JP2004061160A - Reagent vessel - Google Patents

Reagent vessel Download PDF

Info

Publication number
JP2004061160A
JP2004061160A JP2002216560A JP2002216560A JP2004061160A JP 2004061160 A JP2004061160 A JP 2004061160A JP 2002216560 A JP2002216560 A JP 2002216560A JP 2002216560 A JP2002216560 A JP 2002216560A JP 2004061160 A JP2004061160 A JP 2004061160A
Authority
JP
Japan
Prior art keywords
reagent
reagent container
container
horizontal
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002216560A
Other languages
Japanese (ja)
Inventor
Masahiko Sakai
酒井 正彦
Shinya Matsuyama
松山 真也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002216560A priority Critical patent/JP2004061160A/en
Publication of JP2004061160A publication Critical patent/JP2004061160A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a box-like reagent vessel having both satisfactory space efficiency when mounted on an automatic analyzer and shape characteristics which improves efficiency in linear rocking agitation. <P>SOLUTION: The approximately box-like reagent vessel 10 for housing, in a rocking state, a reagent to be dispensed to a prescribed plate for determining particle coagulation comprises primary wall surfaces (an upper surface 1; side surfaces 2a, 2b, 3a, and 3b, and a bottom surface 4) and a tubular opening part 5 as a suction opening of the reagent protruded from the approximately rectangular upper surface 1. Both corner parts from the vicinities of the lower ends of the side surfaces 3a and 3b, which continue downward from the short sides of the upper surface 1, to bottom end corner parts 6 and 7 are formed into curved surfaces having a prescribed curvature R. The reagent vessel 10 has an effective aspect ratio in a horizontal cross-sectional shape for agitating a liquid as a whole even when the amount of movement of the liquid increases in agitation, and is operated in such a way as to be rocked longitudinally. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、分析検査装置を用いて輸血や検査分析のため分注される試薬等を入れておくための試薬容器に係わり、特にその試薬容器の形状に関する。
【0002】
【従来の技術】
血液型や感染症の分析検査に利用される近年の分析装置は、多くの検体検査や検査項目の迅速な自動分析検査作業のため様々な工夫がされている。
自動化された分析検査ステップにおいて、例えば、凝集血液検査法のために用いられる現行の反応容器(プレート)や、そのプレート上に形成された多数のウエル(凹部)に対して、試薬を試薬容器からノズルを差し込み取り出して分注するシリンジ式の定量分注装置が適宜に組み合わされて運用されている。
上記反応容器としては、第33回日本輸血学会総会の資料「種々の管底形態をもつマイクロプレートにおける赤血球凝集像の検討」に開示されたマイクロプレートが広く知られている。また、臨床と研究66巻第2号に記載の特集記事「輸血検査の自動化」に教示されたような装置の自動化技術が知られている。
【0003】
一方、従来の試薬容器として容器形状をした試薬容器は通常、開口部を上部中央にもつ略円錐形状かそれに類する形状のものが多くみられる。
また、運用に際し、試薬等を入れておく場合には常に内容物を攪拌して、その中に血球などが沈殿して固まらないようにしておく必要性が生じる。よって、広口容器ならばかき混ぜ棒等を差し込んで攪拌するが、これらの試薬容器では専用の攪拌機構による円弧運動によって試薬容器全体を動かす揺動攪拌が適用されている。
【0004】
【発明が解決しようとする課題】
常に攪拌を要する液体を入れておくための試薬容器のうち、円形型容器を回転させて攪拌する方式としては、例えば特開平11−38009号公報に記載の方式がある。この方式では、容器の円形底面形状に起因して、渦巻き状に発生する乱流によって良好な攪拌効果が得られたが、円筒型の試薬容器を多数個配列して運用する場合は、底面が円形である故にその配置スペースに無駄が生じる。
つまり、試薬容器を多数個配列して分注等の回数の削減とその所要時間を短縮させようとしても、円形底面をもつ容器では、隣接する容器間に無駄な隙間を生じて面積効率が悪いことが、装置全体の小型化を図り難くする一因となっていた。
【0005】
底面形状が矩形の試薬容器(以下「箱型容器」と称する)直線的、すなわち底面の長手方向(水平方向)或いは鉛直方向)に往復運動させることで攪拌する方式としては、例えば特公平6−63945号公報に記載の方式がある。しかしながらこの箱型容器における試薬を効率良く攪拌するのに適した形状については、従来から何等示唆が認められなかった。
【0006】
そこで本発明の目的は、自動分析装置に搭載した際の搭載スペース効率が良好で、しかも直線的な揺動攪拌でも攪拌効率が向上される形状的特徴を有した箱型の試薬容器を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決し目的を達成するため、本発明では次のような手段を講じている。すなわち第1の態様によれば、抗原抗体反応を利用した粒子凝集判定を行なう血液分析機にて使用する試薬を、水平方向に揺動攪拌状態で収容しておく略箱型の試薬容器において、該試薬の吸引口として上面に開口部を有し、この上面の長手方向に対応する水平方向に揺動方向が一致するように水平方向の断面が略長方形であることを特徴とする試薬容器を提案する。
【0008】
第2の態様によれば、抗原抗体反応を利用した粒子凝集判定を行なう血液分析機にて使用する試薬を水平方向に揺動攪拌状態で収容しておく略箱型の試薬容器において、該試薬の吸引口として上面に開口部を有し、この上面の短辺から下方に続く一組の側面の下端近傍から、底面の端部までの両角部に、曲面または斜面が形成されていることを特徴とする試薬容器を提案する。
【0009】
そして第3の態様によれば、抗原抗体反応を利用した粒子凝集判定を行なう血液分析機にて使用する試薬を水平方向に揺動攪拌状態で収容しておく略箱型の試薬容器において、該試薬の吸引口として上面に開口部を有し、この上面の長手方向に対応する水平方向に揺動方向が一致するように水平方向の断面が略長方形であり、かつ、上記上面の短辺から下方に続く一組の側面の下端近傍から、底面の端部までの両角部に、曲面または斜面が形成されていることを特徴とする試薬容器を提案する。
【0010】
【発明の実施の形態】
本発明の試薬容器は、略長方形の水平断面形状をもつ箱型容器であり、これを長手方向に揺動させることで、その容器内の液体を効率良く移動させるための形状を備えている。
なお、ここに実施する本発明の試薬容器は、利用上の形態として、例えば縦一列に例えば12個のウエル(不図示)と横一列(行)に10個のウエルを、例えば9mmピッチで配して成る前述のプレート(マイクロプレート)に対して分注可能な自動分析装置(不図示)と共に使用される試薬容器であるものとする。
【0011】
以下、図1(a)〜図3(b)に基づき、複数の実施形態を具体的に挙げて本発明について詳しく説明する。
(第1実施形態)
図1(a)〜図1(c)は、本発明の第1実施形態としての試薬容器の一例を投影法に基づく第三角法で図示している。詳しくは、投影面積が最も大きくなる面を試薬容器の正面とすると、図1(a)は試薬容器10の正面図を示し、図1(b)にその右側面図、図1(c)にその平面図をそれぞれ示す。
そして、運用時にこの試薬容器10を配列した場合を図3(a)に平面図で示し、図3(b)にはその容器配列の長手方向に沿った図3(a)中の線分3B−3Bにおける切断面を示している。
【0012】
図1(a)〜図1(c)によれば、この試薬容器10は次のような形状に設定される。
すなわち、水平に続く長方形の上面1の端部近傍から上方に向けて筒状に突出した略円形の開口部5を有している。この試薬容器10は箱型を成し、上面1と底面4のほか、主要側壁(側面2a,2bおよび側面3a,3b)がそれぞれ対面して鉛直下方に形成されて底端角部6,7まで続く。その両方の底端角部6,7には、図1(a)の如く略斜めに形成された底面4まで、特徴的な所定の曲率Rが施されている(詳細寸法は後述)。
【0013】
揺動方向を試薬容器10の長手方向に設定して、長方形の底面の長辺と短辺との比が2:1以上である事を満たすように設定されている。特にこの例の場合、試薬容器10の各主要部位の寸法は、全幅が17mmでその内側の幅が14mm、全高が60mm、長手方向の全長75mm、平均肉厚は1.0mm、そして最低肉厚は0.2mmとなっている。
また、開口部5の最大内径を14.0mmとし、この開口部中心は上面1の長手方向の中心線上で、しかも上面1の一短辺から17mmの位置に設けられている。底面4は、水平方向に対して10度の傾斜角度を成した傾斜面(C面)となっている。
【0014】
さらに、第1の底端角部6の、試薬容器10の外側に曲率R10mmの曲面を、そして試薬容器10の内側に曲率R9mmの曲面をそれぞれ形成し、第2の底端角部7にも同曲率の曲面を試薬容器10の内外に形成して、揺動による水平方向の液体移動を深さ方向へと変換しやすくしている。
【0015】
試薬容器10に採用される材質は、好ましくはガラス製の透明な容器が望ましが、廉価な樹脂やプラスチック(HDPE)を用いた容器でもよい。そして、このような試薬容器を形成するための製法には、例えば、ブロー成型が採用される。ただし、ブロー成型によってこのような小サイズのガラス容器を作ることは簡単ではなく、薄い肉厚からも強度的に充分ではないため、試薬等に影響しないプラスチック製のものが実用的に好適である。
【0016】
図3(a),(b)に示した如く、複数の試薬容器10を横一列にそれぞれ6個と、隣接して横にもう一列6個で二列、さらに向きが反対の6個の試薬容器10が横一列に配列されるような試薬領域をもって成る取手(ハンドル)31付きの矩形のキャリア(ワゴン)30にまとめて収容され運用に供される。
【0017】
ただしこの配列は図3(a)中の折れ線分3B−3Bが直線でない如く、横に6個並設された一組が、僅かにずれた状態で、合計三組(6個×6個×6個=18個)が一体に収容され、自動分析装置40の格納領域にセットされ運用される。なお、図3(a)中では、右側に並設された二組のみを表示し、左側に並設された一組は省略している。
【0018】
試薬容器10は、図示しない12本のノズルに対応して千鳥足状に6個ずつ三列に配列されている。そのセットされた後には、試薬の種類ごとに1個毎の専用の試薬容器10に収容しておき、それぞれから専用のシリンジポンプ(不図示)に接続されたノズルによってプレート上のウエルに試薬が分注されることを想定している。
【0019】
ここに例示した試薬容器10が図3(a),(b)の如く並設され運用される期間、これら試薬容器10を揺動させる方向は、矢印で示すような長手方向に沿った水平方向である。そしてこの方向に沿って、周知の往復運動機構(不図示)の稼動により所定の振幅(ストローク)でそれら容器内容物の揺動攪拌が行なわれるようになっている。
【0020】
このように第1実施形態によれば、ここに例示した試薬容器10の形状と配置、および揺動させる方向によって、底端角部6,7に形成した曲率Rのカーブが上下方向(深さ方向)における液体の流れを生じさせるので、水平直線運動の単純な機構による揺動でも攪拌効率が改善される。
【0021】
また、検体の数に対応した試薬容器10を狭い領域に密に配列したうえで、ノズル等の動きを可能な限り単純な駆動制御でできるように試薬移送から分注作業にも適するように、容器形状と配置を工夫して運用可能にしている。
【0022】
なお、ここに例示した曲率Rは設計上の好適な一例として挙げたものである。よって、その曲率Rを適宜に変更することで、攪拌の程度、すなわち乱流の大きさを所望する程度に調節できる。
【0023】
そして、従来のような複雑な機械的手段を付加することなく、周知の往復運動機構で低エネルギにより効率のよい攪拌を行なえるようになり、不要な振動および騒音等の発生を極力少なくできる。
【0024】
さらには、前述したマイクロプレートの像パターンを撮影する際の悪影響をも小さく抑えることができる。
【0025】
なお、揺動のストロークや周期などは、試薬の条件(液質量、容器内での深さ、粘度など)を流体工学的に考慮して決定することで、より短いストロークでもさらに良い攪拌効率で運用が可能となり得る。
【0026】
(第2実施形態)
次に、本発明の第2実施形態について説明する。図2(a)〜(c)は、この第2実施形態としての試薬容器の一例を投影法に基づく第三角法で示している。詳しくは、投影面積が最も大きくなる面を試薬容器の正面とすると、図2(a)は試薬容器20の正面図を示し、図2(b)にその右側面図、図2(c)にその平面図をそれぞれ示している。
【0027】
図2(a)〜(c)によれば、この試薬容器20も箱型容器であるなど、前述の第1実施形態の試薬容器10に基本的に類似する形状に設定されているが、主な相違点に着目して説明すると、図2(a)が示す如く、底面4を水平にして載置の際の安定性を図り、肉厚を厚くして容器としての強化を図っている。
【0028】
また図2(b)又は図2(c)の如く、試薬容器20自体の向きの識別などに配慮して角部をカットした形状に設定されている。
よって、上面1および底面4は長方形ではなく五角形であるものの、長方形の一角をカットした如くの細長い矩形を成す底面4において、前述の第1実施形態と同様に、長辺と短辺との比が同様に、2:1以上である条件を満たすため、次のように設定されている。
【0029】
この試薬容器20の各主要部位の寸法はこの例の場合、全幅が17mmでその内法が14mmの幅をもち、全高が60mm、長手方向の全長50mm、である。肉厚は前述の第1実施形態より2〜3倍程度であればよい。
また、開口部5は内径10mmであり、この開口部中心が上面1の長手方向の中心線上に、しかもこの上面1の短辺から17mmの位置に設けられている。この上面1は10度の傾きをもって側面3bに続いている。一方、上述の如く底面4は水平に形成されている。
なお、その他の細部の形状を含めた寸法もまた一つの設計事例であるため、勿論、適宜に変更してよい。
【0030】
このように第2実施形態によれば、この例の場合、肉厚を前述の第1実施形態よりも厚く設定しているため、強度的にガラス製の透明な容器に適合しやすい。また、試薬の状態を側面や斜めからでも目視しやすくなり、且つ厳密な分析にはより好ましい。そのほか、採用される材質や製法は、前述の第1実施形態と同様でもよい。もし強度を重視する場合には、樹脂またはプラスチック製のものが実用的である。
【0031】
本発明は、以上のように実施した結果、次のような目的にかなう試薬容器を提供することができる。すなわち、
・ 底端角部に曲率または傾斜面を設けることにより、容器の横方向の往復動のみで液の縦方向への移動も積極的に発生させ、液全体が攪拌しやすくなる。
・ 角のとれた矩形(長方形等)を成す上面または底面の辺の縦横比を、揺動方向と非揺動方向とで、2〜3:1以上、10:1以下に設定することにより、揺動時の液移動量が大きくなり、液全体の攪拌に有効となる。
【0032】
試薬容器を多数配列して分注等の回数と所要時間を短縮させようとする場合、従来の円形底面のものよりも、協働する分析装置の処理の流れに沿った細長い矩形の底面形状をもつ本発明の試薬容器の配列にするほうが、検査項目が多くなっても無駄な隙間を生ぜず面積を効率的に使える。よって、より小型な分析装置本体にもコンパクトに収まり、より多数の検体が一度に自動分析可能となる。
【0033】
また、種類の異なる試薬を独立して使用できれば、試薬同士の混入(コンタミネ−ション)やそれに伴う無駄も無くなる。よって、本発明の試薬容器の場合も、試薬の種類ごとに1個1個の専用に収容しておき、それぞれからノズル付きのシリンジポンプによってマイクロプレートへの確実な分注をできるようにしている。例えば、現行の「自動輸血検査装置(PK7200)」などに用いる専用試薬容器として、この特徴的な試薬容器の形状および、その揺動する方向を最適化することで、特別な機械的手段を付加することなく、簡単な機構にて低エネルギにより効率のよい攪拌を行なえるようになる。これにより、振動および騒音等の発生を削減し、よって、マイクロプレートの撮像パターンへの悪影響をより小さく抑えることができる。
【0034】
上述の第1、第2実施形態は次のように変形実施してもよい。例えば、ここに例示した各部位の寸法、角度および材質などは、好適な設計上の事例としたものなので、これを参考の上、所望により適宜変更して実施してもかまわない。
このほかにも、本発明の要旨を逸脱しない範囲で種々の変形実施が可能である。
【0035】
[付記]
以上詳述したような本発明の上記実施形態によれば、以下の如き構成を得ることができる。
(付記1) 抗原抗体反応を利用した粒子凝集判定を行なう血液分析機にて使用する試薬を、水平方向に揺動攪拌状態で収容しておく略箱型の試薬容器において、
該試薬の吸引口として上面に開口部を有し、上面の長手方向に対応する水平方向に揺動方向が一致するように水平方向の断面が略長方形であることを特徴とする試薬容器。
【0036】
(付記2) 水平断面の縦横比が1:2〜3以上1:10以下、縦と容器高さの比が1:2〜3以上1:10以下、そして容器の縦の寸法が5mm以上25mm以下であることを特徴とする付記1記載の試薬容器。
【0037】
(付記3) 抗原抗体反応を利用した粒子凝集判定を行なう血液分析機にて使用する試薬を水平方向に揺動攪拌状態で収容しておく略箱型の試薬容器において、該試薬の吸引口として上面に開口部を有し、上記上面の短辺から下方に続く一組の側面の下端近傍から、底面の端部までの両角部に、曲面または斜面が形成されていることを特徴とする試薬容器。
【0038】
(付記4) 前記曲面の曲率が10mm以上30mm以下であることを特徴とする付記3記載の試薬容器。
【0039】
(付記5) 前記斜面の高さが10mm以上30mm以下であることを特徴とする付記3記載の試薬容器。
【0040】
(付記6) 抗原抗体反応を利用した粒子凝集判定を行なう血液分析機にて使用する試薬を水平方向に揺動攪拌状態で収容しておく略箱型の試薬容器において、該試薬の吸引口として上面に開口部を有し、上面の長手方向に対応する水平方向に揺動方向が一致するように水平方向の断面が略長方形であり、かつ、
上記上面の短辺から下方に続く一組の側面の下端近傍から、底面の端部までの両角部に、曲面または、斜面が形成されていることを特徴とする試薬容器。
【0041】
(付記7) 水平断面の縦横比が1:2以上1:10以下、縦と容器高さの比が1:2以上1:10以下、縦の寸法が5mm以上25mm以下、そして曲面の曲率が10mm以上30mm以下であることを特徴とする付記6記載の試薬容器。
【0042】
(付記8) 水平断面の縦横比が1:2以上1:10以下、縦と容器高さの比が1:2以上1:10以下、縦の寸法が5mm以上25mm以下、そして斜面の高さが10mm以上30mm以下であることを特徴とする付記6記載の試薬容器。
【0043】
【発明の効果】
以上説明したように、本発明によれば、自動分析装置に搭載した際の搭載スペース効率が良好で、しかも直線的な揺動攪拌でも攪拌効率が向上される形状的特徴を有する箱型の試薬容器を提供することが可能となる。
【図面の簡単な説明】
【図1】図1(a)〜図1(c)は本発明の第1実施形態に係わる試薬容器の外観を示し、図1(a)はその試薬容器の正面図、図1(b)はその試薬容器の右側面図、図1(c)はその試薬容器の平面図である。
【図2】図2(a)〜図2(c)は本発明の第2実施形態に係わる試薬容器の外観を示し、図2(a)はその試薬容器の正面図、図2(b)はその試薬容器の右側面図、図2(c)はその試薬容器の平面図である。
【図3】図3(a),図3(b)は図1(a)〜図1(c)に例示の試薬容器を配列した場合を示し、図3(a)はその試薬容器配列の平面図、図3(b)はその試薬容器配列の長手方向に切断した場合の断面図である。
【符号の説明】
1…上面
2a,2b…側面(正面、裏面)
3a,3b…側面(左右面)
4…底面
5…開口部
6…(第1の)底端角部
7…(第2の)底端角部
10…試薬容器(第1実施形態)
20…試薬容器(第2実施形態)
30…キャリア(ワゴン)
40…自動分析装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reagent container for storing a reagent or the like to be dispensed for blood transfusion or test analysis using an analytical test device, and particularly to the shape of the reagent container.
[0002]
[Prior art]
In recent years, various types of analyzers used for analysis tests of blood types and infectious diseases have been devised to perform many sample tests and quick automatic analysis tests of test items.
In an automated analytical test step, for example, a reagent is transferred from a reagent container to a current reaction container (plate) used for an agglutination blood test method or a large number of wells (recesses) formed on the plate. A syringe-type quantitative dispensing device that inserts and removes a nozzle and dispenses the nozzle is appropriately combined and operated.
As the above-mentioned reaction vessel, a microplate disclosed in the document “Examination of red blood cell agglutination images in microplates having various tube bottom configurations” of the 33rd Annual Meeting of the Japanese Society of Transfusion Society is widely known. Further, there is known an automatic technique of an apparatus as taught in a special article “Automation of Blood Transfusion Test” described in “Clinical and Research Vol. 66, No. 2”.
[0003]
On the other hand, most of the conventional reagent containers having a container shape have a substantially conical shape having an opening at the center of the upper portion or a similar shape.
In addition, when a reagent or the like is put in operation, it is necessary to constantly stir the contents so that blood cells and the like do not precipitate and harden in the contents. Therefore, in the case of a wide-mouthed container, stirring is performed by inserting a stirring rod or the like. In these reagent containers, swing stirring in which the entire reagent container is moved by arc movement by a dedicated stirring mechanism is applied.
[0004]
[Problems to be solved by the invention]
As a method of rotating and stirring a circular container among reagent containers for constantly holding a liquid that needs stirring, there is a method described in, for example, JP-A-11-38009. In this method, a good stirring effect was obtained due to the turbulent flow generated in a spiral shape due to the circular bottom shape of the container.However, when a large number of cylindrical reagent containers are arranged and operated, the bottom surface is Because of the circular shape, there is a waste in the arrangement space.
In other words, even if a large number of reagent containers are arranged to reduce the number of dispensing and the like and to shorten the required time, a container having a circular bottom surface causes useless gaps between adjacent containers, resulting in poor area efficiency. This has made it difficult to reduce the size of the entire apparatus.
[0005]
As a method of stirring by reciprocating linearly in a reagent container having a rectangular bottom surface (hereinafter referred to as a “box-shaped container”), that is, in a longitudinal direction (horizontal direction) or a vertical direction of the bottom surface, for example, There is a method described in JP-A-63945. However, there has been no suggestion about a shape suitable for efficiently stirring the reagent in the box-shaped container.
[0006]
Therefore, an object of the present invention is to provide a box-shaped reagent container which has a good mounting space efficiency when mounted on an automatic analyzer and has a shape characteristic in which the stirring efficiency is improved even with linear swinging stirring. It is in.
[0007]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, the present invention takes the following measures. That is, according to the first aspect, in a substantially box-shaped reagent container for storing a reagent used in a blood analyzer that performs particle aggregation determination using an antigen-antibody reaction in a horizontally agitating state, A reagent container having an opening on the upper surface as a suction port for the reagent, and having a substantially rectangular cross section in the horizontal direction so that the swing direction coincides with the horizontal direction corresponding to the longitudinal direction of the upper surface. suggest.
[0008]
According to the second aspect, in a substantially box-shaped reagent container for storing a reagent used in a blood analyzer that performs particle aggregation determination using an antigen-antibody reaction in a horizontally oscillating stirring state, It has an opening on the upper surface as a suction port, and a curved surface or a slope is formed at both corners from near the lower end of a pair of side surfaces extending downward from the short side of the upper surface to the end of the bottom surface. A characteristic reagent container is proposed.
[0009]
According to the third aspect, in a substantially box-shaped reagent container for storing a reagent used in a blood analyzer that performs particle aggregation determination using an antigen-antibody reaction in a horizontally oscillating stirring state, The upper surface has an opening as a suction port for the reagent, the cross section in the horizontal direction is substantially rectangular so that the swing direction coincides with the horizontal direction corresponding to the longitudinal direction of the upper surface, and from the short side of the upper surface. The present invention proposes a reagent container characterized in that curved or inclined surfaces are formed at both corners from the vicinity of the lower end of a pair of side surfaces continuing downward to the end of the bottom surface.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The reagent container of the present invention is a box-shaped container having a substantially rectangular horizontal sectional shape, and has a shape for efficiently moving the liquid in the container by swinging the container in the longitudinal direction.
The reagent container of the present invention implemented here has, for example, 12 wells (not shown) in one column and 10 wells in one row (row) at a pitch of 9 mm, for example. It is assumed that the reagent container is used together with an automatic analyzer (not shown) capable of dispensing the above-mentioned plate (microplate).
[0011]
Hereinafter, the present invention will be described in detail with reference to a plurality of embodiments based on FIGS.
(1st Embodiment)
FIGS. 1A to 1C illustrate an example of a reagent container according to a first embodiment of the present invention by a third triangulation method based on a projection method. Specifically, assuming that the plane having the largest projected area is the front of the reagent container, FIG. 1A shows a front view of the reagent container 10, FIG. 1B shows a right side view thereof, and FIG. The plan views are respectively shown.
FIG. 3A is a plan view showing a case where the reagent containers 10 are arranged during operation, and FIG. 3B is a line segment 3B in FIG. 3A along the longitudinal direction of the container arrangement. 3B shows a cut surface at -3B.
[0012]
According to FIGS. 1A to 1C, the reagent container 10 is set in the following shape.
That is, it has a substantially circular opening 5 protruding in a cylindrical shape upward from the vicinity of the end of the horizontally extending rectangular upper surface 1. The reagent container 10 is formed in a box shape, and is formed vertically downward with main side walls (side surfaces 2a, 2b and side surfaces 3a, 3b) facing each other, in addition to the top surface 1 and the bottom surface 4, and has bottom end corners 6,7. Continue until. A characteristic predetermined curvature R is applied to both bottom end corners 6 and 7 up to a bottom surface 4 formed substantially obliquely as shown in FIG. 1A (detailed dimensions will be described later).
[0013]
The swing direction is set in the longitudinal direction of the reagent container 10, and is set so as to satisfy that the ratio of the long side to the short side of the rectangular base is 2: 1 or more. Particularly in the case of this example, the dimensions of each main part of the reagent container 10 are such that the total width is 17 mm, the inner width is 14 mm, the total height is 60 mm, the total length in the longitudinal direction is 75 mm, the average thickness is 1.0 mm, and the minimum thickness is Is 0.2 mm.
The maximum inner diameter of the opening 5 is 14.0 mm, and the center of this opening is provided on the longitudinal center line of the upper surface 1 and at a position 17 mm from one short side of the upper surface 1. The bottom surface 4 is an inclined surface (C surface) having an inclination angle of 10 degrees with respect to the horizontal direction.
[0014]
Further, a curved surface having a curvature R10 mm outside the reagent container 10 and a curved surface having a curvature R9 mm inside the reagent container 10 are formed on the first bottom corner 6, respectively. The curved surface having the same curvature is formed inside and outside the reagent container 10 so that the horizontal liquid movement due to the swing can be easily converted to the depth direction.
[0015]
The material used for the reagent container 10 is preferably a transparent container made of glass, but may be a container using inexpensive resin or plastic (HDPE). As a manufacturing method for forming such a reagent container, for example, blow molding is employed. However, it is not easy to make such a small-sized glass container by blow molding, and the strength is not sufficient even from a small thickness, so that a plastic-made one that does not affect reagents is practically suitable. .
[0016]
As shown in FIGS. 3 (a) and 3 (b), a plurality of reagent containers 10 are arranged in six rows in one row, and two rows of six adjacent reagent rows are arranged adjacent to each other, and six reagents are arranged in opposite directions. The containers 10 are collectively accommodated in a rectangular carrier (wagon) 30 having a handle (handle) 31 having reagent areas such that the containers 10 are arranged in a horizontal row and used for operation.
[0017]
However, in this arrangement, a total of three sets (6.times.6.times.x) are arranged in such a manner that a set of six arranged sideways is slightly shifted so that the broken line segment 3B-3B in FIG. 3A is not a straight line. (6 = 18) are integrally accommodated, set in the storage area of the automatic analyzer 40, and operated. In FIG. 3A, only two sets arranged on the right side are displayed, and one set arranged on the left side is omitted.
[0018]
The reagent containers 10 are arranged in three rows of six in a staggered pattern corresponding to twelve nozzles (not shown). After the setting, the reagents are stored in dedicated reagent containers 10 for each type of reagent, and the reagents are respectively supplied to the wells on the plate by nozzles connected to dedicated syringe pumps (not shown). It is assumed to be dispensed.
[0019]
During the period in which the reagent containers 10 exemplified here are arranged and operated as shown in FIGS. 3A and 3B, the directions in which the reagent containers 10 are swung are in the horizontal direction along the longitudinal direction as indicated by the arrow. It is. In this direction, the contents of the containers are rocked and agitated at a predetermined amplitude (stroke) by the operation of a well-known reciprocating mechanism (not shown).
[0020]
As described above, according to the first embodiment, the curve of the curvature R formed at the bottom end corners 6 and 7 changes in the vertical direction (depth) depending on the shape and arrangement of the reagent container 10 exemplified here and the swinging direction. Direction), the agitation efficiency is improved even with a simple horizontal swing motion of the mechanism.
[0021]
In addition, after the reagent containers 10 corresponding to the number of samples are densely arranged in a narrow area, the movement of the nozzles and the like can be controlled as simple as possible, so that they are suitable for reagent transfer to dispensing work. Operation is possible by devising the shape and arrangement of containers.
[0022]
In addition, the curvature R illustrated here is given as a preferable example in design. Therefore, by appropriately changing the curvature R, the degree of agitation, that is, the magnitude of the turbulence can be adjusted to a desired degree.
[0023]
Then, without adding complicated mechanical means as in the related art, efficient stirring can be performed with low energy by a well-known reciprocating motion mechanism, and unnecessary vibration and noise can be minimized.
[0024]
Furthermore, the adverse effect when the image pattern of the microplate is photographed can be suppressed to a small level.
[0025]
The swing stroke and cycle are determined by considering the conditions of the reagent (liquid mass, depth in the container, viscosity, etc.) from the viewpoint of fluid engineering. Operation may be possible.
[0026]
(2nd Embodiment)
Next, a second embodiment of the present invention will be described. FIGS. 2A to 2C show an example of a reagent container according to the second embodiment by a third triangulation method based on a projection method. Specifically, assuming that the plane having the largest projected area is the front of the reagent container, FIG. 2A shows a front view of the reagent container 20, FIG. 2B shows a right side view thereof, and FIG. The plan views are shown respectively.
[0027]
According to FIGS. 2A to 2C, the shape of the reagent container 20 is basically similar to that of the reagent container 10 of the first embodiment, such as a box-shaped container. When focusing on the differences, as shown in FIG. 2 (a), the bottom surface 4 is made horizontal to improve the stability at the time of placing, and the thickness is increased to strengthen the container.
[0028]
Further, as shown in FIG. 2B or FIG. 2C, the shape is set to a shape in which a corner is cut in consideration of identification of the direction of the reagent container 20 itself.
Therefore, although the upper surface 1 and the bottom surface 4 are not rectangular but pentagonal, the ratio of the long side to the short side is similar to that of the first embodiment described above in the bottom surface 4 forming an elongated rectangle as if one corner of the rectangle was cut. Is similarly set to satisfy the condition of 2: 1 or more.
[0029]
In this example, the dimensions of each main part of the reagent container 20 are 17 mm in total width, 14 mm in inner dimension, 60 mm in total height, and 50 mm in total length in the longitudinal direction. The thickness may be about two to three times the thickness of the first embodiment.
The opening 5 has an inner diameter of 10 mm, and the center of the opening is provided on the longitudinal center line of the upper surface 1 and at a position 17 mm from the short side of the upper surface 1. The upper surface 1 continues to the side surface 3b with an inclination of 10 degrees. On the other hand, the bottom surface 4 is formed horizontally as described above.
Note that the dimensions including the shape of other details are also one design example, and may of course be appropriately changed.
[0030]
As described above, according to the second embodiment, in the case of this example, the thickness is set to be thicker than that of the above-described first embodiment, so that it is easily fitted to a transparent container made of glass in terms of strength. In addition, the state of the reagent can be easily observed even from the side or obliquely, and is more preferable for strict analysis. In addition, the adopted material and manufacturing method may be the same as in the first embodiment. If emphasis is placed on the strength, those made of resin or plastic are practical.
[0031]
As a result of implementing the present invention as described above, a reagent container meeting the following objects can be provided. That is,
-By providing a curvature or an inclined surface at the bottom end corner, the liquid is positively moved in the vertical direction only by the horizontal reciprocation of the container, and the whole liquid is easily stirred.
By setting the aspect ratio of the top or bottom sides forming a rounded rectangle (such as a rectangle) in the swinging direction and the non-swinging direction to be not less than 2-3: 1 and not more than 10: 1 The amount of liquid movement at the time of rocking becomes large, which is effective for stirring the whole liquid.
[0032]
In order to reduce the number of dispensing operations and required time by arranging a large number of reagent containers, an elongated rectangular bottom shape that follows the processing flow of the cooperating analyzer is used instead of the conventional circular bottom. By arranging the reagent containers according to the present invention, the area can be used more efficiently without generating useless gaps even when the number of test items increases. Therefore, the apparatus can be compactly accommodated in a smaller analyzer main body, and more samples can be automatically analyzed at once.
[0033]
In addition, if different types of reagents can be used independently, mixing of reagents (contamination) and waste associated therewith are eliminated. Therefore, in the case of the reagent container of the present invention as well, each of the reagents is stored in a dedicated one for each type of reagent, and each can be reliably dispensed to the microplate by a syringe pump with a nozzle. . For example, as a special reagent container used for the current "automatic blood transfusion test device (PK7200)", etc., a special mechanical means is added by optimizing the shape of the characteristic reagent container and the swinging direction thereof. Without this, efficient stirring can be performed with low energy by a simple mechanism. As a result, the occurrence of vibration, noise, and the like can be reduced, and thus, the adverse effect on the imaging pattern of the microplate can be further reduced.
[0034]
The first and second embodiments described above may be modified as follows. For example, the dimensions, angles, materials, and the like of the respective parts illustrated here are examples of a suitable design, and may be appropriately changed as needed with reference to these.
In addition, various modifications can be made without departing from the spirit of the present invention.
[0035]
[Appendix]
According to the above-described embodiment of the present invention as described in detail above, the following configuration can be obtained.
(Supplementary Note 1) In a substantially box-shaped reagent container for storing a reagent to be used in a blood analyzer that performs particle aggregation determination using an antigen-antibody reaction while swinging and stirring in a horizontal direction,
A reagent container having an opening at an upper surface as a suction port for the reagent, and having a substantially rectangular cross section in a horizontal direction such that a swing direction coincides with a horizontal direction corresponding to a longitudinal direction of the upper surface.
[0036]
(Supplementary Note 2) The aspect ratio of the horizontal section is 1: 2 to 3 or more and 1:10 or less, the ratio of the height to the height of the container is 1: 2 to 3 or more and 1:10 or less, and the vertical dimension of the container is 5 mm or more and 25 mm. The reagent container according to claim 1, wherein:
[0037]
(Supplementary Note 3) In a substantially box-shaped reagent container that holds a reagent to be used in a blood analyzer that performs particle agglutination determination using an antigen-antibody reaction while swinging and stirring in a horizontal direction, the reagent is used as a suction port for the reagent. A reagent having an opening on the upper surface, wherein a curved surface or a slope is formed at both corners from near the lower end of a pair of side surfaces extending downward from the short side of the upper surface to an end of the bottom surface. container.
[0038]
(Supplementary Note 4) The reagent container according to Supplementary Note 3, wherein the curvature of the curved surface is 10 mm or more and 30 mm or less.
[0039]
(Supplementary Note 5) The reagent container according to Supplementary Note 3, wherein the height of the slope is 10 mm or more and 30 mm or less.
[0040]
(Supplementary Note 6) In a substantially box-shaped reagent container in which a reagent to be used in a blood analyzer that performs particle agglutination determination using an antigen-antibody reaction is stored in a horizontally oscillating stirring state, the reagent is used as a suction port for the reagent. It has an opening on the upper surface, the horizontal section is substantially rectangular so that the swing direction matches the horizontal direction corresponding to the longitudinal direction of the upper surface, and
A reagent container, wherein a curved surface or an inclined surface is formed at both corners from the vicinity of the lower end of the pair of side surfaces extending downward from the short side of the upper surface to the end of the bottom surface.
[0041]
(Supplementary Note 7) The aspect ratio of the horizontal section is 1: 2 or more and 1:10 or less, the ratio of the height to the container height is 1: 2 or more and 1:10 or less, the vertical dimension is 5 mm or more and 25 mm or less, and the curvature of the curved surface is 7. The reagent container according to Supplementary Note 6, which is 10 mm or more and 30 mm or less.
[0042]
(Supplementary Note 8) The aspect ratio of the horizontal section is 1: 2 or more and 1:10 or less, the ratio of the height to the container height is 1: 2 or more and 1:10 or less, the vertical dimension is 5 mm or more and 25 mm or less, and the height of the slope 7. The reagent container according to Supplementary Note 6, wherein is not less than 10 mm and not more than 30 mm.
[0043]
【The invention's effect】
As described above, according to the present invention, a box-shaped reagent having a shape characteristic in which the mounting space efficiency when mounted on an automatic analyzer is good and the stirring efficiency is improved even with linear rocking stirring. A container can be provided.
[Brief description of the drawings]
1 (a) to 1 (c) show the appearance of a reagent container according to a first embodiment of the present invention, FIG. 1 (a) is a front view of the reagent container, and FIG. 1 (b). Is a right side view of the reagent container, and FIG. 1C is a plan view of the reagent container.
2 (a) to 2 (c) show the appearance of a reagent container according to a second embodiment of the present invention, FIG. 2 (a) is a front view of the reagent container, and FIG. 2 (b). Is a right side view of the reagent container, and FIG. 2C is a plan view of the reagent container.
3 (a) and 3 (b) show a case where the reagent containers exemplified in FIGS. 1 (a) to 1 (c) are arranged, and FIG. 3 (a) shows the arrangement of the reagent containers. FIG. 3B is a cross-sectional view of the reagent container array when cut in the longitudinal direction.
[Explanation of symbols]
1 top surface 2a, 2b side surface (front, back)
3a, 3b ... side surfaces (left and right surfaces)
4 bottom surface 5 opening 6 (first) bottom corner 7 (second) bottom corner 10 reagent container (first embodiment)
20: Reagent container (second embodiment)
30 ... Carrier (wagon)
40 ... Automatic analyzer

Claims (3)

抗原抗体反応を利用した粒子凝集判定を行なう血液分析機にて使用する試薬を、水平方向に揺動攪拌状態で収容しておく略箱型の試薬容器において、
該試薬の吸引口として上面に開口部を有し、この上面の長手方向に対応する水平方向に揺動方向が一致するように水平方向の断面が略長方形であることを特徴とする試薬容器。
A reagent used in a blood analyzer that performs particle agglutination determination using an antigen-antibody reaction, in a substantially box-shaped reagent container that is housed in a horizontal swinging stirring state,
A reagent container having an opening on an upper surface as a suction port for the reagent, and having a substantially rectangular cross section in a horizontal direction such that a swing direction coincides with a horizontal direction corresponding to a longitudinal direction of the upper surface.
抗原抗体反応を利用した粒子凝集判定を行なう血液分析機にて使用する試薬を、水平方向に揺動攪拌状態で収容しておく略箱型の試薬容器において、
該試薬の吸引口として上面に開口部を有し、この上面の短辺から下方に続く一組の側面の下端近傍から、底面の端部までの両角部に、曲面または斜面が形成されていることを特徴とする試薬容器。
A reagent used in a blood analyzer that performs particle agglutination determination using an antigen-antibody reaction, in a substantially box-shaped reagent container that is housed in a horizontal swinging stirring state,
An opening is provided on the upper surface as a suction port for the reagent, and curved or inclined surfaces are formed at both corners from near the lower end of a pair of side surfaces extending downward from the short side of the upper surface to the end of the bottom surface. A reagent container, characterized in that:
抗原抗体反応を利用した粒子凝集判定を行なう血液分析機にて使用する試薬を、水平方向に揺動攪拌状態で収容しておく略箱型の試薬容器において、
該試薬の吸引口として上面に開口部を有し、この上面の長手方向に対応する水平方向に揺動方向が一致するように水平方向の断面が略長方形であり、かつ、
上記上面の短辺から下方に続く一組の側面の下端近傍から、底面の端部までの両角部に、曲面または斜面が形成されていることを特徴とする試薬容器。
A reagent used in a blood analyzer that performs particle agglutination determination using an antigen-antibody reaction, in a substantially box-shaped reagent container that is housed in a horizontal swinging stirring state,
The upper surface has an opening as a suction port for the reagent, the horizontal cross-section is substantially rectangular so that the swing direction coincides with the horizontal direction corresponding to the longitudinal direction of the upper surface, and
A reagent container, wherein a curved surface or an inclined surface is formed at both corners from near a lower end of a pair of side surfaces extending downward from a short side of the upper surface to an end of a bottom surface.
JP2002216560A 2002-07-25 2002-07-25 Reagent vessel Pending JP2004061160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216560A JP2004061160A (en) 2002-07-25 2002-07-25 Reagent vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216560A JP2004061160A (en) 2002-07-25 2002-07-25 Reagent vessel

Publications (1)

Publication Number Publication Date
JP2004061160A true JP2004061160A (en) 2004-02-26

Family

ID=31938290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216560A Pending JP2004061160A (en) 2002-07-25 2002-07-25 Reagent vessel

Country Status (1)

Country Link
JP (1) JP2004061160A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264878A (en) * 2008-04-24 2009-11-12 Nichiryo Co Ltd Liquid dispensing device, liquid dispensing method, liquid sampling system, and liquid sampling program
JP2016512327A (en) * 2013-03-13 2016-04-25 アボット・ラボラトリーズAbbott Laboratories Apparatus and method for stirring liquid
USD822224S1 (en) 2013-03-13 2018-07-03 Abbott Laboratories Reagent kit with multiple bottles
CN112005116A (en) * 2018-02-02 2020-11-27 日本化学药品株式会社 Substrate for biochemical reaction and analyzer
USD962471S1 (en) 2013-03-13 2022-08-30 Abbott Laboratories Reagent container
USD978375S1 (en) 2013-03-13 2023-02-14 Abbott Laboratories Reagent container

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663945B2 (en) * 1988-08-26 1994-08-22 株式会社日立製作所 Stirrer
JPH0843400A (en) * 1994-07-29 1996-02-16 Olympus Optical Co Ltd Analysis by application of specific combining reaction, its device and reaction vessel therefor
JPH1138009A (en) * 1997-07-17 1999-02-12 Sanko Junyaku Kk Automatic analyzer
JP2002189033A (en) * 2000-12-22 2002-07-05 Furuno Electric Co Ltd Method and system for dispensing, and tip stocker device
JP2002196006A (en) * 2000-12-27 2002-07-10 Olympus Optical Co Ltd Automatic analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663945B2 (en) * 1988-08-26 1994-08-22 株式会社日立製作所 Stirrer
JPH0843400A (en) * 1994-07-29 1996-02-16 Olympus Optical Co Ltd Analysis by application of specific combining reaction, its device and reaction vessel therefor
JPH1138009A (en) * 1997-07-17 1999-02-12 Sanko Junyaku Kk Automatic analyzer
JP2002189033A (en) * 2000-12-22 2002-07-05 Furuno Electric Co Ltd Method and system for dispensing, and tip stocker device
JP2002196006A (en) * 2000-12-27 2002-07-10 Olympus Optical Co Ltd Automatic analyzer

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264878A (en) * 2008-04-24 2009-11-12 Nichiryo Co Ltd Liquid dispensing device, liquid dispensing method, liquid sampling system, and liquid sampling program
USD962471S1 (en) 2013-03-13 2022-08-30 Abbott Laboratories Reagent container
US11738346B2 (en) 2013-03-13 2023-08-29 Abbott Laboratories Methods and apparatus to mitigate bubble formation in a liquid
USD892350S1 (en) 2013-03-13 2020-08-04 Abbott Laboratories Reagent kit frame
USD815299S1 (en) 2013-03-13 2018-04-10 Abbott Laboratories Reagent kit with multiple bottles
USD822224S1 (en) 2013-03-13 2018-07-03 Abbott Laboratories Reagent kit with multiple bottles
US10058866B2 (en) 2013-03-13 2018-08-28 Abbott Laboratories Methods and apparatus to mitigate bubble formation in a liquid
USD875269S1 (en) 2013-03-13 2020-02-11 Abbott Laboratories Reagent kit with multiple bottles
USD875270S1 (en) 2013-03-13 2020-02-11 Abbott Laboratories Reagent kit with multiple bottles
US10639600B2 (en) 2013-03-13 2020-05-05 Abbott Laboratories Methods and apparatus to agitate a liquid
USD905866S1 (en) 2013-03-13 2020-12-22 Abbott Laboratories Reagent kit frame
US9789454B2 (en) 2013-03-13 2017-10-17 Abbott Laboratories Methods and apparatus to agitate a liquid
US9535082B2 (en) 2013-03-13 2017-01-03 Abbott Laboratories Methods and apparatus to agitate a liquid
JP2020112571A (en) * 2013-03-13 2020-07-27 アボット・ラボラトリーズAbbott Laboratories Apparatus and method to agitate liquid
US10926263B2 (en) 2013-03-13 2021-02-23 Abbott Laboratories Methods and apparatus to mitigate bubble formation in a liquid
US11712671B2 (en) 2013-03-13 2023-08-01 Abbott Laboratories Methods and apparatus to agitate a liquid
USD978375S1 (en) 2013-03-13 2023-02-14 Abbott Laboratories Reagent container
JP7144476B2 (en) 2013-03-13 2022-09-29 アボット・ラボラトリーズ Apparatus and method for stirring liquids
JP2016512327A (en) * 2013-03-13 2016-04-25 アボット・ラボラトリーズAbbott Laboratories Apparatus and method for stirring liquid
JP2022118240A (en) * 2018-02-02 2022-08-12 日本ケミファ株式会社 Analysis device
JP7096954B2 (en) 2018-02-02 2022-07-06 日本ケミファ株式会社 Analysis equipment
JP7280417B2 (en) 2018-02-02 2023-05-23 日本ケミファ株式会社 Analysis equipment
JP2022044763A (en) * 2018-02-02 2022-03-17 日本ケミファ株式会社 Analyzer
CN112005116A (en) * 2018-02-02 2020-11-27 日本化学药品株式会社 Substrate for biochemical reaction and analyzer

Similar Documents

Publication Publication Date Title
US6737021B2 (en) Automatic analyzer
US5384093A (en) Apparatus for aspirating and discharging a liquid sample
US7258480B2 (en) Apparatus for mixing liquid samples using a two dimensional stirring pattern
US5174162A (en) Pipetter, pipette tube, sample analyzing apparatus including them and method of mixing and pipetting liquids
US8496884B2 (en) Stirring container and analyzer
US6808304B2 (en) Method for mixing liquid samples using a linear oscillation stroke
US5501838A (en) Automated immunochemical analyzer
JPWO2007013254A1 (en) Cuvette
JP2005502034A (en) Reagent cartridge
JPH08146007A (en) Chemical analyser
CN108325439B (en) Method and apparatus for mitigating bubble formation in a liquid
US20060285430A1 (en) Method of homogenizing microvolume liquid and apparatus therefor
JP2004061160A (en) Reagent vessel
JP2585740B2 (en) Automatic analyzers and reaction vessels
US20080213903A1 (en) Automatic analyzer and the analyzing method using the same
JP2010122188A (en) Method for carrying reagent bottle in reagent refrigerator and automatic analyzer
US20120127821A1 (en) Method For Mixing Liquid Samples In A Container Using A Lemniscate Stirring Pattern
JP2010043879A (en) Immunoassay device
US20050014284A1 (en) Improved fluid mixing in a diagnostic analyzer
JP3642713B2 (en) Automatic analyzer
JP2006343246A (en) Dispenser and analyzer
JP2014228318A (en) Automatic analyzer and automatic analysis method
US8790598B2 (en) Reaction cuvette for automatic analyzer and method of surface treatment for reaction cuvette
EP0810437A1 (en) Agitator for an automatic analyzer and an automatic analyzer comprising same
JP2005099046A (en) Automatic analysis apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050301