JP2004076870A - Sealing structure of high-pressure hydrogen gas, and seal - Google Patents

Sealing structure of high-pressure hydrogen gas, and seal Download PDF

Info

Publication number
JP2004076870A
JP2004076870A JP2002239100A JP2002239100A JP2004076870A JP 2004076870 A JP2004076870 A JP 2004076870A JP 2002239100 A JP2002239100 A JP 2002239100A JP 2002239100 A JP2002239100 A JP 2002239100A JP 2004076870 A JP2004076870 A JP 2004076870A
Authority
JP
Japan
Prior art keywords
seal
opening groove
hydrogen gas
sealing
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002239100A
Other languages
Japanese (ja)
Other versions
JP4198954B2 (en
Inventor
Hiroshi Aoshiba
青柴 浩史
Yasushi Kano
加納 康司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002239100A priority Critical patent/JP4198954B2/en
Publication of JP2004076870A publication Critical patent/JP2004076870A/en
Application granted granted Critical
Publication of JP4198954B2 publication Critical patent/JP4198954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sealing With Elastic Sealing Lips (AREA)
  • Sealing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealing structure capable of enduring sealing of high-pressure hydrogen gas. <P>SOLUTION: An opening groove part 3 in the radial direction is formed by an inner lip part 1 and an outer lip part 2. A small protrusion 13 is integrally formed with the outer peripheral surface 8a of a shaft 8 for preventing the seal from slipping off. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高圧水素ガス密封構造及びそれ用のシールに関する。
【0002】
【従来の技術】
最近、水素ガス燃料電池車の研究開発が進展しているが、燃料の高圧水素ガスを送る配管途中に、レギュレータ電磁弁等の弁類が用いられ、このような高圧水素ガス用の弁類に適応できる密封用シールとして、従来、適切なものがなかった。
【0003】
【発明が解決しようとする課題】
一般的な流体用弁類のシールとしては、図9に示すように、ゴム製Oリング41が、使用され、スプール(軸)42に一体に形成された凹周溝43───いわゆる一体溝───に、2点鎖線にて示す如くOリング41を弾性的に拡径しつつ基本径端部44を超えて、装着していた。なお、45は弁本体(ハウジング又はボディとも呼ぶ)であり、その孔部45aの内周面にOリング41が接触(摺接)する。
【0004】
上述の一体溝とする理由は、分割溝構造とした場合には、図9の基本径端部を別部品としてネジやボルトやスナップリング等で止着するため、スペース的に大きくなって、弁類の容積が増大する等の問題があるからである。
しかしながら、被密封用流体が上記水素ガス燃料電池車であると、例えば50MPaと高圧となり、弁類のON−OFF作動時で圧力変動もあって、上述のゴム製Oリング41ではブリスタを発生する虞があった。
また、金属(メタル)製Oリングは、一体溝構造では、図9の2点鎖線のように拡径(引き伸ばし)ができないので装着できない。かつ、スプール(軸)42が(僅小寸法)軸心方向に往復動するため、孔部45aの摩耗及び金属製Oリングの摩耗が著しく、使用に適さない。
そこで、本発明の目的は、上述のような自動車用燃料の高圧水素ガスの圧力制御を行うレギュレータ電磁弁等の弁類に適用可能であって、かつ、構造が簡素でコンパクトである密封構造を提供することにある。さらに、従来の前記ブリスタが発生せず、高圧水素ガスの外部漏洩が僅少で、かつ、長い寿命を有するシール及び密封構造を提供することを、他の目的とする。
【0005】
【課題を解決するための手段】
本発明の高圧水素ガス密封構造は、内リップ部と外リップ部によって軸心一方向に開口溝部を形成した樹脂製シール本体と、該開口溝部内に設けられたバネと、から成るシールを、ハウジング孔部と軸との間に形成された収納凹所に装着した密封構造に於て、上記軸には、上記収納凹所の奥底面を形成する段付面が形成され、上記シールの軸心方向寸法よりも大きい寸法だけ上記段付面から離れた位置に、シール抜け止め用小凸条を上記軸の外周面に、一体に形成したものである。
【0006】
また、上記シール抜け止め用小凸条の外径寸法を、上記軸が上記収納凹所の内周面を形成する部位の外径寸法の 104%〜 125%に設定するのが好ましい。
また、本発明の高圧水素ガス用シールは、内リップ部が、シール用突起と、軸の一部(小凸条)に係止可能な係止用突起を有する。そして、上記シール本体の開口溝部の奥側の底壁部の肉厚寸法を、上記シール本体の軸心方向寸法の35%〜50%に設定するのが好ましい。
【0007】
また、開口溝部を開口方向に弾発付勢する上記バネの軸心方向作用位置と、上記内リップ部のシール用突起及び上記外リップ部のシール用突起の頂部の軸心方向位置を、一致させる。
そして、シール本体の材質が変性PTFEであり、かつ、バネの材質がNi−Cr系の耐食合金であるのが望ましい。
【0008】
【発明の実施の形態】
以下、図示の実施の形態に基づき本発明を詳説する。
図1〜図3に本発明の実施の一形態を示し、図2は自由状態のシールSの断面図であり、図3は装着(使用)箇所を例示する断面図であり、図1は、このシールSと装着(使用)箇所との位置関係及び寸法関係を説明する図である。
シールSは、内リップ部1と外リップ2部を有し、この内外リップ部1,2によって軸心一方向に開口溝部3を形成した横断面略U字型形状の樹脂製シール本体4と、この開口溝部3内に設けられた横断面略U字型のバネ5と、から構成される。
【0009】
高圧水素ガスを制御するレギュレータ電磁弁や、その他、切換弁や流量制御弁等の弁類のハウジング(ボディ)6の孔部7と、スプールや弁棒(弁本体)等の軸8との間に形成された収納凹所9に、上記シールSが装着される。
この軸8は、収納凹所9の低圧側の奥底面を形成する段付面10が形成され、上記孔部7よりも僅かに小さい外径寸法D の大径部(ランド部)11と、上記内リップ部1が摺接(接触)する小径部12が、上記段付面10にて区画形成されている。
【0010】
シールSの軸心方向寸法Hよりも僅かに大きい軸心方向寸法H だけ、段付面10から離れた位置に、シール抜け止め用小凸条13を、軸8の外周面8aに、一体に形成する。具体的には、この小凸条13は、小径部12の外周面に突出状に一体形成された略不等辺三角形状であって、小径部12の先端面14側は、緩やかなテーパ面(傾斜面)13aであり、段付面10側は軸8の軸心15と略直交方向乃至急な勾配面若しくは小アール状とした係止面13bである。
【0011】
上記軸心方向寸法H は、この係止面13bから、段付面10までの間隔寸法を指すものとする。そして、次式▲1▼が成立するように、軸心方向寸法H を設定する。
1.10×H≦H ≦1.25×H   ▲1▼
言い換えると、このシールSは、軸8の軸心方向の動きに対してルーズであって余裕がある。
【0012】
そして、シール抜け止め用小凸条13の外径寸法D13を、上記軸8が収納凹所9の内周面を形成する部位の外径寸法D12の 104%〜 125%に設定する。特に、 105%〜 110%が望ましい。
これを式で示せば、次式▲2▼▲3▼のようになる。
1.04×D12≦D13≦1.25×D12   ▲2▼
望ましくは、
1.05×D12≦D13≦1.10×D12    ▲3▼
なお、上述の軸8が収納凹所9の内周面を形成する部位とは、具体的には、小径部12が相当している。
【0013】
ところで、シールSについて詳しく説明すると、シール本体4の材質としては、変性PTFEが好ましく、バネ5の材質としてはNi−Cr系の耐食合金が好ましい。
【0014】
本発明に於て、変性PTFEとは、テトラフルオロエチレンとパーフルオロ(アルキルビニルエーテル)との共重量体を意味するものとする。このような変性PTFEの一例としては、一般式R−O−CF=CF で表されるパーフルオロ(アルキルビニルエーテル)の少なくとも1種とテトラフルオロエチレンとの共重合体が用いられる。またパーフルオロ(アルキルビニルエーテル)としては、上記式中のRが炭素数3〜4のパーブルオロアルキル基であるもの、例えばパーフルオロ(プロピルビニルエーテル)、パーフルオロ(ブチルビニルエーテル)などが好ましい。さらにパーフルオロ(アルキルビニルエーテル)を 0.1〜10重量%、好ましくは 0.5〜5重量%含有するのが好ましい。
【0015】
そして、充填材を混入させない材質が望ましい。その理由は、例えば50MPa等の高圧水素ガスの圧力が作用すると、充填材入りPTFEでは、内外リップ部1,2の表面が粗くなり(微小凹凸が生じ)、軸8の外周面及び孔部7の内周面に接触する部位(接面)から高圧水素ガスが漏れ易くなる。
【0016】
バネ5に適用するNi−Cr系の耐食合金としては、Ni76%,Cr16%,Fe8%の耐食合金インコネル(登録商標)が水素ガスに対する耐食性の点で優れている。
【0017】
そして、内リップ部1はシール用突起16と、軸8の小径部12の小凸条13の係止面13bに係止可能な係止用突起17を、有する。
係止用突起17は、内リップ部1の先端面18と連続平坦面状に形成された軸心直交面と、シール本体4の厚肉の底壁部19側へしだいに拡径する勾配面20と、を有する三角山型である。
【0018】
シール用突起16は、軸心直交面21と、底壁部19側へしだいに拡径する勾配面22と、を有する三角山形である。両突起16, 17はその内径寸法を相互に同一に設定し、先端面18寄りの突起17は、図1の状態のように軸心方向に余裕をもってルーズに収納凹所9に装着された状態で、シール本体4が抜け出ようとした場合に、軸8(小径部12)のシール抜け止め用小凸条13の係止面13bに、係止して、確実に抜け止めされる。かつ、この係止用突起17は、隣接されたシール用突起16と同様にシール(密封)作用もはたす。言い換えれば、シール本体4は内周面側に、2重シールリップ(シール突起)を備えている。
【0019】
他方、外リップ部2は、頂点から先端と基端方向へ緩やかな勾配面を有する低三角形状のシール用突起23を有する。図2から分かるように、外リップ部2側のシール用突起23と、内リップ部1側のシール用突起16は、軸心15と直交する同一平面上に配設され、さらに、開口溝部3を開口方向に弾発付勢するバネ5の軸心方向作用位置と、両シール用突起16,23の頂部(頂点)の軸心方向位置を、一致させている。
【0020】
バネ5は横断面U字型であって、先端側───高圧水素ガス収納空室24側───へ開口状となるように、シール本体4の開口溝部3へ組込まれている。横断面U字型の開口端部25,25が内外リップ部1,2に接触して弾発的に押圧する軸心方向位置が、前記軸心方向作用位置であり、結局、軸心15と直交する一平面上に、バネ5の作用位置(開口端部25,25)、及び、内外のシール用突起16, 23の頂部(頂点)が、配設される。
これによって、バネ5の弾発付勢力が、直接的かつ有効に、シール用突起16, 23の相手部材───軸8の外周面及び孔部7内周面───への接触面圧増大に寄与できて、高い密封(シール)性を発揮する。
【0021】
また、図1と図2に示すように、軸8の段付面10に対応(対面)するシール本体4の底壁部19の肉厚寸法Tを、シール本体4の軸心方向寸法Hの35%〜50%と十分に(他の部分よりも)厚く設定する。即ち、次式のように設定する。
0.35 ×H≦T≦0.50×H   ▲4▼
上記式▲4▼に於て、下限値未満であると急激に気体(高圧水素ガス)の透過量が増大する。逆に、上限値を越すと、シールとしての不必要な部分が増加し、材料の無駄が生ずる。
【0022】
図1〜3の実施の形態に於て、シール抜け止め用小凸条13の外径寸法D13は前記▲2▼式(又は▲3▼式)のように、十分小さく設定されているので、シール本体4の内リップ部1は、軽く弾性変形しつつ容易に、収納凹所9内へ装着でき、収納凹所9内で内リップ部1───特にシール用突起16と係止用突起17───は弾性復元力が損なわれることなく、従って、十分なシール用接触面圧が得られて、優れたシール性能を発揮できる。
このとき、緩やかなテーパ面(傾斜面)13aによって、一層、軽くかつ容易に、シールSが小凸条13を越えることが可能となる。かつ、係止面13bは、軸心15に直交する略平面状であるので、一旦装着されたシールSはその係止用突起17が確実に係止して、シールSが収納凹所9から抜け出ない(飛び出さない)という利点がある。
【0023】
そして、前記▲2▼式に於て、外径寸法D13が下限値未満であると、多数のシールSの内で、使用条件によって、小凸条13を乗り越えて、収納凹所9から抜け出るものが、急に増加する。逆に、上限値を越すと、シール装着時に小凸条13によって、内リップ部1のシール用突起16が損傷を受け、あるいは、上述の樹脂材質ではシール用突起16が拡径方向に塑性変形してしまって、高圧水素ガスの漏洩量が、急激に増加する。
【0024】
次に、図4、図5、図6、図7は各々他の実施の形態を示す。
図4と図5に於て、(図2と比較すれば明らかなように、)内リップ部1のシール用突起26が、外リップ部2のシール用突起23と同様の低三角山型とした場合であって、かつ、軸8のシール抜け止め用小凸条13の外径寸法D13が、軸8の外径寸法12に対して、比較的大きい場合を示す。
【0025】
図6に於て、内リップ部1のシール用突起27を、シール本体4の内リップ部1の先端面と一致した位置とし、従って、シール抜け止め用小凸条13に、この突起27が係止して、抜け止めの役目も兼ねる構造である。
【0026】
図7に於て、内リップ部1のシール用突起(接触部)28を、軸心方向に小さな幅のある面状とし、バネ5の開口端部25の弾発付勢力が、シール用突起(接触部)28に伝わり易くした構成である。即ち、図6ではバネ5の開口端部25の軸心方向位置と、シール用突起27の位置とが、僅かにずれていたのを、図7では、面状のシール用突起(接触部)28の少なくとも一部を、バネ5の開口端部25の軸心方向位置と一致させて、バネ5の弾発付勢力を、有効に軸との接触面圧増加に、活用している。
【0027】
図8は、既述の図1〜図3の実施の形態を、図4〜図7と比較のために改めて図示したものであり、図7の面状に接触するシール用突起28を、線状に近く、接触する三角形状のシール用突起16とすると共に、図6に示したシール兼係止用の突起27を、別途、先端側の突起17として、付設した構成である。
この図4〜8は、以下に述べる実施例及びその漏れ試験の実測結果に対応する。
【0028】
【実施例】
実施例1,2,3,4,5は夫々図4,図5,図6,図7,図8に対応し、バネ5を装着前の自由状態のシールSの径方向寸法(厚さ寸法)Wは全て 1.7mm、軸心方向寸法Hは全て 2.7mm、底壁部19の肉厚寸法Tを 1.0mm、底壁部19の内径d 、外径d を夫々 3.1mm、 5.9mmとし、シール本体4の材質を前述の変性PTFE、バネ5の材質をインコネル(登録商標)を用いた。
【0029】
他方、軸8の小径部12の(基本)外径寸法D12は全て 3.0mmとし、シール抜け止め用小凸条13の外径寸法D13は、図4では 3.8mm(1.27×D12)、図5では 3.6mm(1.20×D12)、図6〜図8では 3.2mm(1.07×D12)とする。また、ハウジング孔部7の内径寸法は、全て 6.0mmとした。
漏れ試験用流体として、20kgf/cm の窒素ガスを用いて、漏れ量を測定した結果を、次の表1に示す。
【0030】
【表1】

Figure 2004076870
【0031】
上記表1から次のことが分かる。
シール抜け止め用小凸条13の外径寸法D13の軸外径寸法D12に対する比が、 125%を越すと急激に漏れ量Qが増加する(実施例1)。その理由は、装着時にシール本体4の内リップ部1が大きく拡径した状態で小凸条13を乗り越えるため、シール用突起26が装着後も拡径状態となって十分な軸との接触面圧が得られないためと考えられる。
【0032】
そこで、図5(実施例2)のように、(D13/D12)の百分率を 120%とすれば、漏れ量が約1/10に急に改善されることが分かる。
さらに、図6(実施例3)のように、(D13/D12)の百分率を 107%と低減し、シール装着時の拡径(引き伸ばし)の度合を低く抑えると共に、シール用突起27を(図6のように)先端面18に形成すると、 4.8mL/min に減少している。
【0033】
図7(実施例4)のように、(D13/D12)の百分率をそのままで、シール用突起28を帯状(面状)に軸8に接触するようにし、バネ5の弾発力がその接触する部位に伝わり易くすると、 1.4mL/min まで漏れは減少する。
次に、図8(実施例5)の如く、軸8に対して、線接触状に接触するようなシール用突起16を変更し、かつ、先端に係止用突起17を付加すると、漏れは 0.3mL/min と、著しく減少していることが分かる。
【0034】
なお、(D13/D12)の百分率を 107%未満とした試作品でも漏れ試験を行ったところ、シールが収納凹所9から抜け出る(飛び出す)ことが発生する。このようにシールが収納凹所9から抜け出ない((D13/D12)の下限値が、 107%である。
【0035】
【発明の効果】
本発明は上述の構成により次のような著大な効果を奏する。
(請求項1によれば、)小凸条13を軸8の外周面8aに一体形成するので、構造が簡素で、高圧水素ガス密封構造の容積が増加せず、コンパクトである。即ち、軸8の端部又はハウジング孔部7に抜け止め部材をネジ等で取付ける必要がない。そして、シールSの収納凹所9への装着作業も容易かつ迅速に行い得る。
従って、水素ガス燃料電池車のレギュレータ電磁弁等の弁類に好適な密封構造であるといえる。
【0036】
(請求項2によれば、)シールSを収納凹所9へ装着する際、シール本体4(の内リップ部1)の引き伸ばしを抑えることができて、使用状態で流体漏れを微量に抑えることができる。しかも、装着後(使用状態)において、圧力変動あるいは軸8と孔部7の相対的動きに伴って、シールSが収納凹所9から抜け出ることも、防止できる。
【0037】
(請求項3によれば、)内リップ部1が軸8に直接的に接触する部分が、シール用突起16と係止用突起17の2重の構造であるので、シール(密封)性が極めて高い。
また、軸8の一部に係止する係止用突起17によって、確実にシールSの抜け出ることを防止でき、シール用突起16の軸心方向位置をバネ5の作用点に一致させて配設することも容易となるので、シール用突起16の軸8への接触面圧も十分に高め得て、優れたシール(密封)性を発揮できる。
【0038】
(請求項4によれば、)被密封流体としての水素ガスの圧力が、例えば、50MPaと高くても、底壁部19を通してのガス透過を十分低く抑えることができる。しかも、不必要にシール本体4が大きくなることも防いでいる。
(請求項5によれば、)バネ5の弾発付勢力が有効にシール用突起16, 23に伝達される。これによって、軸8の外周面、ハウジング孔部7の内周面に対する、接触面圧を十分に高めて、確実にシール性能を発揮する。
(請求項6によれば)充填材入りPTFEに比べて、漏れ量が一層減少する。しかも、変性PTFEと、Ni−Cr系の耐食合金の結合により、例えば50MPaもの高圧の水素ガスに適用可能となり、漏れが極力少なく、耐クリープ性にも優れ、十分な耐食性が得られる。
【図面の簡単な説明】
【図1】本発明に係る密封構造の実施の一形態を示し構成材の位置関係及び寸法関係を説明する図である。
【図2】シールの断面図である。
【図3】シールが装着される箇所の説明断面図である。
【図4】他の実施の形態を示す説明図である。
【図5】別の実施の形態を示す説明図である。
【図6】さらに他の実施の形態を示す説明図である。
【図7】さらに別の実施の形態を示す説明図である。
【図8】上記実施の一形態を他と比較のために示す説明図である。
【図9】従来例を示す断面説明図である。
【符号の説明】
1 内リップ部
2 外リップ部
4 シール本体
5 バネ
6 ハウジング(ボディ)
7 孔部
8 軸
8a 外周面
9 収納凹所
10  段付面
13  シール抜け止め用小凸条
16 シール用突起
17  係止用突起
19  底壁部
23  シール用突起
S シール
T 肉厚寸法
 ,D12,D13 外径寸法
 ,H  軸心方向寸法[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-pressure hydrogen gas sealing structure and a seal therefor.
[0002]
[Prior art]
Recently, research and development of hydrogen gas fuel cell vehicles have been progressing, but valves such as regulator solenoid valves are used in the piping for sending high-pressure hydrogen gas as fuel. Heretofore, no suitable sealing seal has been available.
[0003]
[Problems to be solved by the invention]
As shown in FIG. 9, a rubber O-ring 41 is used as a seal for general fluid valves, and a concave peripheral groove 43 formed integrally with a spool (shaft) 42. In FIG. 5, the O-ring 41 was attached beyond the basic diameter end 44 while elastically expanding the diameter of the O-ring 41 as indicated by the two-dot chain line. Reference numeral 45 denotes a valve body (also called a housing or a body), and the O-ring 41 comes into contact (sliding contact) with the inner peripheral surface of the hole 45a.
[0004]
The reason for using the above-mentioned integral groove is that, in the case of the divided groove structure, the basic diameter end portion shown in FIG. 9 is fastened with a screw, a bolt, a snap ring, or the like as a separate component, so that the space becomes large. This is because there is a problem such as an increase in the volume of the kind.
However, when the fluid to be sealed is the hydrogen gas fuel cell vehicle, the pressure becomes high, for example, 50 MPa, and the pressure fluctuates at the time of ON-OFF operation of the valves, so that the above rubber O-ring 41 generates blisters. There was a fear.
Further, the O-ring made of metal cannot be mounted in the integrated groove structure because the diameter cannot be expanded (stretched) as shown by the two-dot chain line in FIG. In addition, since the spool (shaft) 42 reciprocates in the axial direction (small dimension), the wear of the hole 45a and the wear of the metal O-ring are remarkable, which is not suitable for use.
Accordingly, an object of the present invention is to provide a hermetically sealed structure that is applicable to valves such as a regulator solenoid valve for controlling the pressure of high-pressure hydrogen gas of automotive fuel as described above, and has a simple and compact structure. To provide. It is another object of the present invention to provide a seal and a sealing structure in which the conventional blister is not generated, the external leakage of high-pressure hydrogen gas is small, and the service life is long.
[0005]
[Means for Solving the Problems]
The high-pressure hydrogen gas sealing structure of the present invention includes a resin seal body in which an opening groove is formed in one axial direction by an inner lip portion and an outer lip portion, and a seal provided in a spring provided in the opening groove. In a sealed structure mounted in a storage recess formed between a housing hole and a shaft, the shaft has a stepped surface that forms the inner bottom surface of the storage recess, and the seal has a shaft. At a position apart from the stepped surface by a dimension larger than the central dimension, a small ridge for preventing the seal from coming off is formed integrally with the outer peripheral surface of the shaft.
[0006]
It is preferable that the outer diameter of the small convex strip for preventing the seal from coming off is set to 104% to 125% of the outer diameter of the portion where the shaft forms the inner peripheral surface of the storage recess.
In the seal for high-pressure hydrogen gas of the present invention, the inner lip portion has a seal protrusion and a locking protrusion that can be locked to a part (small ridge) of the shaft. It is preferable that the thickness of the bottom wall on the back side of the opening groove of the seal body is set to 35% to 50% of the axial dimension of the seal body.
[0007]
Further, the axially acting position of the spring that resiliently urges the opening groove in the opening direction and the axially located position of the top of the sealing projection of the inner lip and the sealing projection of the outer lip coincide with each other. Let it.
The material of the seal body is preferably modified PTFE, and the material of the spring is preferably a Ni-Cr-based corrosion-resistant alloy.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.
1 to 3 show an embodiment of the present invention, FIG. 2 is a cross-sectional view of a seal S in a free state, FIG. 3 is a cross-sectional view illustrating a mounting (use) location, and FIG. It is a figure explaining the positional relationship and dimensional relationship between this seal | sticker S and a mounting (use) location.
The seal S has an inner lip portion 1 and an outer lip portion 2, and a resin seal body 4 having a substantially U-shaped cross section in which an opening groove portion 3 is formed in one axial direction by the inner and outer lip portions 1, 2. And a spring 5 having a substantially U-shaped cross section provided in the opening groove portion 3.
[0009]
Between a hole 7 in a housing (body) 6 of a regulator solenoid valve for controlling high-pressure hydrogen gas and other valves such as a switching valve and a flow control valve, and a shaft 8 such as a spool or a valve rod (valve body). The seal S is mounted in the storage recess 9 formed in the above.
The shaft 8 has a stepped surface 10 which forms the inner bottom surface on the low pressure side of the storage recess 9, and a large diameter portion (land portion) 11 having an outer diameter dimension D 0 slightly smaller than the hole portion 7. The small diameter portion 12 with which the inner lip portion 1 slides (contacts) is defined by the stepped surface 10.
[0010]
Only axial dimension H 0 slightly larger than the axial dimension H of the seal S, in a position away from the stepped surface 10, a stop for the small ridges 13 missing seal, the outer circumferential surface 8a of the shaft 8, together Formed. Specifically, the small ridge 13 has a substantially trapezoidal triangular shape integrally formed in a protruding manner on the outer peripheral surface of the small-diameter portion 12, and the distal end surface 14 side of the small-diameter portion 12 has a gentle taper surface ( The stepped surface 10a is a locking surface 13b in a direction substantially perpendicular to the axis 15 of the shaft 8 or a steeply inclined surface or a small radius.
[0011]
The axis direction dimension H 0 from the locking surface 13b, is intended to refer to a distance dimension to stepped surface 10. Then, as the following equation ▲ 1 ▼ is satisfied, it sets the axial dimension H 0.
1.10 × H ≦ H 0 ≦ 1.25 × H (1)
In other words, the seal S is loose and has room for the movement of the shaft 8 in the axial direction.
[0012]
Then, the outer diameter D 13 of the sealing stopper for a small ridge 13 is set to 104% to 125% of the outer diameter D 12 of the portions where the shaft 8 forming the inner peripheral surface of the housing concavity 9. In particular, 105% to 110% is desirable.
This can be expressed by the following equations (2) and (3).
1.04 × D 12 ≦ D 13 ≦ 1.25 × D 12 ( 2)
Preferably,
1.05 × D 12 ≦ D 13 ≦ 1.10 × D 12 ( 3)
Note that the portion where the shaft 8 forms the inner peripheral surface of the storage recess 9 specifically corresponds to the small-diameter portion 12.
[0013]
By the way, the seal S will be described in detail. As a material of the seal body 4, modified PTFE is preferable, and as a material of the spring 5, a Ni—Cr-based corrosion-resistant alloy is preferable.
[0014]
In the present invention, the modified PTFE means a co-weight of tetrafluoroethylene and perfluoro (alkyl vinyl ether). An example of such a modified PTFE, at least one and a copolymer of tetrafluoroethylene of the general formula R-O-CF = perfluoro represented by CF 2 (alkyl vinyl ether) is used. As the perfluoro (alkyl vinyl ether), those in which R in the above formula is a perfluoroalkyl group having 3 to 4 carbon atoms, such as perfluoro (propyl vinyl ether) and perfluoro (butyl vinyl ether), are preferred. Further, it is preferable to contain 0.1 to 10% by weight, preferably 0.5 to 5% by weight of perfluoro (alkyl vinyl ether).
[0015]
And, a material that does not mix the filler is desirable. The reason is that when the pressure of a high-pressure hydrogen gas such as 50 MPa acts, in the PTFE containing filler, the surfaces of the inner and outer lip portions 1 and 2 become rough (fine irregularities occur), and the outer peripheral surface of the shaft 8 and the hole 7 The high-pressure hydrogen gas leaks easily from a portion (contact surface) that comes into contact with the inner peripheral surface of the substrate.
[0016]
As a Ni-Cr-based corrosion-resistant alloy applied to the spring 5, a corrosion-resistant alloy Inconel (registered trademark) of Ni 76%, Cr 16%, and Fe 8% is excellent in terms of corrosion resistance to hydrogen gas.
[0017]
The inner lip 1 has a sealing projection 16 and a locking projection 17 that can be locked to the locking surface 13 b of the small ridge 13 of the small diameter portion 12 of the shaft 8.
The locking projection 17 has a surface perpendicular to the axis formed as a continuous flat surface with the distal end surface 18 of the inner lip portion 1, and a gradient surface gradually increasing in diameter toward the thick bottom wall portion 19 of the seal body 4. 20.
[0018]
The sealing projection 16 has a triangular chevron shape having an axial center orthogonal surface 21 and a slope surface 22 whose diameter gradually increases toward the bottom wall 19. The two projections 16 and 17 have the same inner diameter, and the projection 17 near the tip surface 18 is loosely mounted in the housing recess 9 with a margin in the axial direction as shown in FIG. Thus, when the seal body 4 is about to come off, the seal body 4 is locked on the locking surface 13b of the small ridge 13 for preventing the seal from coming off of the shaft 8 (small-diameter portion 12), and is reliably prevented from falling off. In addition, the locking projections 17 also perform a sealing function similarly to the adjacent sealing projections 16. In other words, the seal body 4 has a double seal lip (seal protrusion) on the inner peripheral surface side.
[0019]
On the other hand, the outer lip portion 2 has a low triangular sealing projection 23 having a gentle slope from the apex toward the distal end and the proximal end. As can be seen from FIG. 2, the sealing projections 23 on the outer lip portion 2 side and the sealing projections 16 on the inner lip portion 1 side are arranged on the same plane orthogonal to the axis 15. The axially acting position of the spring 5 that resiliently urges the opening in the opening direction and the axial position of the tops (apex) of the sealing projections 16 and 23 are matched.
[0020]
The spring 5 has a U-shaped cross section, and is incorporated into the opening groove 3 of the seal body 4 so as to be open toward the distal end {toward the high-pressure hydrogen gas storage chamber 24}. The axial position at which the open ends 25, 25 having a U-shaped cross section come into contact with the inner and outer lip portions 1, 2 and resiliently press them is the axial direction operating position. The operating position of the spring 5 (open ends 25, 25) and the tops (apex) of the inner and outer seal projections 16, 23 are arranged on one orthogonal plane.
As a result, the elastic urging force of the spring 5 directly and effectively applies the contact surface pressure of the sealing projections 16 and 23 to the mating member {the outer peripheral surface of the shaft 8 and the inner peripheral surface of the hole 7}. It can contribute to the increase and exhibit high sealing performance.
[0021]
As shown in FIGS. 1 and 2, the thickness T of the bottom wall portion 19 of the seal body 4 corresponding to (facing) the stepped surface 10 of the shaft 8 is determined by the dimension H of the seal body 4 in the axial direction. It is set to be sufficiently thick (35% to 50%) (compared to other portions). That is, it is set as in the following equation.
0.35 × H ≦ T ≦ 0.50 × H 4)
In the above formula (4), if it is less than the lower limit value, the permeation amount of gas (high-pressure hydrogen gas) sharply increases. Conversely, when the value exceeds the upper limit, unnecessary portions as a seal increase, and material is wasted.
[0022]
At a preferred embodiment of FIGS. 1-3, the seal exits the outer diameter D 13 of the stopper for the small ridges 13 the ▲ 2 ▼ as in formula (or ▲ 3 ▼ formula), since it is set sufficiently small The inner lip portion 1 of the seal body 4 can be easily mounted in the storage recess 9 while being lightly elastically deformed, and the inner lip portion 1. The projection 17 # does not impair the elastic restoring force, so that a sufficient sealing contact surface pressure can be obtained and excellent sealing performance can be exhibited.
At this time, the gentle taper surface (inclined surface) 13a allows the seal S to lightly and easily pass over the small ridge 13. In addition, since the locking surface 13b has a substantially planar shape perpendicular to the axis 15, the locking projections 17 of the mounted seal S are securely locked, and the seal S is removed from the storage recess 9. There is an advantage that it does not escape (do not jump out).
[0023]
Then, the ▲ 2 ▼ At a formula, when the outer diameter D 13 is less than the lower limit value, among the plurality of seal S, depending on usage conditions, overcoming small ridge 13, exits the housing concavity 9 Things increase rapidly. Conversely, if the upper limit is exceeded, the sealing projection 16 of the inner lip portion 1 is damaged by the small ridge 13 when the seal is attached, or the sealing projection 16 is plastically deformed in the radially expanding direction with the above-mentioned resin material. As a result, the leakage amount of the high-pressure hydrogen gas sharply increases.
[0024]
Next, FIGS. 4, 5, 6, and 7 show other embodiments.
In FIGS. 4 and 5, the sealing projection 26 of the inner lip portion 1 has a low triangular mountain shape similar to the sealing projection 23 of the outer lip portion 2 (as apparent from comparison with FIG. 2). a case has been, and outer diameter D 13 of the stopper for the small ridges 13 missing seal shaft 8, the outer diameter 12 of the shaft 8, a case relatively large.
[0025]
In FIG. 6, the sealing projection 27 of the inner lip 1 is located at a position corresponding to the tip end surface of the inner lip 1 of the seal body 4. It is a structure that locks and also serves as a stopper.
[0026]
In FIG. 7, the sealing projection (contact portion) 28 of the inner lip portion 1 is formed in a planar shape having a small width in the axial direction, and the resilient urging force of the open end 25 of the spring 5 is applied to the sealing projection. (Contact portion) 28. That is, in FIG. 6, the axial position of the opening end 25 of the spring 5 and the position of the sealing projection 27 are slightly deviated from each other. In FIG. 7, the planar sealing projection (contact portion) is different. At least a portion of the spring 28 is aligned with the axial position of the open end 25 of the spring 5, and the elastic biasing force of the spring 5 is effectively used to increase the contact surface pressure with the shaft.
[0027]
FIG. 8 shows the embodiment of FIG. 1 to FIG. 3 described above again for comparison with FIG. 4 to FIG. 7, and the sealing projection 28 that comes into contact with the surface of FIG. In this configuration, a triangular sealing projection 16 which is in contact with and close to the shape is provided, and a projection 27 for sealing and locking shown in FIG. 6 is separately provided as a projection 17 on the distal end side.
4 to 8 correspond to the examples described below and the actual measurement results of the leak test.
[0028]
【Example】
Embodiments 1, 2, 3, 4, and 5 correspond to FIGS. 4, 5, 6, 7, and 8, respectively, and show the radial dimension (thickness dimension) of the seal S in a free state before the spring 5 is mounted. 2.) W is 1.7 mm, axial dimension H is 2.7 mm, thickness T of bottom wall 19 is 1.0 mm, and inner diameter d 1 and outer diameter d 2 of bottom wall 19 are 3. The seal body 4 was made of the above-mentioned modified PTFE, and the material of the spring 5 was made of Inconel (registered trademark).
[0029]
On the other hand, the (basic) all outside diameter D 12 is 3.0mm diameter portion 12 of the shaft 8, the outer diameter D 13 of the stopper for the small ridges 13 missing seal in FIG. 4 3.8 mm (1.27 × D 12 ), 3.6 mm (1.20 × D 12 ) in FIG. 5, and 3.2 mm (1.07 × D 12 ) in FIGS. The inner diameter of the housing holes 7 was all 6.0 mm.
The results of measuring the amount of leakage using a nitrogen gas of 20 kgf / cm 2 as the leakage test fluid are shown in Table 1 below.
[0030]
[Table 1]
Figure 2004076870
[0031]
The following can be seen from Table 1 above.
Ratio axis diameter D 12 of the outer diameter D 13 of the sealing stopper for a small ridges 13, rapidly leak amount Q increases exceeds 125% (Example 1). The reason is that the inner lip portion 1 of the seal main body 4 gets over the small ridge 13 in a state where the diameter is largely expanded at the time of mounting, so that the sealing projection 26 is in a state of expanded diameter even after mounting and has a sufficient contact surface with the shaft. It is considered that pressure cannot be obtained.
[0032]
Thus, as shown in FIG. 5 (Example 2), when the percentage of (D 13 / D 12 ) is set to 120%, it can be seen that the leakage amount is sharply reduced to about 1/10.
Further, as shown in FIG. 6 (Example 3), the percentage of (D 13 / D 12 ) is reduced to 107%, the degree of diameter expansion (extension) at the time of mounting the seal is suppressed, and the seal projection 27 is formed. When formed on the distal end surface 18 (as in FIG. 6), it is reduced to 4.8 mL / min.
[0033]
As shown in FIG. 7 (Embodiment 4), the sealing projection 28 is made to contact the shaft 8 in a band shape (plane shape) while keeping the percentage of (D 13 / D 12 ) as it is, and the elastic force of the spring 5 is reduced. Leakage is reduced to 1.4 mL / min when it is more easily transmitted to the contact area.
Next, as shown in FIG. 8 (Embodiment 5), if the sealing projection 16 is changed so as to be in linear contact with the shaft 8 and the locking projection 17 is added to the tip, leakage will occur. It can be seen that the remarkable decrease was 0.3 mL / min.
[0034]
When a leak test is performed on a prototype in which the percentage of (D 13 / D 12 ) is less than 107%, the seal may come off (project) from the storage recess 9. Thus, the lower limit of (D 13 / D 12 ) that the seal does not come out of the storage recess 9 is 107%.
[0035]
【The invention's effect】
The present invention has the following significant effects by the above configuration.
Since the small ridge 13 is formed integrally with the outer peripheral surface 8a of the shaft 8, the structure is simple, and the volume of the high-pressure hydrogen gas sealing structure does not increase and the device is compact. That is, there is no need to attach a retaining member to the end of the shaft 8 or the housing hole 7 with a screw or the like. Then, the work of mounting the seal S in the storage recess 9 can be performed easily and quickly.
Therefore, it can be said that the sealing structure is suitable for valves such as a regulator solenoid valve of a hydrogen gas fuel cell vehicle.
[0036]
According to the second aspect, when the seal S is installed in the storage recess 9, the extension of the (the inner lip portion 1) of the seal body 4 can be suppressed, and the fluid leakage in the use state can be suppressed to a very small amount. Can be. In addition, the seal S can be prevented from falling out of the storage recess 9 due to pressure fluctuation or relative movement between the shaft 8 and the hole 7 after the mounting (in use).
[0037]
Since the portion where the inner lip portion 1 directly contacts the shaft 8 has a double structure of the sealing projection 16 and the locking projection 17 (according to claim 3), the sealing (sealing) property is improved. Extremely high.
In addition, the locking projection 17 that locks to a part of the shaft 8 can reliably prevent the seal S from coming off, and the position of the sealing projection 16 in the axial direction is aligned with the action point of the spring 5. Therefore, the contact surface pressure of the seal projection 16 with the shaft 8 can be sufficiently increased, and excellent sealing (sealing) can be exhibited.
[0038]
(According to claim 4) Even if the pressure of the hydrogen gas as the sealed fluid is as high as, for example, 50 MPa, gas permeation through the bottom wall portion 19 can be sufficiently suppressed. Moreover, it also prevents the seal body 4 from becoming unnecessarily large.
(According to claim 5), the elastic urging force of the spring 5 is effectively transmitted to the sealing projections 16 and 23. Thereby, the contact surface pressure on the outer peripheral surface of the shaft 8 and the inner peripheral surface of the housing hole 7 is sufficiently increased, and the sealing performance is reliably exhibited.
The leakage amount is further reduced as compared to filled PTFE. In addition, the combination of the modified PTFE and the Ni-Cr-based corrosion-resistant alloy enables application to a high-pressure hydrogen gas of, for example, 50 MPa, and minimizes leakage, has excellent creep resistance, and provides sufficient corrosion resistance.
[Brief description of the drawings]
FIG. 1 is a view illustrating an embodiment of a sealing structure according to the present invention and illustrating a positional relationship and a dimensional relationship of components.
FIG. 2 is a sectional view of a seal.
FIG. 3 is an explanatory sectional view of a place where a seal is mounted.
FIG. 4 is an explanatory diagram showing another embodiment.
FIG. 5 is an explanatory diagram showing another embodiment.
FIG. 6 is an explanatory diagram showing still another embodiment.
FIG. 7 is an explanatory diagram showing still another embodiment.
FIG. 8 is an explanatory diagram showing one embodiment of the above for comparison with another.
FIG. 9 is an explanatory sectional view showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inner lip part 2 Outer lip part 4 Seal body 5 Spring 6 Housing (body)
7 Hole 8 Shaft 8a Outer peripheral surface 9 Storage recess 10 Stepped surface 13 Small ridge 16 for preventing seal coming off Sealing protrusion 17 Locking protrusion 19 Bottom wall 23 Sealing protrusion S Seal T Thickness D 0 , D 12 , D 13 outer diameter dimension H 0 , H 1 axial dimension

Claims (6)

内リップ部(1)と外リップ部(2)によって軸心一方向に開口溝部(3)を形成した樹脂製シール本体(4)と、該開口溝部(3)内に設けられたバネ(5)と、から成るシール(S)を、ハウジング孔部(7)と軸(8)との間に形成された収納凹所(9)に装着した密封構造に於て、上記軸(8)には、上記収納凹所(9)の奥底面を形成する段付面(10)が形成され、上記シール(S)の軸心方向寸法(H)よりも大きい寸法(H )だけ上記段付面(10)から離れた位置に、シール抜け止め用小凸条(13)を上記軸(8)の外周面(8a)に、一体に形成したことを特徴とする高圧水素ガス密封構造。A resin seal body (4) in which an opening groove (3) is formed in one axial direction by an inner lip (1) and an outer lip (2), and a spring (5) provided in the opening groove (3). ) And a seal (S) comprising a housing (7) and a housing (9) formed between the housing hole (7) and the housing (9). is stepped surface forming a bottom surface of the housing recess (9) (10) is formed, a large dimension (H 0) than the axial direction dimension (H) of the seal (S) only with the stage A high-pressure hydrogen gas sealing structure, wherein a small convex strip (13) for preventing a seal from being detached is formed integrally with the outer peripheral surface (8a) of the shaft (8) at a position away from the surface (10). 上記シール抜け止め用小凸条(13)の外径寸法(D13)を、上記軸(8)が上記収納凹所(9)の内周面を形成する部位の外径寸法(D12)の104%〜 125%に設定した請求項1記載の高圧水素ガス密封構造。The outer diameter of the sealing stopper for a small ridge (13) to (D 13), said axis (8) of the housing recess (9) the inner peripheral surface outside diameter of the portion to form a (D 12) The high-pressure hydrogen gas sealing structure according to claim 1, wherein the pressure is set to 104% to 125% of the pressure. 内リップ部(1)と外リップ部(2)によって軸心一方向に開口溝部(3)を形成した樹脂製シール本体(4)と、該開口溝部(3)内に設けられたバネ(5)と、から成る高圧水素ガス用シールに於て、上記内リップ部(1)が、シール用突起(16)と、軸(8)の一部に係止可能な係止用突起(17)を有することを特徴とする高圧水素ガス用シール。A resin seal body (4) in which an opening groove (3) is formed in one axial direction by an inner lip (1) and an outer lip (2), and a spring (5) provided in the opening groove (3). ), The inner lip portion (1) has a sealing projection (16) and a locking projection (17) which can be locked to a part of the shaft (8). A high-pressure hydrogen gas seal comprising: 内リップ部(1)と外リップ部(2)によって軸心一方向に開口溝部(3)を形成した樹脂製シール本体(4)と、該開口溝部(3)内に設けられたバネ(5)と、から成る高圧水素ガス用シールに於て、上記シール本体(4)の開口溝部(3)の奥側の底壁面(19)の肉厚寸法(T)を、上記シール本体(4)の軸心方向寸法(H)の35%〜50%に設定したことを特徴とする高圧水素ガス用シール。A resin seal body (4) in which an opening groove (3) is formed in one axial direction by an inner lip (1) and an outer lip (2), and a spring (5) provided in the opening groove (3). ), The thickness dimension (T) of the bottom wall surface (19) on the back side of the opening groove (3) of the seal body (4) is set to the thickness (T) of the seal body (4). A high-pressure hydrogen gas seal characterized in that it is set to 35% to 50% of the axial dimension (H) of (1). 内リップ部(1)と外リップ部(2)によって軸心一方向に開口溝部(3)を形成した樹脂製シール本体(4)と、該開口溝部(3)内に設けられたバネ(5)と、から成る高圧水素ガス用シールに於て、上記開口溝部(3)を開口方向に弾発付勢する上記バネ(5)の軸心方向作用位置と、上記内リップ部(1)のシール用突起(16)及び上記外リップ部(2)のシール用突起(23)の頂部の軸心方向位置を、一致させたことを特徴とする高圧水素ガス用シール。A resin seal body (4) in which an opening groove (3) is formed in one axial direction by an inner lip (1) and an outer lip (2), and a spring (5) provided in the opening groove (3). ), The axially acting position of the spring (5) for resiliently urging the opening groove (3) in the opening direction, and the inner lip (1). A high-pressure hydrogen gas seal wherein the axial positions of the tops of the sealing projections (16) and the sealing projections (23) of the outer lip portion (2) are matched. シール本体(S)の材質が変性PTFEであり、かつ、バネ(5)の材質がNi−Cr系の耐食合金である請求項3,4又は5記載の高圧水素ガス用シール。The high-pressure hydrogen gas seal according to claim 3, wherein the material of the seal body (S) is modified PTFE, and the material of the spring (5) is a Ni-Cr-based corrosion-resistant alloy.
JP2002239100A 2002-08-20 2002-08-20 High-pressure hydrogen gas sealing structure and seal Expired - Lifetime JP4198954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002239100A JP4198954B2 (en) 2002-08-20 2002-08-20 High-pressure hydrogen gas sealing structure and seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002239100A JP4198954B2 (en) 2002-08-20 2002-08-20 High-pressure hydrogen gas sealing structure and seal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008111471A Division JP4616896B2 (en) 2008-04-22 2008-04-22 High-pressure hydrogen gas seal

Publications (2)

Publication Number Publication Date
JP2004076870A true JP2004076870A (en) 2004-03-11
JP4198954B2 JP4198954B2 (en) 2008-12-17

Family

ID=32022295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002239100A Expired - Lifetime JP4198954B2 (en) 2002-08-20 2002-08-20 High-pressure hydrogen gas sealing structure and seal

Country Status (1)

Country Link
JP (1) JP4198954B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145313A1 (en) 2006-06-16 2007-12-21 Nok Corporation Silicone rubber composition
WO2008001625A1 (en) 2006-06-27 2008-01-03 Nok Corporation Silicone rubber composition
JP2009522528A (en) * 2006-01-05 2009-06-11 サン−ゴバン パフォーマンス プラスティックス コーポレイション Annular seal and pump including annular seal
JP2012031990A (en) * 2010-06-30 2012-02-16 Mitsubishi Cable Ind Ltd U-shaped seal
JP2012047306A (en) * 2010-08-27 2012-03-08 National Institute Of Advanced Industrial Science & Technology Seal
US8794477B2 (en) 2007-02-08 2014-08-05 Toyota Jidosha Kabushiki Kaisha Sealing material for high-pressure hydrogen container, and high-pressure hydrogen container
DE102014108108A1 (en) 2013-06-13 2014-12-18 Toyota Jidosha Kabushiki Kaisha Sealing body and gas sealing mechanism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313018B (en) * 2010-06-30 2015-07-22 三菱电线工业株式会社 U-shaped sealing member

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522528A (en) * 2006-01-05 2009-06-11 サン−ゴバン パフォーマンス プラスティックス コーポレイション Annular seal and pump including annular seal
US8404791B2 (en) 2006-06-16 2013-03-26 Nok Kluber Co., Ltd. Silicone rubber composition
EP2319889A1 (en) 2006-06-16 2011-05-11 Nok Corporation Silicone rubber composition
WO2007145313A1 (en) 2006-06-16 2007-12-21 Nok Corporation Silicone rubber composition
WO2008001625A1 (en) 2006-06-27 2008-01-03 Nok Corporation Silicone rubber composition
US8217132B2 (en) 2006-06-27 2012-07-10 Nok Corporation Silicone rubber composition
US8794477B2 (en) 2007-02-08 2014-08-05 Toyota Jidosha Kabushiki Kaisha Sealing material for high-pressure hydrogen container, and high-pressure hydrogen container
JP2012031990A (en) * 2010-06-30 2012-02-16 Mitsubishi Cable Ind Ltd U-shaped seal
JP2012163216A (en) * 2010-06-30 2012-08-30 Mitsubishi Cable Ind Ltd U-shaped seal
JP2013032848A (en) * 2010-06-30 2013-02-14 Mitsubishi Cable Ind Ltd U-shaped seal
JP2012047306A (en) * 2010-08-27 2012-03-08 National Institute Of Advanced Industrial Science & Technology Seal
DE102014108108A1 (en) 2013-06-13 2014-12-18 Toyota Jidosha Kabushiki Kaisha Sealing body and gas sealing mechanism
DE102014108108B4 (en) * 2013-06-13 2020-03-05 Toyota Jidosha Kabushiki Kaisha Gas sealing mechanism with a sealing body

Also Published As

Publication number Publication date
JP4198954B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP5046940B2 (en) Seal assembly cammed with elastic energy application element
US7942423B2 (en) Lip type seal
JPWO2006126451A1 (en) Lip type seal
JP2005299808A (en) Seal for pump
JP5621092B2 (en) Fluid pressure equipment
JPH11315933A (en) Cartiridge rotary seal equipped with retainer
JP2009041776A (en) Ball valve
JP4616896B2 (en) High-pressure hydrogen gas seal
JP2004076870A (en) Sealing structure of high-pressure hydrogen gas, and seal
JP2006220229A (en) Dovetail groove sealing material
US11635016B2 (en) Seal and fluid valve
EP1832787B1 (en) Sealing device
JP2008281192A (en) Seal ring
JP2004527707A (en) Open elastic metal gasket with offset projection
JP4243120B2 (en) High pressure gas sealed structure
JP2012013141A (en) Trunnion type ball valve
EP2112337A1 (en) Valve stem seal
JP4066899B2 (en) Sealing device
JP4601993B2 (en) Sealing material
JP3155483B2 (en) Valve stem seal
JPH09210213A (en) Reciprocating sealing device
JP2008075680A (en) Valve sealing structure
JP2005315290A (en) Check valve
JP2007333018A (en) Sealing structure of valve
JP2005106116A (en) Seat for ball valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4198954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term