JP2004072366A - Distributed parameter type circulator - Google Patents

Distributed parameter type circulator Download PDF

Info

Publication number
JP2004072366A
JP2004072366A JP2002228289A JP2002228289A JP2004072366A JP 2004072366 A JP2004072366 A JP 2004072366A JP 2002228289 A JP2002228289 A JP 2002228289A JP 2002228289 A JP2002228289 A JP 2002228289A JP 2004072366 A JP2004072366 A JP 2004072366A
Authority
JP
Japan
Prior art keywords
conductor
circulator
ferrimagnetic material
dielectric
ferrimagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002228289A
Other languages
Japanese (ja)
Inventor
Shigeo Fujii
藤井 重男
Hideto Mikami
三上 秀人
Setsuo Yamamoto
山本 節夫
Mitsuru Matsuura
松浦  満
Kazunobu Oshiro
大城 和宣
Shinki Kurisu
栗巣 普揮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi Technology Licensing Organization Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Yamaguchi Technology Licensing Organization Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Yamaguchi Technology Licensing Organization Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002228289A priority Critical patent/JP2004072366A/en
Publication of JP2004072366A publication Critical patent/JP2004072366A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distributed parameter type circulator capable of being miniaturized. <P>SOLUTION: In the distributed parameter type circulator comprising: a plane-like ferrimagnetic substance whose surrounding is covered with a casing which is used as a ground body; a conductor having three input/output terminals adjacently arranged in order to induce high frequency to the ferrimagnetic substance; and a plate-like permanent magnet arranged so as to face the ferrimagnetic substance through the conductor, a high dielectric material is arranged between the conductor and the permanent magnet. The high dielectric material is preferably formed into a plane shape whose dielectric constant is ≥ 20 and ≤ 1300. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、平板状フェリ磁性体を用いたマイクロ波非相反素子である分布定数型サーキュレータの高性能化に関する。
【0002】
【従来の技術】
近年、IC、トランジスタなどの半導体素子、積層チップコンデンサ、積層チップインダクタ、チップ抵抗などの受動部品の小型化に伴い、これらを表面実装したマイクロ波装置の小型化・薄型化が急速に進行している。このような動きの中で、マイクロ波非相反素子であるサーキュレータ・アイソレータの小型化が望まれている。
【0003】
このような市場の要求に対応し、当該素子を小型化しようとする動きがある。ところで、サーキュレータ・アイソレータの構造は集中定数型および分布定数型と称される2種がある。いずれも機能発現のためには永久磁石によるバイアス磁界を受けたフェリ磁性酸化物体を使用するが、前者は抵抗、コンデンサなどを電気的な定数を調整するために採用する。
【0004】
これに対し後者は基本的にコンデンサは不要など部品点数が少なくできる利点がある。また、フェリ磁性体に印加する磁界も集中定数型に比較して小さくて済む。
【0005】
【発明が解決しようとする課題】
いずれもフェリ磁性酸化物は一般に円筒形状のものが実用に供される。その径は対象とする高周波機器の使用周波数に依存し規定される。すなわち、対象とする周波数に対して波長の1/2としてまず導体の径が制限される。さらに高周波が媒質であるフェリ磁性体中を伝わるとき波長はさらに1/√με短くなる。ここにμは媒質の透磁率、εは比誘電率である。なお、1/√με=1/((με)1/2)である。
【0006】
集中定数型、分布定数型の如何に関わらず、導体径は前記のように制限される。したがってフェリ磁性体は導体径より小さくできず、このためアイソレータ/サーキュレータ素子の小型化は困難である。
【0007】
一方、素子を薄型化する目的では、フェリ磁性体も薄型化することが必要になるが、磁性体はこのときに反磁界が大きくなる。すなわち磁性体を磁化するためには外部から目的とする磁性体に磁界を印加するが、反磁界に比例して被る磁界を打消す磁界が作用する。反磁界は形状に依存し、薄くなるほど、径が大きくなるほど大きくなる。サーキュレータでは永久磁石によって軟磁性体を磁化し使用するが、軟磁性体が薄くなるほど大きな磁力を必要とすることとなる。磁力の大きな磁石は安価な酸化物磁性体では発現できず、高価な希土類磁石が必要となる。
【0008】
分布定数型サーキュレータを小型化する手段の従来技術背景となっている考え方について述べる。直流磁界が印加されたフェリ磁性体の内部を伝わる電磁波の波長λは概略次の数式で表せる。
【0009】
【数1】

Figure 2004072366
【0010】
数1においてλoは真空中の電磁波の波長、εはフェリ磁性体の比誘電率、μはサーキュレータ動作時の比誘電率である。ここで、周波数1GHzを想定すると、ε=16、μ=2とすればλ=53mmを得る。集中定数型素子構造では動作する最適寸法はλ/8程度と言われており、また外部の特性インピーダンスと整合を取るためにフェリ磁性体には共鳴磁界よりかなり強い磁界を印加することや、負荷容量Cを調整することでさらに小型化が可能である。
【0011】
一方、分布定数型素子として動作するための円板状フェリ磁性体の直径Dとしてはλ/2が目安であるから、26.5mm程度が要求される。このように小型化において、分布定数型素子は圧倒的に不利であった。
【0012】
本発明は、サーキュレータの基本構造を鑑みることで前述の従来技術の問題点を解決し小型化が可能な分布定数型サーキュレータを提供することを目的とする。
【0013】
【課題を解決するための手段】
すなわち、本発明の分布定数型サーキュレータは、平板状のフェリ磁性体と、該フェリ磁性体に高周波を誘導する目的で隣接して配置された3つの入出力端子を有する導体と、該フェリ磁性体の該導体との隣接面に対向する面に隣接して配置された接地導体と、該フェリ磁性体にバイアス磁界を印加する永久磁石から成るサーキュレータにおいて、該導体と該永久磁石の間に誘電体材料が配置されて成ることを特長とする。このサーキュレータは、周囲を接地体となる筐体で覆う。永久磁石は、導体を挟んでフェリ磁性体に対向して設置される。また、該誘電体材料は比誘電率が20以上1300以下の平板型であることが望ましい。
【0014】
【発明の実施の形態】
本発明のフェリ磁性体と誘電体との複合体を用いれば、分布定数型サーキュレータ素子において課題であった小型化を可能とすることができる。以下詳細に説明する。
【0015】
本発明の背景となる考え方について述べる。分布定数型サーキュレータにおいては導体に入力した高周波は数1で見るように、フェリ磁性体の比誘電率εおよび透磁率μで規定される波長の1/2のフェリ磁性体径が必要とされる。したがって、もしεの大きなフェリ磁性体があれば物質内を透過する波長を短くすることが可能である。しかし、一般的に供させるガーネットなどのマイクロ波フェリ磁性体の比誘電率は結晶構造により決まり、容易にその値を制御することはできない。
【0016】
一方、フェリ磁性体は素子において永久磁石などによりバイアス磁界を受け磁化される構造となっており、μはかなり飽和した値に近いものとなり、容易に制御することは不可能である。本発明の主要な技術ポイントは高周波を伝送する導体に対してフェリ磁性体と対置して誘電体を設けることで小型化を実現するものである。
【0017】
前記構造においては誘電体の比誘電率の効果によりサーキュレータ内部での高周波信号の波長を短縮することができる。誘電体材料はその比誘電率が軟磁性材料の値以上つまり20以上であれば有効であるが、それ以下ではその効果があまり顕著ではない。より望ましくは、比誘電率εは100以上とする。
【0018】
比誘電率は波長短縮に有効であり上限は特に制限されるものではないが、比誘電率が大きくなると損失、特に導体損失が大きくなり好ましいものではない。このため、素子機能に要求される性能を満足するには実際的にはεは1300以下が適当である。
【0019】
導体に接触させフェリ磁性体との均一な電界を確保するためには、誘電体の形状は平板型であるものとする。その厚みは、フェリ磁性体の全体の厚みと同等以下であることが好ましい。フェリ磁性体に比較して、高い比誘電率を有する誘電体が空間的に占有する体積が多い場合には、損失が大きくなるためである。
以下、具体例にしたがい本発明をさらに詳述する。
【0020】
(実施例1)
分布定数型として図1に示すようなマイクロストリップ型構造を設定した。構造を判り易くするために、図1は分解斜視図で表した。実際の分布定数型サーキュレータは同図の縦方向に沿って、接地導体10、フェリ磁性体20、中心導体30、誘電体40を順に重ね合わせたものを、筐体に収めた構造である。接地面(接地導体10の面)は一辺B=2.6mmの六角形である。フェリ磁性体20も一辺A=2.5mmの六角形で、飽和磁化Is=90mT、共鳴磁界の半値幅ΔH=4kA/m、比誘電率ε=21.88、厚みt=0.3mmのイットリウム鉄ガーネット(YIG)である。中心導体30は図1中のように信号の入出力のための3つのポートを有し、線幅W=1mm、長さL=1.122mm、中心半径a=2.5mmとした。誘電体40は厚みtd=0.2mmでYIGと同じ面積の六角形である。簡単のためにYIGにバイアス磁界を与える永久磁石は素子構造では考慮せず、YIGの内部中心に実効的に磁界Hint=8kA/mの磁界が印加するものとした。また、YIGおよび誘電体の誘電損失tanδはそれぞれ0.0002と0.002、接地面と中心導体は銀で構成されており、その導電率σ=5.8×10S/mとした。バイアス磁界をYIGに対して中心導体に向う厚み方向に印加し、ポート1からポート2に信号を通過させるサーキュレーション動作をさせた場合の、反射損失S11、通過損失S21およびアイソレーションS31など各Sパラメータの周波数特性を図2に示す。
【0021】
(実施例2)
実施例1と同じ素子構成条件で誘電体の比誘電率を20から2000まで変化させた場合、まず最も損失の少ない周波数を求めるためのS11ピーク周波数と比誘電率との関係を図3に示す。またこのとき比誘電率とSパラメータ性能との関係を図4に示す。
【0022】
(比較例1)
導体に隣接したフェリ磁性体と対置する誘電体がないこと、およびフェリ磁性体の厚みt=1mm、導体の長さL=1mmとした以外は実施例1と同じ素子形状および材料構成から成るサーキュレータ素子で実施例1と同様にSパラメータ特性を評価した結果を図5に示す。ここにフェリ磁性体に印加した磁界は最適な特性が得られるよう、実施例1とは異なりHint=80kA/mとした。
【0023】
図2の結果に示されたように、誘電体を設けた本発明の構造では、素子性能を意味するSパラメータがピークを有する最適周波数において、反射損失S11=47dB、通過損失S21=0.25dB、アイソレーションS31=34dBと高い性能を示している。一方、図5の結果に示されたように、従来の構造では当該性能はS21=0.28dBとなるものの、S11およびS31は30dB未満となっている。よって素子構造の小型化と同時に高性能化も達成しており、本発明の効果が理解できる。
また、図4の結果から比誘電率が1300以上ではS31<20dB、S21>1dBと性能が低下し十分な特性が発現できないことが明らかである。
【0024】
【発明の効果】
以上説明したように、本発明の構成を用いることにより、分布定数型サーキュレータの構成を小型化することができる。なお、実施例では接地導体、フェリ磁性体や誘電体は6角形の形状としたが、これらが形状の制限を受けないことは勿論のことである。
さらに、実施例1と比較例1ではバイアス磁界によって軟磁性体の中心に印加する磁界Hintは、それぞれ8kA/mと80kA/mであった。よって、本発明では素子構造の小型化に優位であるばかりでなく、低バイアス磁界化においても有効であることがわかる。これは永久磁石も薄型となる薄型構造素子化においても効果的である。
【図面の簡単な説明】
【図1】本発明の素子構造を示す斜視図である。
【図2】本発明におけるSパラメータ性能指数と周波数との関係を示すグラフである。
【図3】本発明における最適反射損失S11を示す周波数と誘電体の比誘電率との関係を示すグラフである。
【図4】本発明におけるSパラメータ性能指数と誘電体の比誘電率との関係を示すグラフである。
【図5】従来発明におけるSパラメータ性能指数と周波数との関係を示すグラフである。
【符号の説明】
10 接地導体、20 フェリ磁性体、30 中心導体、40 誘電体。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to improving the performance of a distributed constant circulator that is a microwave non-reciprocal element using a flat ferrimagnetic material.
[0002]
[Prior art]
In recent years, with the miniaturization of passive components such as semiconductor devices such as ICs and transistors, multilayer chip capacitors, multilayer chip inductors, and chip resistors, the size and thickness of microwave devices on which these are surface-mounted are rapidly progressing. I have. In such a movement, miniaturization of a circulator / isolator which is a microwave non-reciprocal element is desired.
[0003]
In response to such market demands, there is a movement to reduce the size of the element. By the way, there are two types of circulator / isolator structures called a lumped constant type and a distributed constant type. In each case, a ferrimagnetic oxide body subjected to a bias magnetic field by a permanent magnet is used to realize the function. The former employs a resistor, a capacitor, and the like to adjust an electrical constant.
[0004]
On the other hand, the latter has an advantage that the number of components can be reduced, for example, a capacitor is basically unnecessary. Further, the magnetic field applied to the ferrimagnetic material can be smaller than that of the lumped constant type.
[0005]
[Problems to be solved by the invention]
In each case, the ferrimagnetic oxide generally has a cylindrical shape for practical use. The diameter is defined depending on the operating frequency of the target high-frequency device. That is, the diameter of the conductor is first limited to 1 / of the wavelength for the target frequency. Further, when a high frequency propagates through a ferrimagnetic material as a medium, the wavelength is further reduced by 1 / √με. Here, μ is the magnetic permeability of the medium, and ε is the relative permittivity. Note that 1 / √με = 1 / ((με) 1/2 ).
[0006]
Regardless of the lumped constant type or the distributed constant type, the conductor diameter is limited as described above. Therefore, the ferrimagnetic material cannot be smaller than the conductor diameter, and it is difficult to reduce the size of the isolator / circulator element.
[0007]
On the other hand, for the purpose of reducing the thickness of the element, it is necessary to reduce the thickness of the ferrimagnetic material, but the magnetic material has a large demagnetizing field at this time. That is, in order to magnetize the magnetic body, a magnetic field is applied to the target magnetic body from the outside, but a magnetic field acts to cancel the magnetic field applied in proportion to the demagnetizing field. The demagnetizing field depends on the shape, and becomes larger as the thickness becomes smaller and the diameter becomes larger. In a circulator, a soft magnet is magnetized and used by a permanent magnet, and a thinner soft magnet requires a larger magnetic force. Magnets having a large magnetic force cannot be expressed by inexpensive oxide magnetic materials, and expensive rare earth magnets are required.
[0008]
The concept behind the prior art of means for reducing the size of a distributed circulator will be described. The wavelength λ of the electromagnetic wave transmitted inside the ferrimagnetic material to which the DC magnetic field is applied can be approximately expressed by the following equation.
[0009]
(Equation 1)
Figure 2004072366
[0010]
In Equation 1, λo is the wavelength of an electromagnetic wave in a vacuum, ε is the relative permittivity of the ferrimagnetic material, and μ is the relative permittivity during operation of the circulator. Here, assuming a frequency of 1 GHz, if ε = 16 and μ = 2, λ = 53 mm is obtained. It is said that the lumped-constant element structure operates at an optimum dimension of about λ / 8. In addition, in order to match the external characteristic impedance, it is necessary to apply a magnetic field considerably stronger than the resonance magnetic field to the ferrimagnetic material, The size can be further reduced by adjusting the capacitance C.
[0011]
On the other hand, the diameter D of the disk-shaped ferrimagnetic material for operating as a distributed constant type element is required to be about 26.5 mm because λ / 2 is a standard. As described above, in miniaturization, the distributed constant element is overwhelmingly disadvantageous.
[0012]
SUMMARY OF THE INVENTION An object of the present invention is to provide a distributed constant type circulator which solves the above-mentioned problems of the prior art by considering the basic structure of the circulator and which can be downsized.
[0013]
[Means for Solving the Problems]
That is, the distributed constant type circulator of the present invention comprises a flat ferrimagnetic material, a conductor having three input / output terminals arranged adjacently for the purpose of inducing a high frequency to the ferrimagnetic material, and the ferrimagnetic material. A circulator comprising a ground conductor disposed adjacent to a surface opposite to an adjacent surface of the conductor and a permanent magnet for applying a bias magnetic field to the ferrimagnetic material, wherein a dielectric material is interposed between the conductor and the permanent magnet. It is characterized in that the material is arranged. This circulator is covered with a housing serving as a grounding body. The permanent magnet is installed facing the ferrimagnetic material with the conductor interposed therebetween. The dielectric material is desirably a flat plate having a relative dielectric constant of 20 or more and 1300 or less.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The use of the composite of the ferrimagnetic material and the dielectric material of the present invention can reduce the size of the distributed constant circulator element, which has been a problem in the circulator element. The details will be described below.
[0015]
The concept behind the present invention will be described. In a distributed constant type circulator, the high frequency input to the conductor requires a ferrimagnetic material diameter of 1/2 of the wavelength defined by the relative permittivity ε and the magnetic permeability μ of the ferrimagnetic material, as seen from Equation 1. . Therefore, if there is a ferrimagnetic material having a large ε, it is possible to shorten the wavelength transmitted through the substance. However, the relative permittivity of a generally used microwave ferrimagnetic material such as garnet is determined by the crystal structure, and the value cannot be easily controlled.
[0016]
On the other hand, the ferrimagnetic material has a structure in which the element is magnetized by receiving a bias magnetic field by a permanent magnet or the like, and μ becomes close to a substantially saturated value, and cannot be easily controlled. The main technical point of the present invention is to realize miniaturization by providing a dielectric for a conductor that transmits high frequency, in opposition to a ferrimagnetic material.
[0017]
In the above structure, the wavelength of the high-frequency signal inside the circulator can be shortened by the effect of the dielectric constant of the dielectric. The dielectric material is effective as long as its relative permittivity is equal to or more than the value of the soft magnetic material, that is, equal to or more than 20, but below that, the effect is not so remarkable. More preferably, the relative permittivity ε is set to 100 or more.
[0018]
The relative permittivity is effective for shortening the wavelength and the upper limit is not particularly limited. However, if the relative permittivity increases, the loss, particularly the conductor loss, increases, which is not preferable. Therefore, in order to satisfy the performance required for the element function, it is practically appropriate that ε is 1300 or less.
[0019]
In order to contact the conductor and secure a uniform electric field with the ferrimagnetic material, the shape of the dielectric is flat. The thickness is preferably equal to or less than the entire thickness of the ferrimagnetic material. This is because the loss increases when the dielectric having a higher relative dielectric constant occupies a larger space spatially than the ferrimagnetic material.
Hereinafter, the present invention will be described in more detail with reference to specific examples.
[0020]
(Example 1)
A microstrip structure as shown in FIG. 1 was set as the distributed constant type. FIG. 1 is an exploded perspective view for easy understanding of the structure. The actual distributed constant type circulator has a structure in which a ground conductor 10, a ferrimagnetic material 20, a center conductor 30, and a dielectric material 40 are sequentially stacked in a vertical direction in FIG. The ground plane (the plane of the ground conductor 10) is a hexagon with one side B = 2.6 mm. The ferrimagnetic material 20 is also a hexagon having a side A of 2.5 mm, a saturation magnetization Is = 90 mT, a half width of resonance magnetic field ΔH = 4 kA / m, a relative permittivity ε = 21.88, and a thickness t = 0.3 mm yttrium. Iron Garnet (YIG). The center conductor 30 has three ports for inputting and outputting signals as shown in FIG. 1, and has a line width W = 1 mm, a length L = 1.122 mm, and a center radius a = 2.5 mm. The dielectric 40 is a hexagon having a thickness td = 0.2 mm and the same area as YIG. For simplicity, a permanent magnet that applies a bias magnetic field to YIG was not considered in the element structure, and a magnetic field of Hint = 8 kA / m was effectively applied to the center of the YIG. The dielectric loss tan δ of YIG and the dielectric was 0.0002 and 0.002, respectively, and the ground plane and the central conductor were made of silver, and the conductivity σ was 5.8 × 10 7 S / m. When a bias magnetic field is applied to the YIG in the thickness direction toward the center conductor, and a circulating operation for passing a signal from port 1 to port 2 is performed, the reflection loss S 11 , the transmission loss S 21, and the isolation S 31 FIG. 2 shows the frequency characteristics of each S parameter.
[0021]
(Example 2)
If the relative dielectric constant of the dielectric was varied from 20 to 2000 in the same element construction conditions as in Example 1, the first and most low loss relationship between S 11 peak frequency and the dielectric constant for obtaining the frequency in FIG. 3 Show. FIG. 4 shows the relationship between the relative permittivity and the S-parameter performance at this time.
[0022]
(Comparative Example 1)
A circulator having the same element shape and material configuration as in Example 1 except that there is no dielectric opposing the ferrimagnetic material adjacent to the conductor, the thickness t of the ferrimagnetic material is 1 mm, and the length L of the conductor is 1 mm. FIG. 5 shows the results of evaluating the S-parameter characteristics of the device in the same manner as in Example 1. Here, the magnetic field applied to the ferrimagnetic material was set to Hint = 80 kA / m, unlike the first embodiment, so as to obtain optimal characteristics.
[0023]
As shown in the results of FIG. 2, in the structure of the present invention provided with the dielectric, the reflection loss S 11 = 47 dB and the transmission loss S 21 = 0 at the optimum frequency where the S parameter meaning the element performance has a peak. .25 dB and the isolation S 31 = 34 dB. On the other hand, as shown in the result of FIG. 5, in the conventional structure, the performance is S 21 = 0.28 dB, but S 11 and S 31 are less than 30 dB. Therefore, the performance of the present invention has been improved as well as the miniaturization of the element structure, and the effect of the present invention can be understood.
Also, from the results of FIG. 4, it is clear that when the relative dielectric constant is 1300 or more, the performance is reduced to S 31 <20 dB and S 21 > 1 dB, and sufficient characteristics cannot be exhibited.
[0024]
【The invention's effect】
As described above, the configuration of the distributed constant circulator can be downsized by using the configuration of the present invention. In the embodiment, the ground conductor, the ferrimagnetic material, and the dielectric material have a hexagonal shape. However, it is a matter of course that the shape is not limited.
Further, in Example 1 and Comparative Example 1, the magnetic fields Hint applied to the center of the soft magnetic material by the bias magnetic field were 8 kA / m and 80 kA / m, respectively. Therefore, it can be seen that the present invention is advantageous not only in miniaturization of the element structure but also in lowering the bias magnetic field. This is effective also in making a thin structural element in which a permanent magnet is also made thin.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an element structure of the present invention.
FIG. 2 is a graph showing a relationship between an S-parameter figure of merit and a frequency in the present invention.
3 is a graph showing the relationship between the relative dielectric constant of the frequency and the dielectric indicating the optimal return loss S 11 of the present invention.
FIG. 4 is a graph showing the relationship between the S-parameter figure of merit and the relative permittivity of a dielectric according to the present invention.
FIG. 5 is a graph showing the relationship between the S-parameter figure of merit and the frequency in the conventional invention.
[Explanation of symbols]
10 ground conductor, 20 ferrimagnetic material, 30 center conductor, 40 dielectric.

Claims (2)

平板状のフェリ磁性体と、該フェリ磁性体に高周波を誘導する目的で隣接して配置された3つの入出力端子を有する導体と、該フェリ磁性体の該導体との隣接面に対向する面に隣接して配置された接地導体と、該フェリ磁性体にバイアス磁界を印加する永久磁石から成るサーキュレータにおいて、該導体と該永久磁石の間に誘電体材料が配置されて成ることを特長とする分布定数型サーキュレータ。A flat ferrimagnetic material, a conductor having three input / output terminals arranged adjacent to each other for inducing high frequency to the ferrimagnetic material, and a surface of the ferrimagnetic material facing an adjacent surface of the conductor A circulator comprising a ground conductor disposed adjacent to the ferrite and a permanent magnet for applying a bias magnetic field to the ferrimagnetic material, wherein a dielectric material is disposed between the conductor and the permanent magnet. Distributed constant circulator. 該誘電体材料は平板型で比誘電率が20以上1300以下であることを特長とする請求項1に記載の分布定数型サーキュレータ。2. The distributed constant circulator according to claim 1, wherein the dielectric material is a flat plate type and has a relative dielectric constant of 20 or more and 1300 or less.
JP2002228289A 2002-08-06 2002-08-06 Distributed parameter type circulator Pending JP2004072366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228289A JP2004072366A (en) 2002-08-06 2002-08-06 Distributed parameter type circulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228289A JP2004072366A (en) 2002-08-06 2002-08-06 Distributed parameter type circulator

Publications (1)

Publication Number Publication Date
JP2004072366A true JP2004072366A (en) 2004-03-04

Family

ID=32015017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228289A Pending JP2004072366A (en) 2002-08-06 2002-08-06 Distributed parameter type circulator

Country Status (1)

Country Link
JP (1) JP2004072366A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944646A (en) * 2010-07-15 2011-01-12 电子科技大学 Integrated microstrip circulator and preparation method thereof
KR101279487B1 (en) 2012-05-18 2013-06-27 쓰리알웨이브 (주) Non-reciprocal circuit device with single ferrite unit
JP2015015712A (en) * 2013-07-03 2015-01-22 ザ・ボーイング・カンパニーTheBoeing Company Integrated circulator for phased arrays

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944646A (en) * 2010-07-15 2011-01-12 电子科技大学 Integrated microstrip circulator and preparation method thereof
KR101279487B1 (en) 2012-05-18 2013-06-27 쓰리알웨이브 (주) Non-reciprocal circuit device with single ferrite unit
JP2015015712A (en) * 2013-07-03 2015-01-22 ザ・ボーイング・カンパニーTheBoeing Company Integrated circulator for phased arrays

Similar Documents

Publication Publication Date Title
US3617951A (en) Broadband circulator or isolator of the strip line or microstrip type
US4027253A (en) Non-reciprocal broadband slot line device
US9455486B2 (en) Integrated circulator for phased arrays
US4016510A (en) Broadband two-port isolator
Zeina et al. Self-biasing circulators operating at K/sub a/-band utilizing M-type hexagonal ferrites
US3085212A (en) Tunable circulator
JP5137125B2 (en) Nonreciprocal circuit element that can be integrated
US4020429A (en) High power radio frequency tunable circuits
US6633205B2 (en) Cascaded circulators with common ferrite and common element matching structure
How et al. Theory and experiment of thin-film junction circulator
US6507249B1 (en) Isolator for a broad frequency band with at least two magnetic materials
US4761621A (en) Circulator/isolator resonator
US3534299A (en) Miniature microwave isolator for strip lines
JP2004072366A (en) Distributed parameter type circulator
US4789844A (en) Broad-band non-reciprocal microwave devices
US3831114A (en) Encapsulated microstrip circulator with mode elimination means
US5838209A (en) Nonreciprocal junction circuit element having different conductor intersecting angles
JPH104304A (en) Strip line joint type non-reciprocal circuit
Djekounyom et al. Coplanar High Impedance Wire on ferrite substrate: Application to isolators
KR100317276B1 (en) Lumped element isolator
GB2320369A (en) Microwave circulators and isolators
US7746188B2 (en) Integrated non-reciprocal component
KR960006463B1 (en) Ferromagnetic resonance device and filter device
US3445790A (en) Ferrite waveguide device having magnetic return path within the waveguide
Cheng et al. Ferrite-loaded half mode substrate integrated waveguide phase shifter