JP2004077033A - Centrifugal oil separator and its manufacturing method - Google Patents

Centrifugal oil separator and its manufacturing method Download PDF

Info

Publication number
JP2004077033A
JP2004077033A JP2002238850A JP2002238850A JP2004077033A JP 2004077033 A JP2004077033 A JP 2004077033A JP 2002238850 A JP2002238850 A JP 2002238850A JP 2002238850 A JP2002238850 A JP 2002238850A JP 2004077033 A JP2004077033 A JP 2004077033A
Authority
JP
Japan
Prior art keywords
pipe
closed vessel
oil separator
oil
centrifugal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002238850A
Other languages
Japanese (ja)
Inventor
Hiroari Shiba
柴 広有
Shinichi Wakamoto
若本 慎一
Taijo Murakami
村上 泰城
Toshihiko Enomoto
榎本 寿彦
Yoshihiro Takahashi
高橋 佳宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002238850A priority Critical patent/JP2004077033A/en
Publication of JP2004077033A publication Critical patent/JP2004077033A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a centrifugal oil separator that can be easily manufactured at a low cost and is durable to the burst pressure of high-pressure refrigerant. <P>SOLUTION: An outflow pipe is vertically mounted in the upper part of a hermatically closed vessel, an inflow pipe is vertically mounted in the upper part or the lower part of the closed vessel, an oil returning pipe is mounted in the lower part of the closed vessel, a high-pressure high-temperature gas refrigerant in which a refrigerating machine oil is mixed is guided into the closed vessel, and the oil is separated by centrifugal force by being revolved along the side wall inner face of the closed vessel to be attached to the wall face. Face contact parts are formed as welding margins respectively on contact parts of the closed vessel and the inflow pipe, the closed vessel and the outflow pipe, and the closed vessel and the oil returning pipe. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、空気調和装置に係り、特に、冷凍装置に適用される遠心分離式の油分離器に関する。
【0002】
【従来の技術】
図16は、例えば特開平08−110128号公報に記載された従来の油分離器を示す断面図で、(a)は縦断面図、(b)は(a)のB−B矢に沿う横断面図である。図において、1は垂直に設置された密閉容器で、天井壁中央部を垂直に貫通してガス流出管2が取付けられ、その下端吸込み口2aは前記容器1内中央部に下向きに開口し先端にストレーナ3を設けている。一方、前記容器1の側壁4上方を貫通しているガス流入管5が水平に取り付けられ、前記側壁4との接触部分をろう溶接等で密封接合され、その流入口5aは容器1の側壁4内面に近接してその接線方向に向かって開口している。また前記容器1の底壁1aの周縁部には油戻し管6が接続されている。
【0003】
この油分離器では、圧縮機(図示しない)から吐出されたガス冷媒がガス流入管5を経て密閉容器1内に導入されると、ガス冷媒は密閉容器1の側壁4内面に沿って旋回しながら下降する。すると、ガス冷媒中に含まれるミスト状の潤滑油Lは側壁4内面に付着して分離され、側壁4内面に沿って流下して容器1内底部に貯溜される。さらにストレーナ3によりミスト状の潤滑油がガス冷媒の流れにのってガス流出管2から流出するのを防いでいる。
【0004】
また、図17は、特許第002830615号公報に記載された第2の従来例としての油分離器を示す。図において、密閉容器1の上部に出口管2が下部に油戻し管6がそれぞれ設置され、密閉容器1の上部の略接線方向に入口管5が接続されている。そして密閉容器1内で気相冷媒と油とを高速で回転させることによって、遠心力を利用して密閉容器1の内壁面に押し付けて油を分離する。また入口管5を二重管構造にすることで、油分離を促進している。
【0005】
【発明が解決しようとする課題】
従来の遠心分離式の油分離器は、入口管は容器の側壁面から水平方向に設置されているが、耐圧構造については触れていない。従来の構造のように入口管を容器側面に差込み、その周囲を線接触でろう溶接にて接合した場合の容器破壊圧を実験的に確認したところ、約10MPa以下で、しかも破壊は入口管と容器のろう溶接部分に亀裂が生じることが実証され、問題点として明らかとなった。
【0006】
そして、従来使用されてきた設計圧力が低いR22冷媒や、R407C冷媒では耐圧構造を考慮しなくても耐圧性を確保することは可能であるが、高圧冷媒であるR410A、R32、CO2などの冷媒では耐圧構造を考慮しないと耐圧性が確保できないなどの問題があり、特に、R410A冷媒の破壊圧力は最低でも15MPa以上は確保する必要があり、実験的に確認した約10MPaを越える破壊圧力となり、大きな問題となっている。
【0007】
この発明は、簡易に製造できて、かつ低コストな高圧冷媒の破壊圧力に耐えうる遠心分離式の油分離器、遠心分離式の油分離器の製造方法を提供することでを目的する。
【0008】
【課題を解決するための手段】
請求項1の発明の遠心分離式の油分離器は、流出管を密閉容器上部に上下方向に設置し、流入管を密閉容器上部或いは下部に上下方向に設置すると共に、油戻し管を密閉容器下部に設置し、かつ冷凍機油が混合した高圧高温ガス冷媒を密閉容器に導入し、この密閉容器の側壁内面に沿って旋回させることで油を遠心力で分離して壁面に付着させる遠心分離式の油分離器であって、前記密閉容器と流入管、密閉容器と流出管、及び密閉容器と油戻し管との接触部に、溶接しろとして面接触部を設けたものである。
【0009】
請求項2の発明の遠心分離式の油分離器は、流出管を密閉容器上部に上下方向に出設置し、流入管を密閉容器側面に水平方向に設置すると共に、油戻し管を密閉容器下部に設置し、かつ冷凍機油が混合した高圧高温ガス冷媒を密閉容器に導入し、この密閉容器の側壁内面に沿って旋回させることで油を遠心力で分離して壁面に付着させる遠心分離式の油分離器であって、前記密閉容器と流入管、密閉容器と流出管、及び密閉容器と油戻し管との接触部に、溶接しろとして面接触部を設けたものである。
【0010】
請求項3の発明の遠心分離式の油分離器は、密閉容器の外側に向かって、かつ流入管、流出管、油戻し管の外側面を囲むように設けた面接触部高さを2mm以上のバーリング状とするものである。
【0011】
請求項4の発明の遠心分離式の油分離器は、密閉容器の肉厚が2mm以上であるものである。
【0012】
請求項5の発明の遠心分離式の油分離器は、流入管の冷媒流入口と流出口の断面の接線方向が異なり、流出口付近の管は水平或いは水平よりやや下向きで、かつ密閉容器の側壁内面に沿うものである。
【0013】
請求項6の発明の遠心分離式の油分離器は、流入管の冷媒流出口の断面形状が縦長の楕円であるものである。
【0014】
請求項7の発明の遠心分離式の油分離器は、 流入管の冷媒流出口の断面積が流入口の断面積より小さいものである。
【0015】
請求項8の発明の遠心分離式の油分離器は、流入管は管内溝付き形状であるものである。
【0016】
請求項9の発明の遠心分離式の油分離器は、密閉容器内の流出管の流入口より下方に穴を開けた板を水平に設置するものである。
【0017】
請求項10の発明の遠心分離式の油分離器は、設計圧力がR22冷媒より高い冷媒を適用する冷媒回路装置に装着するものである。
【0018】
請求項11の発明の遠心分離式の油分離器の製造方法は、まず流入管、流出管、油戻し管を作成し、次に流入管と流出管を密閉容器内で接合するようにろう溶接で固定し、次に流入管、流出管と油戻し管を密閉容器になる銅管の両端に管長さ方向に差込み、次に面接触させる面接触部を密閉容器にそれぞれ絞り加工し、次に各管と密閉容器との面接触部をろう溶接するものである。
【0019】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1による遠心分離式の油分離器を図を用いて説明する。図1は、この発明による遠心分離式の油分離器の概要図、図2は管ろう溶接固定構造拡大図である。図において、1は密閉容器、2は流出管、2aはこの流出管の流入口、2bは前記流出管の流出口、4は前記密閉容器1の側壁、5は流入管、5aはこの流入管の流入口、5bは前記流入管5の流出口、6は油戻し管である。前記流出管2は前記密閉容器1上部の一側に容器外側に向けて高さ2mm以上、かつ流出管2の周囲に沿う形状に形成された溶接しろとしてバーリング状の流出管面接触部7を形成し、この管面接触部7とろう溶接部8とで固定されて、前記密閉容器1内部では、密閉容器1のほぼ中央に流出管2の流入口2aが位置するように屈曲させて上下方向に設置している。また、前記流入管5は前記密閉容器1上部に前記流出管面接触部7と併設して流入管5の周囲に沿う形状に形成された溶接しろとしてバーリング状の流入管面接触部9を形成し、この流入管面接触部9とろう溶接部8とで固定し、前記密閉容器1内部では流出口5aが前記流出管2を囲うように、かつ側壁4の円周に添うように、上下方向に設置し、油戻し管6は前記密閉容器1下部に上下方向に設置するもので、同様にろう溶接固定する。バーリング状の管面接触部7又は9の高さは図2で言うはまり込み深さAのことである。また隙間Bも0.05〜0.21mmくらい必要である。
【0020】
図3に密閉容器1上部と流出管2および流入管5のろう溶接固定の構造図を示し、密閉容器1の肉厚が2mm以上である。2mmは実験的に抽出した値であり、R410A冷媒の破壊圧力15MPa以上の基準をクリアすることを実験的に確認した。密閉容器1下部と油戻し管6も同様にろう溶接固定する。
【0021】
ろう溶接のポイントを簡単に説明する。ろう溶接はろう溶接するものの間にフラックスを用いて溶けたろうを溶着させ、接着力とせん断に対する抵抗力でもたせるものである。ゆえに接合面積を十分にとること、適当な隙間をとることが大切である。「上級標準テキスト 冷凍空調技術」(日本冷凍空調学会編)P.129、表9.4には管径毎に適切なはまり込み深さと隙間について示している。管径が10mmの場合、はまり込み深さを7mm以上、隙間を0.05〜0.21mmが良いと記されている。
【0022】
次に、この発明の別の実施の形態1による遠心分離式の油分離器の構造図を図4に示す。図4は、この発明による遠心分離式の油分離器の概要図で、1は密閉容器、2は流出管、2aはこの流出管の流入口、2bは前記流入管2の流出口、4は前記密閉容器1の側壁、5は流入管、5aはこの流入管の流入口、5bは前記流入管5の流出口、6は油戻し管である。7は前記流出管2の周囲に沿う形状に形成された溶接しろとしてバーリング状の流出管面接触部で、前記密閉容器1上面中央に容器外側に向けて高さ2mm以上で、かつこの流出管面接触部7とろう溶接部8とで固定されて、前記密閉容器1内部では、密閉容器1のほぼ中央に流出管2の流入口2aが位置するよ垂直に上下方向に設置している。また、前記流入管5は前記密閉容器1下部に流入管5の周囲に沿う形状に形成された溶接しろとしてバーリング状の流入管面接触部9を形成し、この流入管面接触部9とろう溶接部8とで固定し、前記密閉容器1内部では前記流出口5aが前記流出管2を囲うように、かつ側壁4の円周に添うように、上下方向に設置し、前記油戻し管6は密閉容器1下部に上下方向に設置されている。
【0023】
次に油分離動作について説明する。ミスト状の冷凍機油が混入した高温高圧ガス冷媒は流入管5の流入口5aから上向きに導入され、流出口5bから密閉容器1内を水平方向かつ密閉容器1側壁4内面に沿って流出する。流出したガス冷媒に含まれる冷凍機油は密閉容器1の側壁4内面に沿って旋回しながら側壁4内面に付着して分離された後下降し、密閉容器1底部を介して油戻し管6へと流通する。
【0024】
流出管2、流入管5と密閉容器1との管面接触部7および9のろう溶接固定部8の構造は図2、図3と同様なので説明を省略する。
【0025】
次に、この発明の別の実施の形態1による遠心分離式の油分離器を、図5、図6、図7に示して説明する。図5はこの発明による油分離器の概要図、図6は容器側面上部と流入管とのろう溶接固定の断面構造図、図7は流入管と容器側面上部とのろう溶接固定の別の構造図である。図において、1は密閉容器、2は流出管、4は前記密閉容器1の側壁、5は流入管、6は油戻し管である。7は前記流出管2の周囲に沿う形状に前記密閉容器1の上部に形成された溶接しろとしてバーリング状の流出管面接触部で、前記流入管5は密閉容器1側面1a上部に水平方向に設置し、前記流出管2は密閉容器1上部に上下方向に設置し、油戻し管6は密閉容器1下部に上下方向に設置する。
【0026】
次に油分離動作について説明する。ミスト状の冷凍機油が混入した高温高圧ガス冷媒は、流入管5の流入口5aから横向きに導入され、流出口5bから密閉容器1内を水平方向かつ密閉容器1側壁4内面に沿って流出する。流出したガス冷媒に含まれる冷凍機油は密閉容器1の側壁4内面に沿って旋回しながら側壁4内面に付着して分離された後下降し、密閉容器1底部を介して油戻し管6へと流通する。
【0027】
図6に密閉容器1側面上部と流入管5のろう溶接固定の構造図を示す。8はろう溶接部である。密閉容器1の肉厚が2mm以上ある。密閉容器1上部と流出管2、密閉容器1下部と油戻し管6も同様にろう溶接固定する。
【0028】
図7に密閉容器1側面と流入管5とのろう溶接固定の別の構造図を示す。1は密閉容器、2は流出管、5は流入管、9は前記流入管5の周囲に沿う形状に前記密閉容器1の側面部1aに形成された溶接しろとしてバーリング状の側面流入管面接触部である。密閉容器1の側面部1aに向けて高さ2mm以上、かつ流入管5の周囲に沿う形状のバーリング状の側面流入管面接触部9形成し、バーリング状の側面流入管面接触部9と流入管5をろう溶接固定したろう溶接部8を有する。密閉容器1の側面にバーリング状の側面流入管面接触部9を形成する場合、側面流入管面接触部9周囲の銅材を引っ張ってよせ集めるようにして立てるので、側面流入管面接触部9高さに限界がある。あまり引っ張りすぎると密閉容器1の局所側面が薄くなり要求破壊圧力が確保できなくなる恐れがある。バーリング状の側面流入管面接触部9高さ2mmという値は、この限界を考慮して実験的に抽出した値である。また、密閉容器1上部と流出管2、密閉容器1下部と油戻し管6も同様にろう溶接固定する。
【0029】
溶接しろである側面流入管面接触部9を2mm以上確保した遠心分離式の油分離器は、高圧冷媒であるR410A、R32、CO2冷媒を適用する空気調和装置や冷凍機への搭載を可能にする。R22冷媒と同等圧力のR407C冷媒への適用が可能なのは言うまでもない。また、バーリング状の側面流入管面接触部9を密閉容器の内側に向けて形成してもよい。
【0030】
以上のように、この実施の形態1によれば、流入管5を密閉容器1上部に上下方向に設置、或いは密閉容器1下部に上下方向に設置、或いは密閉容器1側面1a上部に水平方向に設置し、流出管2を密閉容器1上部に上下方向に設置し、油戻し管6を密閉容器1下部に上下方向に設置し、ミスト状の冷凍機油が混入した高温高圧ガス冷媒を流入管5から導入し、ガス冷媒に含まれる冷凍機油を密閉容器1の側壁4内面に沿って旋回しながら側壁4内面に付着して分離する遠心分離式の油分離器について、流入管と密閉容器、流出管と密閉容器、油戻し管と密閉容器を管長さ方向に面接触させて、少なくとも2mm以上ろう溶接固定すれば、油分離器の破壊圧力値を増加することができる。溶接部の管長さ方向の長さを2mm以上確保する手段として、密閉容器の肉厚保を2mm以上確保したり、密閉容器の外側に向けて、かつ管の周囲にバーリング状の管面接触部を設ける手段を例として示した。実験ではこの手段でR410A冷媒の最低破壊圧力設計値の15MPa以上を確保できることを確認している。
【0031】
実施の形態2.
以下、この発明の実施の形態を図8を用いて説明する。図8は、この発明による遠心分離式の油分離器の流入管の分解説明斜視図である。図において、冷媒流通方向に沿って説明する。流入管流入口5a付近は密閉容器1上部に上下方向に設置され、密閉容器1内で容器1に対して水平或いは水平よりやや下向きになるように曲げられる。その後容器の側壁内面に沿うように設置されて流出口2bに到達する。
【0032】
目標は、油分離効率の高い、流入管が容器上部或いは下部に上下方向に設置された遠心分離式油分離器を提供することである。
【0033】
流入管を容器内で水平或いは水平よりやや下向きにするメリットを説明する。上向きにするとミスト状の冷凍機油の流れが乱れて、流入管5を流出した後に遠心力でうまく油が分離しない傾向があるためである。一方、下向き度合いが大きいと、ガス冷媒速度の下向きベクトル分が大きくなり、ミスト状油の旋回回数が減って油分離効率が低減する傾向がある。
【0034】
流入管5の流出口5b付近の管を容器1の側壁内面に沿わせるメリットを説明する。ミスト状の油滴が遠心力で壁面に付着するか、付着せずに容器内を浮遊してガス冷媒とともに流出管へ流入してしまうかは、油滴径(重力、表面張力)とともに、油滴の位置も重要なパラメータとなる。通常の油分離器は縦方向長さが有限である以上、旋回回数も有限であるため、遠心力で移動できる距離にも限界がある。それゆえに、分離効率を向上させるには、流入管5から流出するミスト状冷凍機油の油滴をできるだけ側壁内面近くに浮遊させることは油分離効率を向上するのに効果的である。
【0035】
流入管5を密閉容器1の側壁4内面に沿わせないと、流出したガス冷媒が側壁4内面にぶつかり、ミスト状の冷凍機油が飛び散ってしまうため、側壁4内面近くに液滴が浮遊しなくなる。またその際に密閉容器1中央に設置した流出管2の側面に付着し、自重で流出管2側面を流入口2aまで落下すると、ガス冷媒とともに流出管2に流入することになり、油分離効率が低下する原因となる。
【0036】
流入管5の適正形状例として図8(b)に示すように2回曲げると効果的である。まず、まっすぐな銅管5cの先端部5dを60度くらい曲げ、次にその先端5dを水平方向にて135度くらい曲げると、狭い密閉容器1内でも流入管5の流出口5a付近を密閉容器1の側壁4内面に沿った形状にすることができる。先の数字は密閉容器1と流入管5の径仕様、寸法によって適正値が存在することは言うまでもない。
【0037】
図9に示すように、流入管5の流出口5b付近と密閉容器1の側壁4内面をろう溶接固定することは、流入管5から流出する流体を密閉容器1の側壁4内面に沿わせるのに好都合であり、また流出するミスト状冷凍機油と側壁4内面との距離を短くして、壁面に付着しやすくすることができ、油分離効率を向上できる。また信頼性の面から考えると、流入管5流出口5bを固定するので、流入管5流出口5bが振動して密閉容器1側壁4に当たって破損するのを防ぐことができる。
【0038】
図10は、流入管5流出口5bの形状について説明する要部斜視図である。図において、流入管5の流出口5b1の断面形状を縦方向に細長い楕円形にしている。
【0039】
流出口5b1の断面形状を縦方向に細長い楕円形にしているメリットを説明する。楕円形にすることによって、流入管5から流出する流体を密閉容器1の側壁4内面に沿わせやすくなり、また流出するミスト状冷凍機油と側壁内面との距離を短くして、壁面に付着しやすくすることができ、油分離効率を向上することができる。ただし流出速度が増加して圧力損失が増大するので、油分離効率と圧力損失の両方を鑑みて適正な仕様を選択することになる。
【0040】
図11は流入管流出口の別の形状について説明する要部斜視図である。図において、5aは流入管5の流入口、5b2は流入管5の流出口であり、流出口5b2の断面積を流入口5aより小さくしている。
【0041】
流出口5bの断面積を流入口5aより小さくしているメリットを説明する。断面積を小さくすると、流入管5を流出するガス冷媒の流出速度が速くなり遠心力が大きくなる。よって浮遊するミスト状冷凍機油の油滴が移動できる距離が大きくなり、油分離効率が向上する。また流出時にミスト状の冷凍機油を側壁内面に押し付けるように付着させる効果が大きくなることも期待できる。ただし流出速度が増加して圧力損失が増大するので、油分離効率と圧力損失の両方を鑑みて適正な仕様を選択することになる。
【0042】
流入管5の流出口5bの断面積を小さくする方法として、流出口5bでの急縮小形状も良いが、圧損を考慮すると流出口5bに向かって徐々に小さくしていく形状の方が望ましい。
【0043】
図12は流入管流出口の別の形状について説明する要部分解斜視図である。図において、5aは流入管5の流入口、5b3は前記流入管5の流出口であり、流入管内を溝付形状にしている。
【0044】
流入管5内を溝付形状にしているメリットを説明する。流入管5内を流通するミスト状冷凍機油を流入管内壁面に付着せずに流通させるには、管内を適度に乱れた状態に維持することが有効である。溝付き管はその役目を果たし、その結果油分離効率を向上することができる。尚、溝付き管は冷媒流通時の圧損が大きいため、流出口5b3付近にだけ設置するのが望ましい。
【0045】
流入管5が密閉容器1下部に上下方向に設置した場合でも、流入管5の形状或いは流入管5の流出口5bを、前記のように設定することは有効である。
【0046】
以上のように、この実施の形態2によれば、流入管を密閉容器上部に上下方向に設置、或いは密閉容器下部に上下方向に設置、流出管を密閉容器上部に上下方向に設置し、油戻し管を密閉容器下部に上下方向に設置し、ミスト状の冷凍機油が混入した高温高圧ガス冷媒を流入管から導入し、ガス冷媒に含まれる冷凍機油を密閉容器の側壁内面に沿って旋回しながら側壁内面に付着して分離する遠心分離式の油分離器において、流入管を密閉容器内で水平或いは水平よりやや下向きで、かつ流入管の流出口付近の管を密閉容器の側壁内面に沿わせるように設置したり、流入管の冷媒流出口の断面形状を縦長の楕円にしたり、流入管の冷媒流出口の断面積を流入口の断面積より小さくしたり、流入管内を溝付き形状にしたりすることが、油分離効率の向上に有効である。
【0047】
実施の形態3
以下、この発明の実施の形態3を図13を用いて説明する。図13(a)において、1は密閉容器、2は流出管、2aはこの流出管の流入口、2bは前記流出管2の流出口、5は流入管、5aはこの流入管の流入口、5bは前記流入管5の流出口、6は油戻し管、11は前記密閉容器1の内底部付近に設けた平板で、穴11aを複数設けている。
【0048】
次に、穴あき平板を設置するメリットを説明する。遠心分離式の油分離器では、ミスト状の冷凍機油が混入した高温高圧ガス冷媒が流入管5の流入口5aから下向きに導入され、流入管流出口5bから密閉容器1内を水平方向かつ密閉容器1側壁内面に沿って流出する。流出したガス冷媒に含まれる冷凍機油は密閉容器1の側壁内面に沿って旋回しながら側壁内面に付着して分離された後下降する。密閉容器1の底部に冷凍機油が滞留した場合、流通ガス冷媒に巻き上げられて、流出管2の流入口2aに冷凍機油が吸込まれる恐れがあるが、平板11により冷凍機油の巻き上げられる現象防止し、巻き上げを回避することができる。
【0049】
以上のように、この実施の形態3によれば、密閉容器内の流出管の流入口より下方に穴を開けた平板を水平に設置すると、密閉容器底に滞留した冷凍機油にガス冷媒が吹き込むことで巻き上がり、流出管に冷凍機油が吸込まれる現象を回避することができる。
また、図13(b)に示すように、平板11を固定するために、平板11の近傍における密閉容器1の壁面にかしめ部11bを設けて平板11を固定してもよい。これにより、平板11を密閉容器に容易かつ確実に固定できる。
【0050】
実施の形態4.
図14は高耐圧仕様の遠心分離式油分離器の流入管を密閉容器上部に設置した場合の分解斜視図である。その部品の組立て製造手順について説明する。(a)に示す第1ステップで、各材料である密閉容器1、流出管2、流入管5、油戻し管6となる銅管(直管)を揃える。次に、(b)に示す第2ステップで、流出管2と流入管5をを適正な形状に曲げ加工する。次に、(c)に示す第3ステップで、流出管2と流入管5との接触点を密閉容器1内で振動などにより破損しないように、流出管2と流入管5双方の管をろう溶接する。さらに流入管流出口と密閉容器の側壁内面とろう溶接固定するとさらに振動に対して破損しにくくなる。次に、(d)に示す第4ステップで、流出管2、流入管5おとび油戻し管6を密閉容器1となる銅管両端に管長さ方向に差し込む。次に、(e)に示す第5ステップでは、密閉容器1となる銅管の両端の流出管面接触部7、流入管面接触部9および油戻し管面接触部10をそれぞれ回転絞り或いはへら絞り等の絞り加工で絞る。次に、(f)に示す第6ステップでは、前記流出管面接触部7、流入管面接触部9および油戻し管面接触部10の各絞り部と流出管2、流入管5、油戻し管6の各管をろう溶接8で固定する。
【0051】
図15は高耐圧仕様の遠心分離式油分離器の流入管を密閉容器側面上部に水平方向に設置する場合の分解斜視図である。その部品の組立て製造手順について説明する。初めに、(a)に示す第1ステップで、密閉容器1、流出管2、流入管5、油戻し管6となる銅管(直管)材料を揃える。次に、(b)に示す第2ステップで、流出管2、油戻し管6を密閉容器1となる銅管両端に管長さ方向に差し込む。次に、(c)に示す第3ステップで、密閉容器1となる銅管の流出管面接触部7と油戻し管面接触部10とをそれぞれ回転絞り或いはへら絞り等で絞り加工する。次に、(d)に示す第4ステップで、前記第3ステップで絞り加工した流出管面接触部7と油戻し管面接触部10の流出管2と、油戻し管6とをろう溶接8で固定する。次に、(e)に示す第5ステップで、密閉容器1の側面に流入管5を差込めるように穴を開け、流入管面接触部9を形成する。最後に、(f)に示す第6ステップで、流入管5と密閉容器1の流入管面接触部9をろう溶接8で固定する。
【0052】
この実施の形態4では、ろう溶接するときは、密閉容器と流出管、流入管および油戻し管の各管の溶接しろが、管長さ方向に少なくとも2mm以上確保するものとする。
【0053】
以上のように、この実施の形態4によれば、高耐圧の遠心分離式の油分離器において、前記図14又は図15に示す組立て工程で油分離器を作成すれば、高耐圧型の遠心分離式の油分離器が容易に製造できるものである。
【0054】
【発明の効果】
この発明は、以下のような効果を奏する。請求項1の発明の遠心分離式の油分離器は、流出管を密閉容器上部に上下方向に設置し、流入管を密閉容器上部或いは下部に上下方向に設置すると共に、油戻し管を密閉容器下部に設置し、かつ冷凍機油が混合した高圧高温ガス冷媒を密閉容器に導入し、この密閉容器の側壁内面に沿って旋回させることで油を遠心力で分離して壁面に付着させる遠心分離式の油分離器であって、前記密閉容器と流入管、密閉容器と流出管、及び密閉容器と油戻し管との接触部に、溶接しろとして面接触部を設けた構成としたから、油分離器容器の破壊圧力が増加し、R410A冷媒の破壊圧力に耐えうる油分離器を得る効果を有する。
【0055】
請求項2の発明の遠心分離式の油分離器は、流出管を密閉容器上部に上下方向に出設置し、流入管を密閉容器側面に水平方向に設置すると共に、油戻し管を密閉容器下部に設置し、かつ冷凍機油が混合した高圧高温ガス冷媒を密閉容器に導入し、この密閉容器の側壁内面に沿って旋回させることで油を遠心力で分離して壁面に付着させる遠心分離式の油分離器であって、前記密閉容器と流入管、密閉容器と流出管、及び密閉容器と油戻し管との接触部に、溶接しろとして面接触部を設けた構成としたから、油分離器容器の耐破壊圧力が増加し、R410A冷媒等の破壊圧力に耐えうる油分離器を得る効果を有する。
【0056】
請求項3の発明の遠心分離式の油分離器は、密閉容器の外側に向かって、かつ流入管、流出管、油戻し管の外側面を囲むように設けた面接触部高さを2mm以上のバーリング状とする構成としたから、R410A冷媒等の破壊圧力に耐えうる油分離器を得る効果を有する。
【0057】
請求項4の発明の遠心分離式の油分離器は、密閉容器の肉厚が2mm以上である構成としたから、R410A冷媒等の破壊圧力に耐えうる油分離器を得る効果を有する。
【0058】
請求項5の発明の遠心分離式の油分離器は、流入管の冷媒流入口と流出口の断面の接線方向が異なり、流出口付近の管は水平或いは水平よりやや下向きで、かつ密閉容器の側壁内面に沿う構成としたから、油分離効率の向上に有効である。
【0059】
請求項6の発明の遠心分離式の油分離器は、流入管の冷媒流出口の断面形状が縦長の楕円である構成としたから、油分離効率の向上に有効である。
【0060】
請求項7遠心分離式の油分離器は、流入管の冷媒流出口の断面積が流入口の断面積より小さい構成としたから、油分離効率の向上に有効である。
【0061】
請求項8の発明の遠心分離式の油分離器は、流入管は管内溝付き形状である構成としたから、油分離効率の向上に有効である。
【0062】
請求項9の発明の遠心分離式の油分離器は、密閉容器内の流出管の流入口より下方に穴を開けた板を水平に設置する構成としたから、密閉容器底に滞留した冷凍機油にガス冷媒が吹き込むことで巻き上がり、流出管に冷凍機油が吸込まれる現象を回避することができる効果を有する。
【0063】
請求項10の発明の遠心分離式の油分離器は、設計圧力がR22冷媒より高い冷媒を適用する冷媒回路装置に装着する構成としたから、R410A冷媒等の高圧冷媒を容易に使用することができる効果を有する。
【0064】
請求項11の発明の遠心分離式の油分離器の製造方法は、まず流入管、流出管、油戻し管を作成し、次に流入管と流出管を密閉容器内で接合するようにろう溶接で固定し、次に流入管、流出管と油戻し管を密閉容器になる銅管の両端に管長さ方向に差込み、次に面接触させる面接触部を密閉容器にそれぞれ絞り加工し、次に各管と密閉容器との面接触部をろう溶接するようにしたから、高耐圧型の油分離器を得ることができる効果を有する。
【図面の簡単な説明】
【図1】この発明の実施の形態1による遠心分離式の油分離器を密閉容器上部でろう溶接する場合を示す概要面図である。
【図2】この発明の実施の形態による遠心分離式の油分離器を密閉容器上部で流出管、流入管をろう溶接する場合を示す拡大図である。
【図3】この発明の実施の形態1による別の遠心分離式の油分離器を密閉容器上部で流出管、流入管をろう溶接する場合を示す拡大図である。
【図4】この発明の実施の形態1による別の遠心分離式の油分離器を密閉容器の上下部ででろう溶接する場合を示す概要面図である。
【図5】この発明の実施の形態1による別の遠心分離式の油分離器を密閉容器をろう溶接する場合を示す概要面図である。
【図6】この発明の実施の形態1による別の遠心分離式の油分離器を密閉容器と流入管とをろう溶接する場合を示す拡大図である。
【図7】この発明の実施の形態1による別の遠心分離式の油分離器を密閉容器と流入管とをろう溶接する場合を示す拡大図である。
【図8】この発明の実施の形態2による遠心分離式の油分離器の流入管の分解説明斜視図である。
【図9】この発明の実施の形態2による遠心分離式の油分離器の流入管の流出口付近と密閉容器の側壁内面をろう溶接固定する概要図である。
【図10】この発明の実施の形態2による遠心分離式の油分離器の流入管の流出口形状について説明する要部斜視図である。
【図11】この発明の実施の形態2による遠心分離式の油分離器の別の流入管流出口形状について説明する要部斜視図である。
【図12】この発明の実施の形態2による遠心分離式の油分離器の別の流入管流出口の別の形状について説明する要部分解斜視図である。
【図13】この発明の実施の形態3による遠心分離式の油分離器を示す概要図である。
【図14】この発明の実施の形態4による遠心分離式の油分離器製造方法示す分解斜視図である。
【図15】この発明の実施の形態4による別の遠心分離式の油分離器製造方法示す分解斜視図である。
【図16】従来例の油分離器を示す断面図である。
【図17】別の従来例の油分離器を示す断面図である。
【符号の説明】
1 密閉容器、2 流出管、3 流入管、4 側壁、6 油戻し管、7 流出管面接触部、8 ろう溶接部、9 流入管面接触部、10 油戻し管面接触部、11 平板。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner, and more particularly to a centrifugal oil separator applied to a refrigeration system.
[0002]
[Prior art]
FIG. 16 is a cross-sectional view showing a conventional oil separator described in, for example, Japanese Patent Application Laid-Open No. 08-110128, in which (a) is a longitudinal cross-sectional view, and (b) is a cross-sectional view taken along the line BB of (a). FIG. In the figure, reference numeral 1 denotes a vertically installed hermetic container, to which a gas outlet pipe 2 is vertically penetrated through a central portion of a ceiling wall, and a lower end suction port 2a is opened downward at a central portion in the container 1 and has a distal end. Is provided with a strainer 3. On the other hand, a gas inflow pipe 5 penetrating above the side wall 4 of the container 1 is horizontally mounted, and a contact portion with the side wall 4 is hermetically joined by brazing or the like. It is open to the tangential direction near the inner surface. An oil return pipe 6 is connected to a peripheral portion of the bottom wall 1a of the container 1.
[0003]
In this oil separator, when gas refrigerant discharged from a compressor (not shown) is introduced into the closed container 1 via the gas inflow pipe 5, the gas refrigerant turns along the inner surface of the side wall 4 of the closed container 1. While descending. Then, the mist-like lubricating oil L contained in the gas refrigerant adheres to the inner surface of the side wall 4 and is separated, flows down along the inner surface of the side wall 4, and is stored in the inner bottom of the container 1. Further, the strainer 3 prevents the mist-like lubricating oil from flowing out of the gas outlet pipe 2 along with the flow of the gas refrigerant.
[0004]
FIG. 17 shows a second conventional oil separator described in Japanese Patent No. 002830615. In the figure, an outlet pipe 2 is provided at an upper part of a closed vessel 1 and an oil return pipe 6 is provided at a lower part thereof, and an inlet pipe 5 is connected to the upper part of the closed vessel 1 in a substantially tangential direction. Then, by rotating the gas-phase refrigerant and the oil at high speed in the closed container 1, the oil is separated by pressing against the inner wall surface of the closed container 1 using centrifugal force. Further, the inlet pipe 5 has a double pipe structure to promote oil separation.
[0005]
[Problems to be solved by the invention]
In the conventional centrifugal oil separator, the inlet pipe is installed horizontally from the side wall surface of the container, but does not mention the pressure-resistant structure. When the inlet pipe was inserted into the side of the container as in the conventional structure and the surrounding area was joined by line contact and brazed by soldering, the container breaking pressure was experimentally confirmed. It was demonstrated that a crack was formed in the brazing portion of the container, which became a problem.
[0006]
In the case of R22 refrigerant and R407C refrigerant, which are conventionally used at a low design pressure, it is possible to secure the pressure resistance without considering the pressure resistance structure. However, refrigerants such as R410A, R32, and CO2 which are high-pressure refrigerants There is a problem that the pressure resistance cannot be secured unless the pressure resistance structure is taken into consideration. In particular, the burst pressure of the R410A refrigerant must be at least 15 MPa or more, and the burst pressure exceeds about 10 MPa, which was experimentally confirmed. It is a big problem.
[0007]
An object of the present invention is to provide a centrifugal oil separator and a method of manufacturing a centrifugal oil separator that can be easily manufactured and can withstand the burst pressure of a low-cost high-pressure refrigerant.
[0008]
[Means for Solving the Problems]
In the centrifugal separation type oil separator according to the first aspect of the present invention, the outflow pipe is installed vertically in the upper part of the closed vessel, the inflow pipe is installed vertically in the upper or lower part of the closed vessel, and the oil return pipe is installed in the closed vessel. A centrifugal separation system that is installed at the bottom and introduces high-pressure high-temperature gas refrigerant mixed with refrigerating machine oil into a closed container, and swirls along the inner surface of the side wall of this closed container to separate oil by centrifugal force and adhere to the wall surface. And a surface contact portion is provided as a welding margin at a contact portion between the closed vessel and the inflow pipe, a closed vessel and the outflow pipe, and a closed vessel and the oil return pipe.
[0009]
In the centrifugal separation type oil separator according to the second aspect of the present invention, the outflow pipe is vertically installed at the upper part of the closed vessel, the inflow pipe is horizontally installed at the side of the closed vessel, and the oil return pipe is installed at the lower part of the closed vessel. A high-pressure, high-temperature gas refrigerant mixed with refrigerating machine oil is introduced into a closed container, and is swirled along the inner surface of the side wall of the closed container to separate oil by centrifugal force and adhere to the wall. An oil separator, wherein a surface contact portion is provided as a welding margin at a contact portion between the closed vessel and the inflow pipe, the closed vessel and the outflow pipe, and the closed vessel and the oil return pipe.
[0010]
In the centrifugal separation type oil separator according to the third aspect of the present invention, the height of a surface contact portion provided toward the outside of the closed vessel and surrounding the outer surfaces of the inflow pipe, the outflow pipe, and the oil return pipe is 2 mm or more. Burring shape.
[0011]
In the centrifugal oil separator according to the fourth aspect of the present invention, the thickness of the closed container is 2 mm or more.
[0012]
In the centrifugal separation type oil separator according to the fifth aspect of the invention, the tangential direction of the cross section of the refrigerant inlet and the cross section of the outlet of the inlet pipe is different, and the pipe near the outlet is horizontal or slightly lower than horizontal, This is along the inner surface of the side wall.
[0013]
In the centrifugal separation type oil separator according to the invention of claim 6, the cross-sectional shape of the refrigerant outlet of the inflow pipe is a vertically long ellipse.
[0014]
In the centrifugal separation type oil separator according to the invention of claim 7, the cross-sectional area of the refrigerant outlet of the inflow pipe is smaller than the cross-sectional area of the inlet.
[0015]
In the centrifugal separation type oil separator according to the invention of claim 8, the inflow pipe has a shape with a groove in the pipe.
[0016]
In the centrifugal oil separator according to the ninth aspect of the present invention, a plate having a hole formed below an inlet of an outflow pipe in a closed vessel is horizontally installed.
[0017]
The centrifugal separation type oil separator according to the tenth aspect of the present invention is mounted on a refrigerant circuit device that applies a refrigerant having a design pressure higher than that of the R22 refrigerant.
[0018]
In the method for manufacturing a centrifugal oil separator according to the eleventh aspect of the present invention, first, an inflow pipe, an outflow pipe, and an oil return pipe are prepared, and then the brazing is performed so that the inflow pipe and the outflow pipe are joined in a closed vessel. Then, insert the inflow pipe, the outflow pipe and the oil return pipe into both ends of the copper pipe which becomes a closed vessel in the pipe length direction, and then draw the surface contact parts to be brought into surface contact with the closed vessel, respectively. The surface contact portion between each pipe and the closed vessel is soldered.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, a centrifugal oil separator according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of a centrifugal separation type oil separator according to the present invention, and FIG. 2 is an enlarged view of a pipe brazing welding fixing structure. In the drawing, 1 is a closed vessel, 2 is an outflow pipe, 2a is an inflow port of the outflow pipe, 2b is an outflow port of the outflow pipe, 4 is a side wall of the closed vessel 1, 5 is an inflow pipe, and 5a is an inflow pipe. 5b is an outlet of the inflow pipe 5, and 6 is an oil return pipe. The outflow pipe 2 has a burring-shaped outflow pipe surface contact portion 7 as a welding margin formed on one side of the upper part of the closed vessel 1 toward the outside of the vessel at a height of 2 mm or more and along the periphery of the outflow pipe 2. It is fixed by the pipe surface contact portion 7 and the brazing welded portion 8. The inside of the closed container 1 is bent so that the inflow port 2 a of the outflow pipe 2 is located substantially at the center of the closed container 1. Installed in the direction. In addition, the inflow pipe 5 is provided in the upper part of the closed vessel 1 together with the outflow pipe surface contact section 7 to form a burring-shaped inflow pipe surface contact section 9 as a welding margin formed along the periphery of the inflow pipe 5. Then, it is fixed by the inflow pipe surface contact portion 9 and the brazing welded portion 8, and in the closed vessel 1, the outflow port 5 a is vertically moved so as to surround the outflow pipe 2 and to follow the circumference of the side wall 4. The oil return pipe 6 is installed vertically below the hermetically sealed container 1, and is similarly fixed by brazing. The height of the burring-shaped tube surface contact portion 7 or 9 is the fitting depth A referred to in FIG. Also, the gap B needs to be about 0.05 to 0.21 mm.
[0020]
FIG. 3 shows a structural diagram of the upper portion of the closed vessel 1 and the brazing of the outflow pipe 2 and the inflow pipe 5 by welding. The thickness of the closed vessel 1 is 2 mm or more. 2 mm is a value extracted experimentally, and it was experimentally confirmed that the criterion of R410A refrigerant breaking pressure of 15 MPa or more was satisfied. Similarly, the lower part of the closed vessel 1 and the oil return pipe 6 are fixed by brazing.
[0021]
The points of brazing are briefly described. In the brazing, a molten brazing material is welded by using a flux between the materials to be brazed, and has a bonding strength and a resistance to shearing. Therefore, it is important to have a sufficient bonding area and to have an appropriate gap. "Advanced Standard Textbook Refrigeration and Air Conditioning Technology" (edited by the Japan Refrigeration and Air Conditioning Society), p. 129 and Table 9.4 show the appropriate fitting depth and clearance for each pipe diameter. It is described that when the pipe diameter is 10 mm, the fitting depth is preferably 7 mm or more and the gap is preferably 0.05 to 0.21 mm.
[0022]
Next, FIG. 4 shows a structural diagram of a centrifugal oil separator according to another embodiment 1 of the present invention. FIG. 4 is a schematic view of a centrifugal oil separator according to the present invention, wherein 1 is a closed vessel, 2 is an outlet pipe, 2a is an inlet of the outlet pipe, 2b is an outlet of the inlet pipe 2, and 4 is an outlet of the inlet pipe 2. The side wall 5 of the closed vessel 1 is an inlet pipe, 5a is an inlet of the inlet pipe, 5b is an outlet of the inlet pipe 5, and 6 is an oil return pipe. Reference numeral 7 denotes a burring-shaped outflow pipe surface contact portion formed as a welding margin formed along the periphery of the outflow pipe 2. The outflow pipe 2 has a height of 2 mm or more at the center of the upper surface of the closed vessel 1 toward the outside of the vessel. It is fixed by the surface contact portion 7 and the brazing welded portion 8, and is installed vertically in the closed vessel 1 so that the inflow port 2 a of the outflow pipe 2 is located substantially at the center of the closed vessel 1. Also, the inflow pipe 5 forms a burring-shaped inflow pipe surface contact portion 9 as a welding margin formed along the periphery of the inflow pipe 5 in the lower portion of the closed vessel 1, and the inflow pipe surface contact portion 9 is formed. The oil return pipe 6 is fixed to the welded portion 8 and installed vertically so that the outflow port 5 a surrounds the outflow pipe 2 and along the circumference of the side wall 4 inside the closed vessel 1. Is installed vertically below the closed container 1.
[0023]
Next, the oil separating operation will be described. The high-temperature and high-pressure gas refrigerant mixed with the mist-like refrigerating machine oil is introduced upward from the inlet 5a of the inflow pipe 5, and flows out of the outlet 5b in the closed vessel 1 horizontally and along the inner surface of the side wall 4 of the closed vessel 1. The refrigerating machine oil contained in the outflowing gas refrigerant adheres to the inner surface of the side wall 4 and separates while rotating along the inner surface of the side wall 4 of the closed container 1, and then descends to the oil return pipe 6 through the bottom of the closed container 1. Distribute.
[0024]
The structure of the brazing-welding fixing portion 8 of the tube surface contact portions 7 and 9 between the outflow pipe 2, the inflow pipe 5 and the closed vessel 1 is the same as in FIGS.
[0025]
Next, a centrifugal separation type oil separator according to another embodiment 1 of the present invention will be described with reference to FIGS. 5, 6, and 7. FIG. 5 is a schematic view of an oil separator according to the present invention, FIG. 6 is a cross-sectional structural view of brazing welding fixation between the upper part of the vessel side and the inflow pipe, and FIG. 7 is another structure of brazing welding fixing the inflow pipe and the upper part of the vessel side. FIG. In the figure, 1 is a closed vessel, 2 is an outflow pipe, 4 is a side wall of the closed vessel 1, 5 is an inflow pipe, and 6 is an oil return pipe. Reference numeral 7 denotes a burring-shaped outflow tube surface contact portion formed as a welding margin formed on the upper portion of the closed vessel 1 along the periphery of the outflow pipe 2, and the inflow pipe 5 extends horizontally on the upper side 1 a of the closed vessel 1. The outflow pipe 2 is installed vertically above the closed vessel 1, and the oil return pipe 6 is installed vertically below the closed vessel 1.
[0026]
Next, the oil separating operation will be described. The high-temperature and high-pressure gas refrigerant mixed with the mist-like refrigerating machine oil is introduced laterally from the inlet 5a of the inflow pipe 5, and flows out of the outlet 5b in the closed container 1 horizontally and along the inner surface of the side wall 4 of the closed container 1. . The refrigerating machine oil contained in the outflowing gas refrigerant adheres to the inner surface of the side wall 4 and separates while rotating along the inner surface of the side wall 4 of the closed container 1, and then descends to the oil return pipe 6 through the bottom of the closed container 1. Distribute.
[0027]
FIG. 6 shows a structural diagram of the upper side of the closed container 1 and the brazing of the inflow pipe 5 by welding. Reference numeral 8 denotes a brazing weld. The thickness of the closed container 1 is 2 mm or more. Similarly, the upper part of the closed vessel 1 and the outflow pipe 2 and the lower part of the closed vessel 1 and the oil return pipe 6 are fixed by brazing.
[0028]
FIG. 7 shows another structural view of brazing and fixing the side surface of the closed vessel 1 and the inflow pipe 5. 1 is a closed vessel, 2 is an outflow pipe, 5 is an inflow pipe, and 9 is a burring-shaped side inflow pipe face contact as a welding margin formed on the side surface 1a of the closed vessel 1 along the periphery of the inflow pipe 5. Department. A burring-shaped side inflow tube surface contact portion 9 having a height of 2 mm or more and extending along the periphery of the inflow tube 5 is formed toward the side surface portion 1a of the closed container 1, and flows into the burring side surface inflow tube surface contact portion 9. It has a brazing weld 8 to which the pipe 5 is brazed. When the burring-shaped side inflow tube surface contact portion 9 is formed on the side surface of the closed container 1, the copper material around the side inflow tube surface contact portion 9 is pulled and gathered upright, so that the side inflow tube surface contact portion 9 is formed. Height is limited. If it is pulled too much, the local side surface of the sealed container 1 becomes thin, and the required breaking pressure may not be secured. The value of the height of the burring-shaped side surface inflow tube surface contact portion 9 of 2 mm is a value extracted experimentally in consideration of this limit. Similarly, the upper part of the closed vessel 1 and the outflow pipe 2 and the lower part of the closed vessel 1 and the oil return pipe 6 are also fixed by brazing.
[0029]
The centrifugal separation type oil separator, which secures the side inflow pipe surface contact portion 9 as a welding margin of 2 mm or more, can be mounted on an air conditioner or a refrigerator using high-pressure refrigerant R410A, R32, or CO2 refrigerant. I do. It goes without saying that the present invention can be applied to the R407C refrigerant having the same pressure as the R22 refrigerant. Further, the burring-shaped side surface inflow pipe surface contact portion 9 may be formed toward the inside of the closed container.
[0030]
As described above, according to the first embodiment, the inflow pipe 5 is installed vertically in the upper part of the closed vessel 1, installed vertically in the lower part of the closed vessel 1, or horizontally installed in the upper part 1 a of the closed vessel 1. The outlet pipe 2 is installed vertically in the upper part of the closed vessel 1, the oil return pipe 6 is installed vertically in the lower part of the closed vessel 1, and the high-temperature high-pressure gas refrigerant mixed with mist-like refrigerating machine oil is introduced into the inlet pipe 5. And a centrifugal oil separator that separates the refrigerating machine oil contained in the gaseous refrigerant from the gas refrigerant while adhering to the inner surface of the side wall 4 while rotating along the inner surface of the side wall 4. If the pipe and the closed vessel and the oil return pipe and the closed vessel are brought into surface contact in the pipe length direction and soldered and fixed at least 2 mm or more, the breaking pressure value of the oil separator can be increased. As means for securing the length of the welded portion in the pipe length direction of 2 mm or more, the thickness of the sealed vessel is secured for 2 mm or more, or a burring-like pipe surface contact portion is provided toward the outside of the closed vessel and around the pipe. The means for providing are shown as an example. Experiments have confirmed that this means can secure a minimum burst pressure design value of 15 MPa or more for the R410A refrigerant.
[0031]
Embodiment 2 FIG.
Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 8 is an exploded perspective view of the inflow pipe of the centrifugal oil separator according to the present invention. In the figure, the description will be given along the refrigerant flow direction. The vicinity of the inflow pipe inlet 5a is installed vertically in the upper portion of the closed vessel 1 and is bent in the closed vessel 1 so as to be horizontal or slightly downward with respect to the vessel 1. Thereafter, it is installed along the inner surface of the side wall of the container and reaches the outlet 2b.
[0032]
The goal is to provide a centrifugal oil separator in which the inflow pipe is installed vertically at the top or bottom of the vessel with high oil separation efficiency.
[0033]
The merit of making the inflow pipe horizontal or slightly downward from the horizontal in the container will be described. This is because, if the oil is turned upward, the flow of the mist-like refrigerating machine oil is disturbed, and the oil tends not to be well separated by centrifugal force after flowing out of the inflow pipe 5. On the other hand, when the degree of downward movement is large, the downward vector of the gas refrigerant velocity becomes large, and the number of times of mist-like oil turning tends to decrease, and the oil separation efficiency tends to decrease.
[0034]
The merit of making the pipe near the outlet 5b of the inflow pipe 5 along the inner surface of the side wall of the container 1 will be described. Whether the mist-like oil droplets adhere to the wall surface by centrifugal force or float in the container without adhering and flow into the outlet pipe together with the gas refrigerant depends on the oil droplet diameter (gravity and surface tension), Drop position is also an important parameter. Since a normal oil separator has a finite length in the longitudinal direction and a finite number of turns, the distance that can be moved by centrifugal force is also limited. Therefore, in order to improve the separation efficiency, it is effective to float the oil droplets of the mist-like refrigerating machine oil flowing out from the inflow pipe 5 as close to the inner surface of the side wall as possible to improve the oil separation efficiency.
[0035]
If the inflow pipe 5 is not aligned with the inner surface of the side wall 4 of the closed vessel 1, the outflowing gas refrigerant collides with the inner surface of the side wall 4, and mist-like refrigerating machine oil scatters, so that the droplets do not float near the inner surface of the side wall 4. . At this time, if it adheres to the side surface of the outflow pipe 2 installed in the center of the closed vessel 1 and falls down the side surface of the outflow pipe 2 by its own weight to the inflow port 2a, it flows into the outflow pipe 2 together with the gas refrigerant, and the oil separation efficiency Causes a decrease.
[0036]
It is effective to bend twice as shown in FIG. 8B as an example of an appropriate shape of the inflow pipe 5. First, the tip 5d of the straight copper pipe 5c is bent by about 60 degrees, and then the tip 5d is bent by about 135 degrees in the horizontal direction. The shape can be formed along the inner surface of one side wall 4. It goes without saying that the above figures have appropriate values depending on the diameter specifications and dimensions of the closed vessel 1 and the inflow pipe 5.
[0037]
As shown in FIG. 9, the brazing of the vicinity of the outlet 5 b of the inflow pipe 5 and the inner surface of the side wall 4 of the closed vessel 1 makes the fluid flowing out of the inflow pipe 5 along the inner surface of the side wall 4 of the closed vessel 1. In addition, the distance between the mist-type refrigerating machine oil that flows out and the inner surface of the side wall 4 can be shortened, so that the oil can easily adhere to the wall surface, and the oil separation efficiency can be improved. Also, from the viewpoint of reliability, since the inflow pipe 5 and the outflow port 5b are fixed, it is possible to prevent the inflow pipe 5 and the outflow port 5b from vibrating and hitting the side wall 4 of the closed vessel 1 and being damaged.
[0038]
FIG. 10 is a perspective view of an essential part for explaining the shape of the inflow pipe 5 and the outflow port 5b. In the figure, the cross-sectional shape of the outflow port 5b1 of the inflow pipe 5 is formed into an elliptical shape elongated in the vertical direction.
[0039]
The merits of making the cross-sectional shape of the outlet 5b1 an elongated ellipse in the vertical direction will be described. The elliptical shape makes it easier for the fluid flowing out of the inflow pipe 5 to follow the inner surface of the side wall 4 of the closed vessel 1, and also reduces the distance between the mist-like refrigerating machine oil flowing out and the inner surface of the side wall to adhere to the wall surface. The oil separation efficiency can be improved. However, since the outflow speed increases and the pressure loss increases, an appropriate specification is selected in consideration of both the oil separation efficiency and the pressure loss.
[0040]
FIG. 11 is a perspective view of an essential part for explaining another shape of the inflow pipe outlet. In the figure, 5a is an inflow port of the inflow pipe 5, 5b2 is an outflow port of the inflow pipe 5, and the cross-sectional area of the outflow port 5b2 is smaller than that of the inflow port 5a.
[0041]
The advantage of making the cross-sectional area of the outlet 5b smaller than that of the inlet 5a will be described. When the cross-sectional area is reduced, the outflow speed of the gas refrigerant flowing out of the inflow pipe 5 increases, and the centrifugal force increases. Accordingly, the distance over which the oil droplets of the floating mist-like refrigerating machine oil can move is increased, and the oil separation efficiency is improved. Further, it can be expected that the effect of attaching the mist-like refrigerating machine oil to the inner surface of the side wall at the time of the outflow is increased. However, since the outflow speed increases and the pressure loss increases, an appropriate specification is selected in consideration of both the oil separation efficiency and the pressure loss.
[0042]
As a method of reducing the cross-sectional area of the outlet 5b of the inflow pipe 5, a sharply reduced shape at the outlet 5b is also good, but a shape that gradually decreases toward the outlet 5b is preferable in consideration of pressure loss.
[0043]
FIG. 12 is an exploded perspective view of an essential part for explaining another shape of the inflow pipe outlet. In the drawing, reference numeral 5a denotes an inflow port of the inflow pipe 5, and 5b3 denotes an outflow port of the inflow pipe 5, and the inside of the inflow pipe has a grooved shape.
[0044]
The merit of forming the inside of the inflow pipe 5 with a groove will be described. In order to allow the mist refrigerating machine oil flowing in the inflow pipe 5 to flow without adhering to the inner wall surface of the inflow pipe, it is effective to maintain the inside of the pipe in an appropriately disturbed state. The grooved tube serves that function, which can improve oil separation efficiency. Since the grooved pipe has a large pressure loss during the circulation of the refrigerant, it is desirable to install the grooved pipe only near the outlet 5b3.
[0045]
Even when the inflow pipe 5 is installed vertically below the closed vessel 1, it is effective to set the shape of the inflow pipe 5 or the outflow port 5b of the inflow pipe 5 as described above.
[0046]
As described above, according to the second embodiment, the inflow pipe is installed vertically in the upper portion of the sealed container, or the inflow pipe is installed vertically in the lower portion of the sealed container, and the outflow pipe is installed vertically in the upper portion of the sealed container. A return pipe is installed vertically in the lower part of the closed container, high-temperature and high-pressure gas refrigerant mixed with mist-like refrigerating machine oil is introduced from the inflow pipe, and the refrigerating machine oil contained in the gas refrigerant is swirled along the inner side wall of the closed container. In the centrifugal separation type oil separator that adheres to and separates from the inner surface of the side wall, the inflow pipe is horizontal or slightly downward from the horizontal in the closed vessel, and the pipe near the outlet of the inflow pipe runs along the inner surface of the side wall of the closed vessel. Or the cross-sectional shape of the refrigerant outlet of the inflow pipe is vertically long and elliptical, the cross-sectional area of the refrigerant outlet of the inflow pipe is smaller than the cross-sectional area of the inlet, or the inside of the inflow pipe is grooved. Or oil separation effect It is effective in improving the.
[0047]
Embodiment 3
Hereinafter, a third embodiment of the present invention will be described with reference to FIG. In FIG. 13 (a), 1 is a closed container, 2 is an outflow pipe, 2a is an inflow port of this outflow pipe, 2b is an outflow port of the outflow pipe 2, 5 is an inflow pipe, 5a is an inflow port of this inflow pipe, 5b is an outlet of the inflow pipe 5, 6 is an oil return pipe, 11 is a flat plate provided near the inner bottom of the closed vessel 1, and has a plurality of holes 11a.
[0048]
Next, advantages of installing a perforated flat plate will be described. In the centrifugal oil separator, high-temperature and high-pressure gas refrigerant mixed with mist-like refrigerating machine oil is introduced downward from the inlet 5a of the inflow pipe 5, and the inside of the closed vessel 1 is horizontally and sealed from the inflow pipe outlet 5b. It flows out along the inner surface of the side wall of the container 1. The refrigerating machine oil contained in the outflowing gas refrigerant adheres to the inner surface of the side wall while rotating along the inner surface of the side wall of the closed container 1, and then descends. If the refrigerating machine oil stays at the bottom of the sealed container 1, the refrigerating machine oil may be taken up by the flowing gas refrigerant and may be sucked into the inflow port 2a of the outflow pipe 2, but the flat plate 11 prevents the refrigerating machine oil from being hoisted. Then, winding can be avoided.
[0049]
As described above, according to the third embodiment, when a flat plate having a hole formed below the inlet of the outflow pipe in the closed container is installed horizontally, the gas refrigerant blows into the refrigerating machine oil accumulated at the bottom of the closed container. As a result, it is possible to avoid the phenomenon that the refrigerating machine oil is sucked into the outflow pipe by winding up.
In addition, as shown in FIG. 13B, in order to fix the flat plate 11, the flat plate 11 may be fixed by providing a caulking portion 11 b on the wall surface of the closed container 1 near the flat plate 11. Thereby, the flat plate 11 can be easily and reliably fixed to the closed container.
[0050]
Embodiment 4 FIG.
FIG. 14 is an exploded perspective view of a centrifugal oil separator of a high pressure resistance specification in which an inflow pipe is installed above a sealed container. The procedure for assembling and manufacturing the parts will be described. In the first step shown in (a), copper tubes (straight pipes) serving as the closed container 1, the outflow pipe 2, the inflow pipe 5, and the oil return pipe 6, which are the respective materials, are arranged. Next, in a second step shown in (b), the outflow pipe 2 and the inflow pipe 5 are bent into appropriate shapes. Next, in a third step shown in (c), both the outflow pipe 2 and the inflow pipe 5 are brazed so that the contact point between the outflow pipe 2 and the inflow pipe 5 is not damaged by vibration or the like in the closed vessel 1. Weld. Further, if the inlet of the inflow pipe and the inner surface of the side wall of the closed vessel are fixed by soldering, damage due to vibration is further reduced. Next, in a fourth step shown in (d), the outflow pipe 2, the inflow pipe 5 and the oil return pipe 6 are inserted into both ends of the copper pipe which becomes the closed vessel 1 in the pipe length direction. Next, in a fifth step shown in (e), the outflow tube surface contact portions 7, the inflow tube surface contact portions 9 and the oil return tube surface contact portions 10 at both ends of the copper tube which becomes the closed vessel 1 are respectively rotary-rotated or spatula. Squeeze by drawing such as drawing. Next, in a sixth step shown in (f), the throttle portions of the outflow tube surface contact portion 7, the inflow tube surface contact portion 9, and the oil return tube surface contact portion 10, the outflow tube 2, the inflow tube 5, and the oil return Each of the tubes 6 is fixed by brazing 8.
[0051]
FIG. 15 is an exploded perspective view when the inflow pipe of the centrifugal oil separator with high pressure resistance is installed horizontally on the upper side of the closed vessel. The procedure for assembling and manufacturing the parts will be described. First, in a first step shown in (a), materials of a copper pipe (straight pipe) to be a closed vessel 1, an outflow pipe 2, an inflow pipe 5, and an oil return pipe 6 are prepared. Next, in a second step shown in (b), the outflow pipe 2 and the oil return pipe 6 are inserted into both ends of the copper pipe serving as the closed vessel 1 in the pipe length direction. Next, in a third step shown in (c), the outflow tube surface contact portion 7 and the oil return tube surface contact portion 10 of the copper tube to be the sealed container 1 are drawn by rotary drawing or spatula drawing, respectively. Next, in a fourth step shown in (d), the outflow pipe 2 of the outflow pipe surface contact portion 7 and the oil return pipe surface contact portion 10 drawn in the third step and the oil return pipe 6 are brazed by welding 8 Fix with. Next, in a fifth step shown in (e), a hole is made in the side surface of the closed vessel 1 so that the inflow pipe 5 can be inserted, and an inflow pipe surface contact portion 9 is formed. Finally, in a sixth step shown in (f), the inflow pipe 5 and the inflow pipe surface contact portion 9 of the closed casing 1 are fixed by brazing 8.
[0052]
In the fourth embodiment, at the time of brazing, it is assumed that the welding margin of each of the closed vessel and the outflow pipe, the inflow pipe, and the oil return pipe is at least 2 mm or more in the pipe length direction.
[0053]
As described above, according to the fourth embodiment, in the high pressure-resistant centrifugal oil separator, if the oil separator is formed in the assembly process shown in FIG. 14 or FIG. A separation type oil separator can be easily manufactured.
[0054]
【The invention's effect】
The present invention has the following effects. In the centrifugal separation type oil separator according to the first aspect of the present invention, the outflow pipe is installed vertically in the upper part of the closed vessel, the inflow pipe is installed vertically in the upper or lower part of the closed vessel, and the oil return pipe is installed in the closed vessel. A centrifugal separation system that is installed at the bottom and introduces high-pressure high-temperature gas refrigerant mixed with refrigerating machine oil into a closed container, and swirls along the inner surface of the side wall of this closed container to separate oil by centrifugal force and adhere to the wall surface. An oil separator according to claim 1, wherein a surface contact portion is provided as a welding margin at a contact portion between the sealed container and the inflow pipe, the sealed container and the outflow tube, and the sealed container and the oil return pipe. This has the effect of increasing the burst pressure of the vessel and obtaining an oil separator that can withstand the burst pressure of the R410A refrigerant.
[0055]
In the centrifugal separation type oil separator according to the second aspect of the present invention, the outflow pipe is vertically installed at the upper part of the closed vessel, the inflow pipe is horizontally installed at the side of the closed vessel, and the oil return pipe is installed at the lower part of the closed vessel. A high-pressure, high-temperature gas refrigerant mixed with refrigerating machine oil is introduced into a closed container, and is swirled along the inner surface of the side wall of the closed container to separate oil by centrifugal force and adhere to the wall. An oil separator, wherein a surface contact portion is provided as a welding margin at a contact portion between the sealed container and the inflow pipe, the sealed container and the outflow tube, and the sealed container and the oil return pipe. This has the effect of increasing the breakdown pressure of the container and obtaining an oil separator that can withstand the breakdown pressure of R410A refrigerant or the like.
[0056]
In the centrifugal separation type oil separator according to the third aspect of the present invention, the height of a surface contact portion provided toward the outside of the closed vessel and surrounding the outer surfaces of the inflow pipe, the outflow pipe, and the oil return pipe is 2 mm or more. The burring configuration has the effect of obtaining an oil separator that can withstand the burst pressure of R410A refrigerant and the like.
[0057]
The centrifugal separation type oil separator according to the fourth aspect of the invention has an effect of obtaining an oil separator capable of withstanding the burst pressure of the R410A refrigerant or the like since the thickness of the closed vessel is 2 mm or more.
[0058]
In the centrifugal separation type oil separator according to the fifth aspect of the invention, the tangential direction of the cross section of the refrigerant inlet and the cross section of the outlet of the inlet pipe is different, and the pipe near the outlet is horizontal or slightly lower than horizontal, The configuration along the inner surface of the side wall is effective for improving the oil separation efficiency.
[0059]
The centrifugal separation type oil separator according to the sixth aspect of the present invention is effective in improving oil separation efficiency because the refrigerant outlet of the inflow pipe has a vertically long elliptical cross section.
[0060]
According to a seventh aspect of the invention, the centrifugal oil separator has a configuration in which the cross-sectional area of the refrigerant outlet of the inflow pipe is smaller than the cross-sectional area of the inlet, which is effective in improving oil separation efficiency.
[0061]
In the centrifugal separation type oil separator according to the eighth aspect of the invention, the inflow pipe has a configuration with a groove in the pipe, which is effective for improving the oil separation efficiency.
[0062]
The centrifugal separation type oil separator according to the ninth aspect of the present invention is configured such that a plate having a hole formed below the inlet of the outflow pipe in the closed container is horizontally installed, so that the refrigerating machine oil stays at the bottom of the closed container. This has the effect of avoiding a phenomenon in which the gas refrigerant blows up into the outlet and winds up, and the refrigerating machine oil is sucked into the outflow pipe.
[0063]
The centrifugal oil separator according to the tenth aspect of the present invention is configured to be mounted on a refrigerant circuit device that applies a refrigerant having a design pressure higher than that of the R22 refrigerant, so that a high-pressure refrigerant such as the R410A refrigerant can be easily used. Has an effect that can be.
[0064]
In the method of manufacturing an oil separator of the centrifugal separation type according to the eleventh aspect, first, an inflow pipe, an outflow pipe, and an oil return pipe are formed, and then, the brazing is performed so that the inflow pipe and the outflow pipe are joined in a closed vessel. Then, insert the inflow pipe, the outflow pipe and the oil return pipe into both ends of the copper pipe which becomes a closed vessel in the pipe length direction, and then draw the surface contact portions to be in surface contact with the closed vessel respectively, Since the surface contact portion between each pipe and the closed vessel is soldered, there is an effect that a high pressure-resistant oil separator can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing a case where a centrifugal separation type oil separator according to Embodiment 1 of the present invention is brazed to the upper part of a closed vessel.
FIG. 2 is an enlarged view showing a case where the outflow pipe and the inflow pipe of the centrifugal separation type oil separator according to the embodiment of the present invention are brazed at the upper part of the closed vessel;
FIG. 3 is an enlarged view showing another centrifugal separation type oil separator according to Embodiment 1 of the present invention in which an outflow pipe and an inflow pipe are brazed at the upper part of a closed vessel.
FIG. 4 is a schematic plan view showing a case in which another centrifugal separation type oil separator according to Embodiment 1 of the present invention is brazed at upper and lower portions of a closed vessel.
FIG. 5 is a schematic plan view showing a case where another centrifugal oil separator according to Embodiment 1 of the present invention is brazed to a closed vessel.
FIG. 6 is an enlarged view showing another centrifugal separation type oil separator according to Embodiment 1 of the present invention in which a closed vessel and an inflow pipe are brazed to each other.
FIG. 7 is an enlarged view showing another centrifugal separation type oil separator according to Embodiment 1 of the present invention in which a closed vessel and an inflow pipe are brazed to each other.
FIG. 8 is an exploded perspective view of an inlet pipe of a centrifugal oil separator according to Embodiment 2 of the present invention.
FIG. 9 is a schematic diagram showing the vicinity of an outlet of an inflow pipe of a centrifugal oil separator according to Embodiment 2 of the present invention and the inner surface of a side wall of a closed vessel being brazed by welding.
FIG. 10 is a perspective view of an essential part for explaining an outlet shape of an inflow pipe of a centrifugal oil separator according to a second embodiment of the present invention.
FIG. 11 is a main part perspective view for explaining another inlet pipe outlet shape of a centrifugal oil separator according to Embodiment 2 of the present invention.
FIG. 12 is an exploded perspective view of a main part explaining another shape of another inflow pipe outlet of the centrifugal oil separator according to Embodiment 2 of the present invention.
FIG. 13 is a schematic diagram showing a centrifugal separation type oil separator according to Embodiment 3 of the present invention.
FIG. 14 is an exploded perspective view showing a method of manufacturing a centrifugal oil separator according to Embodiment 4 of the present invention.
FIG. 15 is an exploded perspective view showing another method for manufacturing a centrifugal oil separator according to Embodiment 4 of the present invention.
FIG. 16 is a cross-sectional view showing a conventional oil separator.
FIG. 17 is a sectional view showing another conventional oil separator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Closed container, 2 outflow pipes, 3 inflow pipes, 4 side walls, 6 oil return pipes, 7 outflow pipe face contact parts, 8 brazing welds, 9 inflow pipe face contact parts, 10 oil return pipe face contact parts, 11 flat plates.

Claims (11)

流出管を密閉容器上部に上下方向に設置し、流入管を密閉容器上部或いは下部に上下方向に設置すると共に、油戻し管を密閉容器下部に設置し、かつ冷凍機油が混合した高圧高温ガス冷媒を密閉容器に導入し、この密閉容器の側壁内面に沿って旋回させることで油を遠心力で分離して壁面に付着させる遠心分離式の油分離器であって、前記密閉容器と流入管、密閉容器と流出管、及び密閉容器と油戻し管との接触部に、溶接しろとして面接触部を設けたことを特徴とする遠心分離式の油分離器。A high-pressure high-temperature gas refrigerant with an outflow pipe installed vertically in the upper part of the closed vessel, an inflow pipe installed vertically in the upper or lower part of the sealed vessel, an oil return pipe installed in the lower part of the closed vessel, and refrigeration oil mixed. Is introduced into a closed vessel, a centrifugal separation type oil separator that separates the oil by centrifugal force and adheres to the wall by rotating along the inner surface of the side wall of the closed vessel, the closed vessel and the inflow pipe, A centrifugal oil separator, wherein a surface contact portion is provided as a welding margin at a contact portion between the sealed container and the outflow pipe and between the sealed container and the oil return pipe. 流出管を密閉容器上部に上下方向に出設置し、流入管を密閉容器側面に水平方向に設置すると共に、油戻し管を密閉容器下部に設置し、かつ冷凍機油が混合した高圧高温ガス冷媒を密閉容器に導入し、この密閉容器の側壁内面に沿って旋回させることで油を遠心力で分離して壁面に付着させる遠心分離式の油分離器であって、前記密閉容器と流入管、密閉容器と流出管、及び密閉容器と油戻し管との接触部に、溶接しろとして面接触部を設けたことを特徴とする遠心分離式の油分離器。An outflow pipe is installed vertically at the top of the closed vessel, an inflow pipe is installed horizontally on the side of the closed vessel, an oil return pipe is installed at the bottom of the closed vessel, and high-pressure high-temperature gas refrigerant mixed with refrigerating machine oil is used. A centrifugal separation type oil separator that is introduced into a closed container and is rotated along the inner surface of the side wall of the closed container to separate oil by centrifugal force and adhere to the wall surface. A centrifugal oil separator, wherein a surface contact portion is provided as a welding margin at a contact portion between the container and the outflow pipe, and between the closed container and the oil return pipe. 密閉容器の外側に向かって、かつ流入管、流出管、油戻し管の外側面を囲むように設けた面接触部高さを2mm以上のバーリング状とすることを特徴とする請求項1又は請求項2記載の遠心分離式の油分離器。The height of a surface contact portion provided toward the outside of the closed vessel and surrounding the outer surfaces of the inflow pipe, the outflow pipe, and the oil return pipe is a burring shape having a height of 2 mm or more. Item 3. A centrifugal oil separator according to Item 2. 密閉容器の肉厚が2mm以上であることを特徴とする請求項1又は請求項2記載の遠心分離式の油分離器。3. The centrifugal oil separator according to claim 1, wherein the thickness of the closed container is 2 mm or more. 流入管の冷媒流入口と流出口の断面の接線方向が異なり、流出口付近の管は水平或いは水平よりやや下向きで、かつ密閉容器の側壁内面に沿うことを特徴とする請求項1記載の遠心分離式の油分離器。2. The centrifugal centrifuge according to claim 1, wherein the tangential direction of the cross section of the refrigerant inlet and the outlet of the inlet pipe is different, and the pipe near the outlet is horizontal or slightly downward from the horizontal and along the inner surface of the side wall of the closed vessel. Separable oil separator. 流入管の冷媒流出口の断面形状が縦長の楕円であることを特徴とする請求項1記載の遠心分離式の油分離器。2. The centrifugal oil separator according to claim 1, wherein the cross-sectional shape of the refrigerant outlet of the inlet pipe is a vertically long ellipse. 流入管の冷媒流出口の断面積が流入口の断面積より小さいことを特徴とする請求項1記載の遠心分離式の油分離器。2. The centrifugal oil separator according to claim 1, wherein the cross-sectional area of the refrigerant outlet of the inlet pipe is smaller than the cross-sectional area of the inlet. 流入管は管内溝付き形状であることを特徴とする請求項1、2記載の遠心分離式の油分離器。3. The centrifugal oil separator according to claim 1, wherein the inflow pipe has a shape with a groove in the pipe. 密閉容器内の流出管の流入口より下方に穴を開けた板を水平に設置することを特徴とする請求項1又は請求項2記載の遠心分離式の油分離器。3. The centrifugal oil separator according to claim 1, wherein a plate having a hole formed below the inflow port of the outflow pipe in the closed vessel is installed horizontally. 設計圧力がR22冷媒より高い冷媒を適用する冷媒回路装置に装着することを特徴とする請求項1又は請求項2記載の遠心分離式の油分離器。3. The centrifugal oil separator according to claim 1, wherein the oil separator is mounted on a refrigerant circuit device using a refrigerant having a design pressure higher than that of the R22 refrigerant. まず流入管、流出管、油戻し管を作成し、次に流入管と流出管を密閉容器内で接合するようにろう溶接で固定し、次に流入管、流出管と油戻し管を密閉容器になる銅管の両端に管長さ方向に差込み、次に面接触させる面接触部を密閉容器にそれぞれ絞り加工し、次に各管と密閉容器との面接触部をろう溶接することを特徴とする請求項1又は請求項2記載の遠心分離式の油分離器の製造方法。First, make the inflow pipe, outflow pipe, and oil return pipe, then fix the inflow pipe and the outflow pipe by brazing to join them in a closed vessel, and then connect the inflow pipe, outflow pipe, and the oil return pipe to the closed vessel. It is inserted into both ends of the copper tube in the pipe length direction, then the surface contact portion to be brought into surface contact is drawn into a closed container, and then the surface contact portion between each tube and the closed container is soldered. The method for producing a centrifugal oil separator according to claim 1 or 2.
JP2002238850A 2002-08-20 2002-08-20 Centrifugal oil separator and its manufacturing method Pending JP2004077033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002238850A JP2004077033A (en) 2002-08-20 2002-08-20 Centrifugal oil separator and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002238850A JP2004077033A (en) 2002-08-20 2002-08-20 Centrifugal oil separator and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004077033A true JP2004077033A (en) 2004-03-11

Family

ID=32022111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002238850A Pending JP2004077033A (en) 2002-08-20 2002-08-20 Centrifugal oil separator and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004077033A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1568955A1 (en) * 2004-02-25 2005-08-31 Lg Electronics Inc. Oil separator and cooling-cycle apparatus using the same
EP1577147A2 (en) 2004-03-15 2005-09-21 Nissan Motor Company Limited Deceleration control apparatus and method for automotive vehicle
JP2006322701A (en) * 2005-05-16 2006-11-30 Lg Electronics Inc Oil separator and air conditioner having the same
JP2008045763A (en) * 2006-08-10 2008-02-28 Denso Corp Oil separator
JP2010078262A (en) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd Oil separator
JP2013245836A (en) * 2012-05-23 2013-12-09 Daikin Industries Ltd Refrigerating system
KR101340532B1 (en) 2011-10-21 2013-12-11 엘지전자 주식회사 Oil separator and air conditioner comprising the same
JP2014115018A (en) * 2012-12-10 2014-06-26 Mitsubishi Heavy Ind Ltd Oil separator
JP2014159919A (en) * 2013-02-20 2014-09-04 Panasonic Corp Oil separator
WO2015082867A1 (en) * 2013-12-06 2015-06-11 J&E Hall Limited External separator
JP2018091557A (en) * 2016-12-05 2018-06-14 株式会社富士通ゼネラル Gas-liquid separator and air conditioner with the same
GB2566538A (en) * 2017-09-18 2019-03-20 J & E Hall Ltd Oil separator
JP2019049375A (en) * 2017-09-08 2019-03-28 ダイキン工業株式会社 Oil separator and refrigerating device comprising the same
WO2019064882A1 (en) * 2017-09-29 2019-04-04 ダイキン工業株式会社 Oil separator
CN112815584A (en) * 2021-02-24 2021-05-18 孟雷 Low-filling-amount full liquid supply system and oil return method thereof
CN115516259A (en) * 2020-05-11 2022-12-23 三菱电机株式会社 Accumulator and refrigeration cycle device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7386994B2 (en) 2004-02-25 2008-06-17 Lg Electronics Inc. Oil separator and cooling-cycle apparatus using the same
EP1568955A1 (en) * 2004-02-25 2005-08-31 Lg Electronics Inc. Oil separator and cooling-cycle apparatus using the same
EP1577147A2 (en) 2004-03-15 2005-09-21 Nissan Motor Company Limited Deceleration control apparatus and method for automotive vehicle
JP2006322701A (en) * 2005-05-16 2006-11-30 Lg Electronics Inc Oil separator and air conditioner having the same
JP2008045763A (en) * 2006-08-10 2008-02-28 Denso Corp Oil separator
JP2010078262A (en) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd Oil separator
KR101340532B1 (en) 2011-10-21 2013-12-11 엘지전자 주식회사 Oil separator and air conditioner comprising the same
US9791176B2 (en) 2012-05-23 2017-10-17 Daikin Industries, Ltd. Refrigeration apparatus
JP2013245836A (en) * 2012-05-23 2013-12-09 Daikin Industries Ltd Refrigerating system
JP2014115018A (en) * 2012-12-10 2014-06-26 Mitsubishi Heavy Ind Ltd Oil separator
JP2014159919A (en) * 2013-02-20 2014-09-04 Panasonic Corp Oil separator
US10605504B2 (en) 2013-12-06 2020-03-31 J&E Hall Limited External separator
WO2015082867A1 (en) * 2013-12-06 2015-06-11 J&E Hall Limited External separator
US11175078B2 (en) 2016-12-05 2021-11-16 Fujitsu General Limited Gas-liquid separator and air conditioner including the same
JP2018091557A (en) * 2016-12-05 2018-06-14 株式会社富士通ゼネラル Gas-liquid separator and air conditioner with the same
AU2017371877B2 (en) * 2016-12-05 2023-09-07 Fujitsu General Limited Gas-liquid separator and air conditioner including the same
CN110050164A (en) * 2016-12-05 2019-07-23 富士通将军股份有限公司 Gas-liquid separator and the air-conditioning device for having the gas-liquid separator
EP3550223A4 (en) * 2016-12-05 2020-07-22 Fujitsu General Limited Gas-liquid separator and air conditioning device with same
JP2019049375A (en) * 2017-09-08 2019-03-28 ダイキン工業株式会社 Oil separator and refrigerating device comprising the same
GB2566538A (en) * 2017-09-18 2019-03-20 J & E Hall Ltd Oil separator
WO2019064882A1 (en) * 2017-09-29 2019-04-04 ダイキン工業株式会社 Oil separator
US11020697B2 (en) 2017-09-29 2021-06-01 Daikin Industries, Ltd. Oil separator
JP2019066076A (en) * 2017-09-29 2019-04-25 ダイキン工業株式会社 Oil separator
CN115516259A (en) * 2020-05-11 2022-12-23 三菱电机株式会社 Accumulator and refrigeration cycle device
CN112815584A (en) * 2021-02-24 2021-05-18 孟雷 Low-filling-amount full liquid supply system and oil return method thereof

Similar Documents

Publication Publication Date Title
JP2004077033A (en) Centrifugal oil separator and its manufacturing method
JP5821115B2 (en) Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator
KR100619785B1 (en) Oil seperator
JP4903119B2 (en) Gas-liquid separator and air conditioner equipped with it
JP2008202894A (en) Oil separator
JP4015535B2 (en) Centrifugal oil separator and refrigerant device
JP3163312B2 (en) Accumulator for refrigeration cycle and method for producing the same
JP2015034637A (en) Gas-liquid separator and refrigeration cycle device
JP3593594B2 (en) Gas-liquid separator
JP5620736B2 (en) Refrigerant tank and its header
JP2008249242A (en) Accumulator for refrigerating cycle
JPH0618127A (en) Oil separator
JP4699801B2 (en) Gas-liquid separator
JPH10311627A (en) Oil separator
JP6131621B2 (en) Oil separator
JPH10185367A (en) Oil separator
CN100538215C (en) The coolant collector of band filtration/drying unit
JPH11248296A (en) Oil separator
JP2002130871A (en) Accumulator
JP2000088369A (en) Refrigerating cycle
JPH1062037A (en) Accumulator
JP2005054741A (en) Accumulator for multi-cylinder compressors
JP2000257994A (en) Oil separator
JP2006299943A (en) Accumulator for multiple cylinder compressor
JP2007046798A (en) Gas-liquid separator and its manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20040707

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A621 Written request for application examination

Effective date: 20050114

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071225