect of the present invention, there is provided a stern tube bearing according to any one of the first to third aspects, wherein a static pressure pocket is provided on an inner surface of the stern side of the stern tube bearing. suggest.
According to a seventh aspect of the present invention, preferably, a static pressure pocket is provided from the lower surface of the bearing toward the side surface on the stern side. Preferably, the position of the static pressure pocket on the side surface is located closer to the stern side than the position of the static pressure pocket on the lower surface.
According to the invention described in claims 7 to 9, in addition to any one of claims 1 to 3, the propeller shaft can be supported by a method of applying oil pressure to a static pressure pocket provided in the bearing. The bearing can be designed compact. As a result, the manufacturing cost of the stern tube bearing can be reduced, the installation space for the bearing can be saved, and the maintenance work cost can be reduced.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail using embodiments shown in the drawings. However, the dimensions, materials, shapes, relative positions, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, unless otherwise specified. It is only an example.
[0021]
(Embodiment 1)
FIG. 1A is an explanatory view showing a configuration of a stern tube bearing according to Embodiment 1 of the present invention, wherein FIG. 1A is a cross-sectional view along an axis, and FIG. .
In FIG. 1 (a), a flange 17 is formed on the stern side end of the cylindrical stern tube bearing 1, and the stern tube bearing 1 is connected to the stern tube sealing device 3 or the hull 6 (see FIG. 5). Used to fix. Oil supply grooves 7 are machined on both opposing side surfaces in the bearing surface 16, and a plurality of oil supply holes 8 are drilled in the oil supply grooves 7 so as to communicate with the outer peripheral surface of the stern tube bearing 1. An oil supply pipe (not shown) is connected to the oil supply hole 8, and lubricating oil for lubricating the propeller shaft 2 and the bearing surface 16 is supplied.
[0022]
Each symbol in FIG. 1 indicates the following. L is the total axial length of the stern tube bearing 1, R e Is the radius of curvature of the bearing surface 16, R 3 Represents the radius of curvature of the tapered boring at the end on the stern side, and L ′ represents the axial length of the tapered boring. Where R 3 > R e It is. Further, the propeller shaft 2 shown by a solid line shows a state in which the center of the propeller shaft deviates from Ce due to gravity and horizontal load when turning the ship. The propeller shaft 2 indicated by a dashed line indicates the initial position when the propeller shaft 2 is mounted on the stern tube bearing 1 in the previous term, that is, the center position of the propeller shaft coincides with the center position Ce of the stern tube bearing 1. Show how you are.
[0023]
In this embodiment, the curvature center position C of the tapered boring 3 Is the axial center position C of the stern tube bearing 1 e Was set upward. The distance removed upward is the distance at which the bearing clearance bus 18 of the bearing surface 16 and the bearing clearance bus 18 of the tapered bearing surface 9 coincide with each other at the aft end of the stern tube bearing 1. By performing such taper boring, the radius of curvature of the bearing surface on the stern side lower surface of the stern tube bearing 1 becomes R e And the radius of curvature becomes R from the lower surface to both side surfaces. 3 To form a tapered bearing surface 9 that gradually increases. However, the location where taper boring is to be performed is to the oil supply groove 7 on both sides and not to the upper half, so the radius of curvature of the bearing surface of the upper half is R e It is.
As described above, with respect to the load in the direction of gravity between the propeller shaft 2 and the propeller 4 when the ship is stationary or straight ahead, the stern tube bearing 1 can be inclinedly installed on the hull and the bearing clearance can be set. When a horizontal load is applied when the ship is turning, the propeller shaft load is evenly applied in the axial direction to the tapered boring bearing surface of the bearing, so that the lubricating oil film pressure is applied to the bearing surface. It can be evenly distributed. As a result, thermal damage to the bearing or the propeller shaft can be prevented, and the frequency of maintenance work and the cost of the stern tube bearing can be reduced.
[0024]
Hereinafter, the taper boring method will be described. In the stern tube bearing 1, the bearing surface 16, the oil supply groove 7, and the oil supply hole 8 are previously processed. Next, the bearing 1 is placed on a large rotating table such that the axis of the bearing 1 is perpendicular to the table surface, and the shaft center C of the bearing 1 is set. e And the center of rotation of the table.
At this time, the bearing is installed so that the bow-side end surface of the bearing is in contact with the table surface. Next, the machining tool held at the stern-side end of the bearing 1 is applied to the inner surface of the bearing, and the large rotating table is rotated, thereby cutting the inner surface of the bearing and performing taper boring.
Here, the taper boring curvature center position C 3 Is set to be shifted from the rotation center position of the table. The cutting distance is determined according to a taper boring radius of curvature and a taper angle designed in advance. The taper angle is an angle formed between the bearing surface 16 and the tapered bearing surface 9. The axial length L ′ at which the taper boring is performed is determined by the angle and the radius of curvature of the taper boring.
Here, when taper boring is performed on the half surface of the stern tube bearing, for example, as illustrated in FIG. 1B, when the bearing is mounted on the lower half surface of the bearing, the cutting start position is set to one oil supply groove 7. The end position is the oil supply groove 7 on the opposite side. By setting the start position and the end position of the cutting as the oil supply groove 7, a space for contact and escape of the processing tool can be secured.
[0025]
(Embodiment 2)
FIG. 2 is an explanatory diagram showing the configuration of the stern tube bearing according to the second embodiment of the present invention, and shows the stern tube bearing viewed from the stern side end.
The flange 17, the oil supply groove 7, and the oil supply hole 8 are formed in the cylindrical stern tube bearing 1 as in the first embodiment.
Each symbol in FIG. 2 indicates the following. The same symbols as those in FIG. 1 indicate the same. R 2 Is the radius of curvature between the bearing surface 16 and the slope boring, C 2 Is the center of curvature of slope boring, and ε is the C 2 And stern tube bearing 1 shaft center C e Indicates the distance to
[0026]
In the present embodiment, the curvature center position C of the slope boring constructed on the stern tube bearing 1 is set. 2 Is the axial center C of the stern tube bearing 1 e From two places on the lower side of the left and right sides. By processing in this manner, the radius of curvature of the bearing surface at the stern side end of the stern tube bearing 1 is R 2 However, as going from the lower surface to both side surfaces, the axial center C e Distance from the bearing surface to the maximum R 2 + Ε, and constitutes the slope bearing surface 10. However, the slope boring is to be performed up to the lubrication groove 7 on both sides and not on the upper half, so the radius of curvature of the bearing surface on the upper half is R 2 It is.
As described above, with respect to the load in the direction of gravity between the propeller shaft 2 and the propeller 4 when the ship is stationary or straight ahead, the stern tube bearing 1 can be inclinedly installed on the hull and the bearing clearance can be set. If a horizontal load is applied when the ship turns, the propeller shaft load is evenly applied in the axial direction to the slope-bored bearing surface of the bearing, so the lubricating oil film pressure is applied to the bearing surface. It can be evenly distributed. As a result, thermal damage to the bearing or the propeller shaft can be prevented, and the frequency of maintenance work and the cost of the stern tube bearing can be reduced.
[0027]
The slope boring method will be described below. In the stern tube bearing 1, the bearing surface 16, the oil supply groove 7, and the oil supply hole 8 are previously processed. Next, the bearing 1 is placed on a large rotating table such that the axis of the bearing 1 is perpendicular to the table surface, and the shaft center C of the bearing 1 is set. e And the center of rotation of the table. At this time, the bearing 1 is installed so that the bow-side end surface thereof is in contact with the table surface. Next, the large rotary table is inclined with respect to the cutting direction. The machining tool held at the stern-side end of the bearing 1 is applied to the inner surface of the bearing, and the large rotary table is rotated to cut the inner surface of the bearing and to perform slope boring.
Where the slope radius of curvature R is 2 Is the radius of curvature R of the bearing surface 16 of the bearing 1 2 And the same as The angle at which the large rotary table is inclined with respect to the cutting direction is determined by the center of curvature C of the slope bearing surface 10 at the aft end of the bearing 1 as shown in FIG. 2 Is the axis center C e And the axial distance of the slope bearing surface 10 designed in advance.
[0028]
(Embodiment 3)
FIG. 3 is an explanatory diagram showing a configuration of a stern tube bearing according to Embodiment 3 of the present invention, and is a cross-sectional view along an axis of the stern tube bearing.
The flange 17, the oil supply groove 7, and the oil supply hole 8 are formed in the cylindrical stern tube bearing 1 as in the first embodiment.
In this embodiment, a static pressure pocket 11 is provided in a stern side bearing surface 16 of the stern tube bearing 1, and a high pressure oil supply pipe 12 communicating with the outer peripheral surface of the stern tube bearing 1 is pierced therein. A pipe 15 was connected to the pump 15 via the control valve 13 and the control valve 14. Here, the static pressure pocket 11 has a substantially rectangular opening in the bearing surface 16 and is constructed from the lower surface of the stern tube bearing 1 to both side surfaces on the stern side. During the operation of the ship, the pump 15 is used to pressurize the lubricating oil into the static pressure pockets 11 to support the propeller shaft 2 load. The degree of pressurization is adjusted by the degree of opening of the control valve 14 in accordance with the increase or decrease of the load.
[0029]
Since the static pressure pockets 11 are provided on both sides from the lower surface of the bearing to the stern side, against the load in the direction of gravity between the propeller shaft 2 and the propeller 4 when the ship is stationary or moving straight, and the horizontal load for turning the ship In contrast, since the propeller shaft can be supported by adjusting the oil pressure of the lubricating oil applied to the static pressure pocket, it is possible to prevent the propeller shaft from hitting one side. In particular, when the propeller 4 that rotates at a high speed is used, the size of one piece when a horizontal load is applied tends to be larger than when a load in the gravity direction is applied. That is, since the propeller shaft 2 bends more in the horizontal direction, the maximum pressure of the oil film is required on the side near the stern. Therefore, by providing the static pressure pocket 11 on the stern side closer to the side surface, the restoring force against the deflection of the propeller shaft 2 can be increased. As a result, thermal damage to the bearing or the propeller shaft can be prevented, and the frequency of maintenance work and the cost of the stern tube bearing can be reduced.
[0030]
(Embodiment 4)
4A and 4B are explanatory diagrams illustrating a configuration of a stern tube bearing according to a fourth embodiment of the present invention. FIG. 4A is a cross-sectional view taken along the axis of the stern tube bearing, and FIG. is there.
The flange 17, the oil supply groove 7, and the oil supply hole 8 are formed in the cylindrical stern tube bearing 1 as in the first embodiment.
In the present embodiment, a lower surface static pressure pocket 11a is provided on the lower surface on the stern side of the stern tube bearing 1, and side static pressure pockets 11b are provided on both side surfaces on the stern side, and the stern tube bearing 1 is provided in each static pressure pocket. A high-pressure oil supply pipe 12 communicating with the outer peripheral surface was bored, and further connected to a pump 15 via a high-pressure pipe 13 and a control valve 14. Here, each of the static pressure pockets 11a and 11b has a substantially rectangular opening having a long side in the circumferential direction of the stern tube bearing 1 on the bearing surface 16.
[0031]
With this configuration, the pump 15 pressurizes the lubricating oil into the static pressure pockets 11a and 11b, and the horizontal load is mainly applied to the gravity direction load by the hydraulic pressure applied to the lower surface static pressure pocket 11a. The propeller shaft 2 is supported mainly by the hydraulic pressure applied to the side static pressure pocket 11b. The degree of pressurization is adjusted by the degree of opening of each control valve 14 corresponding to the increase or decrease of each load.
Since the static pressure pockets 11a and 11b are provided independently on the lower surface of the bearing and on both side surfaces on the more stern side, the load in the direction of gravity between the propeller shaft 2 and the propeller 4 when the ship is stationary or straight ahead is provided. The oil pressure of the lubricating oil applied to the static pressure pocket 11a provided on the lower surface of the bearing is adjusted, and the oil pressure of the lubricating oil applied to the static pressure pockets 11b provided on both side surfaces is adjusted with respect to the horizontal load when the boat turns. As a result, the propeller shaft can be supported, so that the propeller shaft can be prevented from hitting one side.
[0032]
In particular, when the propeller 4 that rotates at a high speed is used, the size of one piece when a horizontal load is applied tends to be larger than when a load in the gravity direction is applied. That is, since the propeller shaft 2 bends more in the horizontal direction than in the gravity direction, the maximum pressure of the oil film is required on the side near the stern. Therefore, by providing the static pressure pocket 11 on the stern side closer to the side surface, the restoring force against the deflection of the propeller shaft 2 can be increased.
Furthermore, if the position, the number, the opening size, the depth, etc. of the static pressure pockets are designed in accordance with the axial load assumed at the time of ship operation, a compact stern tube bearing can be manufactured. This is because, unlike tapered boring, slope boring, and circumferentially angled hydrostatic pockets, they do not require a certain amount of structural size to function. As a result, thermal damage to the bearing or the propeller shaft can be prevented, and the frequency of maintenance work and the cost of the stern tube bearing can be reduced. Furthermore, since a compact stern tube bearing can be manufactured, the manufacturing cost of the bearing can be reduced, the installation space for the bearing can be saved, and the maintenance work cost can be reduced.
[0033]
(Embodiment 5)
Embodiment 5, which is not shown, has a structure in which Embodiment 1 is combined with Embodiment 3 or Embodiment 4. Alternatively, a structure in which Embodiment 2 and Embodiment 3 or Embodiment 4 are combined is adopted.
In addition to the tapered boring described in the first embodiment or the slope boring described in the second embodiment, a static pressure pocket 11 is provided and the oil pressure of the lubricating oil applied to the static pressure pocket 11 is adjusted. The range of the magnitude of the axial load that 1 can cope with is widened. Therefore, if the stern tube bearing 1 has the same size, the corresponding axial load increases, and if the stern tube bearing 1 has the same axial load, the bearing can be made compact. As a result, thermal damage to the bearing or the propeller shaft can be prevented, and the frequency of maintenance work and the cost of the stern tube bearing can be reduced. Furthermore, since a compact stern tube bearing can be manufactured, the manufacturing cost of the bearing can be reduced, the installation space for the bearing can be saved, and the maintenance work cost can be reduced.
[0034]
【The invention's effect】
As described above, according to the first to third and tenth to eleventh aspects of the present invention, one or both of tapered boring and slope boring are provided on the stern side of the stern tube bearing, and the center of curvature thereof is set to the bearing. When a horizontal load is applied when turning a ship, the propeller shaft load is evenly applied in the axial direction to the bearing surface of the bearing, and the lubricating oil film pressure is applied to the bearing surface. It can be evenly distributed. As a result, thermal damage to the bearing or the propeller shaft can be prevented, which contributes to a reduction in maintenance work frequency and work cost of the stern tube bearing.
[0035]
According to the fourth aspect of the present invention, since the static pressure pockets communicating from the lower surface of the stern side inner surface of the stern tube bearing toward the both side surfaces on the stern side are provided, the direction of gravity when the ship is stationary or straight ahead is provided. The propeller shaft can be supported by the hydraulic pressure applied to the static pressure pocket provided in the bearing against the load of the above and the horizontal load at the time of turning of the ship, and the partial contact of the propeller shaft can be prevented. As a result, thermal damage to the bearing or the propeller shaft can be prevented, which contributes to a reduction in maintenance work frequency and work cost of the stern tube bearing.
[0036]
According to the fifth and sixth aspects of the present invention, a plurality of static pressure pockets are provided on the stern side inner surface of the stern tube bearing. Since the propeller shaft can be supported by the hydraulic pressure applied to the static pressure pocket and by the hydraulic pressure applied to the static pressure pocket provided on the side surface in the case of a horizontal load when the ship turns, it is possible to prevent the propeller shaft from hitting one side. As a result, thermal damage to the bearing or the propeller shaft can be prevented, and the frequency of maintenance work and the cost of the stern tube bearing can be reduced.
[0037]
According to the invention of claims 7 to 9, in the invention of any one of claims 1 to 3, a stern tube bearing is provided with a static pressure pocket on the stern side inner surface, and preferably, a lower surface of the bearing. Since a static pressure pocket is provided toward the side more stern side, preferably, a plurality of static pressure pockets are provided, and the installation position of the static pressure pocket on the side is more aft than the installation position of the static pressure pocket on the lower surface. Since it is arranged on the side, the propeller shaft can be supported by a method of applying hydraulic pressure to the static pressure pocket, and the bearing can be designed compact. As a result, it is possible to reduce the manufacturing cost of the stern tube bearing, save the installation space for the bearing, and reduce the maintenance work cost.
[0038]
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of a stern tube bearing according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a configuration of a stern tube bearing according to a second embodiment of the present invention.
FIG. 3 is an explanatory diagram showing a configuration of a stern tube bearing according to a third embodiment of the present invention.
FIG. 4 is an explanatory diagram showing a configuration of a stern tube bearing according to a fourth embodiment of the present invention.
FIG. 5 is an explanatory view showing a configuration of a rear part of a hull where a stern tube bearing is installed.
FIG. 6 is an explanatory view showing a conventional technique of a stern tube bearing.
FIG. 7 is an explanatory view showing a conventional technique of a stern tube bearing.
FIG. 8 is an explanatory view showing a conventional technique of a stern tube bearing.
[Explanation of symbols]
1 Stern tube bearing
9 Tapered bearing surface
10 Slope bearing surface
11 static pressure pocket
11a Lower surface static pressure pocket
11b Side static pressure pocket
16 Bearing surface
18 Bearing Clearance Bus

Claims (11)

船舶のプロペラ軸を支持し、軸受内面の軸方向に給油溝と該給油溝に連通される給油孔とを設けた船尾管軸受において、該軸受の船尾側に、曲率中心を該軸受の軸中心から外して設定したテーパーボーリングによって形成された軸受面及びスロープボーリングによって形成された軸受面の何れか一方または双方を設けたことを特徴とする船尾管軸受。In a stern tube bearing that supports a propeller shaft of a ship and has an oil supply groove and an oil supply hole communicating with the oil supply groove in the axial direction of the bearing inner surface, the center of curvature is located on the stern side of the bearing, and the center of curvature is the axial center of the bearing. A stern tube bearing provided with one or both of a bearing surface formed by tapered boring and a bearing surface formed by slope boring, which are set out of the way. 前記軸受内面の軸受すきま母線と前記テーパーボーリングによって形成された軸受面の軸受すきま母線とを一致させたことを特徴とする請求項1記載の船尾管軸受。The stern tube bearing according to claim 1, wherein a bearing clearance bus of the bearing inner surface and a bearing clearance bus of a bearing surface formed by the tapered boring are matched. 前記スロープボーリングによって形成された軸受面の曲率半径を軸受内面の曲率半径と同一とするとともに、該スロープボーリングによって形成された軸受面の曲率中心を該軸受の軸中心から外して2箇所に設けたことを特徴とする請求項1記載の船尾管軸受。The radius of curvature of the bearing surface formed by the slope boring was made equal to the radius of curvature of the inner surface of the bearing, and the center of curvature of the bearing surface formed by the slope boring was provided at two places off the shaft center of the bearing. The stern tube bearing according to claim 1, wherein: 船舶のプロペラ軸を支持し、軸受内面の軸方向に給油溝と該給油溝に連通される給油孔とを設けた船尾管軸受において、該軸受の船尾側内面の下面から船尾側の側面に向けて連通した静圧ポケットを設けたことを特徴とする船尾管軸受。In a stern tube bearing which supports a propeller shaft of a ship and has an oil supply groove and an oil supply hole communicating with the oil supply groove in the axial direction of the inner surface of the bearing, the stern tube bearing extends from the lower surface of the stern side inner surface to the stern side surface. A stern tube bearing characterized by having a static pressure pocket communicating with the stern tube. 船舶のプロペラ軸を支持し、軸受内面の軸方向に給油溝と該給油溝に連通される給油孔とを設けた船尾管軸受において、該軸受の船尾側内面に複数の静圧ポケットを設けたことを特徴とする船尾管軸受。In a stern tube bearing which supports a propeller shaft of a ship and has an oil supply groove and an oil supply hole communicating with the oil supply groove in the axial direction of the bearing inner surface, a plurality of static pressure pockets are provided on the stern side inner surface of the bearing. A stern tube bearing, characterized in that: 前記静圧ポケットを側面及び下面に設けるとともに、側面に設ける静圧ポケットの位置を下面に設ける静圧ポケットの位置よりも船尾側に配置したことを特徴とする請求項5記載の船尾管軸受。6. The stern tube bearing according to claim 5, wherein the static pressure pockets are provided on the side surface and the lower surface, and the position of the static pressure pocket provided on the side surface is arranged closer to the stern side than the position of the static pressure pocket provided on the lower surface. 前記軸受の船尾側内面に、1個または複数の静圧ポケットを設けたことを特徴とする請求項1ないし3の何れかの項に記載の船尾管軸受。The stern tube bearing according to any one of claims 1 to 3, wherein one or a plurality of static pressure pockets are provided on an inner surface of the stern side of the bearing. 前記軸受の船尾側内面に、該軸受の下面から船尾側の側面に向けて静圧ポケットを設けたことを特徴とする請求項1ないし3の何れかの項に記載の船尾管軸受。The stern tube bearing according to any one of claims 1 to 3, wherein a static pressure pocket is provided on a stern side inner surface of the bearing from a lower surface of the bearing toward a stern side surface. 前記軸受の船尾側内面に、側面の静圧ポケットの設置位置を下面の静圧ポケットの設置位置よりも船尾側に配置したことを特徴とする請求項7記載の船尾管軸受。The stern tube bearing according to claim 7, wherein an installation position of a side static pressure pocket is disposed on a stern side of an inner surface of the bearing on a stern side than an installation position of a static pressure pocket on a lower surface. 船舶のプロペラ軸を支持し、軸受内面の軸方向に給油溝と該給油溝に連通される給油孔とを設けた船尾管軸受の製造方法において、ボーリング加工面の曲率中心位置を該軸受の曲率中心位置から外した位置に固定して、該加工の曲率半径を、前記軸受の船尾側端部では該軸受の曲率半径より大きく設定するとともに、船首側に向かうに従って前記軸受の曲率半径に一致するまで小さくなるように設定し、ボーリング加工工具を軸方向に送ることによってテーパーボーリング加工を施すことを特徴とする船尾管軸受の製造方法。In a method for manufacturing a stern tube bearing which supports a propeller shaft of a ship and has an oil supply groove and an oil supply hole communicated with the oil supply groove in an axial direction of the bearing inner surface, the curvature center position of the boring surface is determined by the curvature of the bearing. Fixed at a position deviated from the center position, the radius of curvature of the machining is set to be larger than the radius of curvature of the bearing at the stern end of the bearing, and matches the radius of curvature of the bearing toward the bow. A method for manufacturing a stern tube bearing, wherein the stern tube bearing is set so as to be smaller and tapered boring is performed by feeding a boring tool in an axial direction. 船舶のプロペラ軸を支持し、軸受内面の軸方向に給油溝と該給油溝に連通される給油孔とを設けた船尾管軸受の製造方法において、ボーリング加工の曲率半径を該軸受の曲率半径と同一として、該加工の曲率中心位置を、前記軸受の船尾側端部では軸中心から外して設定するとともに、船首側に向かうに従って前記軸受の軸中心位置に一致するまで径方向に移動させるように設定し、ボーリング加工工具を軸方向に送ることによってスロープボーリング加工を施すことを特徴とする船尾管軸受の製造方法。In a method of manufacturing a stern tube bearing that supports a propeller shaft of a ship and has an oil supply groove and an oil supply hole communicated with the oil supply groove in the axial direction of the inner surface of the bearing, the curvature radius of the boring process is defined as the curvature radius of the bearing. As the same, the center of curvature of the machining is set off the shaft center at the stern side end of the bearing, and is moved radially toward the bow until it coincides with the shaft center position of the bearing. A method of manufacturing a stern tube bearing, wherein a slope boring process is performed by setting and sending a boring tool in an axial direction.
JP2002259196A 2002-09-04 2002-09-04 Stern tube bearing and manufacturing method thereof Expired - Fee Related JP3962664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259196A JP3962664B2 (en) 2002-09-04 2002-09-04 Stern tube bearing and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259196A JP3962664B2 (en) 2002-09-04 2002-09-04 Stern tube bearing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004098719A true JP2004098719A (en) 2004-04-02
JP3962664B2 JP3962664B2 (en) 2007-08-22

Family

ID=32260300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259196A Expired - Fee Related JP3962664B2 (en) 2002-09-04 2002-09-04 Stern tube bearing and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3962664B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2445063A (en) * 2006-12-22 2008-06-25 Kobe Steel Ltd Bearing and liquid cooling type screw compressor
JP2010174928A (en) * 2009-01-27 2010-08-12 Toyota Motor Corp Bearing structure of internal combustion engine
WO2016059883A1 (en) * 2014-10-18 2016-04-21 イーグル工業株式会社 Sealing device
CN108119548A (en) * 2017-12-15 2018-06-05 重庆美的通用制冷设备有限公司 Bearing shell and with its slide bearing assembly, compressor
CN108150522A (en) * 2016-12-05 2018-06-12 博世马勒涡轮系统有限两合公司 Bearing insert and corresponding supercharging device
CN114413845A (en) * 2021-12-16 2022-04-29 上海江南长兴造船有限责任公司 Method for measuring ship stern tube bearing slope in inner field
CN117566084A (en) * 2024-01-15 2024-02-20 南通中远海运船务工程有限公司 Tail shaft bearing setting method, electronic equipment and computer readable storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104913182B (en) * 2015-06-30 2017-09-29 湖南崇德工业科技有限公司 A kind of modular fuel injector device for Tilting Pad bearing

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2445063A (en) * 2006-12-22 2008-06-25 Kobe Steel Ltd Bearing and liquid cooling type screw compressor
GB2445063B (en) * 2006-12-22 2009-02-04 Kobe Steel Ltd Bearing and liquid cooling type screw compressor
US8308464B2 (en) 2006-12-22 2012-11-13 Kobe Steel, Ltd. Bearing and liquid cooling type screw compressor
JP2010174928A (en) * 2009-01-27 2010-08-12 Toyota Motor Corp Bearing structure of internal combustion engine
WO2016059883A1 (en) * 2014-10-18 2016-04-21 イーグル工業株式会社 Sealing device
CN106795970A (en) * 2014-10-18 2017-05-31 伊格尔工业股份有限公司 Sealing device
JPWO2016059883A1 (en) * 2014-10-18 2017-07-27 イーグル工業株式会社 Sealing device
US10352453B2 (en) 2014-10-18 2019-07-16 Eagle Industry Co., Ltd. Seal device
CN108150522A (en) * 2016-12-05 2018-06-12 博世马勒涡轮系统有限两合公司 Bearing insert and corresponding supercharging device
CN108150522B (en) * 2016-12-05 2021-06-01 博马科技有限责任公司 Bearing bush and corresponding supercharging device
CN108119548A (en) * 2017-12-15 2018-06-05 重庆美的通用制冷设备有限公司 Bearing shell and with its slide bearing assembly, compressor
CN108119548B (en) * 2017-12-15 2020-06-05 重庆美的通用制冷设备有限公司 Bearing bush, sliding bearing assembly with bearing bush and compressor
CN114413845A (en) * 2021-12-16 2022-04-29 上海江南长兴造船有限责任公司 Method for measuring ship stern tube bearing slope in inner field
CN114413845B (en) * 2021-12-16 2024-04-02 上海江南长兴造船有限责任公司 Method for measuring ship stern tube bearing slope in internal field
CN117566084A (en) * 2024-01-15 2024-02-20 南通中远海运船务工程有限公司 Tail shaft bearing setting method, electronic equipment and computer readable storage medium
CN117566084B (en) * 2024-01-15 2024-05-17 南通中远海运船务工程有限公司 Tail shaft bearing setting method, electronic equipment and computer readable storage medium

Also Published As

Publication number Publication date
JP3962664B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
CN102322476B (en) Tilting-pad water-lubricated rubber alloy bearing
JP6484960B2 (en) Spindle device
EP2331398B1 (en) An adjustable propeller arrangement and a method of distributing fluid to and/or from such an adjustable propeller arrangement.
KR101574822B1 (en) Bearings for pod propulsion system
EP1035013B1 (en) Contra-rotating bearing device for contra-rotating propeller
JP2008082355A (en) Slide bearing
US20070123118A1 (en) Means for bearing a propulsion unit and a propulsion system for a waterbourne vessel
WO2001084004A1 (en) Bearings
WO2014055255A1 (en) End face oil configuration for journal bearings
JP2004098719A (en) Stern tube bearing and its manufacturing method
JPH06107285A (en) Lubricating oil feeder for marine contra-rotating propeller
JP6704107B2 (en) Thrust collar and thrust bearing device
KR20200045491A (en) Ring seal for forming a rotation seal between two cylindrical elements
KR900004060B1 (en) Stern tube bearing system of contra-rotating propeller
JP2008151239A (en) Tilting pad type bearing
JP2022157536A (en) Fluid machinery and underwater sailing body
JP3004475B2 (en) Bearing structure of contra-rotating propeller device
JP3386866B2 (en) Stern tube bearing system for contra-rotating ship propeller
JP3432303B2 (en) Reversing bearing for contra-rotating propeller
EP3411601B1 (en) Bearing and process of making and using the same
US20130113163A1 (en) Maintenance and Emergency Run Secondary Seal
JP2756398B2 (en) Lubricating oil supply structure for marine counter-rotating propeller
JP3498269B2 (en) Bearing device for contra-rotating propeller
JPH0637197B2 (en) Bearing lubricator for marine counter-rotating propeller
JP2984221B2 (en) Bearing lubrication structure for counter-rotating marine propellers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees