JP2004095553A - Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane junction body, and manufacturing method of the same - Google Patents

Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane junction body, and manufacturing method of the same Download PDF

Info

Publication number
JP2004095553A
JP2004095553A JP2003293374A JP2003293374A JP2004095553A JP 2004095553 A JP2004095553 A JP 2004095553A JP 2003293374 A JP2003293374 A JP 2003293374A JP 2003293374 A JP2003293374 A JP 2003293374A JP 2004095553 A JP2004095553 A JP 2004095553A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
transfer sheet
catalyst layer
electrode
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003293374A
Other languages
Japanese (ja)
Other versions
JP4560671B2 (en
Inventor
Rei Hiromitsu
弘光 礼
Takekazu Mikami
三上 豪一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2003293374A priority Critical patent/JP4560671B2/en
Publication of JP2004095553A publication Critical patent/JP2004095553A/en
Application granted granted Critical
Publication of JP4560671B2 publication Critical patent/JP4560671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transfer sheet for manufacturing an electrode-electrolyte membrane junction body, and an electrode-electrolyte membrane junction body for structuring a fuel cell. <P>SOLUTION: The transfer sheet includes one or more than two catalyst layers formed on at least one side of a base material with a release layer interposed. The transfer sheet is manufactured by forming the release layer on at least the one side of the base material, and forming one or more than two of the catalyst layers on the release layer. The electrode-electrolyte membrane junction body is manufactured by arranging the transfer sheet on an electrolyte membrane surface by a catalyst layer surface of the transfer sheet, pressurizing, peeling the base material of the transfer sheet from the catalyst layer surface to manufacture the catalyst layer-electrolyte membrane laminate, arranging an electrode base material on both sides of the catalyst layer-electrolyte membrane laminate, and pressurizing. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、転写シート、触媒層−電解質膜積層体、電極−電解質膜接合体及びこれらの製造方法に関する。 The present invention relates to a transfer sheet, a catalyst layer-electrolyte membrane laminate, an electrode-electrolyte membrane assembly, and a method for producing these.

 燃料電池は、電解質膜の両面に触媒層を配置し、水素と酸素の電気化学反応により発電する発電するシステムであり、発電時に発生するのは水のみである。燃料電池は、従来の内燃機関と異なり、二酸化炭素等の環境負荷ガスを発生しないために、次世代のクリーンエネルギーシステムとして注目されている。 (4) A fuel cell is a system in which catalyst layers are arranged on both sides of an electrolyte membrane and generates power by an electrochemical reaction between hydrogen and oxygen. Only water is generated during power generation. Fuel cells have attracted attention as next-generation clean energy systems because they do not generate environmentally harmful gases such as carbon dioxide, unlike conventional internal combustion engines.

 固体高分子型燃料電池は、電解質膜層として水素イオン伝導性高分子電解質膜を用い、その両面に触媒層を配置し、次いでその両面に電極基材を配置し、更にこれをセパレータで挟んだ構造をしている。電解質膜層の両面に触媒層を配置し、次いでその両面に電極基材を配置したもの(即ち、電極基材/触媒層/電解質膜/触媒層/電極基材の層構成のもの)は、電極−電解質膜接合体と称されている。 The polymer electrolyte fuel cell uses a hydrogen ion conductive polymer electrolyte membrane as an electrolyte membrane layer, a catalyst layer is arranged on both sides thereof, and then an electrode substrate is arranged on both sides thereof, and this is sandwiched between separators. Has a structure. The catalyst layer is disposed on both sides of the electrolyte membrane layer, and then the electrode substrate is disposed on both sides (that is, the electrode substrate / catalyst layer / electrolyte membrane / catalyst layer / electrode substrate layer configuration) It is called an electrode-electrolyte membrane assembly.

 従来、電極−電解質膜接合体の製造方法としては、例えば、白金を炭素粉に担持させた触媒粉のスラリー液又はペースト化した塗工液を、(1)電極基材の片面に印刷法又はスプレー法を適用して触媒層を形成した2個の電極基材を用い、該電極基材の触媒層面が電解質膜の両面に接するように配置し、熱プレスする方法(例えば、特許文献1、特許文献2等)、(2)電解質膜の両面に印刷法又はスプレー法を適用して触媒層を形成し、各々の触媒層面に電極基材が接するように配置し、熱プレスする方法(例えば、特許文献3等)、(3)基材上に印刷法を適用して形成した触媒層を高温高圧下に電解質膜に転写し、基材を剥離し、次いで電解質膜の両面に転写された触媒層面に電極基材が接するように配置し、熱プレスする方法(例えば、特許文献4等)等が知られている。 Conventionally, as a method of manufacturing an electrode-electrolyte membrane assembly, for example, a slurry solution or a coating solution of a catalyst powder in which platinum is supported on carbon powder, or a coating solution in the form of a paste, (1) printing method on one surface of the electrode substrate or A method in which two electrode substrates each having a catalyst layer formed by applying a spray method are arranged such that the catalyst layer surfaces of the electrode substrates are in contact with both surfaces of the electrolyte membrane, and hot pressing is performed (for example, Patent Document 1, Patent Document 2), (2) A method of applying a printing method or a spray method to both surfaces of an electrolyte membrane to form a catalyst layer, disposing an electrode substrate in contact with each catalyst layer surface, and hot pressing (for example, , Patent Document 3 etc.), (3) The catalyst layer formed by applying a printing method on the base material was transferred to the electrolyte membrane under high temperature and high pressure, the base material was peeled off, and then transferred to both sides of the electrolyte membrane A method of arranging the electrode substrate in contact with the catalyst layer surface and hot pressing (for example, see Patent 4, etc.), and the like are known.

 しかしながら、これらの方法には種々の欠点がある。 However, these methods have various disadvantages.

 (1)の方法は、印刷法又はスプレー法を適用して触媒層を電極基材上に形成する際に、触媒層が多孔質の電極基材の中に入り込むので、触媒層の膜厚調整が困難になったり、触媒層を電極基材上に均一に形成させることが困難になる。更に、(1)の方法は、電極基材表面乃至内部の孔を塞ぎ、ガスの通流性能を阻害する。その結果、(1)の方法で得られる電極−電解質膜接合体を使用した燃料電池は、その性能が低下するのが避けられない。 In the method (1), when the catalyst layer is formed on the electrode substrate by applying a printing method or a spray method, the catalyst layer enters the porous electrode substrate, so that the thickness of the catalyst layer is adjusted. And it becomes difficult to uniformly form the catalyst layer on the electrode substrate. Furthermore, the method (1) closes the pores on the surface or inside of the electrode substrate, and impedes the gas flow performance. As a result, the performance of the fuel cell using the electrode-electrolyte membrane assembly obtained by the method (1) is inevitably reduced.

 (2)の方法は、触媒層構成成分を有機溶剤に溶解又は分散させた液を電解質膜の両面に印刷又はスプレーして触媒層を形成させるが、電解質膜が有機溶媒により膨潤し、変形して電解質膜の形状を維持することが困難になる。そのために、触媒層の膜厚調整が困難になったり、触媒層を電解質膜上に均一に形成させることが困難になる。その結果、(2)の方法で得られる電極−電解質膜接合体を使用した燃料電池は、その性能にバラツキが生じる。従って、(2)の方法で得られる電極−電解質膜接合体では、均一な性能を備えた燃料電池を製造できない。 In the method (2), a catalyst layer is formed by printing or spraying a solution obtained by dissolving or dispersing the components of the catalyst layer in an organic solvent on both sides of the electrolyte membrane, but the electrolyte membrane swells and deforms due to the organic solvent. Therefore, it becomes difficult to maintain the shape of the electrolyte membrane. Therefore, it becomes difficult to adjust the thickness of the catalyst layer, and it is difficult to uniformly form the catalyst layer on the electrolyte membrane. As a result, the performance of the fuel cell using the electrode-electrolyte membrane assembly obtained by the method (2) varies. Therefore, with the electrode-electrolyte membrane assembly obtained by the method (2), a fuel cell having uniform performance cannot be manufactured.

 (3)の方法は、触媒層の電解質膜への転写を高温高圧下に行う必要があるが、高圧下での転写の際に電解質膜が過剰に圧縮される部分が生じ、電解質膜が局所的に破壊される危険がある。また、高温下での転写の際、電解質膜が溶融し、膜自体が変性する危険がある。その結果、(3)の方法で得られる電極−電解質膜接合体を使用した燃料電池は、所望の性能を備えた燃料電池にはなり得ない。
特公昭62−61118号公報 特公昭62−61119号公報 特公平2−48632号公報 特開平10−64574号公報
In the method (3), the transfer of the catalyst layer to the electrolyte membrane needs to be performed under high temperature and high pressure.However, during the transfer under high pressure, a portion where the electrolyte membrane is excessively compressed occurs, and the electrolyte membrane is locally transferred. Danger of physical destruction. Further, at the time of transfer under high temperature, there is a risk that the electrolyte membrane is melted and the membrane itself is denatured. As a result, a fuel cell using the electrode-electrolyte membrane assembly obtained by the method (3) cannot be a fuel cell having desired performance.
Japanese Patent Publication No. 62-61118 Japanese Patent Publication No. 62-61119 Japanese Patent Publication No. 2-48632 JP-A-10-64574

 本発明は、上記欠点のない電極−電解質膜接合体の製造方法を提供することを課題とする。 。 It is an object of the present invention to provide a method for producing an electrode-electrolyte membrane assembly that does not have the above-mentioned disadvantages.

 本発明は、上記欠点のない電極−電解質膜接合体を製造するための転写シートを提供することを課題とする。 。 It is an object of the present invention to provide a transfer sheet for producing an electrode-electrolyte membrane assembly without the above-mentioned disadvantages.

 本発明者は、上記課題を解決するために鋭意研究を重ねてきた。その結果、基材の少なくとも片面に離型層を介して1個又は2個以上の触媒層が形成された電極−電解質膜接合体製造用転写シートを用い、該転写シートの離型層面が電解質膜面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を剥離することにより、所望の電極−電解質膜接合体を製造できることを見い出した。本発明は、斯かる知見に基づき完成されたものである。
1.本発明は、基材の少なくとも片面に離型層を介して1個又は2個以上の触媒層が形成された、電極−電解質膜接合体製造用転写シートである。
2.本発明は、触媒層の他面に接着層が形成されている上記1に記載の転写シートである。
3.本発明は、離型層が融点60〜100℃のワックスからなる上記1又は2に記載の転写シートである。
4.本発明は、基材の少なくとも片面に離型層を形成し、次いで該離型層の上に1個又は2個以上の触媒層を形成させる、上記1に記載の電極−電解質膜接合体製造用転写シートの製造方法である。
5.本発明は、基材の少なくとも片面に離型層を形成し、次いで該離型層の上に1個又は2個以上の触媒層を形成させ、更に触媒層上に接着層を形成させる、上記2に記載の電極−電解質膜接合体製造用転写シートの製造方法である。
6.本発明は、上記1に記載の転写シートの触媒層面が電解質膜面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を触媒層面から剥離することを特徴とする触媒層−電解質膜積層体の製造方法である。
7.本発明は、上記1に記載の転写シートの触媒層面が電解質膜の両面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を触媒層面から剥離することを特徴とする触媒層−電解質膜積層体の製造方法である。
8.本発明は、上記2に記載の転写シートの接着層面が電解質膜面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を触媒層面から剥離することを特徴とする触媒層−電解質膜積層体の製造方法である。
9.本発明は、上記2に記載の転写シートの接着層面が電解質膜の両面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を触媒層面から剥離することを特徴とする触媒層−電解質膜積層体の製造方法である。
10.本発明は、上記1〜3のいずれかに記載の転写シートを用いて製造される触媒層−電解質膜積層体である。
11.本発明は、上記6〜9のいずれかの方法で製造される触媒層−電解質膜積層体である。
12.本発明は、上記10又は11に記載の積層体の両面に電極基材を配置し、加圧することを特徴とする電極−電解質膜接合体の製造方法である。
13.本発明は、上記10又は11に記載の積層体を用いて製造される電極−電解質膜接合体である。
14.本発明は、上記12に記載の方法により製造される電極−電解質膜接合体である。
15.本発明は、
(1)基材の少なくとも片面に離型層を形成し、次いで該離型層の上に1個又は2個以上の触媒層を形成させて電極−電解質膜接合体製造用転写シートを得る工程、
(2)上記(1)工程で得られる転写シートの触媒層面が電解質膜面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を触媒層面から剥離することにより触媒層−電解質膜積層体を得る工程、
(3)上記(2)工程で得られる触媒層−電解質膜積層体の両面に電極基材を配置し、加圧することにより電極−電解質膜接合体を得る工程、及び
(4)上記(3)工程で得られる電極−電解質膜接合体を用いて燃料電池を得る工程
を備えた燃料電池の製造方法である。
16.本発明は、
(1)基材の少なくとも片面に離型層を形成し、次いで該離型層の上に1個又は2個以上の触媒層を形成させ、更に触媒層上に接着層を形成させて電極−電解質膜接合体製造用転写シートを得る工程、
(2)上記(1)工程で得られる転写シートの接着層面が電解質膜面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を触媒層面から剥離することにより触媒層−電解質膜積層体を得る工程、
(3)上記(2)工程で得られる触媒層−電解質膜積層体の両面に電極基材を配置し、加圧することにより電極−電解質膜接合体を得る工程、及び
(4)上記(3)工程で得られる電極−電解質膜接合体を用いて燃料電池を得る工程
を備えた燃料電池の製造方法である。
17.本発明は、上記13又は14に記載の電極−電解質膜接合体を組み込んだ燃料電池である。
18.本発明は、上記15又は16に記載の方法で得られる燃料電池である。
The present inventor has made intensive studies to solve the above-mentioned problems. As a result, a transfer sheet for producing an electrode-electrolyte membrane assembly in which one or two or more catalyst layers are formed on at least one surface of a base material via a release layer, and the release layer surface of the transfer sheet is an electrolyte It has been found that a desired electrode-electrolyte membrane assembly can be produced by arranging a transfer sheet so as to face the membrane surface, applying pressure, and then peeling off the base material of the transfer sheet. The present invention has been completed based on such findings.
1. The present invention is a transfer sheet for producing an electrode-electrolyte membrane assembly, in which one or two or more catalyst layers are formed on at least one surface of a substrate via a release layer.
2. The present invention is the transfer sheet according to the above item 1, wherein an adhesive layer is formed on the other surface of the catalyst layer.
3. The present invention is the transfer sheet according to 1 or 2, wherein the release layer is made of wax having a melting point of 60 to 100 ° C.
4. The present invention provides the production of an electrode-electrolyte membrane assembly according to the above 1, wherein a release layer is formed on at least one surface of the substrate, and then one or more catalyst layers are formed on the release layer. This is a method for producing a transfer sheet for use.
5. The present invention comprises forming a release layer on at least one surface of a substrate, then forming one or more catalyst layers on the release layer, and further forming an adhesive layer on the catalyst layer. 3. The method for producing a transfer sheet for producing an electrode-electrolyte membrane assembly according to item 2.
6. The present invention is characterized in that the transfer sheet is arranged so that the catalyst layer surface of the transfer sheet according to the above 1 faces the electrolyte membrane surface, and after pressing, the base material of the transfer sheet is separated from the catalyst layer surface. This is a method for producing a catalyst layer-electrolyte membrane laminate.
7. The present invention is characterized in that the transfer sheet is arranged so that the catalyst layer surface of the transfer sheet according to the above 1 faces both surfaces of the electrolyte membrane, and after pressing, the base material of the transfer sheet is separated from the catalyst layer surface. The method for producing a catalyst layer-electrolyte membrane laminate described above.
8. The present invention is characterized in that the transfer sheet is arranged so that the adhesive layer surface of the transfer sheet according to the above item 2 faces the electrolyte membrane surface, and after pressing, the base material of the transfer sheet is peeled from the catalyst layer surface. This is a method for producing a catalyst layer-electrolyte membrane laminate.
9. The present invention is characterized in that the transfer sheet is arranged so that the adhesive layer surface of the transfer sheet according to the above 2 faces both surfaces of the electrolyte membrane, and after pressing, the base material of the transfer sheet is peeled off from the catalyst layer surface. The method for producing a catalyst layer-electrolyte membrane laminate described above.
10. The present invention is a catalyst layer-electrolyte membrane laminate manufactured using the transfer sheet according to any one of the above 1 to 3.
11. The present invention is a catalyst layer-electrolyte membrane laminate produced by any one of the above methods 6 to 9.
12. The present invention is a method for producing an electrode-electrolyte membrane assembly, wherein electrode base materials are arranged on both surfaces of the laminate according to the above item 10 or 11, and pressure is applied.
13. The present invention is an electrode-electrolyte membrane assembly manufactured using the laminate described in 10 or 11 above.
14. The present invention is an electrode-electrolyte membrane assembly manufactured by the method described in the above item 12.
15. The present invention
(1) A step of forming a release layer on at least one surface of a substrate, and then forming one or more catalyst layers on the release layer to obtain a transfer sheet for producing an electrode-electrolyte membrane assembly. ,
(2) By disposing the transfer sheet so that the catalyst layer surface of the transfer sheet obtained in the step (1) faces the electrolyte membrane surface, pressurizing, and then peeling the base material of the transfer sheet from the catalyst layer surface. Obtaining a catalyst layer-electrolyte membrane laminate,
(3) a step of obtaining an electrode-electrolyte membrane assembly by arranging electrode base materials on both surfaces of the catalyst layer-electrolyte membrane laminate obtained in the above (2) step, and applying pressure; and
(4) A method for manufacturing a fuel cell including a step of obtaining a fuel cell using the electrode-electrolyte membrane assembly obtained in the step (3).
16. The present invention
(1) forming a release layer on at least one side of the base material, then forming one or more catalyst layers on the release layer, and further forming an adhesive layer on the catalyst layer to form an electrode; A step of obtaining a transfer sheet for manufacturing an electrolyte membrane assembly,
(2) By disposing the transfer sheet so that the adhesive layer surface of the transfer sheet obtained in the step (1) faces the electrolyte membrane surface, pressurizing, and then peeling the base material of the transfer sheet from the catalyst layer surface. Obtaining a catalyst layer-electrolyte membrane laminate,
(3) a step of obtaining an electrode-electrolyte membrane assembly by arranging electrode base materials on both surfaces of the catalyst layer-electrolyte membrane laminate obtained in the above (2) step, and applying pressure; and
(4) A method for manufacturing a fuel cell including a step of obtaining a fuel cell using the electrode-electrolyte membrane assembly obtained in the step (3).
17. The present invention is a fuel cell incorporating the electrode-electrolyte membrane assembly according to 13 or 14 above.
18. The present invention is a fuel cell obtained by the method described in 15 or 16 above.

 電極−電解質膜接合体製造用転写シート
 本発明の電極−電解質膜接合体製造用転写シートは、基材の少なくとも片面に離型層を介して1個又は2個以上の触媒層が形成されてなるものである。
The transfer sheet for producing an electrode-electrolyte membrane assembly The transfer sheet for producing an electrode-electrolyte membrane assembly of the present invention has one or two or more catalyst layers formed on at least one surface of a substrate via a release layer. It becomes.

 本発明の電極−電解質膜接合体製造用転写シートの一例を図1に示す。図1に示す転写シートは、基材の片面に離型層が形成され、更に該離型層の上に触媒層が形成されている。 FIG. 1 shows an example of the transfer sheet for producing an electrode-electrolyte membrane assembly of the present invention. The transfer sheet shown in FIG. 1 has a release layer formed on one side of a substrate, and a catalyst layer formed on the release layer.

 本発明の電極−電解質膜接合体製造用転写シートの他の一例を図2に示す。図2に示す転写シートは、基材の片面に離型層が形成され、該離型層の上に触媒層が形成され、更に該触媒層の上に接着層が形成されている。 FIG. 2 shows another example of the transfer sheet for producing an electrode-electrolyte membrane assembly of the present invention. The transfer sheet shown in FIG. 2 has a release layer formed on one surface of a substrate, a catalyst layer formed on the release layer, and an adhesive layer formed on the catalyst layer.

 本発明の電極−電解質膜接合体製造用転写シートの他の一例を図3及び図4に示す。図3は本発明の電極−電解質膜接合体製造用転写シートの断面図であり、図4は該転写シートの平面図である。図3及び図4に示す転写シートは、基材の片面に離型層が形成され、更に該離型層の上に複数個の触媒層が形成されている。 FIGS. 3 and 4 show another example of the transfer sheet for producing an electrode-electrolyte membrane assembly of the present invention. FIG. 3 is a sectional view of a transfer sheet for producing an electrode-electrolyte membrane assembly according to the present invention, and FIG. 4 is a plan view of the transfer sheet. The transfer sheet shown in FIGS. 3 and 4 has a release layer formed on one surface of a base material, and a plurality of catalyst layers formed on the release layer.

 基材としては、例えば、ポリイミド、ポリエチレンテレフタレート、ポリパルバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート等の高分子フィルムを挙げることができる。 As the base material, for example, polyimide, polyethylene terephthalate, polypalvanic acid aramid, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, polyethylene naphthalate, etc. Molecular films can be mentioned.

 また、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等の耐熱性フッ素樹脂を用いることもできる。 In addition, heat resistance of ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkylvinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), etc. A fluorocarbon resin can also be used.

 更に、基材は、高分子フィルム以外に、アート紙、コート紙、軽量コート紙等の塗工紙、ノート用紙、コピー用紙等の非塗工紙等の紙であってもよい。 Further, the base material may be paper such as coated paper such as art paper, coated paper and lightweight coated paper, uncoated paper such as notebook paper and copy paper, in addition to the polymer film.

 基材の厚さは、取り扱い性及び経済性の観点から、通常6〜100μm程度、好ましくは6〜30μm程度、より好ましくは6〜15μm程度とするのがよい。 (4) The thickness of the substrate is usually about 6 to 100 μm, preferably about 6 to 30 μm, and more preferably about 6 to 15 μm, from the viewpoint of handleability and economy.

 従って、基材としては、安価で入手が容易な高分子フィルムが好ましく、ポリエチレンテレフタレート等がより好ましい。 Therefore, as the substrate, a polymer film that is inexpensive and easily available is preferable, and polyethylene terephthalate and the like are more preferable.

 本発明において、離型層は、ワックスから構成される。ワックスとしては、例えば、石油系ワックス、植物系ワックス、動物系ワックス、鉱物系ワックス、合成系ワックス等を挙げることができる。本発明で用いられるワックスには、例えば、C16〜C32の脂肪酸とアルコールとのエステルが包含される。本発明において、これらワックスは、1種単独で又は2種以上混合して使用される。 In the present invention, the release layer is made of wax. Examples of the wax include petroleum wax, vegetable wax, animal wax, mineral wax, and synthetic wax. The wax used in the present invention are, for example, esters of fatty acids with alcohols of C 16 -C 32 are included. In the present invention, these waxes are used alone or as a mixture of two or more.

 本発明で用いられるワックスは、好ましくは融点が40〜140℃、より好ましくは融点が60〜100℃の範囲にあるのがよい。 ワ ッ ク ス The wax used in the present invention preferably has a melting point of 40 to 140 ° C, more preferably 60 to 100 ° C.

 本発明において、好ましいワックスは植物系ワックスであり、より好ましいワックスはカルナウバワックス、カンデリラワックス等である。 に お い て In the present invention, preferred waxes are vegetable waxes, and more preferred waxes are carnauba wax, candelilla wax and the like.

 離型層の厚さは、通常0.1〜3μm程度、好ましくは0.5〜1μm程度がよい。 厚 The thickness of the release layer is usually about 0.1 to 3 µm, preferably about 0.5 to 1 µm.

 基材上に離型層を形成させるに当たっては、所望の厚さになるように、上記ワックスを公知の方法に従い塗布するのがよい。また、塗布作業を容易にするために、ワックスを適当な溶剤に溶解又は分散して溶液又はエマルジョン液の形態で使用してもよい。塗布方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。 (4) In forming a release layer on a substrate, the wax is preferably applied according to a known method so as to have a desired thickness. In order to facilitate the coating operation, the wax may be dissolved or dispersed in a suitable solvent and used in the form of a solution or an emulsion. The coating method is not particularly limited, and for example, a general method such as a knife coater, a bar coater, a spray, a dip coater, a spin coater, a roll coater, a die coater, a curtain coater, and screen printing can be applied.

 触媒層は、公知のものである。 The catalyst layer is a known one.

 触媒層は、触媒粒子を担持させた炭素粒子及び水素イオン伝導性高分子電解質を含有する。 The catalyst layer contains carbon particles carrying catalyst particles and a hydrogen ion conductive polymer electrolyte.

 触媒粒子としては、例えば白金、白金化合物等が挙げられる。白金化合物としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄等からなる群から選ばれる少なくとも1種の金属と白金との合金等が挙げられる。 Examples of the catalyst particles include platinum and a platinum compound. Examples of the platinum compound include an alloy of platinum with at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron and the like.

 水素イオン伝導性高分子電解質としては、例えばパーフルオロスルホン酸系のフッ素イオン交換樹脂等が挙げられる。 Examples of the hydrogen ion conductive polymer electrolyte include perfluorosulfonic acid-based fluorine ion exchange resins.

 離型層上に触媒層を形成させるに当たっては、触媒粒子を担持させた炭素粒子及び水素イオン伝導性高分子電解質を適当な溶剤に混合、分散してペースト状にしておき、形成される触媒層が所望の厚さになるように、このペーストを公知の方法に従い離型層上に塗布するのがよい。 In forming the catalyst layer on the release layer, the carbon particles supporting the catalyst particles and the hydrogen ion conductive polymer electrolyte are mixed and dispersed in an appropriate solvent to form a paste, and the formed catalyst layer is formed. This paste is preferably applied on a release layer according to a known method so that the thickness of the paste becomes a desired thickness.

 溶剤としては、例えば、各種アルコール類、各種エーテル類、各種ジアルキルスルホキシド類、水又はこれらの混合物等が挙げられる。 Examples of the solvent include various alcohols, various ethers, various dialkyl sulfoxides, water, and mixtures thereof.

 ペーストの塗布方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。 The method for applying the paste is not particularly limited. For example, a general method such as a knife coater, a bar coater, a spray, a dip coater, a spin coater, a roll coater, a die coater, a curtain coater, and screen printing is applied. it can.

 斯かるペーストを塗布した後、乾燥することにより、触媒層が形成される。乾燥温度は、ワックスの融点以下であることが望ましく、通常40〜100℃程度、好ましくは60〜80℃程度である。乾燥時間は、乾燥温度にもよるが、通常5分〜2時間程度、好ましくは30分〜1時間程度である。 After the paste is applied and dried, a catalyst layer is formed. The drying temperature is desirably equal to or lower than the melting point of the wax, and is usually about 40 to 100C, preferably about 60 to 80C. The drying time depends on the drying temperature, but is usually about 5 minutes to 2 hours, preferably about 30 minutes to 1 hour.

 触媒層の厚さは、通常10〜50μm程度、好ましくは15〜30μm程度がよい。 The thickness of the catalyst layer is usually about 10 to 50 µm, preferably about 15 to 30 µm.

 本発明においては、上記で形成された触媒層の上に更に接着層が形成されているのが好ましい。 に お い て In the present invention, it is preferable that an adhesive layer is further formed on the catalyst layer formed above.

 接着層は、触媒層に含まれる水素イオン伝導性高分子電解質膜と異種の高分子材料からなるものでもよいが、触媒層に含まれる水素イオン伝導性高分子電解質膜と同種の高分子材料、例えばパーフルオロスルホン酸系のフッ素イオン交換樹脂等からなるものが好ましい。 The adhesive layer may be made of a polymer material different from the hydrogen ion conductive polymer electrolyte membrane contained in the catalyst layer, but may be the same type of polymer material as the hydrogen ion conductive polymer electrolyte membrane contained in the catalyst layer, For example, a resin made of a perfluorosulfonic acid-based fluorine ion exchange resin or the like is preferable.

 接着層の厚さは、通常1〜15μm程度、好ましくは3〜10μm程度がよい。 The thickness of the adhesive layer is usually about 1 to 15 μm, preferably about 3 to 10 μm.

 触媒層上に接着層を形成させるに当たっては、上記高分子材料を適当な溶剤に混合、分散してペースト状にしておき、形成される接着層が所望の層厚になるように、このペーストを公知の方法に従い触媒層上に塗布するのがよい。 In forming the adhesive layer on the catalyst layer, the polymer material is mixed and dispersed in an appropriate solvent to form a paste, and the paste is formed so that the formed adhesive layer has a desired thickness. It is preferable to apply on the catalyst layer according to a known method.

 溶剤としては、例えば、各種アルコール類、各種エーテル類、各種ジアルキルスルホキシド類、水又はこれらの混合物等が挙げられる。 Examples of the solvent include various alcohols, various ethers, various dialkyl sulfoxides, water, and mixtures thereof.

 ペーストの塗布方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。 The method for applying the paste is not particularly limited. For example, a general method such as a knife coater, a bar coater, a spray, a dip coater, a spin coater, a roll coater, a die coater, a curtain coater, and screen printing is applied. it can.

 斯かるペーストを塗布した後、乾燥することにより、接着層が形成される。乾燥温度は、通常40〜100℃程度、好ましくは60〜80℃程度である。乾燥時間は、乾燥温度にもよるが、通常5分〜2時間程度、好ましくは30分〜1時間程度である。 After the paste is applied and dried, an adhesive layer is formed. The drying temperature is usually about 40 to 100 ° C, preferably about 60 to 80 ° C. The drying time depends on the drying temperature, but is usually about 5 minutes to 2 hours, preferably about 30 minutes to 1 hour.

 本発明の電極−電解質膜接合体製造用転写シートは、基材の両面に離型層が形成され、次いでこれら離型層の上に1個又は2個以上の触媒層が形成され、更にこれら触媒層の上に接着層が形成されていてもよい。 In the transfer sheet for producing an electrode-electrolyte membrane assembly of the present invention, a release layer is formed on both surfaces of a substrate, and then one or two or more catalyst layers are formed on these release layers. An adhesive layer may be formed on the catalyst layer.

 触媒層−電解質膜積層体
 本発明の触媒層が積層された電解質膜(触媒層−電解質膜積層体)は、例えば本発明転写シートの触媒層面が電解質膜面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を剥離することにより製造される。この操作を2回繰り返すことにより、触媒層面が電解質膜の両面に積層された触媒層−電解質膜積層体が製造される。
Catalyst Layer-Electrolyte Membrane Stack The electrolyte membrane (catalyst layer-electrolyte membrane laminate) on which the catalyst layer of the present invention is laminated is arranged, for example, such that the catalyst layer surface of the transfer sheet of the present invention faces the electrolyte membrane surface. Then, after pressing, the base material of the transfer sheet is peeled off to manufacture the transfer sheet. By repeating this operation twice, a catalyst layer-electrolyte membrane laminate in which the catalyst layer surface is laminated on both sides of the electrolyte membrane is manufactured.

 作業性を考慮すると、触媒層面を電解質膜の両面に同時に積層するのがよい。この場合には、例えば、本発明転写シートの触媒層面が電解質膜の両面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を剥離すればよい。 と Considering the workability, it is preferable that the catalyst layer surface is simultaneously laminated on both surfaces of the electrolyte membrane. In this case, for example, the transfer sheet may be arranged so that the catalyst layer surface of the transfer sheet of the present invention faces both surfaces of the electrolyte membrane, and after pressing, the base material of the transfer sheet may be peeled off.

 使用される電解質膜は、公知のものである。電解質膜の膜厚は、通常20〜250μm程度、好ましくは20〜80μm程度である。電解質膜の具体例としては、デュポン社製の「Nafion」膜、旭硝子(株)製の「Flemion」膜、旭化成(株)製の「Aciplex」膜、ゴア(Gore)社製の「Gore Select」膜等が挙げられる。 電解 The electrolyte membrane used is a known one. The thickness of the electrolyte membrane is usually about 20 to 250 μm, preferably about 20 to 80 μm. Specific examples of the electrolyte membrane include “Nafion” membrane manufactured by DuPont, “Flemion” membrane manufactured by Asahi Glass Co., Ltd., “Aciplex” membrane manufactured by Asahi Kasei Corporation, and “Gore Select” manufactured by Gore. And the like.

 本発明において、電解質膜の一方面又は両面は、表面粗さ(Ra)が1〜10μm程度、好ましくは1〜3μm程度に粗面化されていてもよい。 In the present invention, one or both surfaces of the electrolyte membrane may have a surface roughness (Ra) of about 1 to 10 μm, preferably about 1 to 3 μm.

 本発明では、後の工程で触媒層が配置されるべき固体電解質の表面のみを粗面化処理しておくのが好ましいが、触媒層が配置されるべき固体電解質の表面だけでなく、その周辺部まで粗面化しても本発明の効果を損なわない限り何ら差し支えない。 In the present invention, it is preferable to roughen only the surface of the solid electrolyte on which the catalyst layer is to be disposed in a later step, but not only the surface of the solid electrolyte on which the catalyst layer is to be disposed, but also the periphery thereof. Even if the part is roughened, there is no problem as long as the effect of the present invention is not impaired.

 電解質膜の一方面又は両面を粗面化しておくことにより、触媒層との密着性が向上でき、また、最終製品となる燃料電池に優れた電池性能を与えることができる。 (4) By roughening one or both surfaces of the electrolyte membrane, adhesion to the catalyst layer can be improved, and excellent cell performance can be given to a fuel cell as a final product.

 電解質膜の粗面化には公知の技術を利用できる。公知の技術としては、例えば、エッチング処理、大気圧コロナ放電処理、大気圧プラズマによる処理、サンドブラスト処理等が挙げられる。これらの中でも、サンドブラスト処理は、電解質膜が、有機溶媒による膨潤変形、熱変形等の虞れがないので、好適である。 に は A known technique can be used for roughening the electrolyte membrane. Known techniques include, for example, an etching process, an atmospheric pressure corona discharge process, a process using atmospheric pressure plasma, a sandblasting process, and the like. Among these, sandblasting is preferable because the electrolyte membrane does not have a risk of swelling deformation or thermal deformation due to an organic solvent.

 加圧レベルは、転写不良を避けるために、通常0.5〜20Mpa程度、好ましくは1〜10Mpa程度がよい。また、この加圧操作の際に、転写不良を避けるために、加圧面を加熱するのが好ましい。加熱温度は、電解質膜の破損、変性等を避けるために、通常200℃以下、好ましくは150℃以下がよい。 (4) The pressure level is usually about 0.5 to 20 Mpa, preferably about 1 to 10 Mpa, in order to avoid poor transfer. In this pressing operation, it is preferable to heat the pressing surface in order to avoid transfer failure. The heating temperature is usually 200 ° C. or lower, preferably 150 ° C. or lower, in order to avoid damage, denaturation, etc. of the electrolyte membrane.

 また、本発明の触媒層が積層された電解質膜は、本発明転写シートの接着層面が電解質膜の両面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を接着層面から剥離することにより製造することができる。 Further, the electrolyte membrane on which the catalyst layer of the present invention is laminated, the transfer sheet is disposed such that the adhesive layer surface of the transfer sheet of the present invention faces both surfaces of the electrolyte membrane, and after pressing, the base material of the transfer sheet is removed. It can be manufactured by peeling from the surface of the adhesive layer.

 離型層は、基本的には転移せず、基材側に残る。しかし、離型層の一部が転移しても、(i)電極基材との接合をワックスの融点よりも高い温度で行うためにワックスが蒸発する、(ii)初期の電池反応時にワックスが電気分解を受けて分解される、等のために、離型層転移による問題は生じない。 The release layer basically does not transfer and remains on the substrate side. However, even if a part of the release layer is transferred, (i) the wax evaporates because the bonding with the electrode substrate is performed at a temperature higher than the melting point of the wax, and (ii) the wax is removed during the initial battery reaction. No problem is caused by the release layer transition because of being decomposed by electrolysis.

 本発明の触媒層−電解質膜積層体の一例を図5に示す。また、本発明の触媒層−電解質膜積層体の他の一例を図6に示す。 FIG. 5 shows an example of the catalyst layer-electrolyte membrane laminate of the present invention. FIG. 6 shows another example of the catalyst layer-electrolyte membrane laminate of the present invention.

 電極−電解質膜接合体
 本発明の電極−電解質膜接合体は、触媒層−電解質膜積層体の両面に電極基材を配置し、加圧することにより製造される。
Electrode-electrolyte membrane assembly The electrode-electrolyte membrane assembly of the present invention is manufactured by arranging electrode bases on both surfaces of the catalyst layer-electrolyte membrane laminate and applying pressure.

 電極基材は、公知であり、燃料極、空気極を構成する各種の電極基材を使用できる。 The electrode substrate is known, and various electrode substrates constituting the fuel electrode and the air electrode can be used.

 加圧レベルは、通常0.1〜100Mpa程度、好ましくは5〜15Mpa程度がよい。この加圧操作の際に加熱するのが好ましく、加熱温度は通常120〜150℃程度でよい。 The pressure level is usually about 0.1 to 100 Mpa, preferably about 5 to 15 Mpa. It is preferable to heat at the time of this pressing operation, and the heating temperature may be usually about 120 to 150 ° C.

 本発明の電極−電解質膜接合体の一例を図7に示す。 FIG. 7 shows an example of the electrode-electrolyte membrane assembly of the present invention.

 燃料電池
 本発明の燃料電池は、例えば、次のようにして製造される。
Fuel Cell The fuel cell of the present invention is manufactured, for example, as follows.

 例えば、本発明の燃料電池は、
(1)基材の少なくとも片面に離型層を形成し、次いで該離型層の上に1個又は2個以上の触媒層を形成させて電極−電解質膜接合体製造用転写シートを得る工程、
(2)上記(1)工程で得られる転写シートの触媒層面が電解質膜の片面又は両面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を触媒層面から剥離することにより触媒層−電解質膜積層体を得る工程、
(3)上記(2)工程で得られる触媒層−電解質膜積層体の両面に電極基材を配置し、加圧することにより電極−電解質膜接合体を得る工程、及び
(4)上記(3)工程で得られる電極−電解質膜接合体を用いて燃料電池を得る工程
を経て製造される。
For example, the fuel cell of the present invention
(1) A step of forming a release layer on at least one surface of a substrate, and then forming one or more catalyst layers on the release layer to obtain a transfer sheet for producing an electrode-electrolyte membrane assembly. ,
(2) The transfer sheet is arranged so that the catalyst layer surface of the transfer sheet obtained in the step (1) faces one or both surfaces of the electrolyte membrane, and after pressing, the base material of the transfer sheet is peeled from the catalyst layer surface. Step of obtaining a catalyst layer-electrolyte membrane laminate by doing
(3) placing the electrode substrate on both sides of the catalyst layer obtained in the step (2) -electrolyte membrane laminate, a step of obtaining an electrode-electrolyte membrane assembly by pressing, and
(4) It is manufactured through a step of obtaining a fuel cell using the electrode-electrolyte membrane assembly obtained in the step (3).

 また、本発明の燃料電池は、
(1)基材の少なくとも片面に離型層を形成し、次いで該離型層の上に1個又は2個以上の触媒層を形成させ、更に触媒層上に接着層を形成させて電極−電解質膜接合体製造用転写シートを得る工程、
(2)上記(1)工程で得られる転写シートの接着層面が電解質膜の片面又は両面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を触媒層面から剥離することにより触媒層−電解質膜積層体を得る工程、
(3)上記(2)工程で得られる触媒層−電解質膜積層体の両面に電極基材を配置し、加圧することにより電極−電解質膜接合体を得る工程、及び
(4)上記(3)工程で得られる電極−電解質膜接合体を用いて燃料電池を得る工程
を経て製造される。
Further, the fuel cell of the present invention,
(1) forming a release layer on at least one side of the substrate, forming one or more catalyst layers on the release layer, and further forming an adhesive layer on the catalyst layer to form an electrode; A step of obtaining a transfer sheet for manufacturing an electrolyte membrane assembly,
(2) The transfer sheet is arranged so that the adhesive layer surface of the transfer sheet obtained in the step (1) faces one or both surfaces of the electrolyte membrane, and after pressing, the base material of the transfer sheet is separated from the catalyst layer surface. Step of obtaining a catalyst layer-electrolyte membrane laminate by doing
(3) placing the electrode substrate on both sides of the catalyst layer obtained in the step (2) -electrolyte membrane laminate, a step of obtaining an electrode-electrolyte membrane assembly by pressing, and
(4) It is manufactured through a step of obtaining a fuel cell using the electrode-electrolyte membrane assembly obtained in the step (3).

 本発明は、上記電極−電解質膜接合体を組み込んだ燃料電池を提供する。 The present invention provides a fuel cell incorporating the above-mentioned electrode-electrolyte membrane assembly.

 本発明転写シートを使用すれば、触媒層が多孔質の電極基材の中に入り込む虞れがないので、触媒層の膜厚調整が容易となり、また均一な触媒層を電極基材上に容易に形成させることができる。 When the transfer sheet of the present invention is used, there is no possibility that the catalyst layer enters into the porous electrode substrate, so that the thickness of the catalyst layer can be easily adjusted and a uniform catalyst layer can be easily formed on the electrode substrate. Can be formed.

 また、本発明転写シートを使用すれば、電極基材表面乃至内部の孔を塞ぐことはないので、ガスの通流性能を阻害する虞れがない。 れ ば Further, when the transfer sheet of the present invention is used, the pores on the surface or inside of the electrode base material are not blocked, so that there is no fear that the gas flow performance is hindered.

 本発明の方法では、触媒層の電解質膜への転写を、従来のように高温高圧下に行う必要がないので、電解質膜が溶融することがなく、膜自体が変性する危険が少ない。 According to the method of the present invention, since the transfer of the catalyst layer to the electrolyte membrane does not need to be performed at a high temperature and a high pressure as in the prior art, the electrolyte membrane does not melt, and there is little risk of the membrane itself being denatured.

 従って、本発明の電極−電解質膜接合体を使用すれば、優れた電池性能を備えた高品質の燃料電池を製造することができる。 Therefore, by using the electrode-electrolyte membrane assembly of the present invention, a high-quality fuel cell having excellent cell performance can be manufactured.

 以下に実施例及び比較例を掲げて、本発明をより一層明らかにする。 (4) The present invention will be further clarified with reference to Examples and Comparative Examples below.

 実施例1
 白金担持触媒10g(Pt:20wt%、田中貴金属工業製のTEC10シリーズ)及びバインダーとして5wt%ナフィオン(Nafion)溶液(デュポン社製、溶剤:n−プロパノール)40gを分散機にて攪拌混合することでペーストを調製した。
Example 1
10 g of a platinum-supported catalyst (Pt: 20 wt%, TEC10 series manufactured by Tanaka Kikinzoku Kogyo) and 40 g of a 5 wt% Nafion solution (manufactured by DuPont, solvent: n-propanol) as a binder are stirred and mixed by a disperser. A paste was prepared.

 一方、PETフィルム(E3120、東洋紡績(株)製、厚さ13μm)上に、カルナウバワックスのエマルジョン液(EMUSTAR−0199、日本精鑞製、液の濃度:20重量%)を0.5〜1μm程度の厚さに片面塗工し、エマルジョン液を乾燥させた。次に、カルナウバワックスの上に、上記で調製したペーストを、ドクターブレードにより厚さ50μmとなるように塗布し、これを大気雰囲気中50℃で12時間乾燥させ、触媒層を形成した。 On the other hand, on a PET film (E3120, manufactured by Toyobo Co., Ltd., 13 μm in thickness), an emulsion liquid of carnauba wax (EMUSTAR-0199, manufactured by Nippon Seiro, concentration of the liquid: 20% by weight) was added to 0.5 to 0.5%. One-side coating was performed to a thickness of about 1 μm, and the emulsion was dried. Next, the paste prepared above was applied on carnauba wax with a doctor blade so as to have a thickness of 50 μm, and dried at 50 ° C. for 12 hours in an air atmosphere to form a catalyst layer.

 触媒層の転写は、一対のプレス型の間に転写シートの触媒層面が、水素イオン伝導性高分子電解質膜(Nafion112、デュポン社製)と接触するようにして130℃、3Mpaの条件で挟持した後、PETフィルムを剥離することにより行なった。このようにして、本発明の触媒層−電解質膜積層体を製造した。 The transfer of the catalyst layer was performed between a pair of press dies so that the catalyst layer surface of the transfer sheet was in contact with a hydrogen ion conductive polymer electrolyte membrane (Nafion112, manufactured by DuPont) at 130 ° C. and 3 MPa. Thereafter, the peeling was performed by peeling off the PET film. Thus, the catalyst layer-electrolyte membrane laminate of the present invention was manufactured.

 以上のような方法により触媒層の転写を10回試み、各サンプルについて転写触媒層の転写状態を目視により観察した。触媒層の転写が完全に行われた状態である場合に○、PETフィルム上に触媒層が一部でも残った状態である場合に×として評価した。結果を表1に示す。 触媒 The transfer of the catalyst layer was attempted 10 times by the method described above, and the transfer state of the transfer catalyst layer was visually observed for each sample. The case where the transfer of the catalyst layer was completely performed was evaluated as ○, and the case where the catalyst layer was partially left on the PET film was evaluated as x. Table 1 shows the results.

 実施例2
 白金担持触媒10g(Pt:20wt%、田中貴金属工業製のTEC10シリーズ)及びバインダーとして5wt%ナフィオン(Nafion)溶液(デュポン社製、溶剤:n−プロパノール)40gを分散機にて攪拌混合することでペーストを調製した。
Example 2
10 g of a platinum-supported catalyst (Pt: 20 wt%, TEC10 series manufactured by Tanaka Kikinzoku Kogyo) and 40 g of a 5 wt% Nafion solution (manufactured by DuPont, solvent: n-propanol) as a binder are stirred and mixed by a disperser. A paste was prepared.

 一方、PETフィルム(E3120、東洋紡績(株)製、厚さ13μm)上に、カルナウバワックスのエマルジョン液(EMUSTAR−0199、日本精鑞製、液の濃度:20重量%)を0.5〜1μm程度の厚さに片面塗工し、エマルジョン液を乾燥させた。次に、カルナウバワックスの上に、上記で調製したペーストを、ドクターブレードにより厚さ50μmとなるように塗布し、これを大気雰囲気中50℃で12時間乾燥させ、触媒層を形成した。 On the other hand, on a PET film (E3120, manufactured by Toyobo Co., Ltd., 13 μm in thickness), an emulsion liquid of carnauba wax (EMUSTAR-0199, manufactured by Nippon Seiro, concentration of the liquid: 20% by weight) was added to 0.5 to 0.5%. One-side coating was performed to a thickness of about 1 μm, and the emulsion was dried. Next, the paste prepared above was applied on carnauba wax with a doctor blade so as to have a thickness of 50 μm, and dried at 50 ° C. for 12 hours in an air atmosphere to form a catalyst layer.

 上記で形成した触媒層上に、20wt%ナフィオン(Nafion)溶液(デュポン社製、溶剤:n−プロパノール)を塗布、含浸させ、接着層(厚さ3μm)を形成した。 20 A 20 wt% Nafion solution (manufactured by DuPont, solvent: n-propanol) was applied and impregnated on the catalyst layer formed above to form an adhesive layer (thickness: 3 μm).

 触媒層の転写は、一対のプレス型の間に転写シートの接着層面が、水素イオン伝導性高分子電解質膜(Nafion112、デュポン社製)と接触するようにして130℃、3Mpaの条件で挟持した後、PETフィルムを剥離することにより行なった。このようにして、本発明の触媒層−電解質膜積層体を製造した。 The transfer of the catalyst layer was carried out between a pair of press dies so that the adhesive layer surface of the transfer sheet was in contact with a hydrogen ion conductive polymer electrolyte membrane (Nafion112, manufactured by DuPont) at 130 ° C. and 3 MPa. Thereafter, the peeling was performed by peeling off the PET film. Thus, the catalyst layer-electrolyte membrane laminate of the present invention was manufactured.

 以上のような方法により触媒層の転写を10回試み、各サンプルについて転写触媒層の転写状態を目視により観察し、実施例1と同様に評価した。結果を表1に示す。 The transfer of the catalyst layer was attempted 10 times by the method described above, and the transfer state of the transfer catalyst layer was visually observed for each sample, and evaluated in the same manner as in Example 1. Table 1 shows the results.

 実施例3
 白金担持触媒10g(Pt:20wt%、田中貴金属工業製のTEC10シリーズ)及びバインダーとして5wt%ナフィオン(Nafion)溶液(デュポン社製、溶剤:n−プロパノール)40gを分散機にて攪拌混合することでペーストを調製した。
Example 3
10 g of a platinum-supported catalyst (Pt: 20 wt%, TEC10 series manufactured by Tanaka Kikinzoku Kogyo) and 40 g of a 5 wt% Nafion solution (manufactured by DuPont, solvent: n-propanol) as a binder are stirred and mixed by a disperser. A paste was prepared.

 一方、PETフィルム(E3120、東洋紡績(株)製、厚さ13μm)上に、カルナウバワックスのエマルジョン液(EMUSTAR−0199、日本精鑞製、液の濃度:20重量%)を0.5〜1μm程度の厚さに片面塗工し、エマルジョン液を乾燥させて、PETフィルム上に離型層を形成した。 On the other hand, on a PET film (E3120, manufactured by Toyobo Co., Ltd., 13 μm in thickness), an emulsion liquid of carnauba wax (EMUSTAR-0199, manufactured by Nippon Seiro, concentration of the liquid: 20% by weight) was added to 0.5 to 0.5%. One-side coating was performed to a thickness of about 1 μm, and the emulsion was dried to form a release layer on the PET film.

 次に、ステンレス版(180mm×180mm、厚さ0.3mm)を用い、スクリーン印刷機にて、PETフィルム上に形成した離型層上に同一形状の50mm×50mmの触媒層が一定間隔で複数個形成できるように印刷を行った。これを大気雰囲気中50℃で12時間乾燥させ、触媒層(厚さ20μm)を形成した。 Next, using a stainless steel plate (180 mm × 180 mm, thickness 0.3 mm), a screen printer was used to form a plurality of 50 mm × 50 mm catalyst layers of the same shape at regular intervals on the release layer formed on the PET film. Printing was performed so that individual pieces could be formed. This was dried in an air atmosphere at 50 ° C. for 12 hours to form a catalyst layer (thickness: 20 μm).

 触媒層の転写は、一対のプレス型の間に転写シートの触媒層面が、水素イオン伝導性高分子電解質膜(Nafion112、デュポン社製)と接触するようにして130℃、3Mpaの条件で挟持した後、PETフィルムを剥離することにより行なった。このようにして、本発明の触媒層−電解質膜積層体を製造した。 The transfer of the catalyst layer was performed between a pair of press dies so that the catalyst layer surface of the transfer sheet was in contact with a hydrogen ion conductive polymer electrolyte membrane (Nafion112, manufactured by DuPont) at 130 ° C. and 3 MPa. Thereafter, the peeling was performed by peeling off the PET film. Thus, the catalyst layer-electrolyte membrane laminate of the present invention was manufactured.

 以上のような方法により触媒層の転写を10回試み、各サンプルについて転写触媒層の転写状態を目視により観察し、実施例1と同様に評価した。結果を表1に示す。 The transfer of the catalyst layer was attempted 10 times by the method described above, and the transfer state of the transfer catalyst layer was visually observed for each sample, and evaluated in the same manner as in Example 1. Table 1 shows the results.

 実施例4
 白金担持触媒10g(Pt:20wt%、田中貴金属工業製のTEC10シリーズ)及びバインダーとして5wt%ナフィオン(Nafion)溶液(デュポン社製、溶剤:n−プロパノール)40gを分散機にて攪拌混合することでペーストを調製した。
Example 4
10 g of a platinum-supported catalyst (Pt: 20 wt%, TEC10 series manufactured by Tanaka Kikinzoku Kogyo) and 40 g of a 5 wt% Nafion solution (manufactured by DuPont, solvent: n-propanol) as a binder are stirred and mixed by a disperser. A paste was prepared.

 一方、PETフィルム(E3120、東洋紡績(株)製、厚さ13μm)上に、カルナウバワックスのエマルジョン液(EMUSTAR−0199、日本精鑞製、液の濃度:20重量%)を0.5〜1μm程度の厚さに片面塗工し、エマルジョン液を乾燥させて、PETフィルム上に離型層を形成した。 On the other hand, on a PET film (E3120, manufactured by Toyobo Co., Ltd., 13 μm in thickness), an emulsion liquid of carnauba wax (EMUSTAR-0199, manufactured by Nippon Seiro, concentration of the liquid: 20% by weight) was added to 0.5 to 0.5%. One-side coating was performed to a thickness of about 1 μm, and the emulsion was dried to form a release layer on the PET film.

 次に、ステンレス版(180mm×180mm、厚さ0.3mm)を用い、スクリーン印刷機にて、PETフィルム上に形成した離型層上に同一形状の50mm×50mmの触媒層が一定間隔で複数個形成できるように印刷を行った。これを大気雰囲気中50℃で12時間乾燥させ、触媒層(厚さ20μm)を形成した。 Next, using a stainless steel plate (180 mm × 180 mm, thickness 0.3 mm), a screen printer was used to form a plurality of 50 mm × 50 mm catalyst layers of the same shape at regular intervals on the release layer formed on the PET film. Printing was performed so that individual pieces could be formed. This was dried in an air atmosphere at 50 ° C. for 12 hours to form a catalyst layer (thickness: 20 μm).

 上記で形成した各々の触媒層上に、20wt%ナフィオン(Nafion)溶液(デュポン社製、溶剤:n−プロパノール)を塗布、含浸させ、接着層(厚さ3μm)を形成した。 20 A 20 wt% Nafion solution (manufactured by DuPont, solvent: n-propanol) was applied and impregnated on each of the catalyst layers formed above to form an adhesive layer (thickness: 3 μm).

 触媒層の転写は、一対のプレス型の間に転写シートの接着層面が、水素イオン伝導性高分子電解質膜(Nafion112、デュポン社製)と接触するようにして130℃、3Mpaの条件で挟持した後、PETフィルムを剥離することにより行なった。このようにして、本発明の触媒層−電解質膜積層体を製造した。 The transfer of the catalyst layer was carried out between a pair of press dies so that the adhesive layer surface of the transfer sheet was in contact with a hydrogen ion conductive polymer electrolyte membrane (Nafion112, manufactured by DuPont) at 130 ° C. and 3 MPa. Thereafter, the peeling was performed by peeling off the PET film. Thus, the catalyst layer-electrolyte membrane laminate of the present invention was manufactured.

 以上のような方法により触媒層の転写を10回試み、各サンプルについて転写触媒層の転写状態を目視により観察し、実施例1と同様に評価した。結果を表1に示す。 The transfer of the catalyst layer was attempted 10 times by the method described above, and the transfer state of the transfer catalyst layer was visually observed for each sample, and evaluated in the same manner as in Example 1. Table 1 shows the results.

 比較例1
 白金担持触媒10g(Pt:20wt%、田中貴金属工業製のTEC10シリーズ)及びバインダーとして5wt%ナフィオン(Nafion)溶液(デュポン社製、溶剤:n−プロパノール)40gを分散機にて攪拌混合することでペーストを調製した。
Comparative Example 1
10 g of a platinum-supported catalyst (Pt: 20 wt%, TEC10 series manufactured by Tanaka Kikinzoku Kogyo) and 40 g of a 5 wt% Nafion solution (manufactured by DuPont, solvent: n-propanol) as a binder are stirred and mixed by a disperser. A paste was prepared.

 一方、PETフィルム(E3120、東洋紡績(株)製、厚さ13μm)上に、上記で調製したペーストを、ドクターブレードにより厚さ50μmとなるように塗布し、これを大気雰囲気中50℃で12時間乾燥させ、触媒層を形成した。 On the other hand, the paste prepared above was applied on a PET film (E3120, manufactured by Toyobo Co., Ltd., 13 μm in thickness) so as to have a thickness of 50 μm by a doctor blade. After drying for a time, a catalyst layer was formed.

 触媒層の転写は、一対のプレス型の間に転写シートの触媒層面が、水素イオン伝導性高分子電解質膜(Nafion112、デュポン社製)と接触するようにして130℃、3Mpaの条件で挟持した後、PETフィルムを剥離することにより行なった。 The transfer of the catalyst layer was performed between a pair of press dies so that the catalyst layer surface of the transfer sheet was in contact with a hydrogen ion conductive polymer electrolyte membrane (Nafion112, manufactured by DuPont) at 130 ° C. and 3 MPa. Thereafter, the peeling was performed by peeling off the PET film.

 以上のような方法により触媒層の転写を10回試み、各サンプルについて転写触媒層の転写状態を目視により観察し、実施例1と同様に評価した。結果を表1に示す。 The transfer of the catalyst layer was attempted 10 times by the method described above, and the transfer state of the transfer catalyst layer was visually observed for each sample, and evaluated in the same manner as in Example 1. Table 1 shows the results.

 比較例2
 白金担持触媒10g(Pt:20wt%、田中貴金属工業製のTEC10シリーズ)及びバインダーとして5wt%ナフィオン(Nafion)溶液(デュポン社製、溶剤:n−プロパノール)40gを分散機にて攪拌混合することでペーストを調製した。
Comparative Example 2
10 g of a platinum-supported catalyst (Pt: 20 wt%, TEC10 series manufactured by Tanaka Kikinzoku Kogyo) and 40 g of a 5 wt% Nafion solution (manufactured by DuPont, solvent: n-propanol) as a binder are stirred and mixed by a disperser. A paste was prepared.

 一方、PETフィルム(E3120、東洋紡績(株)製、厚さ13μm)上に、シリコーン(KF96、信越シリコーン社製を0.5〜1μm程度の厚さに片面塗工した。次に、シリコーンの上に、上記で調製したペーストを、ドクターブレードにより厚さ50μmとなるように塗布し、これを大気雰囲気中50℃で12時間乾燥させ、触媒層を形成した。 On the other hand, silicone (KF96, Shin-Etsu Silicone Co., Ltd.) was coated on a PET film (E3120, manufactured by Toyobo Co., Ltd., 13 μm in thickness) to a thickness of about 0.5 to 1 μm on one side. The paste prepared above was applied to a thickness of 50 μm using a doctor blade, and dried in an air atmosphere at 50 ° C. for 12 hours to form a catalyst layer.

 触媒層の転写は、一対のプレス型の間に転写シートの触媒層面が、水素イオン伝導性高分子電解質膜(Nafion112、デュポン社製)と接触するようにして130℃、3Mpaの条件で挟持した後、PETフィルムを剥離することにより行なった。 The transfer of the catalyst layer was performed between a pair of press dies so that the catalyst layer surface of the transfer sheet was in contact with a hydrogen ion conductive polymer electrolyte membrane (Nafion112, manufactured by DuPont) at 130 ° C. and 3 MPa. Thereafter, the peeling was performed by peeling off the PET film.

 以上のような方法により触媒層の転写を10回試み、各サンプルについて転写触媒層の転写状態を目視により観察し、実施例1と同様に評価した。結果を表1に示す。 The transfer of the catalyst layer was attempted 10 times by the method described above, and the transfer state of the transfer catalyst layer was visually observed for each sample, and evaluated in the same manner as in Example 1. Table 1 shows the results.

Figure 2004095553
 実施例5
 実施例1と同様にして、電解質膜の両面に触媒層を転写し、本発明の触媒層−電解質膜積層体を製造した。
Figure 2004095553
Example 5
In the same manner as in Example 1, the catalyst layers were transferred to both surfaces of the electrolyte membrane to produce a catalyst layer-electrolyte membrane laminate of the present invention.

 実施例6
 実施例2と同様にして、電解質膜の両面に触媒層を転写し、本発明の触媒層−電解質膜積層体を製造した。
Example 6
In the same manner as in Example 2, the catalyst layers were transferred to both surfaces of the electrolyte membrane to produce a catalyst layer-electrolyte membrane laminate of the present invention.

 実施例7
 実施例3と同様にして、電解質膜の両面に触媒層を転写し、本発明の触媒層−電解質膜積層体を製造した。
Example 7
In the same manner as in Example 3, the catalyst layers were transferred to both surfaces of the electrolyte membrane to produce a catalyst layer-electrolyte membrane laminate of the present invention.

 実施例8
 実施例4と同様にして、電解質膜の両面に触媒層を転写し、本発明の触媒層−電解質膜積層体を製造した。
Example 8
In the same manner as in Example 4, the catalyst layers were transferred to both surfaces of the electrolyte membrane to produce a catalyst layer-electrolyte membrane laminate of the present invention.

 実施例9
 実施例5で製造した触媒層−電解質膜積層体の両側に、電極基材(炭素繊維からなるカーボンペーパー、TGP−H−90、厚さ0.28mm、東レ(株)製)を配置し、150℃、5MPaの条件にて熱プレスを行い、本発明の電極−電解質膜接合体を製造した。
Example 9
An electrode substrate (carbon paper made of carbon fiber, TGP-H-90, thickness 0.28 mm, manufactured by Toray Industries, Inc.) was placed on both sides of the catalyst layer-electrolyte membrane laminate produced in Example 5, Hot pressing was performed at 150 ° C. and 5 MPa to produce an electrode-electrolyte membrane assembly of the present invention.

 実施例10
 実施例6で製造した触媒層−電解質膜積層体の両側に、電極基材(炭素繊維からなるカーボンペーパー、TGP−H−90、東レ(株)製)を配置し、150℃、5MPaの条件にて熱プレスを行い、本発明の電極−電解質膜接合体を製造した。
Example 10
An electrode substrate (carbon paper made of carbon fiber, TGP-H-90, manufactured by Toray Industries, Inc.) was placed on both sides of the catalyst layer-electrolyte membrane laminate produced in Example 6, and the conditions were 150 ° C. and 5 MPa. Was subjected to hot pressing to produce an electrode-electrolyte membrane assembly of the present invention.

 実施例11
 実施例7で製造した触媒層−電解質膜積層体の電解質膜が露出している部分から、所定の大きさに裁断し、次に裁断した触媒層−電解質膜積層体の両側に、電極基材(炭素繊維からなるカーボンペーパー、TGP−H−90、東レ(株)製)を配置し、150℃、5MPaの条件にて熱プレスを行い、本発明の電極−電解質膜接合体を製造した。
Example 11
The catalyst layer-electrolyte membrane laminate manufactured in Example 7 was cut into a predetermined size from a portion where the electrolyte membrane was exposed, and then the electrode base material was placed on both sides of the cut catalyst layer-electrolyte membrane stack. (Carbon paper made of carbon fiber, TGP-H-90, manufactured by Toray Industries, Inc.) was placed and hot-pressed at 150 ° C. and 5 MPa to produce an electrode-electrolyte membrane assembly of the present invention.

 実施例12
 実施例8で製造した触媒層−電解質膜積層体の電解質膜が露出している部分から、所定の大きさに裁断し、次に裁断した触媒層−電解質膜積層体の両側に、電極基材(炭素繊維からなるカーボンペーパー、TGP−H−90、東レ(株)製)を配置し、150℃、5MPaの条件にて熱プレスを行い、本発明の電極−電解質膜接合体を製造した。
Example 12
The catalyst layer-electrolyte layer laminate manufactured in Example 8 was cut into a predetermined size from a portion where the electrolyte membrane was exposed, and then the electrode base material was placed on both sides of the cut catalyst layer-electrolyte layer stack. (Carbon paper made of carbon fiber, TGP-H-90, manufactured by Toray Industries, Inc.) was placed and hot-pressed at 150 ° C. and 5 MPa to produce an electrode-electrolyte membrane assembly of the present invention.

図1は、電極−電解質膜接合体製造用転写シート(フィルム)の断面図である。FIG. 1 is a cross-sectional view of a transfer sheet (film) for manufacturing an electrode-electrolyte membrane assembly. 図2は、電極−電解質膜接合体製造用転写シート(フィルム)の断面図である。FIG. 2 is a cross-sectional view of a transfer sheet (film) for manufacturing an electrode-electrolyte membrane assembly. 図3は、電極−電解質膜接合体製造用転写シート(フィルム)の断面図である。FIG. 3 is a cross-sectional view of a transfer sheet (film) for manufacturing an electrode-electrolyte membrane assembly. 図4は、電極−電解質膜接合体製造用転写シート(フィルム)の平面図である。FIG. 4 is a plan view of a transfer sheet (film) for manufacturing an electrode-electrolyte membrane assembly. 図5は、触媒層が積層された電解質膜の断面図である。FIG. 5 is a cross-sectional view of the electrolyte membrane on which the catalyst layers are stacked. 図6は、電極−電解質膜接合体の断面図である。FIG. 6 is a cross-sectional view of the electrode-electrolyte membrane assembly. 図7は、電極−電解質膜接合体の断面図である。FIG. 7 is a cross-sectional view of the electrode-electrolyte membrane assembly.

Claims (18)

基材の少なくとも片面に離型層を介して1個又は2個以上の触媒層が形成された、電極−電解質膜接合体製造用転写シート。 A transfer sheet for producing an electrode-electrolyte membrane assembly, wherein one or two or more catalyst layers are formed on at least one surface of a substrate via a release layer. 触媒層の他面に接着層が形成されている請求項1に記載の転写シート。 The transfer sheet according to claim 1, wherein an adhesive layer is formed on the other surface of the catalyst layer. 離型層が融点60〜100℃のワックスからなる請求項1又は2に記載の転写シート。 The transfer sheet according to claim 1, wherein the release layer comprises a wax having a melting point of 60 to 100 ° C. 4. 基材の少なくとも片面に離型層を形成し、次いで該離型層の上に1個又は2個以上の触媒層を形成させる、請求項1に記載の電極−電解質膜接合体製造用転写シートの製造方法。 The transfer sheet for producing an electrode-electrolyte membrane assembly according to claim 1, wherein a release layer is formed on at least one surface of the base material, and then one or more catalyst layers are formed on the release layer. Manufacturing method. 基材の少なくとも片面に離型層を形成し、次いで該離型層の上に1個又は2個以上の触媒層を形成させ、更に触媒層上に接着層を形成させる、請求項2に記載の電極−電解質膜接合体製造用転写シートの製造方法。 3. The method according to claim 2, wherein a release layer is formed on at least one surface of the substrate, and then one or more catalyst layers are formed on the release layer, and further, an adhesive layer is formed on the catalyst layer. The method for producing a transfer sheet for producing an electrode-electrolyte membrane assembly of the above. 請求項1に記載の転写シートの触媒層面が電解質膜面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を触媒層面から剥離することを特徴とする触媒層−電解質膜積層体の製造方法。 A catalyst layer, wherein the transfer sheet is arranged so that the catalyst layer surface of the transfer sheet according to claim 1 faces the electrolyte membrane surface, and after pressurizing, the base material of the transfer sheet is separated from the catalyst layer surface. -A method for producing an electrolyte membrane laminate. 請求項1に記載の転写シートの触媒層面が電解質膜の両面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を触媒層面から剥離することを特徴とする触媒層−電解質膜積層体の製造方法。 A catalyst, comprising: arranging a transfer sheet so that the catalyst layer surface of the transfer sheet according to claim 1 faces both surfaces of the electrolyte membrane; pressing the transfer sheet; and separating the base material of the transfer sheet from the catalyst layer surface. A method for producing a layer-electrolyte membrane laminate. 請求項2に記載の転写シートの接着層面が電解質膜面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を触媒層面から剥離することを特徴とする触媒層−電解質膜積層体の製造方法。 A catalyst layer, wherein the transfer sheet is arranged so that the adhesive layer surface of the transfer sheet according to claim 2 faces the electrolyte membrane surface, and after pressing, the base material of the transfer sheet is separated from the catalyst layer surface. -A method for producing an electrolyte membrane laminate. 請求項2に記載の転写シートの接着層面が電解質膜の両面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を触媒層面から剥離することを特徴とする触媒層−電解質膜積層体の製造方法。 A catalyst, wherein the transfer sheet is arranged so that the adhesive layer surface of the transfer sheet according to claim 2 faces both surfaces of the electrolyte membrane, and after pressurizing, the base material of the transfer sheet is separated from the catalyst layer surface. A method for producing a layer-electrolyte membrane laminate. 請求項1〜3のいずれかに記載の転写シートを用いて製造される触媒層−電解質膜積層体。 A catalyst layer-electrolyte membrane laminate produced using the transfer sheet according to claim 1. 請求項6〜9のいずれかの方法で製造される触媒層−電解質膜積層体。 A catalyst layer-electrolyte membrane laminate produced by the method according to claim 6. 請求項10又は11に記載の積層体の両面に電極基材を配置し、加圧することを特徴とする電極−電解質膜接合体の製造方法。 A method for producing an electrode-electrolyte membrane assembly, comprising: disposing an electrode substrate on both sides of the laminate according to claim 10 and pressurizing the electrode substrate. 請求項10又は11に記載の積層体を用いて製造される電極−電解質膜接合体。 An electrode-electrolyte membrane assembly manufactured using the laminate according to claim 10. 請求項12に記載の方法により製造される電極−電解質膜接合体。 An electrode-electrolyte membrane assembly manufactured by the method according to claim 12. (1)基材の少なくとも片面に離型層を形成し、次いで該離型層の上に1個又は2個以上の触媒層を形成させて電極−電解質膜接合体製造用転写シートを得る工程、
(2)上記(1)工程で得られる転写シートの触媒層面が電解質膜面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を触媒層面から剥離することにより触媒層−電解質膜積層体を得る工程、
(3)上記(2)工程で得られる触媒層−電解質膜積層体の両面に電極基材を配置し、加圧することにより電極−電解質膜接合体を得る工程、及び
(4)上記(3)工程で得られる電極−電解質膜接合体を用いて燃料電池を得る工程
を備えた燃料電池の製造方法。
(1) A step of forming a release layer on at least one surface of a substrate, and then forming one or more catalyst layers on the release layer to obtain a transfer sheet for producing an electrode-electrolyte membrane assembly. ,
(2) By disposing the transfer sheet so that the catalyst layer surface of the transfer sheet obtained in the step (1) faces the electrolyte membrane surface, pressurizing, by peeling the base material of the transfer sheet from the catalyst layer surface Obtaining a catalyst layer-electrolyte membrane laminate,
(3) placing the electrode substrate on both sides of the catalyst layer obtained in the step (2) -electrolyte membrane laminate, a step of obtaining an electrode-electrolyte membrane assembly by pressing, and
(4) A method for manufacturing a fuel cell, comprising a step of obtaining a fuel cell using the electrode-electrolyte membrane assembly obtained in the step (3).
(1)基材の少なくとも片面に離型層を形成し、次いで該離型層の上に1個又は2個以上の触媒層を形成させ、更に触媒層上に接着層を形成させて電極−電解質膜接合体製造用転写シートを得る工程、
(2)上記(1)工程で得られる転写シートの接着層面が電解質膜面に対面するように転写シートを配置し、加圧した後、該転写シートの基材を触媒層面から剥離することにより触媒層−電解質膜積層体を得る工程、
(3)上記(2)工程で得られる触媒層−電解質膜積層体の両面に電極基材を配置し、加圧することにより電極−電解質膜接合体を得る工程、及び
(4)上記(3)工程で得られる電極−電解質膜接合体を用いて燃料電池を得る工程
を備えた燃料電池の製造方法。
(1) forming a release layer on at least one side of the substrate, forming one or more catalyst layers on the release layer, and further forming an adhesive layer on the catalyst layer to form an electrode; A step of obtaining a transfer sheet for manufacturing an electrolyte membrane assembly,
(2) By disposing the transfer sheet so that the adhesive layer surface of the transfer sheet obtained in the step (1) faces the electrolyte membrane surface, pressurizing, by peeling the base material of the transfer sheet from the catalyst layer surface Obtaining a catalyst layer-electrolyte membrane laminate,
(3) placing the electrode substrate on both sides of the catalyst layer obtained in the step (2) -electrolyte membrane laminate, a step of obtaining an electrode-electrolyte membrane assembly by pressing, and
(4) A method for manufacturing a fuel cell, comprising a step of obtaining a fuel cell using the electrode-electrolyte membrane assembly obtained in the step (3).
請求項13又は14に記載の電極−電解質膜接合体を組み込んだ燃料電池。 A fuel cell incorporating the electrode-electrolyte membrane assembly according to claim 13. 請求項15又は16に記載の方法で得られる燃料電池。
A fuel cell obtained by the method according to claim 15.
JP2003293374A 2002-08-14 2003-08-14 Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, and methods for producing them Expired - Fee Related JP4560671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003293374A JP4560671B2 (en) 2002-08-14 2003-08-14 Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, and methods for producing them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002236446 2002-08-14
JP2003293374A JP4560671B2 (en) 2002-08-14 2003-08-14 Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, and methods for producing them

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008258421A Division JP2009004391A (en) 2002-08-14 2008-10-03 Catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, and fuel cell

Publications (2)

Publication Number Publication Date
JP2004095553A true JP2004095553A (en) 2004-03-25
JP4560671B2 JP4560671B2 (en) 2010-10-13

Family

ID=32072406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003293374A Expired - Fee Related JP4560671B2 (en) 2002-08-14 2003-08-14 Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, and methods for producing them

Country Status (1)

Country Link
JP (1) JP4560671B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004164866A (en) * 2002-11-08 2004-06-10 Dainippon Printing Co Ltd Catalyst layer formation sheet for fuel cell, catalyst layer-electrolyte membrane layered product, and manufacturing method for them
JP2006012523A (en) * 2004-06-24 2006-01-12 Dainippon Printing Co Ltd Transfer sheet for producing electrode-electrolyte membrane joining body and manufacturing method thereof
JP2006049241A (en) * 2004-08-09 2006-02-16 Dainippon Printing Co Ltd Adhesive sheet for solid oxide fuel cell and manufacturing method of the same
JP2006092990A (en) * 2004-09-27 2006-04-06 Dainippon Printing Co Ltd Transfer sheet for manufacturing catalyst layer electrolyte film laminate, and manufacturing method therefor
WO2006090464A1 (en) * 2005-02-24 2006-08-31 Octec, Inc. Solid polymer fuel cell and method for producing same
JP2007048701A (en) * 2005-08-12 2007-02-22 Dainippon Printing Co Ltd Transfer sheet, laminate of catalyst layer and electrolyte membrane, electrode electrolyte membrane assembly, and method of manufacturing them
JP2007066597A (en) * 2005-08-30 2007-03-15 Dainippon Printing Co Ltd Transfer sheet, catalyst layer-electrolyte membrane stack, electrode-electrolyte membrane assembly, and manufacturing methods of them
JP2008198556A (en) * 2007-02-15 2008-08-28 Dainippon Printing Co Ltd Catalyst layer transfer film for fuel cell and catalyst layer-electrolyte membrane laminate
JP2008251376A (en) * 2007-03-30 2008-10-16 Dainippon Printing Co Ltd Transfer sheet for manufacturing electrolyte membrane-electrode assembly
JP2010182563A (en) * 2009-02-06 2010-08-19 Dainippon Printing Co Ltd Device and method for manufacturing membrane catalyst layer assembly, as well as device and method for manufacturing membrane electrode assembly
WO2011118244A1 (en) * 2010-03-26 2011-09-29 凸版印刷株式会社 Method for manufacturing fuel cell membrane electrode assembly and apparatus for manufacturing fuel cell membrane electrode assembly
JP2012059714A (en) * 2005-09-27 2012-03-22 Dainippon Printing Co Ltd Catalyst layer-forming paste composition, transfer sheet for manufacturing catalyst layer-electrolyte membrane laminate, and catalyst layer-electrolyte membrane laminate
KR101233343B1 (en) 2005-11-25 2013-02-14 삼성에스디아이 주식회사 Membrane-electrode assembly for fuel cell, method of producing same and fuel cell system comprising same
JP2013164974A (en) * 2012-02-10 2013-08-22 Toppan Printing Co Ltd Process of manufacturing membrane and electrode assembly for solid polymer fuel cell, manufacturing apparatus of membrane and electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
WO2015098180A1 (en) 2013-12-27 2015-07-02 昭和電工株式会社 Electrode catalyst ink composition
JP2019021437A (en) * 2017-07-13 2019-02-07 トヨタ自動車株式会社 Method for manufacturing membrane-electrode assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244695A (en) * 1997-03-06 1998-09-14 Alps Electric Co Ltd Intermediate transfer recorder
JPH1140172A (en) * 1997-07-14 1999-02-12 Asahi Chem Ind Co Ltd Method for producing film-electrode joined body for fuel cell
JP2000285932A (en) * 1999-03-31 2000-10-13 Asahi Glass Co Ltd Manufacture of electrode/film junction for solid polymer fuel cell
JP2001216972A (en) * 2000-02-01 2001-08-10 Toray Ind Inc Electrode, membrane-electrode complex and its production as well as fuel cell using these
WO2002005371A1 (en) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
JP2002178641A (en) * 2000-12-15 2002-06-26 Dainippon Printing Co Ltd Thermal transfer sheet
JP2002216789A (en) * 2001-01-19 2002-08-02 Matsushita Electric Ind Co Ltd Method of producing polymer electrolyte fuel cell
WO2002061871A2 (en) * 2001-01-29 2002-08-08 3M Innovative Properties Company Decal method of making membrane electrode assemblies for fuel cells

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244695A (en) * 1997-03-06 1998-09-14 Alps Electric Co Ltd Intermediate transfer recorder
JPH1140172A (en) * 1997-07-14 1999-02-12 Asahi Chem Ind Co Ltd Method for producing film-electrode joined body for fuel cell
JP2000285932A (en) * 1999-03-31 2000-10-13 Asahi Glass Co Ltd Manufacture of electrode/film junction for solid polymer fuel cell
JP2001216972A (en) * 2000-02-01 2001-08-10 Toray Ind Inc Electrode, membrane-electrode complex and its production as well as fuel cell using these
WO2002005371A1 (en) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
JP2002178641A (en) * 2000-12-15 2002-06-26 Dainippon Printing Co Ltd Thermal transfer sheet
JP2002216789A (en) * 2001-01-19 2002-08-02 Matsushita Electric Ind Co Ltd Method of producing polymer electrolyte fuel cell
WO2002061871A2 (en) * 2001-01-29 2002-08-08 3M Innovative Properties Company Decal method of making membrane electrode assemblies for fuel cells
JP2004524654A (en) * 2001-01-29 2004-08-12 スリーエム イノベイティブ プロパティズ カンパニー Decal method for manufacturing membrane electrode assembly for fuel cell

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538684B2 (en) * 2002-11-08 2010-09-08 大日本印刷株式会社 Catalyst layer forming sheet for fuel cell, catalyst layer-electrolyte membrane laminate, and production method thereof
JP2004164866A (en) * 2002-11-08 2004-06-10 Dainippon Printing Co Ltd Catalyst layer formation sheet for fuel cell, catalyst layer-electrolyte membrane layered product, and manufacturing method for them
JP2006012523A (en) * 2004-06-24 2006-01-12 Dainippon Printing Co Ltd Transfer sheet for producing electrode-electrolyte membrane joining body and manufacturing method thereof
JP4538686B2 (en) * 2004-06-24 2010-09-08 大日本印刷株式会社 Transfer sheet for producing electrode-electrolyte membrane assembly and method for producing the same
JP2006049241A (en) * 2004-08-09 2006-02-16 Dainippon Printing Co Ltd Adhesive sheet for solid oxide fuel cell and manufacturing method of the same
JP4560676B2 (en) * 2004-08-09 2010-10-13 大日本印刷株式会社 Adhesive sheet for solid oxide fuel cell and method for producing the same
JP2006092990A (en) * 2004-09-27 2006-04-06 Dainippon Printing Co Ltd Transfer sheet for manufacturing catalyst layer electrolyte film laminate, and manufacturing method therefor
WO2006090464A1 (en) * 2005-02-24 2006-08-31 Octec, Inc. Solid polymer fuel cell and method for producing same
JP2007048701A (en) * 2005-08-12 2007-02-22 Dainippon Printing Co Ltd Transfer sheet, laminate of catalyst layer and electrolyte membrane, electrode electrolyte membrane assembly, and method of manufacturing them
JP2007066597A (en) * 2005-08-30 2007-03-15 Dainippon Printing Co Ltd Transfer sheet, catalyst layer-electrolyte membrane stack, electrode-electrolyte membrane assembly, and manufacturing methods of them
JP2012059714A (en) * 2005-09-27 2012-03-22 Dainippon Printing Co Ltd Catalyst layer-forming paste composition, transfer sheet for manufacturing catalyst layer-electrolyte membrane laminate, and catalyst layer-electrolyte membrane laminate
KR101233343B1 (en) 2005-11-25 2013-02-14 삼성에스디아이 주식회사 Membrane-electrode assembly for fuel cell, method of producing same and fuel cell system comprising same
JP2008198556A (en) * 2007-02-15 2008-08-28 Dainippon Printing Co Ltd Catalyst layer transfer film for fuel cell and catalyst layer-electrolyte membrane laminate
JP2008251376A (en) * 2007-03-30 2008-10-16 Dainippon Printing Co Ltd Transfer sheet for manufacturing electrolyte membrane-electrode assembly
JP2010182563A (en) * 2009-02-06 2010-08-19 Dainippon Printing Co Ltd Device and method for manufacturing membrane catalyst layer assembly, as well as device and method for manufacturing membrane electrode assembly
CN102823040A (en) * 2010-03-26 2012-12-12 凸版印刷株式会社 Method for manufacturing fuel cell membrane electrode assembly and apparatus for manufacturing fuel cell membrane electrode assembly
WO2011118244A1 (en) * 2010-03-26 2011-09-29 凸版印刷株式会社 Method for manufacturing fuel cell membrane electrode assembly and apparatus for manufacturing fuel cell membrane electrode assembly
JP5772813B2 (en) * 2010-03-26 2015-09-02 凸版印刷株式会社 Manufacturing method of fuel cell membrane electrode assembly and manufacturing apparatus of fuel cell membrane electrode assembly
JP2013164974A (en) * 2012-02-10 2013-08-22 Toppan Printing Co Ltd Process of manufacturing membrane and electrode assembly for solid polymer fuel cell, manufacturing apparatus of membrane and electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
WO2015098180A1 (en) 2013-12-27 2015-07-02 昭和電工株式会社 Electrode catalyst ink composition
US10205174B2 (en) 2013-12-27 2019-02-12 Showa Denko K.K. Electrode catalyst ink composition
JP2019021437A (en) * 2017-07-13 2019-02-07 トヨタ自動車株式会社 Method for manufacturing membrane-electrode assembly

Also Published As

Publication number Publication date
JP4560671B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP4746317B2 (en) Method for making a membrane electrode assembly
JP5196717B2 (en) Catalyst layer transfer sheet, method for producing catalyst layer-electrolyte membrane laminate, method for producing electrode-electrolyte membrane assembly, and method for producing fuel cell
JP4560671B2 (en) Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, and methods for producing them
US8372474B2 (en) Method of making fuel cell components including a catalyst layer and a plurality of ionomer overcoat layers
US20050072514A1 (en) Method of making membrane electrode assemblies
JP5401751B2 (en) Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, and methods for producing them
JP2004311057A (en) Paste composition for forming catalyst layer, and transfer sheet for manufacturing catalyst layer-electrolyte film laminate
JP5343298B2 (en) Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, and methods for producing them
JP5230064B2 (en) Electrode catalyst layer, catalyst layer-electrolyte membrane laminate production transfer sheet and catalyst layer-electrolyte membrane laminate
JP4538683B2 (en) Catalyst layer forming sheet for fuel cell, method for producing the sheet, and method for producing catalyst layer-electrolyte membrane laminate
JP2007103083A (en) Transfer sheet for manufacturing catalyst layer-electrolyte film laminate for fuel cell, and catalyst layer-electrolyte film laminate
JP2005063832A (en) Catalyst layer-electrolyte film laminate and its manufacturing method
JP4538684B2 (en) Catalyst layer forming sheet for fuel cell, catalyst layer-electrolyte membrane laminate, and production method thereof
US8430985B2 (en) Microporous layer assembly and method of making the same
JP2009004391A (en) Catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, and fuel cell
JP2007265733A (en) Transfer sheet, catalyst layer-electrolyte membrane laminate, and manufacturing method of them
JP2006147522A (en) Manufacturing method for membrane electrode assembly, fuel cell and manufacturing method for conductive particle layer
JP4538692B2 (en) Method for producing catalyst layer-electrolyte membrane laminate
JP5126292B2 (en) Transfer sheet for producing catalyst layer-electrolyte membrane laminate and method for producing the same
JP4736385B2 (en) Transfer sheet for producing catalyst layer-electrolyte membrane laminate and method for producing the same
JP2002158014A (en) Manufacturing method of catalyst layer.film joined body for solid polymer fuel cell
JP2008077986A (en) Transfer method of catalyst layer for solid polymer fuel cell and electrolyte membrane-catalyst layer assembly
JP2010033731A (en) Manufacturing method of catalyst layer for solid polymer fuel cell and catalyst layer-electrolyte film laminate
JP5200348B2 (en) Catalyst layer transfer film and catalyst layer-electrolyte membrane laminate
JP5277546B2 (en) Catalyst layer transfer film for fuel cell and method for producing catalyst layer-electrolyte membrane laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100518

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees