JP2004084821A - 車両用パワートレーンの制御装置 - Google Patents

車両用パワートレーンの制御装置 Download PDF

Info

Publication number
JP2004084821A
JP2004084821A JP2002247627A JP2002247627A JP2004084821A JP 2004084821 A JP2004084821 A JP 2004084821A JP 2002247627 A JP2002247627 A JP 2002247627A JP 2002247627 A JP2002247627 A JP 2002247627A JP 2004084821 A JP2004084821 A JP 2004084821A
Authority
JP
Japan
Prior art keywords
control
torque capacity
engine
torque
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002247627A
Other languages
English (en)
Inventor
Toshihiro Fukumasu
福増 利広
Original Assignee
Toyota Motor Corp
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, トヨタ自動車株式会社 filed Critical Toyota Motor Corp
Priority to JP2002247627A priority Critical patent/JP2004084821A/ja
Publication of JP2004084821A publication Critical patent/JP2004084821A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】総排気量を変更可能なエンジンの出力側にトルク容量制御装置が設けられている場合に、エンジンの燃費が低下することを抑制し、かつ、トルク容量制御装置の耐久性が低下することを抑制する。
【解決手段】総排気量を変更可能なエンジンと、エンジンの出力側に設けられており、かつ、トルク容量を変更可能なトルク容量制御装置とを有する車両用パワートレーンの制御装置において、エンジンの総排気量を変更するか否かを判断する総排気量制御手段(ステップS7)と、トルク容量制御装置に伝達されるトルクの変化に基づいて、トルク容量制御装置のトルク容量を変更する制御を実行するか否かを、総排気量制御手段の判断結果に基づいて判断する第1可否判断手段(ステップS8)とを備えている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、総排気量を変更可能なエンジンと、このエンジンの出力側に設けられており、かつ、トルク容量を変更可能なトルク容量制御装置とを有する車両用パワートレーンの制御装置に関するものである。
【0002】
【従来の技術】
一般に、エンジンの出力側にトルク容量制御装置が設けられた車両が知られている。このような車両においては、トルク容量制御装置のトルク容量を、エンジントルクの変動に応じて制御することができる。このような制御を実行することにより、エンジンから車輪に伝達される動力の伝達効率が低下することを抑制して、エンジンの燃費が低下することを抑制できるとともに、トルク容量制御装置を構成する部品同士の相対回転量が増加することを抑制して、トルク容量制御装置の耐久性が低下することを抑制できる。このようなトルク容量制御装置の一例として、ベルト式無段変速機が知られており、エンジンの出力側にベルト式無段変速機を設けた制御装置の一例が、特開平2001−304387号公報に記載されている。
【0003】
この公報に記載されている車両は、エンジンの出力が、トルクコンバータ、前後進切換装置、ベルト式無段変速機、差動歯車装置を経由して、駆動輪に伝達されるように構成されている。上記ベルト式無段変速機は、入力側可変プーリおよび出力側可変プーリと、入力側可変プーリおよび出力側可変プーリのV溝に巻き掛けられた伝動ベルトとを備えている。また、入力側可変プーリにおける伝動ベルトの巻き掛かり径を制御する入力側油圧シリンダと、出力側可変プーリにおける伝動ベルトの巻き掛かり径を制御する出力側油圧シリンダとが設けられている。
【0004】
そして、入力側油圧シリンダの油圧が制御されることにより、ベルト式無段変速機の変速比が制御され、出力側油圧シリンダの油圧が制御されることにより、伝動ベルトに対するプーリの挟圧力、およびベルトの張力が制御される。この伝動ベルトの張力は、各プーリの壁面に対する伝動ベルトの押圧力に密接に関係しており、伝動ベルトの滑りを生じないように、出力側油圧シリンダの油圧が制御される。このような伝動ベルトの挟圧力制御では、必要な油圧を得るために、実際の入力トルク、実際の変速比、アクセル操作量などに基づいて、油圧制御回路が制御される。
【0005】
【発明が解決しようとする課題】
ところで、車両に搭載されるエンジンとしては内燃機関が用いられており、その内燃機関は、燃焼室に燃料を供給するとともに、その燃料の燃焼により発生する熱エネルギを、機械エネルギに変換する構造となっている。このようなエンジンの燃料消費量を低減させることを目的として、総排気量を変更可能なエンジン、例えば、可変気筒エンジンが知られている。この可変気筒エンジンにおけるエンジンのトルクの変動特性は、総排気量を変更できないエンジンのトルク変動特性とは異なる。したがって、可変気筒エンジンの出力側に、前述したベルト式無段変速機を設ける場合は、そのエンジンのトルク変動特性に合わせて、ベルトに加える挟圧力を制御することが望ましい。
【0006】
しかしながら、上記公報においては、このような可変気筒エンジンに関する記載がなく、公報に記載されている「ベルトの滑り抑制技術」では、可変気筒エンジンの出力側に設けられているベルト式無段変速機のベルトの滑りを、有効に抑制することが困難であった。
【0007】
この発明は上記の事情を背景としてなされたものであり、総排気量を変更可能なエンジンの出力側にトルク容量制御装置が設けられている場合に、エンジンの燃費が低下することを抑制でき、かつ、トルク容量制御装置の耐久性が低下することを抑制できる車両用パワートレーンの制御装置を提供することを目的としている。
【0008】
【課題を解決するための手段およびその作用】
上記の目的を達成するために、請求項1の発明は、総排気量を変更可能なエンジンと、このエンジンの出力側に設けられており、かつ、トルク容量を制御可能なトルク容量制御装置とを有する車両用パワートレーンの制御装置において、前記エンジンの総排気量を変更するか否かを判断する総排気量判断手段と、前記エンジンから前記トルク容量制御装置に伝達されるトルクに基づいて、このトルク容量制御装置のトルク容量を調整する制御を実行するか否かを、前記総排気量制御手段の判断結果に基づいて判断する第1可否判断手段とを備えていることを特徴とするものである。
【0009】
請求項1の発明によれば、基本的には、エンジンからトルク容量制御装置に伝達されるトルクに基づいて、トルク容量制御装置のトルク容量を調整する制御が実行される。また、エンジンの総排気量が判断され、その判断結果に基づいて、前記「トルク容量制御装置のトルク容量を調整する制御」を実行するか否かが判断される。
【0010】
請求項2の発明は、総排気量を変更可能なエンジンと、このエンジンの出力側に設けられており、かつ、トルク容量を制御可能なトルク容量制御装置とを有する車両用パワートレーンの制御装置において、前記エンジンの総排気量の変更により発生するエンジントルクの変動に関連する物理量を判断する物理量判断手段と、前記エンジンから前記トルク容量制御装置に伝達されるトルクに基づいて、このトルク容量制御装置のトルク容量を調整する制御を実行するか否かを、前記物理量判断手段の判断結果に基づいて判断する第2可否判断手段を備えていることを特徴とするものである。
【0011】
この請求項2において、「総排気量の変更により発生したエンジントルクの変動に関連する物理量」には、エンジントルクの変動量、変動幅、変動率、変動勾配、所定時間内におけるエンジントルクの変動回数、変動頻度などが含まれる。
【0012】
請求項2の発明によれば、基本的には、エンジンからトルク容量制御装置に伝達されるトルクに基づいて、トルク容量制御装置のトルク容量を調整する制御が実行される。これに対して、エンジンの総排気量が変更された場合は、前記「トルク容量制御装置のトルク容量を調整する制御」を実行するか否かが、総排気量の変更によるエンジントルクの変動に関連する物理量に基づいて判断される。
【0013】
請求項3の発明は、総排気量を変更可能なエンジンと、このエンジンの出力側に設けられており、かつ、トルク容量を制御可能なトルク容量制御装置とを有する車両用パワートレーンの制御装置において、車両が走行する道路の状態を判断する道路状態判断手段と、この道路状態判断手段の判断結果に基づいて、トルク容量制御装置のトルク容量を調整する第1制御手段と、前記道路の状態を判断する場合の判断基準を、前記エンジンの総排気量に基づいて選択する判断基準選択手段とを備えていることを特徴とするものである。
【0014】
請求項3の発明によれば、車両が走行する道路の状態が判断され、その判断結果に基づいて、トルク容量制御装置のトルク容量が制御される。ここで、道路の状態を判断する場合の判断基準が、エンジンの総排気量に基づいて選択される。
【0015】
請求項4の発明は、総排気量を変更可能なエンジンと、このエンジンの出力側に設けられており、かつ、トルク容量を制御可能なトルク容量制御装置と、前記エンジンと前記トルク容量制御装置との間のトルク伝達経路に配置された第2トルク容量制御装置とを有する車両用パワートレーンの制御装置において、前記トルク容量制御装置のトルク容量と前記第2トルク容量制御装置のトルク容量との対応関係を、前記エンジンの総排気量に基づいて制御する対応関係制御手段を備えていることを特徴とするものである。
【0016】
請求項4の発明によれば、トルク容量制御装置のトルク容量と第2トルク容量制御装置のトルク容量との対応関係が、エンジンの総排気量に基づいて制御される。
【0017】
請求項5の発明は、総排気量を変更可能なエンジンと、このエンジンの出力側に設けられたトルク容量制御装置とを有し、このトルク容量制御装置が、前記エンジンのトルクが伝達される入力部材と、この入力部材のトルクが伝達される出力部材とを有する車両用パワートレーンの制御装置において、前記入力部材と出力部材との相対回転状態を判断する相対回転状態判断手段と、この相対回転状態判断手段の判断結果に基づいて、トルク容量制御装置のトルク容量を制御する第2制御手段と、前記相対回転状態の判断に用いる判断基準を、前記エンジンの総排気量に基づいて選択する判断基準選択手段とを備えていることを特徴とするものである。
【0018】
請求項5の発明によれば、トルク容量制御装置を構成する入力部材と出力部材との相対回転状態が判断され、その判断結果に基づいて、トルク容量制御装置のトルク容量が制御される。ここで、入力部材と出力部材との相対回転状態の判断に用いる判断基準が、エンジンの総排気量に基づいて選択される。
【0019】
請求項6の発明は、総排気量を変更可能なエンジンと、このエンジンの出力側に設けられており、かつ、トルク容量を制御可能なトルク容量制御装置とを有する車両用パワートレーンの制御装置において、前記トルク容量制御装置のトルク容量を制御する場合に、フィードバック制御またはフィードフォワード制御の少なくとも一方を実行する実行手段と、前記フィードバック制御またはフィードフォワード制御の少なくとも一方の制御内容を、前記エンジンの総排気量に基づいて決定する制御内容決定手段とを備えていることを特徴とするものである。
【0020】
請求項6の発明によれば、トルク容量制御装置のトルク容量を制御する場合に、フィードバック制御またはフィードフォワード制御の少なくとも一方が実行される。ここで、フィードバック制御またはフィードフォワード制御の少なくとも一方の制御内容が、エンジンの総排気量に基づいて決定される。
【0021】
請求項7の発明は、請求項1ないし6のいずれかの構成に加えて、前記エンジンが、稼動気筒数を変更することにより、前記総排気量を変更可能なエンジンであることを特徴とするものである。
【0022】
請求項7の発明によれば、エンジンの総排気量に基づいて、請求項1ないし6のいずれかの発明と同様の作用が生じる。
【0023】
請求項8の発明は、請求項1ないし7のいずれかの構成に加えて、前記トルク容量制御装置には、入力部材および出力部材にベルトを巻き掛けたベルト式無段変速機が含まれており、このベルト式無段変速機は、前記出力部材からベルトに加えられる挟圧力の変化に応じて、前記トルク容量が変化する構成であることを特徴とするものである。
【0024】
請求項8の発明によれば、請求項1ないし7のいずれかの発明と同様の作用が生じる他に、ベルト式無段変速機は、複数のプーリからベルトに作用する挟圧力の変化に応じて、トルク容量が変化する構成である。
【0025】
【発明の実施の形態】
(第1の構成例)
つぎに、この発明を適用できる車両の構成例を、図2に基づいて説明する。図2に示す車両Veは、FF車(フロントエンジン・フロントドライブ;エンジン前置き前輪駆動車)であり、車両Veの駆動力源としてエンジン1が用いられている。このエンジン1は、燃料の燃焼により動力を出力する原動機である。このエンジン1としては、内燃機関、例えば、ガソリンエンジン、ディーゼルエンジン、LPGエンジン、メタノールエンジン、水素エンジンなどを用いることができる。
【0026】
この実施例では、エンジン1としてガソリンエンジンを用いた場合を説明する。エンジン1には、複数の気筒(後述)が設けられているとともに、各気筒はシリンダ、ピストン、燃焼室などを有する。また、エンジン1は、総排気量を変更可能な可変排気量エンジン、より具体的には、可変気筒エンジンである。ここで、総排気量とは、ピストンの行程容積×全シリンダ数を意味する。つまり、複数の気筒のうち、吸排気弁(図示せず)を作動させる気筒数や、燃料を供給する気筒数を変更(増減)することができる。
【0027】
前記エンジン1の出力側には、トランスアクスル3が設けられている。このトランスアクスル3は内部中空のケーシング4を有し、ケーシング4の内部には、トルクコンバータ5と前後進切り換え機構6とベルト式無段変速機(CVT)7とデファレンシャル8とが設けられている。まず、トルクコンバータ5の構成について説明する。ケーシング4の内部には、クランクシャフト2と同一の軸線(図示せず)を中心として回転可能なインプットシャフト9が設けられており、インプットシャフト9におけるエンジン1側の端部にはタービンランナ10が取り付けられている。
【0028】
一方、クランクシャフト2の後端にはドライブプレート11を介してフロントカバー12が連結されており、フロントカバー12にはポンプインペラ13が接続されている。このタービンランナ10とポンプインペラ13とは対向して配置され、タービンランナ10およびポンプインペラ13の内側にはステータ14が設けられている。また、インプットシャフト9におけるフロントカバー12側の端部には、ダンパ機構16を介してロックアップクラッチ15が設けられている。上記のように構成されたフロントカバー12およびポンプインペラ13などにより形成されたケーシング(図示せず)内に、作動流体としてのオイルが供給されている。
【0029】
前記ケーシング4の内部におけるトルクコンバータ5と前後進切り換え機構6との間には、オイルポンプ17が設けられている。このオイルポンプ17のロータ(図示せず)と、ポンプインペラ13とが円筒形状のハブ19により接続されている。また、オイルポンプ17のボデー(図示せず)はケーシング4側に固定されている。この構成により、エンジン1の動力がポンプインペラ13を介してオイルポンプ17のロータに伝達され、オイルポンプ17を駆動することができる。
【0030】
前記前後進切り換え機構6は、インプットシャフト9とベルト式無段変速機7との間の動力伝達経路に設けられている。前後進切り換え機構6はダブルピニオン形式の遊星歯車機構32を有している。この遊星歯車機構32は、インプットシャフト9のベルト式無段変速機7側の端部に設けられたサンギヤ33と、このサンギヤ33の外周側に、サンギヤ33と同心状に配置されたリングギヤ34と、サンギヤ33に噛み合わされたピニオンギヤ35と、このピニオンギヤ35およびリングギヤ34に噛み合わされたピニオンギヤ36と、ピニオンギヤ35およびピニオンギヤ36を、サンギヤ33の周囲を一体的に公転可能な状態で保持したキャリヤ37とを有している。そして、このキャリヤ37とプライマリシャフト21とが連結されている。また、キャリヤ37とインプットシャフト9との間の動力伝達経路を接続または遮断するクラッチCRが設けられている。さらに、ケーシング4側には、リングギヤ34の回転および固定を制御するブレーキBRが設けられている。
【0031】
前記ベルト式無段変速機7は、インプットシャフト9と同心状に配置されたプライマリシャフト21と、プライマリシャフト21と相互に平行に配置されたセカンダリシャフト22とを有している。前記プライマリシャフト21にはプライマリプーリ23が設けられており、セカンダリシャフト22側にはセカンダリプーリ24が設けられている。プライマリプーリ23は、プライマリシャフト21に固定された固定シーブ25と、プライマリシャフト21の軸線方向に移動できるように構成された可動シーブ26とを有している。そして、固定シーブ25と可動シーブ26との対向面には、相互の組合せによりV字形状の溝M1を構成する方向に傾斜した保持面54,55が形成されている。
【0032】
また、この可動シーブ26をプライマリシャフト21の軸線方向に動作させることにより、可動シーブ26と固定シーブ25とを接近・離隔させる油圧サーボ機構27が設けられている。この油圧サーボ機構27は、油圧室(図示せず)と、油圧室の油圧に応じてプライマリシャフト21の軸線方向に動作し、かつ、可動シーブ26に接続されたピストン(図示せず)とを備えている。したがって、可動シーブ26をプライマリシャフト21の軸線方向に動作させることにより、溝M1の幅が調整される。
【0033】
一方、セカンダリプーリ24は、セカンダリシャフト22に固定された固定シーブ28と、セカンダリシャフト22の軸線方向に移動できるように構成された可動シーブ29とを有している。そして、固定シーブ28と可動シーブ29との対向面には、相互の組合せによりV字形状の溝M2を構成する方向に傾斜した保持面56,57が形成されている。
【0034】
また、この可動シーブ29をセカンダリシャフト22の軸線方向に動作させることにより、可動シーブ29と固定シーブ28とを接近・離隔させる油圧サーボ機構30が設けられている。この油圧サーボ機構30は、油圧室(図示せず)と、油圧室の油圧によりセカンダリシャフト22の軸線方向に動作し、かつ、可動シーブ29に接続されたピストン(図示せず)とを備えている。したがって、可動シーブ29をセカンダリシャフト22の軸線方向に動作させることにより、溝M2の幅が調整される。上記構成のプライマリプーリ23およびセカンダリプーリ24に、無端状のベルト31が巻き掛けられている。
【0035】
前記ベルト式無段変速機7とデファレンシャル8との間の動力伝達経路には、セカンダリシャフト22と相互に平行なインターミディエイトシャフト39が設けられている。インターミディエイトシャフト39にはカウンタドリブンギヤ40とファイナルドライブギヤ41とが形成されている。前記セカンダリシャフト22にはカウンタドライブギヤ42が形成され、カウンタドライブギヤ42とカウンタドリブンギヤ40とが噛み合わされている。
【0036】
一方、前記デファレンシャル8はリングギヤ43を有し、ファイナルドライブギヤ41とリングギヤ43とが噛み合わされている。また、リングギヤ43はデフケース(図示せず)の外周に形成され、このデフケースの内部には複数のピニオンギヤ(図示せず)が取り付けられている。このピニオンギヤには2つのサイドギヤ(図示せず)が噛み合わされている。2つのサイドギヤには別個にフロントドライブシャフト44が接続され、各フロントドライブシャフト44には、車輪(前輪)45が接続されている。
【0037】
図3は、図2に示す車両Veの制御系統を示すブロック図である。車両Veの全体を制御する電子制御装置104が設けられており、この電子制御装置104は、演算処理装置(CPUまたはMPU)および記憶装置(RAMおよびROM)ならびに入出力インターフェースを主体とするマイクロコンピュータにより構成されている。
【0038】
この電子制御装置104に対しては、イグニッションスイッチ105Aの信号、エンジン回転数センサ105の信号、アクセル開度センサ106の信号、スロットル開度センサ107の信号、ブレーキペダルの操作状態を検知するブレーキスイッチ108の信号、シフトレバー114の操作状態を検出するシフトポジションセンサ109の信号、プライマリシャフト21の回転数(または回転速度)を検出する入力回転数センサ110の信号、セカンダリシャフト22の回転数(または回転速度)を検出する出力回転数センサ111の信号、加速度センサ62の信号、インプットシャフト9の回転数を検出するタービン回転数センサ63の信号、エアコンスイッチ63Aの信号、ケーシング4の内部および油圧制御装置64の油圧回路を流れるオイルの温度を検知する油温センサ80の信号、車輪回転速度センサ81の信号、車両Veが走行する道路の状態を検知する道路状態検知センサ82の信号、エンジン1の冷却水温を検知する冷却水温センサ83の信号、車両Veが位置している道路の勾配を検知する勾配検知センサ84の信号、油圧センサ85の信号などが入力される。
【0039】
前記ブレーキスイッチ108の信号に基づいて、ブレーキペダルが踏み込まれているか否か、ブレーキペダルの踏み込み量、ブレーキペダルの踏み込み速度、などが検知される。前記シフトポジションセンサ109の信号に基づいて、シフトレバー114の操作により、駆動ポジションまたは非駆動ポジションのいずれが選択されているかが検知される。この実施例では、駆動ポジションとして、D(ドライブ)ポジション、B(ブレーキ)ポジション、R(リバース)ポジションを選択することができる。また、非駆動ポジションとして、N(ニュートラル)ポジション、P(パーキング)ポジションを選択することができる。
【0040】
また、入力回転数センサ110の信号、出力回転数センサ111の信号に基づいて、ベルト式無段変速機7の変速比を演算することができ、出力回転数センサ111の信号に基づいて車速を演算することができる。
【0041】
また電子制御装置104からは、電子制御装置104に入力される各種の信号や、電子制御装置104に記憶されているデータに基づいて、燃料噴射制御装置112を制御する信号、点火時期制御装置113を制御する信号、電子スロットルバルブ115を制御する信号、油圧制御装置64を制御する信号、吸排気バルブ116を制御する信号などが出力される。また、油圧制御装置64により、前後進切り換え機構6、ベルト式無段変速機7、ロックアップクラッチ15が制御される。そして、エンジン1から出力されたトルクが、トルクコンバータ5またはロックアップクラッチ15,前後進切り換え機構6、ベルト式無段変速機7、デファレンシャル8を経由して車輪45に伝達される。以下、個々のシステムにおける具体的な制御を順次説明する。
【0042】
まず、エンジン1の出力(回転数×トルク)の制御について説明する。例えば、車速、アクセル開度、シフトポジションなどに基づいて、エンジン出力が制御される。エンジン出力を制御する場合は、燃料噴射制御装置112、点火時期制御装置113、電子スロットルバルブ115、吸排気弁16のうちの少なくとも1つが制御される。この実施例では、エンジン1の複数の気筒1Aの稼動気筒数を増減することができる。複数の気筒1Aのうち、吸排気弁116の作動および燃料の供給をおこなう稼動気筒数を、所定数未満に設定することを「減筒運転」と呼び、稼動気筒数を所定数以上に設定することを、「通常運転」と呼ぶ。そして、減筒運転をおこなう場合の燃料消費量は、通常運転をおこなう場合の燃料消費量よりも低い。なお、通常運転と減筒運転とで、相互に変更をおこなうことを「運転モードの変更」と呼ぶ。
【0043】
つぎに、ロックアップクラッチ15の制御について説明する。ロックアップクラッチ15の係合圧を制御するロックアップクラッチ制御マップが、電子制御装置104に記憶されている。ロックアップクラッチ制御マップは、車速、アクセル開度などのパラメータに基づいて、ロックアップクラッチ15を、係合・解放・スリップのいずれに制御するかを設定している。
【0044】
そして、エンジントルクがフロントカバー12に伝達される際に、ロックアップクラッチ15が解放されている場合は、ポンプインペラ13の動力が、流体の運動エネルギによりタービンランナ10に伝達され、ついでインプットシャフト9に伝達される。なお、ポンプインペラ13からタービンランナ10に伝達されるトルクを、ステータ14により増幅することもできる。
【0045】
これに対して、ロックアップクラッチ15が係合されている場合は、フロントカバー12の動力が、ロックアップクラッチ15の摩擦力によりインプットシャフト9に伝達される。なお、ロックアップクラッチ15がスリップしている場合は、フロントカバー12の動力が、流体の運動エネルギおよびロックアップクラッチ15の摩擦力により、インプットシャフト9に伝達される。
【0046】
さらに、前後進切り換え機構6の制御について説明する。この前後進切り換え機構6は、シフトポジションセンサ109の信号に基づいて制御される。まず、前記DポジションまたはBポジションが選択された場合は、クラッチCRが係合され、かつ、ブレーキBRが解放されて、インプットシャフト9とプライマリシャフト21とが直結状態になる。
【0047】
インプットシャフト9とプライマリシャフト21とが直結された状態において、エンジン1のトルクがインプットシャフト9に伝達されると、インプットシャフト9およびキャリヤ37ならびにプライマリシャフト21が一体回転する。プライマリシャフト21のトルクは、プライマリプーリ23およびベルト31ならびにセカンダリプーリ24を介してセカンダリシャフト22に伝達されるとともに、このトルクはインターミディエイトシャフト39を介してデファレンシャル8に伝達された後、さらにこのトルクが車輪45に伝達されて、車両Veを前進させる向きの駆動力が発生する。
【0048】
一方、Rポジションが選択された場合は、クラッチCRが解放され、かつ、ブレーキBRが係合されて、リングギヤ34が固定される。すると、インプットシャフト9の回転にともなってピニオンギヤ35,36が共に自転しつつ公転し、キャリヤ37がインプットシャフト9の回転方向とは逆の方向に回転する。その結果、プライマリシャフト21およびセカンダリシャフト22ならびにインターミディエイトシャフト39が、DポジションまたはBポジションの場合とは逆方向に回転し、車両Veを後退させる向きの駆動力が発生する。
【0049】
つぎに、ベルト式無段変速機7の変速比およびトルク容量の制御について説明する。まず、車速およびアクセル開度などの条件から判断される車両Veの加速要求、および電子制御装置104に記憶されているデータなどに基づいて、エンジン1の運転状態が最適状態になるように、ベルト式無段変速機7の変速比が制御される。ベルト式無段変速機7の変速比とは、プライマリシャフト21の回転速度と、セカンダリシャフト22の回転速度との比である。このベルト式無段変速機7の変速比を変更するために、プライマリプーリ23におけるベルト31の巻き掛け半径と、セカンダリプーリ24におけるベルト31の巻き掛け半径との比が調整される。
【0050】
この実施例では、主としてプライマリプーリ23におけるベルト31の巻き掛け半径を調整することより、ベルト式無段変速機7の変速比が制御される。具体的には、プライマリプーリ23の溝M1の幅を広げていくと、プライマリプーリ23におけるベルト31の巻き掛け半径が小さくなり、ベルト式無段変速機7の変速比が大きくなるような変速が実行される。これに対して、プライマリプーリ23の溝M1の幅を狭めていくと、プライマリプーリ23におけるベルト31の巻き掛け半径が大きくなり、ベルト式無段変速機7の変速比が小さくなるような変速が実行される。
【0051】
一方、ベルト式無段変速機7のトルク容量は、エンジン1からプライマリシャフト21に伝達されるトルク、ベルト式無段変速機7の変速比などに基づいて制御される。ここで、プライマリシャフト21に伝達されるトルクは、エンジントルク、トルクコンバータ5のトルク容量などに基づいて判断される。
【0052】
具体的には、セカンダリプーリ24の溝M2の幅を調整して、セカンダリプーリ24からベルト31に加えられる挟圧力を制御すると、セカンダリプーリ24におけるベルト31の巻き掛け半径が変化して、ベルト31の張力が変化する。このベルト31の張力の変化に応じて、ベルト31とプライマリプーリ23およびセカンダリプーリ24との接触面の摩擦力が変化、すなわち、トルク容量が変化する。例えば、セカンダリプーリ24の溝M1が広げられて、セカンダリプーリ24からベルト31に加えられる挟圧力が低下した場合は、ベルト式無段変速機7のトルク容量が低下する。これに対して、セカンダリプーリ24からベルト31に加えられる挟圧力が高められた場合は、ベルト式無段変速機7のトルク容量が上昇する。
【0053】
このベルト31に加えられる挟圧力は、エンジン1の燃費およびベルト31の耐久性に影響を及ぼす。すなわち、ベルト式無段変速機7のトルク容量が不足した場合は、ベルト31の滑りが生じて動力伝達効率が低下し、燃費が低下する可能性があるとともに、ベルト31の耐久性が低下する可能性がある。また、ベルト式無段変速機7のトルク容量が過剰であるということは、セカンダリプーリ24の挟圧力を制御する油圧の元圧の発生源であるオイルポンプ17のオイル吐出量が過剰となる。したがって、オイルポンプ17を駆動するエンジン1の燃費が低下する。
【0054】
このような、「ベルト31に加えられる挟圧力の過不足に起因する不都合」を回避する制御例を、図1のフローチャートに基づいて説明する。まず、ステップS1においては、ベルト31に加えられる挟圧力を、最適化する制御(以下、「最適化制御」と略記する)を実施する条件が成立しているか否かが判断される。この「最適化制御」の意味および制御内容については、後述する。また、最適化制御を実行する条件は、最適化制御の内容に応じて異なり、例えば、アクセル開度、車速、ベルト式無段変速機7に入力されるトルクなどに基づいて、最適化制御を実行する条件の成否が判断される。そして、ステップS1で肯定的に判断された場合は、ステップS2に進む。
【0055】
このステップS2では、前記「最適化制御」を現在、実施中であるか否かが判断される。このステップS2で肯定的に判断された場合は、ステップS3に進む。このステップS3では、前述の運転モードの変更がおこなわれてから、所定時間が経過したか否かが判断される。このステップS3で肯定的に判断された場合は、ステップS4に進み、減筒運転中であるか否かが判断される。このステップS4で否定的に判断された場合は、ステップS5で「通常運転に対応する最適化制御」を実行し、この制御ルーチンを終了する。これに対して、前記ステップS4で肯定的に判断された場合は、ステップS6で「減筒運転に対応する最適化制御」を実行し、この制御ルーチンを終了する。
【0056】
つぎに、前述した「最適化制御」の意味および制御内容を説明する。「最適化制御」とは、エンジントルクが、プライマリシャフト21からベルト31を経由してセカンダリシャフト22に伝達される場合に、ベルト31の滑り量を所定量以下に抑制する制御を意味する。つぎに、「最適化制御」の具体的な制御内容を順次説明する。
【0057】
[第1の制御]
この第1の制御は、ベルト31に加えられる挟圧力を制御する場合の条件に、道路状況を加える制御である。まず、車両Veが走行する道路が、悪路である場合は、プライマリシャフト21からセカンダリシャフト22に伝達されるトルクとは無関係に、セカンダリシャフト22の回転変動が発生する可能性があり、そのセカンダリシャフト22の回転変動によりベルト31の滑りが発生する可能性がある。前記悪路としては、未舗装道路、凹凸の激しい道路、低摩擦係数の道路などが挙げられる。上記のような不都合に対処するため、この第1の制御では、ベルト31に加えられる挟圧力を制御する場合の条件に、前述した「エンジン1からプライマリシャフト21に伝達されるトルク、ベルト式無段変速機7の変速比」の他に、「道路状況」を加える。
【0058】
まず、道路が悪路であるか否かは、セカンダリシャフト22の回転速度の経時的な変化データを、バンドパス処理および時間窓積分処理することで判断できる。例えば、実際のセカンダリシャフト22の回転速度が基準回転速度を越える場合と、実際のセカンダリシャフト22の回転速度が基準回転速度未満となる場合とが、単位時間に所定の周期(周波数)で交互に発生した場合は、実際の回転速度が基準回転速度を越える事態が、所定時間内に所定周波数以上発生した場合に、「車両Veが走行している道路が悪路である。」と判断することができる。しかしながら、通常運転と減筒運転とでは、エンジントルクの変動特性が異なるため、道路状況が同じであっても、運転モードの変更によりセカンダリシャフト22の回転速度が変化して、道路状況の判断結果が異なる可能性がある。そこで、この実施例においては、エンジン1の気筒数に基づいて、第1の制御の内容を、以下のように変更することができる。
【0059】
(a)「通常運転」をおこない、かつ、悪路判定をおこなう場合のバンドパス処理の下限周波数よりも、「減筒運転」をおこない、かつ、悪路判定をおこなう場合のバンドパス処理の下限周波数を上げるかまたは下げる。
(b)「通常運転」をおこない、かつ、悪路判定をおこなう場合のバンドパス処理の周波数領域よりも、「減筒運転」をおこない、かつ、悪路判定をおこなう場合のバンドパス処理の周波数領域を狭くする。ここで、周波数領域とは、下限周波数と上限周波数との幅という意味である。
(c)「通常運転」をおこない、かつ、悪路判定をおこなう場合の時間窓積分値の閾値よりも、「減筒運転」をおこない、かつ、悪路判定をおこなう場合の時間窓積分値の閾値を上げる。このような(a)ないし(c)の制御をおこなえば、道路状況の変化に基づくセカンダリシャフト22の回転数の変化と、エンジントルクの変動に基づくセカンダリシャフト22の回転数の変化とを区別することができ、ベルト31に加える挟圧力の過不足を抑制できる。
【0060】
[第2の制御]
この第2の制御は、エンジン1とベルト式無段変速機7との間の動力伝達経路に設けられているクラッチのトルク容量と、ベルト式無段変速機7のトルク容量との対応関係を調整する制御である。まず、図2に示すパワートレーンにおいては、ロックアップクラッチ12のトルク容量が所定値以上に高められた場合は、エンジントルクが、ロックアップクラッチ12を経由してベルト式無段変速機7に伝達される。この第2の制御の目的は、エンジントルクの変動が発生した場合に、クラッチをスリップさせることで、ベルト式無段変速機7のベルト31の滑り量の増加を抑制することにある。
【0061】
すなわち、第2の制御では、エンジン1とベルト式無段変速機7との間に設けられているクラッチのトルク容量と、ベルト式無段変速機7のトルク容量との対応関係が調整される。具体的には、エンジン1とベルト式無段変速機7との間に設けられているクラッチのトルク容量の方が、ベルト式無段変速機7のトルク容量よりも低く設定される。この第2の制御の内容には、次に述べる学習制御およびスリップ判定制御が含まれている。
【0062】
▲1▼学習制御
この実施例では、解放されているロックアップクラッチ15を係合させる場合に、フロントカバー12とインプットシャフト9との回転関係が変化せず、トルク分担だけが変化するトルクフェーズとなる係合圧、いわゆるトルクフェーズ圧の学習制御を実行することができる。そして、ロックアップクラッチ15のトルク容量よりも、ベルト式無段変速機7のトルク容量の方を高く設定して、ベルト31の滑りを抑制する制御を実行する場合に、ベルト31の滑りを抑制する制御に、学習制御値を反映させることができる。そして、この実施例では、エンジン1の気筒数に応じて、第2の制御の内容を以下のように変更することができる。
【0063】
(a)「通常運転」をおこなう場合は学習制御を実行せず、「減筒運転」をおこなう場合は学習制御を実行する。または、「通常運転」をおこなう場合は学習制御を実行し、「減筒運転」をおこなう場合は学習制御を実行しない。
(b)「通常運転」をおこなう場合に実行するベルト式無段変速機7のトルク容量の学習制御値と、「減筒運転」をおこなう場合に実行するベルト式無段変速機7のトルク容量の学習制御値とを異ならせる。すなわち、ベルト31に加えられる総合的な挟圧力には、伝達トルクに対応する基本挟圧力と、ベルト31に滑りが生じないように付加される挟圧力とが含まれている。ここで、総合的な挟圧力に対するf付加挟圧力の占める割合を安全率(または余裕率)とすれば、通常運転の場合よりも減筒運転の場合の方が、安全率が高くなるように、学習制御値を異ならせる。
【0064】
▲2▼スリップ判定制御
ところで、図2のパワートレーンにおいて、ロックアップクラッチ15およびトルクコンバータ5およびロックアップクラッチ15に代えて、摩擦力により動力伝達をおこなう発進クラッチ(図示せず)が設けられている構成では、エンジントルクが変動した場合に、ベルト式無段変速機7の滑りが発生する前に、発進クラッチがスリップするように、ベルト式無段変速機7のトルク容量と、発進クラッチのトルク容量との対応関係を調整することができる。
【0065】
すなわち、エンジン1から発進クラッチに伝達されるトルクに基づいて、発進クラッチに滑りが生じない範囲で可及的に低い係合圧(基本トルク容量)を判定するとともに、エンジントルクの脈動に応じた修正係数を算出する。つぎに、基本トルク容量に、修正係数に応じたトルク容量を加算して得た補正後のトルク容量を算出することができる。そして、「減筒運転」の場合は「通常運転」に比べてトルク変動が大きくなり、そのトルク変動がベルト式無段変速機7に伝達されて、ベルト31が滑る可能性がある。そこで、「減筒運転」に対応する修正係数を、「通常運転」に対応する修正係数よりも大きく設定する。なお、発進クラッチのトルク容量の制御に代えて、前後進切り換え機構6のクラッチCRのトルク容量を制御することもできる。
【0066】
[第3の制御]
この第3の制御は、プライマリシャフト21の回転数とセカンダリシャフト22の回転数との相関係数に基づいて、ベルト31の滑りの有無を判定する制御である。そして、「減筒運転」において「ベルト31が滑っている」と判断する閾値を、「通常運転」において「ベルト31が滑っている」と判断する閾値よりも下げる。
【0067】
[第4の制御]
この第4の制御は、ベルト31に加える挟圧力を制御する場合に、フィードバック制御またはフィードフォワード制御の少なくとも一方を制御することを意味する。フィードバック制御は、プライマリプーリ23およびセカンダリプーリ24とベルト31との間で、トルクを伝達するための不可避的な微少滑り、あるいはベルト31の構造上不可避的に生じる微少滑りを超えた過剰な滑りが生じないように、ベルト31に加える挟圧力を調整する制御である。より具体的には、ベルト31の滑り量が、上記の微少滑りを超えた過剰な滑り量未満となるように、ベルト31に加える挟圧力を設定する制御である。
【0068】
一方、フィードフォワード制御は、フィードバック制御を実行できない場合に、フィードバック制御に替えて実行する制御である。このフィードフォワード制御においては、スロットル開度、燃料噴射量、変速比、車速などの条件に基づいて、ベルト31に加える挟圧力が設定される。
【0069】
そして、この実施例では、「減筒運転」においてフィードフォワード制御によ挟圧力を増加する場合の諸係数を、「通常運転」においてフィードフォワード制御により挟圧力を増加する場合の諸係数よりも大きく設定する。また、フィードバック制御により挟圧力を制御する場合において、「減筒運転」時に挟圧力を低下する場合に用いる係数を、「通常運転」時に挟圧力を低下する場合に用いる係数よりも小さく設定する。さらに、フィードバック制御により挟圧力を制御する場合において、「減筒運転」時に挟圧力を上昇する場合に用いる係数を、「通常運転」時に挟圧力を上昇する場合に用いる係数よりも大きく設定する。これらの制御により、減筒運転時におけるベルト31の滑り量の増加を抑制することができる。
【0070】
つぎに、前記ステップS3で否定的に判断された場合について説明する。この場合は、運転モードの変更によるエンジントルクの変動が収束していない、具体的には、トルクの変動量が所定量以下になっていないと考えられる。このような状態では、「最適化制御」を実行したとしても、ベルト31の滑り量の増加を抑制することが困難である。したがって、「最適化制御」を実行することなく、この制御ルーチンを終了する。
【0071】
さらに、前記ステップS2で肯定的に判断された場合は、ステップS7に進む。このステップS7では、運転モードを変更するか否かが判断される。このステップS7で否定的に判断された場合は、最適化制御の実行を継続し、この制御ルーチンを終了する。これに対して、ステップS7で肯定的に判断された場合は、運転モードの変更により、エンジントルクの過渡的な変化が生じて、ベルト31の滑り量が増加する可能性がある。そこで、ステップS7で肯定的に判断された場合は、ステップS8に進んで最適化制御を終了させて、この制御ルーチンを終了する。なお、前記ステップS1で否定的に判断された場合も、ステップS8に進む。
【0072】
以上のように、減筒運転を実行すれば、通常運転を実行する場合に比べて、エンジン1の燃費を向上することができる。また、減筒運転で実行する最適化制御の内容と、通常運転で実行する最適化制御の内容とを異ならせることにより、ベルト31に加えられる挟圧力の過不足を抑制することができる。したがって、燃費を一層向上できるとともに、ベルト31の滑り量の増加を一層抑制することができ、ベルト31の耐久性の低下を抑制することができる。
【0073】
ここで、図1に示された機能的手段と、この発明の構成との対応関係を説明すれば、ステップS7の処理がこの発明の総排気量判断手段に相当し、ステップS7で否定的に判断されて最適化制御を継続する処理、およびステップS7で肯定的に判断されてステップS8を実行する処理が、この発明の第1可否判断手段に相当し、ステップS3がこの発明の物理量判断手段に相当し、ステップS3で否定的に判断されて最適化制御を実行しない処理、およびステップS4ないしステップS6が、この発明の第第2可否判断手段に相当し、ステップS5およびステップS6の処理が、この発明の道路状態判断手段、第1制御手段、第2制御手段、判断基準選択手段、対応関係制御手段、相対回転状態判断手段、実行手段、制御内容決定手段に相当し、「最適化制御」が、この発明の「トルク容量制御装置に伝達されるトルクの変化に基づいて、トルク容量制御装置のトルク容量を変更する制御」に相当する。
【0074】
また、プライマリシャフト21の回転数(回転速度)と、セカンダリシャフト22の回転数(回転速度)との対応関係が、この発明の入力部材と出力部材との相対回転状態に相当し、「運転モードが変更されてから所定時間が経過したか否か」により、この発明の「気筒数の変更によるエンジントルクの変動量が所定量以下になったか否か」が判断され、各種の周波数、周波数領域、閾値、係数が、この発明の判断基準に相当する。
【0075】
この実施例で説明した構成と、この発明の構成との対応関係を説明すれば、ベルト式無段変速機7および油圧サーボ機構30が、この発明のトルク容量制御装置に相当し、ロックアップクラッチ15、クラッチCR、発進クラッチが、この発明の第2トルク容量制御装置に相当し、プライマリシャフト21およびプライマリプーリ23が、この発明の入力部材に相当し、セカンダリシャフト22およびセカンダリプーリ24が、この発明の出力部材に相当する。
【0076】
(第2の構成例)
前記ベルト式無段変速機に代えて、トロイダル式無段変速機を有する構成の車両に対しても、図1の制御例を適用できる。トロイダル式無段変速機とは、トロイダル面を有する入力ディスクおよび出力ディスクと、各ディスクに対して接触するパワーローラとを有する変速機である。入力ディスクは入力軸に設けられ、出力ディスクは出力ディスクに設けられる。そして、エンジンのトルクが入力ディスクに伝達され、入力ディスクのトルクが、パワーローラを経由して出力ディスクに伝達されるように構成されている。また、各ディスクとパワーローラとの接触面には潤滑油が存在する。そして、パワーローラを、各ディスクの軸線に直交する平面内で直線状に移動させて、パワーローラと各ディスクとの接触半径を調整することにより、入力ディスクと出力ディスクとの間の変速比が制御される。また、各ディスクとパワーローラとの接触面圧を調整することにより、入力ディスクと出力ディスクとの間で伝達されるトルク容量が制御される。
【0077】
すなわち、各ディスクとパワーローラとの接触面圧を高圧にすると、潤滑油がガラス状になり、いわゆるトラクション伝動により、入力軸および入力ディスクと、出力軸および出力ディスクとの間で動力の伝達がおこなわれる。そして、各ディスクとパワーローラとの接触面圧を調整するための第1の油圧サーボ機構が設けられている。第1の油圧サーボ機構は、ディスクを軸線方向に動作させるピストンと、各ピストンを動作させる油圧室とを有している。また、パワーローラを各ディスクの軸線に直交する平面内で直線状に移動させる第2の油圧サーボ機構が設けられている。この第2の油圧サーボ機構は、油圧室を有している。このトロイダル式無段変速機を有する車両にも、図3の制御回路を適用できる。この場合、入力回転数センサ110により入力軸の回転数が検知され、出力回転数センサ111により出力軸の回転数が検知される。
【0078】
そして、このトロイダル式無段変速機を有する車両において、図1に示された制御例を実行する場合は、ディスクを軸線方向に動作させる推力が、エンジントルク、車速、変速比などに基づいて制御される。そして、ディスクを軸線方向に動作させる推力を最適化する制御が、前述した「最適化制御」に相当することとなる。この第2の構成例において、図1の制御例を実行した場合は、パワーローラの滑りが抑制されて、動力伝達の低下を抑制できるとともに、各ディスクおよびパワーローラの耐久性が向上する。
【0079】
この第2の構成例と、この発明の構成との対応関係を説明すれば、トロイダル式無段変速機が、この発明のトルク容量制御装置に相当し、入力軸および入力ディスクがこの発明の入力部材に相当し、出力軸および出力ディスクがこの発明の出力部材に相当する。なお、第1の構成例および第2の構成例においては、総排気量を変更可能なエンジンとして、ピストンのストロークを変更させるアクチュエータ、およびアクチュエータを制御する電子制御装置を備えたエンジンを用いることもできる。
【0080】
ここで、特許請求の範囲の各請求項に記載されている発明の把握形態以外の発明の把握形態を説明する。すなわち、各請求項に記載されている「手段」を、「器」または「コントローラ」と読み替えることができる。この場合、図3に示された電子制御装置104が、これらの「器」または「コントローラ」に相当する。また、各請求項に記載されている「手段」を、「ステップ」と読み替え、「車両用パワートレーンの制御装置」を、「車両用パワートレーンの制御方法」と読み替えることもできる。
【0081】
【発明の効果】
以上説明したように請求項1の発明によれば、エンジンの総排気量の変更にともない、トルク容量制御装置に伝達されるトルク容量が変化する場合に、トルク容量制御装置のトルク容量に過不足が生じることを抑制できる。したがって、トルク容量制御装置の動力伝達効率が低下することを抑制でき、エンジンの燃費の低下を抑制できる。また、トルク容量制御装置の耐久性が低下することを抑制できる。
【0082】
請求項2の発明によれば、エンジンの総排気量が変更された場合は、「トルク容量御装置のトルク容量を調整する制御」を実行するか否かを、総排気量の変更によるエンジントルクの変動に関連する物理量に基づいて判断できる。例えば、トルク容量制御装置に伝達されるトルクの変動量が所定量以上である場合に、トルク容量制御装置のトルク容量を調整するという事態を回避できる。したがって、トルク容量制御装置のトルク容量に過不足が生じることを抑制でき、トルク容量制御装置の動力伝達効率が低下することを抑制でき、エンジンの燃費が低下することを抑制できる。また、トルク容量制御装置の耐久性が低下することを抑制できる。
【0083】
請求項3の発明によれば、道路状況の判断をおこなう場合の判断基準を、エンジンの総排気量に基づいて選択することにより、道路状況に応じてトルク容量制御装置のトルク容量を制御する場合に、トルク容量の過不足を生じることを抑制できる。したがって、トルク容量制御装置の動力伝達効率が低下することを抑制でき、エンジンの燃費が低下することを抑制できる。また、トルク容量制御装置の耐久性が低下することを抑制できる。
【0084】
請求項4の発明によれば、トルク容量制御装置のトルク容量と第2トルク容量制御装置のトルク容量との対応関係を、エンジンの総排気量に基づいて制御できる。例えば、第2トルク容量制御装置のトルク容量よりも、トルク容量制御装置のトルク容量を高く設定して、エンジントルクの変動に基づくトルク容量制御装置の滑りを可及的に抑制する場合に、トルク容量制御装置のトルク容量と第2トルク容量制御装置のトルク容量との対応関係を、エンジンの総排気量に基づいて制御すれば、トルク容量制御装置の滑りを、一層確実に抑制できる。したがって、トルク容量制御装置の動力伝達効率が低下することを抑制でき、エンジンの燃費が低下することを抑制できる。また、トルク容量制御装置の耐久性が低下することを抑制できる。
【0085】
請求項5の発明によれば、トルク容量制御装置を構成する入力部材と出力部材との相対回転状態を、エンジンの総排気量に基づいて判断し、その判断結果に基づいて、トルク容量制御装置のトルク容量を制御することができる。したがって、トルク容量制御装置の動力伝達効率が低下することを抑制でき、エンジンの燃費が低下することを抑制できる。また、トルク容量制御装置の耐久性が低下することを抑制できる。
【0086】
請求項6の発明によれば、トルク容量制御装置のトルク容量を制御する場合に、フィードバック制御またはフィードフォワード制御の少なくとも一方の制御内容を、エンジンの総排気量の変化にともなうトルク変動に対応させることができる。に基づいて決定される。したがって、トルク容量制御装置の動力伝達効率が低下することを抑制でき、エンジンの燃費が低下することを抑制できる。また、トルク容量制御装置の耐久性が低下することを抑制できる。
【0087】
請求項7の発明によれば、請求項1ないし6のいずれかの発明と同様の作用が生じる他に、エンジンの気筒数を変更することにより、その総排気量が変更される。
【0088】
請求項8の発明によれば、請求項1ないし7のいずれかの発明と同様の効果を得られる他に、ベルト式無段変速機は、複数のプーリからベルトに作用する挟圧力の変化に応じて、トルク容量が変化する構成である。したがって、ベルトの滑りによる動力伝達効率の低下を抑制でき、かつ、ベルトの耐久性の低下を抑制できる。
【図面の簡単な説明】
【図1】この発明の一制御例を示すフローチャートである。
【図2】この発明を適用できる車両のパワートレーンの一例を示すスケルトン図である。
【図3】図2に示された車両の制御回路を示すブロック図である。
【符号の説明】
1…エンジン、 1A…気筒、 7…ベルト式無段変速機、 15…ロックアップクラッチ、 21…プライマリシャフト、 22…セカンダリシャフト、 23…プライマリプーリ、 24…セカンダリプーリ、 31…ベルト、 104…電子制御装置、 CR…クラッチ、 Ve…車両。

Claims (8)

  1. 総排気量を変更可能なエンジンと、このエンジンの出力側に設けられており、かつ、トルク容量を制御可能なトルク容量制御装置とを有する車両用パワートレーンの制御装置において、
    前記エンジンの総排気量を変更するか否かを判断する総排気量判断手段と、
    前記エンジンから前記トルク容量制御装置に伝達されるトルクに基づいて、このトルク容量制御装置のトルク容量を調整する制御を実行するか否かを、前記総排気量制御手段の判断結果に基づいて判断する第1可否判断手段と
    を備えていることを特徴とする車両用パワートレーンの制御装置。
  2. 総排気量を変更可能なエンジンと、このエンジンの出力側に設けられており、かつ、トルク容量を制御可能なトルク容量制御装置とを有する車両用パワートレーンの制御装置において、
    前記エンジンの総排気量の変更により発生するエンジントルクの変動に関連する物理量を判断する物理量判断手段と、
    前記エンジンから前記トルク容量制御装置に伝達されるトルクに基づいて、このトルク容量制御装置のトルク容量を調整する制御を実行するか否かを、前記物理量判断手段の判断結果に基づいて判断する第2可否判断手段を備えていることを特徴とする車両用パワートレーンの制御装置。
  3. 総排気量を変更可能なエンジンと、このエンジンの出力側に設けられており、かつ、トルク容量を制御可能なトルク容量制御装置とを有する車両用パワートレーンの制御装置において、
    車両が走行する道路の状態を判断する道路状態判断手段と、
    この道路状態判断手段の判断結果に基づいて、トルク容量制御装置のトルク容量を調整する第1制御手段と、
    前記道路の状態を判断する場合の判断基準を、前記エンジンの総排気量に基づいて選択する判断基準選択手段と
    を備えていることを特徴とする車両用パワートレーンの制御装置。
  4. 総排気量を変更可能なエンジンと、このエンジンの出力側に設けられており、かつ、トルク容量を制御可能なトルク容量制御装置と、前記エンジンと前記トルク容量制御装置との間のトルク伝達経路に配置された第2トルク容量制御装置とを有する車両用パワートレーンの制御装置において、
    前記トルク容量制御装置のトルク容量と前記第2トルク容量制御装置のトルク容量との対応関係を、前記エンジンの総排気量に基づいて制御する対応関係制御手段を備えていることを特徴とする車両用パワートレーンの制御装置。
  5. 総排気量を変更可能なエンジンと、このエンジンの出力側に設けられたトルク容量制御装置とを有し、このトルク容量制御装置が、前記エンジンのトルクが伝達される入力部材と、この入力部材のトルクが伝達される出力部材とを有する車両用パワートレーンの制御装置において、
    前記入力部材と出力部材との相対回転状態を判断する相対回転状態判断手段と、
    この相対回転状態判断手段の判断結果に基づいて、トルク容量制御装置のトルク容量を制御する第2制御手段と、
    前記相対回転状態の判断に用いる判断基準を、前記エンジンの総排気量に基づいて選択する判断基準選択手段と
    を備えていることを特徴とする車両用パワートレーンの制御装置。
  6. 総排気量を変更可能なエンジンと、このエンジンの出力側に設けられており、かつ、トルク容量を制御可能なトルク容量制御装置とを有する車両用パワートレーンの制御装置において、
    前記トルク容量制御装置のトルク容量を制御する場合に、フィードバック制御またはフィードフォワード制御の少なくとも一方を実行する実行手段と、
    前記フィードバック制御またはフィードフォワード制御の少なくとも一方の制御内容を、前記エンジンの総排気量に基づいて決定する制御内容決定手段と
    を備えていることを特徴とする車両用パワートレーンの制御装置。
  7. 前記エンジンが、稼動気筒数を変更することにより、前記総排気量を変更可能なエンジンであることを特徴とする請求項1ないし6のいずれかに記載の車両用パワートレーンの制御装置。
  8. 前記トルク容量制御装置には、入力部材および出力部材にベルトを巻き掛けたベルト式無段変速機が含まれており、このベルト式無段変速機は、前記出力部材からベルトに加えられる挟圧力の変化に応じて、前記トルク容量が変化する構成であることを特徴とする請求項1ないし7のいずれかに記載の車両用パワートレーンの制御装置。
JP2002247627A 2002-08-27 2002-08-27 車両用パワートレーンの制御装置 Pending JP2004084821A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247627A JP2004084821A (ja) 2002-08-27 2002-08-27 車両用パワートレーンの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247627A JP2004084821A (ja) 2002-08-27 2002-08-27 車両用パワートレーンの制御装置

Publications (1)

Publication Number Publication Date
JP2004084821A true JP2004084821A (ja) 2004-03-18

Family

ID=32055225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247627A Pending JP2004084821A (ja) 2002-08-27 2002-08-27 車両用パワートレーンの制御装置

Country Status (1)

Country Link
JP (1) JP2004084821A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205529A (ja) * 2006-02-06 2007-08-16 Fuji Heavy Ind Ltd 車両用制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205529A (ja) * 2006-02-06 2007-08-16 Fuji Heavy Ind Ltd 車両用制御装置

Similar Documents

Publication Publication Date Title
US9175632B2 (en) Engine start control apparatus for hybrid vehicle
US6441506B2 (en) Parallel hybrid vehicle employing parallel hybrid system, using both internal combustion engine and electric motor generator for propulsion
JP3915714B2 (ja) 変速機の制御装置
JP4200679B2 (ja) 車輌の制御装置
JP3817982B2 (ja) ハイブリッド車
JP3835202B2 (ja) 車両用駆動制御装置
JP4228789B2 (ja) 車両の制御装置
JP3213227B2 (ja) 自動変速機のトルク検出及び制御装置
EP1101969B1 (en) Control strategy for an automatic transmission
US8292782B2 (en) Control apparatus for belt-type continuously-variable transmission
DE60212807T2 (de) Fahrzeugtriebstrangsteuerung
EP2068042B1 (en) Driving force control device for vehicle
US6991585B2 (en) Torsional isolation of a convertless automatic transmission through slip control of friction clutch
EP2275706B1 (en) Continuously-variable transmission for vehicle
US7678016B2 (en) Control apparatus for vehicle
EP1132657B1 (en) Control system for vehicle having continuously variable transmission
US8296028B2 (en) Control device and control method for lockup clutch and engine torque in a vehicle
US7178618B2 (en) Vehicular control apparatus and method
DE10218080B4 (de) Vorrichtung und ein Verfahren zum Regeln der Temperatur eines Fluids in einem Leistungsübertragungssystem
JP3712684B2 (ja) ハイブリッド車両の制御装置
US6359404B1 (en) Control apparatus for hybrid vehicle
JP4807697B2 (ja) 車両の制御装置
US20080149407A1 (en) Control apparatus and control method for vehicular drive system
JP3912235B2 (ja) 車両の油圧制御装置
US7644812B2 (en) Using inferred torque converter impeller speed to control an impeller clutch