JP2004079619A - Light emitting diode device - Google Patents

Light emitting diode device Download PDF

Info

Publication number
JP2004079619A
JP2004079619A JP2002234804A JP2002234804A JP2004079619A JP 2004079619 A JP2004079619 A JP 2004079619A JP 2002234804 A JP2002234804 A JP 2002234804A JP 2002234804 A JP2002234804 A JP 2002234804A JP 2004079619 A JP2004079619 A JP 2004079619A
Authority
JP
Japan
Prior art keywords
led
chip
led chip
side terminal
side electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002234804A
Other languages
Japanese (ja)
Inventor
Masataka Tejima
手島 聖貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koha Co Ltd
Original Assignee
Koha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koha Co Ltd filed Critical Koha Co Ltd
Priority to JP2002234804A priority Critical patent/JP2004079619A/en
Publication of JP2004079619A publication Critical patent/JP2004079619A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/4826Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting diode device which easily mounts a light emitting diode chip and which obtains proper light emitting efficiency and heat sink effect. <P>SOLUTION: In the light emitting diode device 1, a P-type side electrode 24 of the light emitting diode chip 2 is electrically and mechanically connected to a bump or directly to a P-type side terminal 3, and an N-type side electrode 25 of the chip 2 is electrically connected to an N-type terminal 4 via a bonding wire 6. With this constitution, since a member for disturbing an optical path is not disposed at a light emitting surface side of the chip 2, its light emitting efficiency is improved. Since a connection to the terminal 3 is only the electrode 24, a positioning accuracy is not required and adhesive properties are enhanced. Accordingly, mounting workability and heat sink properties are improved. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、LED(発光ダイオード)チップを用いたLED装置に関し、特に、LEDチップの実装が容易で、良好な発光効率および放熱効果が得られるLED装置に関する。
【0002】
【従来の技術】
従来、LEDは、電子機器のパイロットランプ、ランプ付きスイッチ、セグメントディスプレイ、自動車のストップランプ、案内標識、踏み切り警報機等が主な用途であったのに対し、近年、実用レベルの高輝度の青色光を出せる青色LEDが開発されたため、3色混合によりカラー画像を表示するディスプレイや白色光源にいたるまで、応用範囲が拡大している。LEDの形状は用途に応じて様々なものがあり、代表的なものにリードフレーム型がある。このリードフレーム型LEDは、2本のリードフレーム(アウターリード)が半楕円形に形成された樹脂モールドから引き出された外形であり、樹脂モールド内にはLEDチップが搭載されている。
【0003】
LEDチップの基本的な構成は、下面に第1の電極を有し、上面の一部分に金属からなる第2の電極を有する構造であり、第1の電極はリードフレームの一方の頂部に形成されたメタルステムに接合・接続され、第2の電極はリードフレームの一方の頂部にボンディングワイヤにより接続されている。
【0004】
しかし、上記構造のLEDチップでは、発光面の上部をボンディングワイヤが通過する構造にならざるを得ず、発光ムラや光量低下が生じやすい。そこで、2つの電極を下部(ステムへの搭載面)に配置し、光出射面をボンディングワイヤが通過しない構造にしたフリップチップ型のLEDチップを用いたLEDがある。
【0005】
このような従来のLED装置として、例えば、特開2000−286457号公報に示されるものがある。このLED装置について、以下に図を示して説明する。
【0006】
図8は、従来のフリップチップ型LEDチップを用いたLED装置を示す。同図において、(a)はサブマウントにLEDチップを位置合わせして搭載した構造の発光素子部材を示し、(b)は(a)の側面であり、(c)は発光素子部材をリードフレームに接続して完成させたLED装置の外観を示している。
【0007】
LEDチップ101は、基台としてのサブマウント102に搭載される。このサブマウント102には、セラミックス、樹脂等の絶縁体が用いられる。サブマウント102の表面の対角位置には、帯状の正電極103および負電極104のパターンがアルミ蒸着により形成されている。LEDチップ101は、サブマウント102の表面に約45度回転させた状態で配置される。
【0008】
サブマウント102にLEDチップ101を搭載して構成される発光素子部材120は、サブマウント102の中心とLEDチップ101の中心を重ね合わせ、更に、サブマウント102の中心軸と、LEDチップ101の中心軸を重ね合わせて、重ね合わせた中心P1を中心点にして略45度回転させた位置(図8の(b)に示す)において、LEDチップ101の正電極(図示せず)が、Auによるマイクロバンプ106によりサブマウント102の正電極103に接続される。同様に、負電極104は、Auによるマイクロバンプ107によりLEDチップ101の負電極と電気的に接続される。更に、マイクロバンプ106,107が溶着されることにより、接続および固定される。
【0009】
図8(b)に示す発光素子部材120は、LEDチップ101を上にして、図8(c)に示すメタルステム110(一方のリードフレームの上端部に設定される)のパラボラ111(光反射鏡)の底部に搭載される。サブマウント102の表面に形成された正電極103上のボンディングパット108は、メタルポスト112(他方のリードフレームの上端部に設定される)から伸ばされたボンディングワイヤとしての金線113によりワイヤボンディングされる。更に、負電極104上のボンディングパット109はメタルステム110から伸ばされた金線114によりワイヤボンディングされている。発光素子部材120を含むメタルステム110およびメタルポスト112は、樹脂モールド115によってモールドされている。
【0010】
上記した構成により、LEDチップ101、サブマウント102、パラボラ111、および樹脂モールド115の総ての中心軸が一致したLED装置100を製造することができるようになり、上下左右で、即ち、LED装置100の中心軸P2に垂直な平面上において、中心に対して一様、均一な配光が得られる。また、LED装置100自体を大きくすることなく大きなサイズのLEDチップ101を配置することができるので、高輝度のLED装置が得られる。
【0011】
【発明が解決しようとする課題】
しかし、従来のLED装置によると、サブマウント102との接続がマイクロバンプ106,107を介して行われるため、LEDチップ101とサブマウント102の位置合わせが正確でないと、接続不良を生じる。しかも、マイクロバンプを高精度に行うためには高価な生産設備の導入が不可避であるほか、位置合わせに時間を要するため、歩留り向上が期待できない。
【0012】
また、LEDチップ101とサブマウント102に位置ずれが生じていると、LEDチップ101、サブマウント102、パラボラ111、および樹脂モールド115の総ての中心軸P2が図8(c)に示した様に一致させることができなくなり、高輝度を得られなくなる。更に、メタルステムおよびメタルポストのそれぞれとの接続にワイヤボンディングが用いられているため、熱膨張収縮によるストレスに対する信頼性も懸念される。
【0013】
更に、LEDチップ101はマイクロバンプ106,107を介してサブマウント102に搭載される構造のため、LEDチップ101からサブマウント102への放熱はマイクロバンプ106,107のみを通して行われるに過ぎず、十分な放熱を期待することはできない。
【0014】
したがって、本発明の目的は、LEDチップの実装が容易で、良好な発光効率および放熱効果が得られるLED装置を提供することにある。
【0015】
【課題を解決するための手段】
本発明は、上記目的を達成するため、底面にP側電極およびN側電極を有するLEDチップと、前記LEDチップの前記P側電極がバンプあるいは直接に機械的および電気的に接続されたP側端子と、前記LEDチップの前記N側電極がボンディングワイヤによって電気的に接続されたN側端子とを備えたことを特徴とするLED装置を提供する。
この構成によれば、P側電極とN側電極は同一面側に半導体層の厚み分だけ段差を有するように形成され、P側電極が実装面に実装されても、N側電極およびその接続部が障害になることがないので、LEDチップの実装が容易になる。更に、実装面との密着性が向上するので放熱性が向上する。また、発光面側に電極が設けられていないので、光を遮るボンディングワイヤが発光面上に通線されることがなく、発光効率を低下させることもない。
【0016】
【発明の実施の形態】
図1および図2は、本発明の第1の実施の形態に係るLED装置を示し、図1は斜視図、図2(a)は平面図、図2(b)は側面図である。なお、図2では封止部材を除いて示す。このLED装置1は、LEDランプであり、LEDチップ2と、LEDチップ2のP側電極24が金バンプ5によって電気的および機械的に接続されたP側端子3と、LEDチップ2のN側電極25にボンディングワイヤ6によって電気的に接続されたN側端子4と、LEDチップ2が搭載されたP側端子3の先端部、およびボンディングワイヤ6が接続されたN側端子4の先端部の下側および上側をそれぞれ封止する下側封止部材7Aおよび上側封止部材7Bとを備える。なお、LEDチップ2のP側電極24を金バンプ5を用いずに直接P側端子3に接続してもよい。
【0017】
下側封止部材7Aは、ボンディングワイヤ6を保護し、LEDチップ2の発光光を反射する機能を有する。この下側封止部材7Aは、例えば、白色材等の光反射材料により封止してもよく、白色材等の光反射材成形品によりケーシングしてもよく、上面にアルミニウム等の反射膜を蒸着したガラス成形品によりケーシングしてもよい。
【0018】
上側封止部材7Bは、LEDチップ2を保護し、LEDチップ2の発光光を集光する機能を有する。上側封止部材7Bは、例えば、透明樹脂材料により封止してもよく、透明樹脂成形品あるいはガラス成形品によりケーシングしてもよい。
【0019】
図3は、LEDチップ2を示す。LEDチップ2は、透明で角形のサファイヤ基板20上に発光層21が内挿された窒化ガリウム系半導体層22が凹型に設けられている。この窒化ガリウム系半導体層22上には、電流拡散用透明電極23が形成されており、その中央部にはP側電極24が設けられている。更に、サファイヤ基板20上の窒化ガリウム系半導体層22が設けられていない部分には、N側電極25が設けられている。このN側電極25が設けられている部分は、窒化ガリウム系半導体層22に対して、窒化ガリウム系半導体層22の厚み分だけ段差を生じている。
【0020】
図4は、P側端子3およびN側端子4を示す。P側端子3およびN側端子4は、銅等の金属のリードフレームからなり、両端子3,4間には、所定の間隔が設けられている。
【0021】
P側端子3は、その先端にLEDチップ2の外形よりやや大きい角形のチップ実装部30が形成され、チップ実装部30から延在部31が延びている。チップ実装部30の表面には、金,銀等のメッキからなるチップ実装面33が形成されている。チップ実装部30のチップ実装位置34に合わせてLEDチップ2が実装され、LEDチップ2のP側電極24がチップ実装面33のP側電極位置35に接続される。また、P側端子3は、チップ実装部30のN側端子4寄りに、四角形の貫通穴32が設けられており、この貫通穴32の開口面にLEDチップ2のN側電極25が対面し、露出する。なお、貫通穴32に代え、チップ実装部30を凹型に加工し、これによって生じる切り欠き部(凹み部)を用いる構成であってもよい。
【0022】
N側端子4は、先端に幅広のボンティング部40が形成され、その後方に延在部41が延びている。ボンティング部40の下面には、P側端子3に実装されたLEDチップ2のN側電極25との接続に用いられるボンディングワイヤ6の一端を接続するための金,銀等のメッキからなるボンディング面42が形成されている。
【0023】
次に、LED装置1の製造方法を説明する。LED装置1の製造には、LEDチップ2、P側端子3、N側端子4およびボンディングワイヤ6が必要である。まず、LEDチップ2をフリップチップ(フェースダウン)ボンディングにより、P側端子3のチップ実装面33に実装する。フリップチップボンディングを行うために、メッキあるいはボンディンッグ法等により金バンプ5が予めP側電極24に対応する場所に形成されている。従って、LEDチップ2を図3に示す状態から裏返しにし、LEDチップ2をチップ実装位置34に位置合わせするとともに、N側電極25をN側電極位置36に位置合わせし、ついでフリップチップボンディングを行えば、金バンプ5によりP側電極24とP側端子3上のP側電極位置35で接続され、LEDチップ2自体もチップ実装面33上に固定される。
【0024】
次に、ボンディングワイヤ6の一端をP側端子3の貫通穴32に通してLEDチップ2のN側電極25にボンディングする。ボンディングワイヤ6の他端をN側端子4のボンディング面42にボンディングする。
【0025】
最後に、LEDチップ2の裏側を下側封止部材7Aにより封止し、LEDチップ2の発光面側を上側封止部材7Bにより封止し、LEDランプが完成する。
【0026】
以上のように、第1の実施の形態によれば、以下の効果を奏する。
(1)LEDチップ2をP側端子3およびN側端子4に実装する際、LEDチップ2のN側電極25のフリップチップボンディングが不要になるため、P側端子3およびN側端子4の製作には従来のような高い加工精度を要求されないので、生産歩留りが向上する。
(2)エッチングやプレスにより貫通穴32を加工する際、貫通穴32のサイズが比較的大きいために加工精度が緩和され、リードフレーム等の厚み方向の寸法を増やすことができるため、P側端子3の熱容量が増え、放熱性が向上する。
(3)フリップチップボンディングによる接合部位は、P側電極24のみの単一面であり、N側電極25の段差を考慮することなく作業が行える。このため、バンプの形成高さを低くすることができ、フリップチップボンディングの条件出しも容易になり、作業、部材条件のバラツキ等による歩留り低下を低減することができる。
(4)LEDチップ2をP側端子3のチップ実装面33に直接的に接合することもできるため、LEDチップ2自体の発熱源であるPN接合部(発光部)とチップ実装面33との距離がワイヤボンディング方式に比べて縮まり、或いはその間隔が無くなるので、LEDチップ2が発した熱はチップ実装面33に伝わり易くなり、放熱性が向上する。
(5)LEDチップ2の発光層部とチップ実装面33との距離が縮まり或いは無くなるため、チップ実装面33との間の光散乱等による光減衰が無くなり、光の反射効率が上がる結果、光量を増大させることができる。
(6)LEDチップ2は、P側電極24およびN側電極25が同一面側に設けられ、発光面側にボンディングワイヤ6を通線する必要が無いため、発生した光がボンディングワイヤ6により遮られることはなく、光量落ちや光ムラを生じることがなく、発光効率を低下させることがない。そして、P側端子3に設けられた貫通穴32は、ボンディングワイヤ6の一部をガイドするように機能するため、ボンディングワイヤ6に外力が加わるのを低減でき、ボンディング後のボンディングワイヤ6の変形を低減することができる。
なお、上記実施の形態では、LEDランプとして、1つのLEDチップを用いた場合を示したが、同一の発光色あるいは異なる色の発光色の複数のLEDチップを用いてもよい。
【0027】
図5は、LEDチップ2の変形例を示す。図3に示すLEDチップ2がチップ表面の一部分にのみP側電極24が設けられていたのに対し、この変形例のLEDチップ2は、窒化ガリウム系半導体層22の全面にP側電極24を備えるところに特徴がある。この構成によれば、図3に示すP側電極24に比べ、バンプの数量を増やしたり、個々のサイズを大きくできるようになり、LEDチップ2とP側端子3との接合面積を増やすことが可能になる。この結果、図3の構成に比べ、放熱性は更に向上する。また、接合強度を増大できることにより、信頼性の向上が可能になる。この変形例の場合、フリップチップボンディング工程において、N側電極25部分の接合を考慮しないで済むため、バンプを介さずに実装面にLEDチップ2を直接実装することも可能になる。この場合、バンプの形成工数を削除でき、バンプの形成不良に起因する不良発生を低減することもできる。
【0028】
図6は、P側端子3およびN側端子4の変形例を示す。P側端子3およびN側端子4の代わりに、同図に示すように、表面にP側導体パターン9A、裏面にN側導体パターン9Bを形成したプリント基板8を用いてもよい。プリント基板8には、ボンディングワイヤ6を通す貫通穴32が形成されている。P側導体パターン9Aには、LEDチップ2のP側電極24が接続され、N側導体パターン9Bには、LEDチップ2のN側電極25がボンディングワイヤ6を介して接続される。この変形例の場合、P側端子3にプリント基板を用いた場合、貫通穴32内を絶縁体にできるので、ボンディングワイヤ6の変形防止と共に、ボンディングワイヤ6が貫通穴32の内壁に接触することによるショートを防止できる。
【0029】
図7は、本発明の第2の実施の形態に係るLED装置を示す。このLED装置1は、表面にP側導体パターン9A、裏面にN側導体パターン9Bを形成したプリント基板8に、図3あるいは図5に示したLEDチップ2A,2B,2Cを3つ搭載し、LEDチップ2A,2B,2CのP側電極とP側導体パターン9Aを電気的および機械的に接続し、ボンディングワイヤ6によってLEDチップ2A,2B,2CのN側電極とN側導体パターン9Bを電気的に接続し、表側を透明封止部材7Cによって封止し、ボンディングワイヤ6を保護するための封止部材10によって裏側を封止したものである。これにより、第1の実施の形態と同様の効果が得られる。また、貫通穴32内を絶縁体にできるので、ボンディングワイヤ6が貫通穴32の内壁に接触することによるショートを防止できる。なお、複数のLEDチップをマトリクス状に配列して文字、記号等を表示する表示ユニットとして用いてもよい。
【0030】
【発明の効果】
以上説明したように、本発明のLED装置によれば、P側端子のチップ実装面への位置決めはLEDチップのP側電極のみに依存し、N側電極が障害とならない構成にしたたため、位置決め精度は要求されないことから、LEDチップの実装が容易になる。
また、LEDチップの実装が容易になるため、実装部材であるP側端子およびN側端子の加工が容易になる。この結果、リードフレームあるいはプリント基板の導電パターンの厚みを厚くすることができ、放熱性が向上する。また、LEDチップとP側端子のチップ実装面との密着性が向上するので、放熱性が向上する。
更に、発光面側に電極が無く、光を遮るボンディングワイヤが発光面上に通線されないため、発光効率を低下させることがない。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係るLED装置の斜視図である。
【図2】本発明の第1の実施の形態に係るLED装置を示し、(a)は平面図、(b)は側面図である。
【図3】本発明の第1の実施の形態に係るLEDチップの斜視図である。
【図4】本発明の第1の実施の形態に係るP側端子およびN側端子の斜視図である。
【図5】LEDチップの他の例を示す斜視図である。
【図6】P側端子およびN側端子の他の例を示す斜視図である。
【図7】本発明の第2の実施の形態に係るLED装置の斜視図である。
【図8】従来のフリップチップ型LEDチップを用いたLEDの構成を示し、(a)はサブマウントにLEDチップを位置合わせして搭載してなる発光素子部材の平面図、(b)は(a)の側面図、(c)は発光素子部材をリードフレームに接続して完成させたLEDを示す側面図である。
【符号の説明】
1 LED  装置
2 LED  チップ
3 P側端子
4 N側端子
5 金バンプ
6 ボンディングワイヤ
7A 下側封止部材
7B 上側封止部材
7C 透明封止部材
8 プリント基板
9A P側導体パターン
9B 裏面にN側導体パターン
10 封止部材
20 サファイヤ基板
21 発光層
22 窒化ガリウム系半導体層
23 電流拡散用透明電極
24 P側電極
25 N側電極
30 チップ実装部
31 延在部
32 ボンディング面
32 貫通穴
33 チップ実装面
34 チップ実装位置
35 P側電極位置
36 N側電極位置
40 ボンティング部
41 延在部
42 ボンディング面
100 LED装置
101 LEDチップ
102 サブマウント
103 正電極
104 負電極
106,107 マイクロバンプ
108,109ボンディングパット
110 メタルステム
111 パラボラ
112 メタルポスト
113,114 金線
115 樹脂モールド
120 発光素子部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an LED device using an LED (light emitting diode) chip, and more particularly to an LED device in which the LED chip can be easily mounted and good luminous efficiency and heat dissipation effect can be obtained.
[0002]
[Prior art]
Conventionally, LEDs have been mainly used for electronic equipment pilot lamps, switches with lamps, segment displays, automobile stop lamps, guide signs, crossing alarms, etc. Since a blue LED capable of emitting light has been developed, the application range has been expanded to a display that displays a color image by mixing three colors and a white light source. There are various LED shapes depending on the application, and a typical one is a lead frame type. This lead frame type LED has an outer shape drawn from a resin mold in which two lead frames (outer leads) are formed in a semi-elliptical shape, and an LED chip is mounted in the resin mold.
[0003]
The basic configuration of the LED chip is a structure having a first electrode on the lower surface and a second electrode made of metal on a part of the upper surface, and the first electrode is formed on one top of the lead frame. The second electrode is connected to one top of the lead frame by a bonding wire.
[0004]
However, the LED chip having the above structure has to have a structure in which the bonding wire passes through the upper surface of the light emitting surface, and light emission unevenness and a decrease in light amount are likely to occur. Therefore, there is an LED using a flip chip type LED chip in which two electrodes are arranged at the lower part (mounting surface on the stem) and the light emitting surface does not pass a bonding wire.
[0005]
As such a conventional LED device, for example, there is one disclosed in Japanese Patent Application Laid-Open No. 2000-286457. This LED device will be described below with reference to the drawings.
[0006]
FIG. 8 shows an LED device using a conventional flip chip type LED chip. In the same figure, (a) shows a light emitting element member having a structure in which an LED chip is aligned and mounted on a submount, (b) is a side view of (a), and (c) is a lead frame of the light emitting element member. The external appearance of the LED device completed by connecting to is shown.
[0007]
The LED chip 101 is mounted on a submount 102 as a base. The submount 102 is made of an insulator such as ceramic or resin. In the diagonal position on the surface of the submount 102, patterns of the strip-like positive electrode 103 and the negative electrode 104 are formed by aluminum vapor deposition. The LED chip 101 is arranged on the surface of the submount 102 in a state of being rotated about 45 degrees.
[0008]
The light emitting element member 120 configured by mounting the LED chip 101 on the submount 102 overlaps the center of the submount 102 and the center of the LED chip 101, and further, the center axis of the submount 102 and the center of the LED chip 101. The positive electrode (not shown) of the LED chip 101 is made of Au at a position (shown in FIG. 8 (b)) where the axes are overlapped and rotated about 45 degrees around the overlapped center P1. The micro bump 106 is connected to the positive electrode 103 of the submount 102. Similarly, the negative electrode 104 is electrically connected to the negative electrode of the LED chip 101 by a micro bump 107 made of Au. Further, the micro bumps 106 and 107 are welded to be connected and fixed.
[0009]
The light emitting element member 120 shown in FIG. 8B has a parabola 111 (light reflection) of the metal stem 110 (set at the upper end of one lead frame) shown in FIG. 8C with the LED chip 101 facing upward. Mounted on the bottom of the mirror. A bonding pad 108 on the positive electrode 103 formed on the surface of the submount 102 is wire-bonded by a gold wire 113 as a bonding wire extended from a metal post 112 (set at the upper end of the other lead frame). The Further, the bonding pad 109 on the negative electrode 104 is wire-bonded by a gold wire 114 extended from the metal stem 110. The metal stem 110 and the metal post 112 including the light emitting element member 120 are molded by a resin mold 115.
[0010]
With the above-described configuration, the LED device 100 in which the central axes of the LED chip 101, the submount 102, the parabola 111, and the resin mold 115 all coincide can be manufactured. On a plane perpendicular to the central axis P2 of 100, a uniform and uniform light distribution with respect to the center can be obtained. Moreover, since the LED chip 101 having a large size can be arranged without increasing the size of the LED device 100 itself, a high-luminance LED device can be obtained.
[0011]
[Problems to be solved by the invention]
However, according to the conventional LED device, since the connection with the submount 102 is performed through the micro bumps 106 and 107, the connection failure occurs if the alignment between the LED chip 101 and the submount 102 is not accurate. In addition, in order to perform micro bumps with high accuracy, it is inevitable to introduce expensive production equipment, and it takes time for alignment, so that it is not expected to improve yield.
[0012]
If the LED chip 101 and the submount 102 are misaligned, all the central axes P2 of the LED chip 101, the submount 102, the parabola 111, and the resin mold 115 are as shown in FIG. 8C. Therefore, it is impossible to make the brightness match, and high brightness cannot be obtained. Furthermore, since wire bonding is used for connection with each of the metal stem and the metal post, there is a concern about reliability against stress due to thermal expansion and contraction.
[0013]
Furthermore, since the LED chip 101 is mounted on the submount 102 via the microbumps 106 and 107, heat radiation from the LED chip 101 to the submount 102 is performed only through the microbumps 106 and 107. We cannot expect a good heat dissipation.
[0014]
Accordingly, an object of the present invention is to provide an LED device that can be easily mounted with an LED chip and that can provide good light emission efficiency and heat dissipation.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an LED chip having a P-side electrode and an N-side electrode on the bottom surface, and a P-side where the P-side electrode of the LED chip is bumped or directly mechanically and electrically connected. There is provided an LED device comprising: a terminal; and an N-side terminal in which the N-side electrode of the LED chip is electrically connected by a bonding wire.
According to this configuration, the P-side electrode and the N-side electrode are formed on the same surface side so as to have a step corresponding to the thickness of the semiconductor layer, and even if the P-side electrode is mounted on the mounting surface, the N-side electrode and its connection Since the portion does not become an obstacle, the LED chip can be easily mounted. Furthermore, since the adhesiveness with the mounting surface is improved, the heat dissipation is improved. In addition, since no electrode is provided on the light emitting surface side, a bonding wire that blocks light is not passed on the light emitting surface, and the light emission efficiency is not lowered.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show an LED device according to a first embodiment of the present invention. FIG. 1 is a perspective view, FIG. 2 (a) is a plan view, and FIG. 2 (b) is a side view. In FIG. 2, the sealing member is omitted. The LED device 1 is an LED lamp, and includes an LED chip 2, a P-side terminal 3 in which a P-side electrode 24 of the LED chip 2 is electrically and mechanically connected by a gold bump 5, and an N-side of the LED chip 2. The N-side terminal 4 electrically connected to the electrode 25 by the bonding wire 6, the tip of the P-side terminal 3 on which the LED chip 2 is mounted, and the tip of the N-side terminal 4 to which the bonding wire 6 is connected A lower sealing member 7A and an upper sealing member 7B are provided to seal the lower side and the upper side, respectively. The P-side electrode 24 of the LED chip 2 may be directly connected to the P-side terminal 3 without using the gold bump 5.
[0017]
The lower sealing member 7 </ b> A has a function of protecting the bonding wire 6 and reflecting the light emitted from the LED chip 2. The lower sealing member 7A may be sealed with a light reflecting material such as a white material, or may be casing with a light reflecting material molded product such as a white material, and a reflective film such as aluminum is provided on the upper surface. The casing may be formed by a vapor-deposited glass molded product.
[0018]
The upper sealing member 7 </ b> B has a function of protecting the LED chip 2 and condensing the light emitted from the LED chip 2. For example, the upper sealing member 7B may be sealed with a transparent resin material, or may be casing with a transparent resin molded product or a glass molded product.
[0019]
FIG. 3 shows the LED chip 2. In the LED chip 2, a gallium nitride based semiconductor layer 22 in which a light emitting layer 21 is inserted on a transparent and rectangular sapphire substrate 20 is provided in a concave shape. On the gallium nitride based semiconductor layer 22, a transparent electrode 23 for current diffusion is formed, and a P-side electrode 24 is provided at the center thereof. Further, an N-side electrode 25 is provided on a portion of the sapphire substrate 20 where the gallium nitride based semiconductor layer 22 is not provided. The portion where the N-side electrode 25 is provided has a level difference with respect to the gallium nitride based semiconductor layer 22 by the thickness of the gallium nitride based semiconductor layer 22.
[0020]
FIG. 4 shows the P-side terminal 3 and the N-side terminal 4. The P-side terminal 3 and the N-side terminal 4 are made of a lead frame made of metal such as copper, and a predetermined interval is provided between the terminals 3 and 4.
[0021]
The P-side terminal 3 has a rectangular chip mounting portion 30 that is slightly larger than the outer shape of the LED chip 2 at its tip, and an extending portion 31 extends from the chip mounting portion 30. A chip mounting surface 33 made of gold, silver, or the like is formed on the surface of the chip mounting portion 30. The LED chip 2 is mounted in accordance with the chip mounting position 34 of the chip mounting portion 30, and the P-side electrode 24 of the LED chip 2 is connected to the P-side electrode position 35 of the chip mounting surface 33. The P-side terminal 3 is provided with a rectangular through hole 32 near the N-side terminal 4 of the chip mounting portion 30, and the N-side electrode 25 of the LED chip 2 faces the opening surface of the through-hole 32. , Exposed. Instead of the through hole 32, the chip mounting part 30 may be processed into a concave shape, and a notch part (dent part) generated thereby may be used.
[0022]
The N-side terminal 4 has a wide bonding part 40 formed at the tip, and an extension part 41 extends behind the bonding part 40. Bonding made of gold, silver or the like for connecting one end of a bonding wire 6 used for connection to the N-side electrode 25 of the LED chip 2 mounted on the P-side terminal 3 on the lower surface of the bonding part 40 A surface 42 is formed.
[0023]
Next, a method for manufacturing the LED device 1 will be described. For manufacturing the LED device 1, the LED chip 2, the P-side terminal 3, the N-side terminal 4, and the bonding wire 6 are necessary. First, the LED chip 2 is mounted on the chip mounting surface 33 of the P-side terminal 3 by flip chip (face-down) bonding. In order to perform flip chip bonding, gold bumps 5 are formed in advance at locations corresponding to the P-side electrode 24 by plating or bonding. Therefore, the LED chip 2 is turned over from the state shown in FIG. 3, the LED chip 2 is aligned with the chip mounting position 34, the N-side electrode 25 is aligned with the N-side electrode position 36, and then flip chip bonding is performed. For example, the P-side electrode 24 is connected to the P-side electrode position 35 on the P-side terminal 3 by the gold bump 5, and the LED chip 2 itself is also fixed on the chip mounting surface 33.
[0024]
Next, one end of the bonding wire 6 is passed through the through hole 32 of the P-side terminal 3 and bonded to the N-side electrode 25 of the LED chip 2. The other end of the bonding wire 6 is bonded to the bonding surface 42 of the N-side terminal 4.
[0025]
Finally, the back side of the LED chip 2 is sealed with the lower sealing member 7A, and the light emitting surface side of the LED chip 2 is sealed with the upper sealing member 7B, thereby completing the LED lamp.
[0026]
As described above, according to the first embodiment, the following effects are obtained.
(1) When the LED chip 2 is mounted on the P-side terminal 3 and the N-side terminal 4, the flip-chip bonding of the N-side electrode 25 of the LED chip 2 is not necessary, so that the P-side terminal 3 and the N-side terminal 4 are manufactured. Is not required to have high machining accuracy as in the prior art, so that the production yield is improved.
(2) When processing the through-hole 32 by etching or pressing, the size of the through-hole 32 is relatively large, so the processing accuracy is relaxed and the dimension in the thickness direction of the lead frame and the like can be increased. The heat capacity of 3 increases and the heat dissipation improves.
(3) The bonding part by flip-chip bonding is a single surface of only the P-side electrode 24, and the operation can be performed without considering the step of the N-side electrode 25. For this reason, the bump formation height can be reduced, the conditions for flip chip bonding can be easily determined, and the yield reduction due to variations in work and member conditions can be reduced.
(4) Since the LED chip 2 can be directly bonded to the chip mounting surface 33 of the P-side terminal 3, the PN junction (light emitting unit) that is the heat source of the LED chip 2 itself and the chip mounting surface 33 Since the distance is reduced as compared with the wire bonding method or the interval is eliminated, the heat generated by the LED chip 2 is easily transmitted to the chip mounting surface 33, and the heat dissipation is improved.
(5) Since the distance between the light emitting layer portion of the LED chip 2 and the chip mounting surface 33 is reduced or eliminated, light attenuation due to light scattering between the chip mounting surface 33 and the like is eliminated, and the light reflection efficiency is increased. Can be increased.
(6) In the LED chip 2, the P-side electrode 24 and the N-side electrode 25 are provided on the same surface side, and there is no need to pass the bonding wire 6 to the light emitting surface side. In other words, no light loss or light unevenness occurs, and the light emission efficiency does not decrease. Since the through hole 32 provided in the P-side terminal 3 functions to guide a part of the bonding wire 6, it is possible to reduce the external force applied to the bonding wire 6 and to deform the bonding wire 6 after bonding. Can be reduced.
In the above embodiment, the case where one LED chip is used as the LED lamp is shown, but a plurality of LED chips having the same emission color or different emission colors may be used.
[0027]
FIG. 5 shows a modification of the LED chip 2. The LED chip 2 shown in FIG. 3 has the P-side electrode 24 provided only on a part of the chip surface, whereas the LED chip 2 of this modification has the P-side electrode 24 on the entire surface of the gallium nitride based semiconductor layer 22. There is a feature in the preparation. According to this configuration, it is possible to increase the number of bumps or increase the size of each bump and increase the bonding area between the LED chip 2 and the P-side terminal 3 compared to the P-side electrode 24 shown in FIG. It becomes possible. As a result, the heat dissipation is further improved as compared with the configuration of FIG. Further, since the bonding strength can be increased, the reliability can be improved. In the case of this modification, since it is not necessary to consider the joining of the N-side electrode 25 portion in the flip chip bonding process, the LED chip 2 can be directly mounted on the mounting surface without using bumps. In this case, the number of bump formation steps can be eliminated, and the occurrence of defects due to bump formation defects can be reduced.
[0028]
FIG. 6 shows a modification of the P-side terminal 3 and the N-side terminal 4. Instead of the P-side terminal 3 and the N-side terminal 4, as shown in the figure, a printed circuit board 8 having a P-side conductor pattern 9A on the front surface and an N-side conductor pattern 9B on the back surface may be used. A through hole 32 through which the bonding wire 6 passes is formed in the printed board 8. The P-side electrode 24 of the LED chip 2 is connected to the P-side conductor pattern 9A, and the N-side electrode 25 of the LED chip 2 is connected to the N-side conductor pattern 9B via the bonding wire 6. In the case of this modification, when a printed circuit board is used for the P-side terminal 3, the inside of the through hole 32 can be an insulator, so that the bonding wire 6 comes into contact with the inner wall of the through hole 32 as well as preventing deformation of the bonding wire 6. Can prevent short circuit.
[0029]
FIG. 7 shows an LED device according to the second embodiment of the present invention. This LED device 1 has three LED chips 2A, 2B, 2C shown in FIG. 3 or 5 mounted on a printed circuit board 8 having a P-side conductor pattern 9A on the front surface and an N-side conductor pattern 9B on the back surface. The P-side electrode of the LED chips 2A, 2B, 2C and the P-side conductor pattern 9A are electrically and mechanically connected, and the bonding wire 6 electrically connects the N-side electrode of the LED chips 2A, 2B, 2C and the N-side conductor pattern 9B. The front side is sealed with a transparent sealing member 7C, and the back side is sealed with a sealing member 10 for protecting the bonding wire 6. Thereby, the same effect as that of the first embodiment can be obtained. Further, since the inside of the through hole 32 can be an insulator, a short circuit due to the bonding wire 6 coming into contact with the inner wall of the through hole 32 can be prevented. Note that a plurality of LED chips may be arranged in a matrix and used as a display unit that displays characters, symbols, and the like.
[0030]
【The invention's effect】
As described above, according to the LED device of the present invention, the positioning of the P-side terminal on the chip mounting surface depends only on the P-side electrode of the LED chip, and the N-side electrode does not become an obstacle. Since accuracy is not required, the LED chip can be easily mounted.
Moreover, since mounting of the LED chip is facilitated, processing of the P-side terminal and the N-side terminal, which are mounting members, is facilitated. As a result, the thickness of the conductive pattern of the lead frame or the printed board can be increased, and the heat dissipation is improved. Moreover, since the adhesiveness between the LED chip and the chip mounting surface of the P-side terminal is improved, the heat dissipation is improved.
Furthermore, since there is no electrode on the light emitting surface side and a bonding wire that blocks light is not passed on the light emitting surface, the light emission efficiency is not lowered.
[Brief description of the drawings]
FIG. 1 is a perspective view of an LED device according to a first embodiment of the present invention.
2A and 2B show an LED device according to a first embodiment of the present invention, where FIG. 2A is a plan view and FIG. 2B is a side view.
FIG. 3 is a perspective view of the LED chip according to the first embodiment of the present invention.
FIG. 4 is a perspective view of a P-side terminal and an N-side terminal according to the first embodiment of the present invention.
FIG. 5 is a perspective view showing another example of an LED chip.
FIG. 6 is a perspective view showing another example of a P-side terminal and an N-side terminal.
FIG. 7 is a perspective view of an LED device according to a second embodiment of the present invention.
8A and 8B show a configuration of an LED using a conventional flip chip type LED chip, in which FIG. 8A is a plan view of a light emitting element member formed by aligning and mounting an LED chip on a submount, and FIG. The side view of a), (c) is a side view showing the LED completed by connecting the light emitting element member to the lead frame.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 LED apparatus 2 LED chip 3 P side terminal 4 N side terminal 5 Gold bump 6 Bonding wire 7A Lower sealing member 7B Upper sealing member 7C Transparent sealing member 8 Printed circuit board 9A P side conductor pattern 9B N side conductor on the back surface Pattern 10 Sealing member 20 Sapphire substrate 21 Light emitting layer 22 Gallium nitride semiconductor layer 23 Transparent electrode 24 for current diffusion P side electrode 25 N side electrode 30 Chip mounting portion 31 Extension portion 32 Bonding surface 32 Through hole 33 Chip mounting surface 34 Chip mounting position 35 P side electrode position 36 N side electrode position 40 Bonding part 41 Extension part 42 Bonding surface 100 LED device 101 LED chip 102 Submount 103 Positive electrode 104 Negative electrode 106, 107 Micro bump 108, 109 Bonding pad 110 Metal stem 111 Parabola 112 Tal post 113, 114 Gold wire 115 Resin mold 120 Light emitting element member

Claims (8)

底面にP側電極およびN側電極を有するLEDチップと、
前記LEDチップの前記P側電極がバンプあるいは直接に機械的および電気的に接続されたP側端子と、
前記LEDチップの前記N側電極がボンディングワイヤによって電気的に接続されたN側端子とを備えたことを特徴とするLED装置。
An LED chip having a P-side electrode and an N-side electrode on the bottom surface;
A P-side terminal in which the P-side electrode of the LED chip is bumped or directly mechanically and electrically connected;
An LED device comprising: an N-side terminal electrically connected by a bonding wire to the N-side electrode of the LED chip.
前記LEDチップは、
透明基板と、
前記透明基板上の一部に形成された前記N側電極と、
前記透明基板上に発光層を含んで前記N側電極を囲むように形成された半導体層と、
前記半導体層の表面に形成された前記P側電極とを備えることを特徴とする請求項1記載のLED装置。
The LED chip is
A transparent substrate;
The N-side electrode formed on a part of the transparent substrate;
A semiconductor layer formed on the transparent substrate so as to surround the N-side electrode including a light emitting layer;
The LED device according to claim 1, further comprising the P-side electrode formed on a surface of the semiconductor layer.
前記P側端子は、前記P側電極へのフリップチップボンディングにより前記LEDチップが搭載されるチップ実装面、および搭載された前記LEDチップの前記N側電極を露出させる開口部を有し、
前記N側端子は、前記P側端子の近傍に配置されるとともに、前記チップ実装面とは反対側の面にワイヤボンディング面が形成されたことを特徴とする請求項1記載のLED装置。
The P-side terminal has a chip mounting surface on which the LED chip is mounted by flip chip bonding to the P-side electrode, and an opening that exposes the N-side electrode of the mounted LED chip,
The LED device according to claim 1, wherein the N-side terminal is disposed in the vicinity of the P-side terminal, and a wire bonding surface is formed on a surface opposite to the chip mounting surface.
前記開口部は、貫通穴又は切欠部であることを特徴とする請求項4記載のLED装置。The LED device according to claim 4, wherein the opening is a through hole or a notch. 前記P側端子および前記N側端子は、プリント基板の絶縁層上に形成された導電パターンからなることを特徴とする請求項1記載のLED装置。The LED device according to claim 1, wherein the P-side terminal and the N-side terminal are formed of a conductive pattern formed on an insulating layer of a printed board. 前記P側端子および前記N側端子は、プレス、エッチング等により加工された金属材料のリードフレームからなることを特徴とする請求項1記載のLED装置。The LED device according to claim 1, wherein the P-side terminal and the N-side terminal are made of a metal material lead frame processed by pressing, etching, or the like. 前記LEDチップは、1つあるいは複数のLEDチップにより1つのLEDランプを構成することを特徴とする請求項1記載のLED装置。The LED device according to claim 1, wherein the LED chip constitutes one LED lamp by one or a plurality of LED chips. 前記LEDチップは、マトリクス状に配列された複数のLEDチップにより表示ユニットを構成することを特徴とする請求項1記載のLED装置。The LED device according to claim 1, wherein the LED chip constitutes a display unit by a plurality of LED chips arranged in a matrix.
JP2002234804A 2002-08-12 2002-08-12 Light emitting diode device Pending JP2004079619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234804A JP2004079619A (en) 2002-08-12 2002-08-12 Light emitting diode device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234804A JP2004079619A (en) 2002-08-12 2002-08-12 Light emitting diode device

Publications (1)

Publication Number Publication Date
JP2004079619A true JP2004079619A (en) 2004-03-11

Family

ID=32019504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234804A Pending JP2004079619A (en) 2002-08-12 2002-08-12 Light emitting diode device

Country Status (1)

Country Link
JP (1) JP2004079619A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191052A (en) * 2004-12-29 2006-07-20 Samsung Electro Mech Co Ltd Flip chip bonding structure of luminous element using metal column
US7476913B2 (en) 2004-08-10 2009-01-13 Renesas Technology Corp. Light emitting device having a mirror portion
JP2010287685A (en) * 2009-06-10 2010-12-24 Panasonic Electric Works Co Ltd Led module
JP2014140072A (en) * 2014-04-16 2014-07-31 Rohm Co Ltd Light-emitting element module
WO2015019565A1 (en) * 2013-08-06 2015-02-12 パナソニックIpマネジメント株式会社 Light emitting device and display apparatus
US9312462B2 (en) 2010-04-30 2016-04-12 Rohm Co., Ltd. LED module
JP2017162980A (en) * 2016-03-09 2017-09-14 豊田合成株式会社 Light-emitting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476913B2 (en) 2004-08-10 2009-01-13 Renesas Technology Corp. Light emitting device having a mirror portion
JP2006191052A (en) * 2004-12-29 2006-07-20 Samsung Electro Mech Co Ltd Flip chip bonding structure of luminous element using metal column
JP2010287685A (en) * 2009-06-10 2010-12-24 Panasonic Electric Works Co Ltd Led module
US9312462B2 (en) 2010-04-30 2016-04-12 Rohm Co., Ltd. LED module
WO2015019565A1 (en) * 2013-08-06 2015-02-12 パナソニックIpマネジメント株式会社 Light emitting device and display apparatus
JP2015053472A (en) * 2013-08-06 2015-03-19 パナソニックIpマネジメント株式会社 Light emitting device and display device
JP2014140072A (en) * 2014-04-16 2014-07-31 Rohm Co Ltd Light-emitting element module
JP2017162980A (en) * 2016-03-09 2017-09-14 豊田合成株式会社 Light-emitting device

Similar Documents

Publication Publication Date Title
US9793453B2 (en) Light emitting device
US8378374B2 (en) Semiconductor light emitting device packages including submounts
KR100610650B1 (en) Light emitting diode package and manufacturing method thereof
CN100423306C (en) Method for manufacturing light emitting diode package
US9847463B2 (en) Method of manufacturing light emitting device including metal patterns and cut-out section
US6936855B1 (en) Bendable high flux LED array
JP5113349B2 (en) RGB thermal isolation board
US8283691B2 (en) Light emitting device package and a lighting device
US20070228386A1 (en) Wire-bonding free packaging structure of light emitted diode
US20070145403A1 (en) Luminescent device and method for manufacturing the same
US20050199884A1 (en) High power LED package
JP2015144147A (en) LED module
KR200299491Y1 (en) A Surface mounting type light emitting diode
JP3770192B2 (en) Chip-type LED lead frame
JP2003008074A (en) Surface mounting light emitting device and its manufacturing method
JP2002324919A (en) Light emitting diode and method of manufacturing the same
WO2004102685A1 (en) Light emitting device, package structure thereof and manufacturing method thereof
JP2004266124A (en) Semiconductor light emitting device
JP3428440B2 (en) Semiconductor light emitting device and display device structure having the same
JPH07235624A (en) Led lamp
TWI472067B (en) Optical package and method of manufacturing the same
JP2004079619A (en) Light emitting diode device
US7332862B2 (en) Led lamp including a resist bonded to a copper film
JP2002232015A (en) Semiconductor light emitting device
JP2921451B2 (en) Semiconductor light emitting module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701