JP2004057477A - Ultrasonic diagnostic instrument - Google Patents

Ultrasonic diagnostic instrument Download PDF

Info

Publication number
JP2004057477A
JP2004057477A JP2002219806A JP2002219806A JP2004057477A JP 2004057477 A JP2004057477 A JP 2004057477A JP 2002219806 A JP2002219806 A JP 2002219806A JP 2002219806 A JP2002219806 A JP 2002219806A JP 2004057477 A JP2004057477 A JP 2004057477A
Authority
JP
Japan
Prior art keywords
secondary winding
winding
circuit
terminal
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002219806A
Other languages
Japanese (ja)
Inventor
Isao Uchiumi
内海 勲
Toshio Shirasaka
白坂 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002219806A priority Critical patent/JP2004057477A/en
Publication of JP2004057477A publication Critical patent/JP2004057477A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide transmitting/receiving circuits for an ultrasonic diagnostic instrument with which a part of a winding wire is shared by transmitting and receiving circuits without relying on exclusive boosting transformers to be individually arranged for both the circuits, the boosting of a drive voltage in the case of transmission, and that of an ultrasonic wave reflection signal in the case of reception are performed through the use of the one boosting transformer for each transmitting/receiving circuit, and also increase is suppressed in cost and size. <P>SOLUTION: The ultrasonic diagnostic instrument includes: a search unit 3 consisting of a plurality of vibrators; and a plurality of transmitting/receiving circuits for driving the respective vibrators (1), and receiving signals from the respective vibrators (4). Each transmitting/receiving circuit includes the boosting transformer 2. The output of the drive circuit 1 of the transmitting/receiving circuit is connected to the first-order side winding wire T1, the vibrators 3 are connected to a first second-order side winding wire T2a, and then, the input of the receiving circuit 4 of the transmitting/receiving circuit is connected to a second second-order side winding wire T2b. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、振動子アレイを有する探触子により、超音波を用いて、生体の断層像などを表示する超音波診断装置に係り、特に昇圧トランスを有する送受信回路に関する。
【0002】
【従来の技術】
生体に超音波を放射して、生体内の臓器からの反射超音波信号を画像化して表示する超音波診断装置は、多くの場合、解像度の向上を図るために、数十個から数百個の振動子をほぼ同時に位相をずらして駆動する方式が用いられ、特にこの種のものは電子走査型と呼ばれている。
【0003】
図5は、多数の振動子を用いる電子走査超音波診断装置の構成図である。図5(a)に示すように、一般的な電子走査超音波診断装置の超音波の送受信では、探触子51のn個の振動子52に対し、送信回路53及び受信回路54から成る送受信回路55が、それより少ないm個設けられ、これらの送受信回路55と接続する振動子52を切替えるスイッチ群も設けられるが、この図では模式的にこのスイッチ群は省略して示している。
【0004】
さらに、m個の受信回路から出力される受信信号は、それぞれの位相を整えて加算される整相加算回路56、及びLog圧縮、検波などの信号処理回路57を経て、画像表示58の系統に画像信号として出力される。
【0005】
図5(b)は、同図(a)の探触子51と従来の送受信回路55の構成の詳細を示すブロック図である。
【0006】
従来の送信回路53は、図示しないトリガ信号発振機からのトリガ信号が入力される送信駆動回路53aと送信駆動信号を昇圧する送信側昇圧トランス53bとで構成される。
【0007】
一方、探触子51で受信された微小な受信信号は、過大な駆動パルスから受信回路54を保護する入力リミッタ回路54aの規制を受けずに通過し、受信側昇圧トランス54bに入力されて、数倍の電圧の受信信号に昇圧される。昇圧された受信信号は、さらに、その後に行われる信号処理に対応するために、信号レベルが受信増幅回路54cで増幅されて、この信号のNF(雑音指数)を改善して出力される。
【0008】
上に述べたように、電子走査超音波診断装置の従来の送受信回路では、送信駆動電圧を高電圧化する送信昇圧トランスと受信信号のNF改善のための受信昇圧トランスを設けて、超音波画像の分解能の向上を図る。しかし、送受信回路に2個の昇圧トランスを搭載すると、特に電子走査超音波診断装置では、先にも述べたように、送受信回路が数十回路、多いものでは数百回路を要するので、その回路部品点数の増加と、その設置スペースの点から、送受信回路の製造コスト並びに回路基板サイズを増大させることが、大きな問題点となっていた。
【0009】
【発明が解決しようとする課題】
本発明は、従来の超音波装置では、送信回路にも受信回路にも昇圧トランスが必要であり、これらの回路が各振動子に応じて必要なことを考えると送受信回路のコストが高く、しかも回路基板も大きくなるという問題があった。
【0010】
本発明はこのような問題点に鑑みてなされたもので、コストと回路基板サイズの増大を抑えた超音波診断装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記の目的を達成するために、本発明の請求項1によれば、振動子を有する探触子と、前記振動子を駆動して超音波を発射しこの振動子により受けた信号を受信する送受信回路とから成る超音波診断装置であって、前記送受信回路は、1次側巻線に前記送受信回路の駆動回路出力が接続され、第1の2次側巻線に前記振動子が接続され、第2の2次側巻線に前記送受信回路の受信回路の入力が接続された、昇圧トランスを有して成ることを特徴とする超音波診断装置を提供する。
【0012】
本発明の請求項2によれば、複数の振動子から成る探触子と、前記複数の振動子の各々に対応して設けられ、それら振動子の駆動及びそれら振動子から信号を受信する複数の送受信回路とから成る超音波診断装置であって、前記送受信回路は、1次側巻線に前記送受信回路の駆動回路出力が接続され、第1の2次側巻線に前記振動子が接続され、第2の2次側巻線に前記送受信回路の受信回路の入力が接続された、昇圧トランスを有して成ることを特徴とする超音波診断装置を提供する。
【0013】
本発明の請求項3は、第1の2次側巻線は、一端が接地された2次側巻線の接地端子とタップ端子間に接続され、前記第2の2次側巻線は、前記タップから延長された2次側巻線の他端端子と前記接地端子間に接続されており、駆動信号が前記1次側巻線と前記第1の2次側巻線の巻線比により昇圧され、受信信号が前記第1の2次側巻線と前記第2の2次側巻線の巻線比により昇圧されることを特徴とする。
【0014】
本発明の請求項4は、第1の2次側巻線は、バイアス電流を流してオン状態に設定され接地したダイオードブリッジが接続される2次側巻線の一端端子とタップ端子間に接続され、前記第2の2次側巻線は、前記タップ端子とこれから延長された2次側巻線の他端端子間に接続され、駆動信号が前記1次側巻線と前記第2の2次側巻線の巻線比により昇圧され、受信信号が前記第1の2次側巻線と前記第1及び第2の2次側巻線の和の巻線比により昇圧されることを特徴とする。
【0015】
本発明の請求項5は、第1の2次側巻線は、タップ端子が接地された2次側巻線の一端端子とこの接地されたタップ端子間に接続され、前記第2の2次側巻線は、前記接地されたタップ端子とこのタップから延長された2次側巻線の他端端子間に接続され、駆動信号が前記1次側巻線と前記第1の2次側巻線の巻線比により昇圧され、受信信号が前記第1の2次側巻線と前記第2の2次側巻線の巻線比により昇圧されることを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明の超音波診断装置の実施形態を図面を用いて詳細に説明する。なお、本発明の実施形態は、超音波診断装置に同形で複数個が設けられる送受信回路に適用して実施されるものであり、以下では超音波診断装置の送受信回路の部分を中心に説明する。
【0017】
図1(a)は、本発明の超音波診断装置の送受信回路の基本構成を示すブロック図で、同図(b)は、さらに本発明の第1の実施形態における昇圧トランスを模式的に表わして、送受信回路を示したブロック図である。
【0018】
図1(a)に示すように、本発明の超音波診断装置の送受信回路の構成は、大きくは、送信のトリガ信号が入力され駆動波形を発生する送信駆動回路1と、昇圧トランス2と、超音波信号の送信及び受信を行う探触子3と、受信信号を増幅する受信回路4とから成る。さらに、この受信回路4は、送信駆動回路1からの高電圧の駆動波形電圧を阻止するダイオードブリッジスイッチ回路及び入力の振幅を抑制する入力リミッタ回路を有する入力制限回路5と受信増幅回路6とから成る。
【0019】
本実施形態に使用する昇圧トランス2は、同図(b)に示すように2次側巻線にセンタータップを有し、3個の巻線T1、T2a、T2bを備えるトランスであり、1次側巻線及び2次側巻線それぞれの一端が接地される。これらの巻線の巻線比は、T1:T2a:T2b=1:M:Nである。
【0020】
図1(b)に示す送受信回路は、次のように動作する。送信回路1から出力される駆動波形が昇圧トランス2の巻線T1に印加され、その電圧振幅がM倍となって巻線T2aに誘起されて、探触子3を駆動する。駆動された探触子3から超音波が送信され、反射体で反射された一部の超音波が、超音波反射信号として再びこの探触子3で受信される。
【0021】
この信号を電気信号に変換して探触子3から出力される超音波反射信号の電圧は、送信のために探触子3に印加された電圧に比べて80dB〜100dB小さい電圧であるが、昇圧トランス2のセンタータップの巻線T2aに入力されて、同じ2次側鉄心に共巻された巻線T2bの端子には、1+(N/M)倍の電圧で出力される。この昇圧トランス2から出力される超音波反射信号は、受信回路4に入力され、さらに増幅されて次段の図示しない信号処理回路へ出力される。
【0022】
図2は、本発明の第1の実施形態の具体的な回路例を示す図である。
【0023】
この第1の実施形態の回路は、図1(b)送信駆動回路1が、図2のトリガ信号V1、V2に接続されるスイッチM1、M2からなる送信駆動回路11に対応する。さらに、昇圧トランス2は、1次巻線にもタップを有する昇圧トランス22に、探触子3は、振動子CxとケーブルT1とからなる探触子13に、入力制限回路5は、バイアス電流が流れているダイオードブリッジスイッチ回路と並列ダイオードによるリミッタ回路を備える入力制限回路15に、受信増幅回路6は増幅器Amp1から成る受信増幅回路16にそれぞれ対応して構成される。
【0024】
この第1の実施形態の動作は、図2において、送信回路11のスイッチM1、M2は、昇圧トランス22の1次側巻線t1、t2に接続されて、お互いの位相がπずれた矩形波のトリガ信号V1、V2により駆動されて、交互にオン/オフを繰り返す。このスイッチM1、M2のオン/オフにより、送信回路11の電源Vtから昇圧トランス22の巻線t1、t2へそれぞれ交互に電圧Vtの逆位相の電流が流れて、交番磁界が発生する。
【0025】
この交番磁界は2次側の接地されたタップ巻線t3に交流電圧を誘起して、探触子13に入力する駆動信号を発生する。この駆動信号は、1次側での電圧2Vtを巻線比M倍した、2M・Vtとなり、探触子13のケーブルT1を介して、振動子Cxに印加される。
【0026】
なお、前記トリガ信号V1、V2は、2波から数波程度の発振をして、次の発信タイミングまで発振を休止するので、このスイッチM1、M2も発振の無い期間はオフとなっている。
【0027】
振動子13では、駆動信号により超音波が放射されて、反射体によりその一部が反射し、反射超音波として再び探触子13の振動子Cxで受信される。
【0028】
受信した反射超音波は、探触子13の振動子Cxにより電気信号の超音波反射信号に変換されて、再び昇圧トランス22の接地されたタップ巻線t3に印加される。この巻線t3に印加された超音波反射信号は、昇圧トランス22の2次側で共に接地されてタップ巻線t3の他端に延長される巻線t4の端子と接地端子間に、巻数比t3:t4=M:Nに対応して、1+(N/M)倍に昇圧されて出力される。
【0029】
昇圧して出力された超音波反射信号は、受信回路4の入力制限回路15のダイオードD3〜D6によるダイオードブリッジスイッチ回路(以降、SW回路と称す)に入力される。このSW回路は、バイアス抵抗R2、R3を通じて電源Vccと負電源Veeに接続されて、無信号、または小電圧信号ではバイアス電流Ibを流して、全てのダイオードがオン状態になっており、入力された信号は通過して行く。
【0030】
一方、振動子駆動信号のように、電源Vccまたは負電源Veeの電圧より大きな信号が入力された時には、ダイオードD3、D6またはダイオードD4、D5の何れかの組が、オフとなって、このダイオードブリッジがオフ状態となるので、入力された大きい電圧の信号は、このSW回路を通過しない。
【0031】
さらに、SW回路の出力に接続される並列ダイオードによる入力リミッタ回路により、後段の受信増幅器16への入力が、約0.7V以下に制限され、過大な超音波反射信号は抑制される信号処理が行われて、さらに後段の処理回路に出力される。
【0032】
この第1の実施形態によれば、探触子13を駆動する駆動信号の昇圧と、探触子13で受信した超音波反射信号の昇圧とを、唯1つのセンタタップ昇圧トランスにより行うことが可能となり、受信側に設けていた昇圧トランスを必要としない。したがって、特に送受信回路を多数備える電子走査超音波診断装置においては、この受信側に設けるトランスの設置スペースの省略と、部品コストの削減を図ることができる効果がある。
【0033】
図3は、第2の実施形態を示す図で、同図(a)はそのブロック図であり、同図(b)はその具体的な回路図である。
【0034】
第2の実施形態は、図2(a)に示すように、送信のトリガ信号が入力され駆動波形を発生する送信駆動回路1は、昇圧トランス2の1次側巻線T1に接続される。探触子3は、昇圧トランス2の2次側巻線T2aと巻線T2bの間のセンタタップに接続される。さらに、送受信切換スイッチ回路5aが、巻線T2aの端子に接続される。また、入力リミッタ回路5bと受信増幅回路6とから成る受信回路4が、巻線T2bの端子に接続されて、構成される。
【0035】
送受信切換スイッチ5aは、駆動信号が巻線T1に印加され、巻線T2aに高電圧が誘起されると高インピーダンスのオフ状態になるが、通常の無信号または微小電圧ではオン状態で、巻線T2aの端子を接地GNDに接続する。送受信切換スイッチ5aのこの作動により、この第2の実施形態では、昇圧トランス2の送信時の駆動信号の昇圧は、巻線T1と2次巻線T2bとの間で行われ、その巻線比T1:T2b=1:NによりN倍となる。一方、超音波反射信号の受信信号は、1次側巻線T2aに印加されて、昇圧トランス2の巻線T2bの端子から受信回路4へ入力される受信信号は、第1の実施形態と同様に、巻線比T2a:T2b=M:Nにより1+(N/M)倍になる。
【0036】
第2の実施形態の動作について、図3(b)の回路図を用いて説明する。
【0037】
この回路は、同図(a)の昇圧トランス2が同図(b)の昇圧トランス32に、同じく、送受信切換スイッチ回路5aがダイオードブリッジのSW回路15aに、入力リミッタ回路5bが入力リミッタ回路15bにそれぞれ対応して構成される。
【0038】
さらに、送信駆動回路11及び探触子13は、第1の実施形態と同様にそれぞれ昇圧トランス32の1次巻線t1、t2及び2次巻線t3、t4のセンタタップ端子に接続される。巻線t3の端子には、ダイオードブリッジのSW回路15aが接続され、この接続点と対になるブリッジのノードがGND接地に接続される。また、巻線t4の端子は、入力リミッタ回路15bの並列ダイオードに接続される。
【0039】
この実施形態の動作は、送信駆動回路11では、第1の実施形態と同様に、トリガ信号V1、V2により、交互にオン/オフを繰り返すスイッチM1、M2で、昇圧トランス32の巻線t1、t2に電流が流れて交番磁界が発生し、2次巻線t3及びt4にそれぞれ2M及び2N倍に昇圧した電圧が誘起される。
【0040】
ここで、巻線t3の端子に接続されたSW回路15aは、巻線t3の端子が小電圧(電源Vccまたは負電源Vee以下)及び無信号の場合には、ダイオードD3〜D6にバイアス電流が流れてオン状態と成り、この巻線t3の端子をGND接地するが、一方高電圧が印加されると、D3、D6の組またはD4、D5の組のいずれかオフ状態の高インピーダンスになる。また、この時、巻線t4の端子は、入力リミッタ回路15bの並列ダイオードにより、オフ状態のSW回路15aより小さなインピーダンスで接地される。したがって、前述の2次側の巻線t3に誘起された電圧がSW回路15aをオフ状態にして、巻線t4の端子が入力リミッタ回路15bの並列ダイオードで接地されるので、巻線t4に誘起された電圧(2N・Vt)は探触子13の駆動信号と成る。
【0041】
この駆動信号により探触子13から放射された超音波が、反射体で反射し、再び探触子13に受信されて、巻線t3に超音波反射信号として印加される。この超音波反射信号は、小電圧であり前述のSW回路15aがオン状態でGND接地されて、巻線T2aに延長して設けられる巻線T2bの端子に、その巻線比T2a:T2b=M:Nにより1+(N/M)倍に昇圧した電圧の超音波反射信号として出力される。
【0042】
昇圧トランス32から出力された超音波反射信号は、受信回路4の入力リミッタ回路15bに入力されて、並列ダイオードD1、D2により約0.7V以下に制限されて、次段の受信増幅回路16に入力される。
【0043】
この実施形態においては、ノイズ発生源となるダイオードSW回路15aの定電流源とダイオードが、ダイオードブリッジの1端がGND接地されるので、このGND接地と受信回路の入力インピーダンスと探触子13の合成インピーダンスで分圧され、第1の実施形態の受信回路の入力インピーダンスと探触子13の合成インピーダンスの分圧に比べて、対雑音比の改善が図れる利点がある。
【0044】
図4は、本発明の第3の実施形態を示す回路図である。第3の実施形態は、図4に示すように、昇圧トランス42の2次巻線t3、t4のセンタタップがGND接地されて、巻線t3の端子に探触子13が、巻線t4の端子に、ダイオードブリッジによるSW回路と並列ダイオードの入力リミッタ回路とから成る入力制限回路15が接続されて構成される。
【0045】
この第3の実施形態では、トリガ信号V1、V2により、前述の第1の実施形態と同様に巻線t1、t2に電流が流れて、2次巻線t3に2M倍に昇圧した電圧が誘起される。センタタップがGND接地されており、この電圧は探触子13を駆動する。
【0046】
探触子13で受信された超音波反射信号は、巻線t3に印加されて、互いにGNDをセンタタップで共通にする巻線t4に、その巻線比t3:t4=M:Nにより(N/M)倍となって誘起される。
【0047】
巻線t4の超音波反射信号は、巻線t4の端子に接続される入力制限回路15のSW回路に入力される。SW回路では、前述の第1の実施形態と同様に、入力される信号の電圧により、ダイオードブリッジが「オン」状態、或は「オフ」状態となって、入力された信号の大小によりスイッチングする。したがって、超音波反射信号のように小電圧の信号は、SW回路15aは「オン」状態で、これを通過して、次の並列ダイオードの入力リミッタ回路に入力され、さらに次段の受信増幅回路16に入力される。
【0048】
第3の実施形態によれば、昇圧トランス42の各巻線は、回路の機能毎に分離してそれぞれ接続されるので、受信信号の昇圧がN/M倍となるが、各巻線比、及び内部ノイズ設計などの検討が比較的容易に行える利点がある
なお、上述の説明では、電子走査超音波診断装置に設けられる同形の複数の送受信回路の1つについて説明したが、本発明を用いた電子走査超音波診断装置としては、複数の振動子を有する探触子と、複数の上述の送受信回路とが設けられ、図示しない切換スイッチを設けて、これにより送受信回路が接続される振動子を切替えて、駆動・受信が行われる。
【0049】
本発明によれば、送受信回路の昇圧トランスを1個で済ますことができるので、送受信回路を多数備える電子走査超音波診断装置においては、この受信側に設けるトランスの設置スペースの省略と、部品コストの削減の効果は特に著しい。
【0050】
【発明の効果】
以上、説明したように、本発明によれば、探触子を駆動する駆動信号の昇圧と、探触子で受信した超音波反射信号の昇圧とを、唯1つのセンタタップ昇圧トランスにより行うことが可能となり、昇圧トランスを少なくすることができ、トランスの設置スペースの省略と、部品コストの削減を図ることができる効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の超音波診断装置の構成を示すブロック図。
【図2】本発明の第1の実施形態の回路図。
【図3】本発明の第2の実施形態の構成を示すブロック図と回路図。
【図4】本発明の第3の実施形態の構成図と回路図。
【図5】電子走査超音波診断装置及び従来の送受信回路の構成を示すブロック図。
【符号の説明】
1、11・・・送信駆動回路、
2、22、32、42・・・昇圧トランス、
3、13・・・探触子、
4、14・・・受信回路、
5、15・・・入力制限回路、
6、16・・・受信増幅回路、
15a・・・ダイオードブリッジスイッチ回路(SW回路)、
15b・・・入力リミッタ回路。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic diagnostic apparatus that displays a tomographic image of a living body using a probe having a vibrator array using ultrasonic waves, and particularly to a transmission / reception circuit having a step-up transformer.
[0002]
[Prior art]
Ultrasound diagnostic devices that emit ultrasonic waves to a living body and image and display reflected ultrasonic signals from organs in the living body are often tens to hundreds of units in order to improve resolution. Are driven almost simultaneously with their phases shifted, and this type is particularly called an electronic scanning type.
[0003]
FIG. 5 is a configuration diagram of an electronic scanning ultrasonic diagnostic apparatus using a number of transducers. As shown in FIG. 5A, in the transmission and reception of ultrasonic waves of a general electronic scanning ultrasonic diagnostic apparatus, a transmission / reception circuit composed of a transmission circuit 53 and a reception circuit 54 is transmitted to n transducers 52 of a probe 51. A smaller number m of circuits 55 are provided, and a switch group for switching the vibrator 52 connected to these transmission / reception circuits 55 is also provided, but this switch group is schematically omitted in this figure.
[0004]
Further, the reception signals output from the m reception circuits pass through a phasing addition circuit 56 in which the respective phases are adjusted and added, and a signal processing circuit 57 such as Log compression and detection, and are then sent to the system of the image display 58. It is output as an image signal.
[0005]
FIG. 5B is a block diagram showing details of the configuration of the probe 51 and the conventional transmitting / receiving circuit 55 in FIG.
[0006]
The conventional transmission circuit 53 includes a transmission drive circuit 53a to which a trigger signal from a trigger signal oscillator (not shown) is input and a transmission side boosting transformer 53b for boosting the transmission drive signal.
[0007]
On the other hand, the minute reception signal received by the probe 51 passes without being restricted by the input limiter circuit 54a that protects the reception circuit 54 from excessive driving pulses, and is input to the reception-side step-up transformer 54b. The received signal is boosted to several times the voltage. The boosted reception signal is further amplified in signal level by the reception amplifier circuit 54c in order to cope with signal processing performed thereafter, and is output after improving the NF (noise figure) of this signal.
[0008]
As described above, in the conventional transmission / reception circuit of the electronic scanning ultrasonic diagnostic apparatus, the transmission boosting transformer for increasing the transmission drive voltage and the reception boosting transformer for improving the NF of the reception signal are provided, and To improve the resolution. However, when two step-up transformers are mounted on the transmitting / receiving circuit, especially in the electronic scanning ultrasonic diagnostic apparatus, as described above, several tens of transmitting / receiving circuits and several hundreds of circuits are required. In view of the increase in the number of components and the space required for installation, increasing the manufacturing cost of the transmission / reception circuit and the size of the circuit board have been serious problems.
[0009]
[Problems to be solved by the invention]
The present invention requires a step-up transformer in both the transmission circuit and the reception circuit in the conventional ultrasonic apparatus, and the cost of the transmission / reception circuit is high considering that these circuits are necessary for each transducer. There is a problem that the circuit board becomes large.
[0010]
The present invention has been made in view of such a problem, and an object of the present invention is to provide an ultrasonic diagnostic apparatus which suppresses an increase in cost and circuit board size.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, according to claim 1 of the present invention, a probe having a vibrator and driving the vibrator to emit ultrasonic waves and receive a signal received by the vibrator. An ultrasonic diagnostic apparatus comprising: a transmission / reception circuit, wherein the transmission / reception circuit is configured such that a driving circuit output of the transmission / reception circuit is connected to a primary winding, and the vibrator is connected to a first secondary winding. And a step-up transformer having an input of a receiving circuit of the transmitting / receiving circuit connected to a second secondary winding.
[0012]
According to claim 2 of the present invention, a probe comprising a plurality of transducers, and a plurality of transducers provided for each of the plurality of transducers for driving the transducers and receiving signals from the transducers. An ultrasonic diagnostic apparatus comprising: a transmission / reception circuit, wherein the transmission / reception circuit has a primary winding connected to a drive circuit output of the transmission / reception circuit and the first secondary winding connected to the transducer. In addition, the present invention provides an ultrasonic diagnostic apparatus having a step-up transformer in which an input of a receiving circuit of the transmitting / receiving circuit is connected to a second secondary winding.
[0013]
According to a third aspect of the present invention, the first secondary winding is connected between a ground terminal and a tap terminal of the secondary winding having one end grounded, and the second secondary winding is The drive signal is connected between the other end terminal of the secondary winding extended from the tap and the ground terminal, and a drive signal is generated based on a winding ratio of the primary winding and the first secondary winding. The received signal is boosted by a turn ratio of the first secondary winding and the second secondary winding.
[0014]
According to a fourth aspect of the present invention, the first secondary winding is connected between one end terminal and the tap terminal of the secondary winding to which a bias current flows and which is set to an on state and to which a grounded diode bridge is connected. The second secondary winding is connected between the tap terminal and the other terminal of the secondary winding extended therefrom, and a drive signal is transmitted between the primary winding and the second secondary winding. The voltage is boosted by the winding ratio of the secondary winding, and the reception signal is boosted by the winding ratio of the sum of the first secondary winding and the first and second secondary windings. And
[0015]
According to a fifth aspect of the present invention, the first secondary winding is connected between one end terminal of the secondary winding whose tap terminal is grounded and the grounded tap terminal. The side winding is connected between the grounded tap terminal and the other end terminal of the secondary winding extended from the tap, and a drive signal is supplied between the primary winding and the first secondary winding. The voltage is boosted by the winding ratio of the wire, and the reception signal is boosted by the winding ratio of the first secondary winding and the second secondary winding.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the ultrasonic diagnostic apparatus of the present invention will be described in detail with reference to the drawings. The embodiment of the present invention is applied to a transmission / reception circuit in which a plurality of ultrasonic diagnosis apparatuses are provided in the same shape, and will be described below mainly on a transmission / reception circuit part of the ultrasonic diagnosis apparatus. .
[0017]
FIG. 1A is a block diagram showing a basic configuration of a transmission / reception circuit of the ultrasonic diagnostic apparatus according to the present invention, and FIG. 1B schematically shows a step-up transformer according to the first embodiment of the present invention. FIG. 3 is a block diagram showing a transmission / reception circuit.
[0018]
As shown in FIG. 1A, the configuration of the transmission / reception circuit of the ultrasonic diagnostic apparatus according to the present invention mainly includes a transmission drive circuit 1 that receives a transmission trigger signal and generates a drive waveform, a step-up transformer 2, The probe comprises a probe 3 for transmitting and receiving an ultrasonic signal, and a receiving circuit 4 for amplifying a received signal. Further, the receiving circuit 4 includes a diode bridge switch circuit that blocks a high-voltage driving waveform voltage from the transmission driving circuit 1 and an input limiting circuit 5 that has an input limiter circuit that suppresses the amplitude of an input. Become.
[0019]
The step-up transformer 2 used in the present embodiment is a transformer having a center tap on the secondary side winding and having three windings T1, T2a and T2b as shown in FIG. One end of each of the side winding and the secondary winding is grounded. The turns ratio of these windings is T1: T2a: T2b = 1: M: N.
[0020]
The transmitting and receiving circuit shown in FIG. 1B operates as follows. The drive waveform output from the transmission circuit 1 is applied to the winding T1 of the step-up transformer 2, the voltage amplitude is increased by a factor of M, induced in the winding T2a, and drives the probe 3. Ultrasonic waves are transmitted from the driven probe 3, and some of the ultrasonic waves reflected by the reflector are received again by the probe 3 as ultrasonic reflected signals.
[0021]
The voltage of the ultrasonic reflection signal output from the probe 3 after converting this signal into an electric signal is a voltage smaller by 80 dB to 100 dB than the voltage applied to the probe 3 for transmission. The voltage is input to the winding T2a of the center tap of the step-up transformer 2 and is output at a voltage of 1+ (N / M) times to the terminal of the winding T2b co-wound around the same secondary iron core. The ultrasonic reflection signal output from the step-up transformer 2 is input to the receiving circuit 4, further amplified, and output to the next-stage signal processing circuit (not shown).
[0022]
FIG. 2 is a diagram illustrating a specific circuit example of the first embodiment of the present invention.
[0023]
The circuit of the first embodiment corresponds to the transmission driving circuit 11 in which the transmission driving circuit 1 in FIG. 1B includes switches M1 and M2 connected to the trigger signals V1 and V2 in FIG. Further, the step-up transformer 2 is connected to the step-up transformer 22 having a tap also in the primary winding, the probe 3 is connected to the probe 13 including the vibrator Cx and the cable T1, and the input limiting circuit 5 is connected to the bias current. The receiving amplifier circuit 6 is configured to correspond to the input limiting circuit 15 including the diode bridge switch circuit through which the current flows and the limiter circuit by the parallel diode, and the receiving amplifier circuit 16 including the amplifier Amp1.
[0024]
In the operation of the first embodiment, the switches M1 and M2 of the transmission circuit 11 are connected to the primary windings t1 and t2 of the step-up transformer 22 in FIG. , And are alternately turned on / off by the trigger signals V1 and V2. When the switches M1 and M2 are turned on / off, currents having opposite phases of the voltage Vt alternately flow from the power supply Vt of the transmission circuit 11 to the windings t1 and t2 of the step-up transformer 22, thereby generating an alternating magnetic field.
[0025]
This alternating magnetic field induces an AC voltage in the secondary-side grounded tap winding t3 to generate a drive signal to be input to the probe 13. This drive signal is 2M · Vt, which is the winding ratio M times the voltage 2Vt on the primary side, and is applied to the transducer Cx via the cable T1 of the probe 13.
[0026]
Note that the trigger signals V1 and V2 oscillate from two to several waves and stop oscillating until the next transmission timing, so that the switches M1 and M2 are also off during the period without oscillation.
[0027]
In the transducer 13, an ultrasonic wave is emitted by the drive signal, a part of the ultrasonic wave is reflected by the reflector, and the reflected ultrasonic wave is received again by the transducer Cx of the probe 13.
[0028]
The received reflected ultrasonic wave is converted into an ultrasonic reflected signal of an electric signal by the transducer Cx of the probe 13 and is again applied to the grounded tap winding t3 of the step-up transformer 22. The ultrasonic reflection signal applied to the winding t3 is connected to the ground of the secondary side of the step-up transformer 22 and is extended to the other end of the tap winding t3. In response to t3: t4 = M: N, the voltage is boosted to 1+ (N / M) times and output.
[0029]
The ultrasonic reflected signal that has been boosted and output is input to a diode bridge switch circuit (hereinafter, referred to as an SW circuit) including diodes D3 to D6 of the input limiting circuit 15 of the receiving circuit 4. This SW circuit is connected to the power supply Vcc and the negative power supply Vee through the bias resistors R2 and R3, flows the bias current Ib in the case of no signal or small voltage signal, and all the diodes are in the ON state. The signal goes through.
[0030]
On the other hand, when a signal larger than the voltage of the power supply Vcc or the negative power supply Vee is input, such as an oscillator drive signal, one of the diodes D3 and D6 or one of the diodes D4 and D5 is turned off, and this diode is turned off. Since the bridge is turned off, the input large voltage signal does not pass through this SW circuit.
[0031]
Further, by an input limiter circuit using a parallel diode connected to the output of the SW circuit, the input to the receiving amplifier 16 at the subsequent stage is limited to about 0.7 V or less, and signal processing for suppressing an excessive ultrasonic reflection signal is performed. Then, the data is output to a processing circuit at a subsequent stage.
[0032]
According to the first embodiment, the boosting of the drive signal for driving the probe 13 and the boosting of the ultrasonic reflection signal received by the probe 13 can be performed by only one center tap boosting transformer. This makes it possible to eliminate the need for a step-up transformer provided on the receiving side. Therefore, particularly in an electronic scanning ultrasonic diagnostic apparatus having a large number of transmitting / receiving circuits, there is an effect that the installation space of the transformer provided on the receiving side can be omitted and the cost of parts can be reduced.
[0033]
FIGS. 3A and 3B show a second embodiment, wherein FIG. 3A is a block diagram thereof and FIG. 3B is a specific circuit diagram thereof.
[0034]
In the second embodiment, as shown in FIG. 2A, a transmission drive circuit 1 which receives a transmission trigger signal and generates a drive waveform is connected to a primary winding T1 of a step-up transformer 2. The probe 3 is connected to a center tap between the secondary winding T2a and the winding T2b of the step-up transformer 2. Further, a transmission / reception changeover switch circuit 5a is connected to a terminal of the winding T2a. A receiving circuit 4 including an input limiter circuit 5b and a receiving amplifier circuit 6 is connected to the terminal of the winding T2b.
[0035]
When the drive signal is applied to the winding T1 and a high voltage is induced in the winding T2a, the transmission / reception changeover switch 5a is turned off in a high impedance state. The terminal of T2a is connected to the ground GND. By the operation of the transmission / reception switch 5a, in the second embodiment, the boosting of the drive signal at the time of transmission of the boosting transformer 2 is performed between the winding T1 and the secondary winding T2b, and the winding ratio By T1: T2b = 1: N, N times. On the other hand, the reception signal of the ultrasonic reflection signal is applied to the primary winding T2a, and the reception signal input from the terminal of the winding T2b of the step-up transformer 2 to the reception circuit 4 is the same as in the first embodiment. In addition, it becomes 1+ (N / M) times by the winding ratio T2a: T2b = M: N.
[0036]
The operation of the second embodiment will be described with reference to the circuit diagram of FIG.
[0037]
In this circuit, the step-up transformer 2 in FIG. 9A is used as the step-up transformer 32 in FIG. 9B, the transmission / reception changeover switch circuit 5a is used as the diode bridge SW circuit 15a, and the input limiter circuit 5b is used as the input limiter circuit 15b. , Respectively.
[0038]
Further, the transmission drive circuit 11 and the probe 13 are connected to the center tap terminals of the primary windings t1 and t2 and the secondary windings t3 and t4 of the step-up transformer 32, respectively, as in the first embodiment. A diode bridge SW circuit 15a is connected to a terminal of the winding t3, and a node of the bridge paired with this connection point is connected to GND ground. The terminal of the winding t4 is connected to the parallel diode of the input limiter circuit 15b.
[0039]
The operation of this embodiment is similar to that of the first embodiment in that the transmission drive circuit 11 uses the switches M1 and M2 that alternately turn on and off in response to the trigger signals V1 and V2, and the windings t1 and A current flows at t2 to generate an alternating magnetic field, and a voltage that is boosted by 2M and 2N times is induced in the secondary windings t3 and t4, respectively.
[0040]
Here, the SW circuit 15a connected to the terminal of the winding t3 supplies a bias current to the diodes D3 to D6 when the terminal of the winding t3 has a low voltage (below the power supply Vcc or the negative power supply Vee) and no signal. Then, the terminal of the winding t3 is grounded to GND, but when a high voltage is applied, either the set of D3 and D6 or the set of D4 and D5 becomes a high impedance in an off state. At this time, the terminal of the winding t4 is grounded by the parallel diode of the input limiter circuit 15b with a lower impedance than the SW circuit 15a in the off state. Therefore, the voltage induced in the secondary winding t3 turns off the SW circuit 15a, and the terminal of the winding t4 is grounded by the parallel diode of the input limiter circuit 15b. The voltage (2N · Vt) becomes a drive signal for the probe 13.
[0041]
The ultrasonic wave radiated from the probe 13 by this drive signal is reflected by the reflector, received by the probe 13 again, and applied to the winding t3 as an ultrasonic reflection signal. This ultrasonic reflection signal is a small voltage, and the above-mentioned SW circuit 15a is turned on and grounded to GND, and the winding ratio T2a: T2b = M is applied to the terminal of the winding T2b provided extending from the winding T2a. : N is output as an ultrasonic reflection signal of a voltage boosted by 1+ (N / M) times by N.
[0042]
The ultrasonic reflected signal output from the step-up transformer 32 is input to the input limiter circuit 15b of the receiving circuit 4, and is limited to about 0.7 V or less by the parallel diodes D1 and D2. Is entered.
[0043]
In this embodiment, the constant current source and the diode of the diode SW circuit 15a serving as a noise generation source are grounded at one end of the diode bridge. The voltage is divided by the combined impedance, and there is an advantage that the noise-to-noise ratio can be improved as compared with the divided voltage of the input impedance of the receiving circuit of the first embodiment and the combined impedance of the probe 13.
[0044]
FIG. 4 is a circuit diagram showing a third embodiment of the present invention. In the third embodiment, as shown in FIG. 4, the center tap of the secondary windings t3 and t4 of the step-up transformer 42 is grounded to GND, and the probe 13 is connected to the terminal of the winding t3, The terminal is connected to an input limiting circuit 15 composed of a SW circuit using a diode bridge and an input limiter circuit of a parallel diode.
[0045]
In the third embodiment, the trigger signals V1 and V2 cause a current to flow through the windings t1 and t2 in the same manner as in the above-described first embodiment, and induce a 2M-fold boosted voltage in the secondary winding t3. Is done. The center tap is grounded to GND, and this voltage drives the probe 13.
[0046]
The ultrasonic reflection signal received by the probe 13 is applied to the winding t3, and is applied to the winding t4 which makes GND common to each other at the center tap by the winding ratio t3: t4 = M: N (N / M) times.
[0047]
The ultrasonic reflection signal of the winding t4 is input to the SW circuit of the input limiting circuit 15 connected to the terminal of the winding t4. In the SW circuit, as in the above-described first embodiment, the diode bridge is turned on or off by the voltage of the input signal, and switches according to the magnitude of the input signal. . Therefore, a small voltage signal such as an ultrasonic reflection signal passes through the SW circuit 15a in the "ON" state and is input to the input limiter circuit of the next parallel diode, and further the next-stage reception amplifier circuit 16 is input.
[0048]
According to the third embodiment, each winding of the step-up transformer 42 is connected separately for each function of the circuit, so that the boosting of the received signal becomes N / M times. There is an advantage that the noise design and the like can be studied relatively easily. In the above description, one of a plurality of transmission / reception circuits of the same shape provided in the electronic scanning ultrasonic diagnostic apparatus has been described. The scanning ultrasonic diagnostic apparatus is provided with a probe having a plurality of transducers and a plurality of the above-described transmission / reception circuits, and a changeover switch (not shown) is provided, thereby switching the transducer connected to the transmission / reception circuit. Then, driving and reception are performed.
[0049]
According to the present invention, only one step-up transformer of the transmitting and receiving circuit can be used. Therefore, in an electronic scanning ultrasonic diagnostic apparatus having a large number of transmitting and receiving circuits, the installation space of the transformer provided on the receiving side is reduced and the cost of parts is reduced. The effect of the reduction is particularly significant.
[0050]
【The invention's effect】
As described above, according to the present invention, the boosting of the drive signal for driving the probe and the boosting of the ultrasonic reflection signal received by the probe are performed by only one center tap boosting transformer. This makes it possible to reduce the number of step-up transformers, reduce the installation space for the transformers, and reduce the cost of parts.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an ultrasonic diagnostic apparatus according to a first embodiment of the present invention.
FIG. 2 is a circuit diagram according to the first embodiment of the present invention.
FIG. 3 is a block diagram and a circuit diagram showing a configuration of a second embodiment of the present invention.
FIG. 4 is a configuration diagram and a circuit diagram of a third embodiment of the present invention.
FIG. 5 is a block diagram showing a configuration of an electronic scanning ultrasonic diagnostic apparatus and a conventional transmission / reception circuit.
[Explanation of symbols]
1, 11,... A transmission drive circuit,
2, 22, 32, 42 ... step-up transformer,
3, 13 ... probe,
4, 14 ... receiving circuit,
5, 15 ... input limiting circuit,
6, 16 ... receiving amplifier circuit,
15a: diode bridge switch circuit (SW circuit),
15b: input limiter circuit.

Claims (5)

振動子を有する探触子と、前記振動子を駆動して超音波を送波しこの振動子により受けた信号を受信する送受信回路とから成る超音波診断装置であって、
前記送受信回路は、1次側巻線に前記送受信回路の駆動回路出力が接続され、第1の2次側巻線に前記振動子が接続され、第2の2次側巻線に前記送受信回路の受信回路の入力が接続された、昇圧トランスを有して成ることを特徴とする超音波診断装置。
An ultrasonic diagnostic apparatus comprising: a probe having a vibrator; and a transmitting / receiving circuit that drives the vibrator to transmit an ultrasonic wave and receives a signal received by the vibrator,
In the transmitting / receiving circuit, a driving circuit output of the transmitting / receiving circuit is connected to a primary winding, the vibrator is connected to a first secondary winding, and the transmitting / receiving circuit is connected to a second secondary winding. An ultrasonic diagnostic apparatus comprising a step-up transformer to which an input of the receiving circuit is connected.
複数の振動子から成る探触子と、前記複数の振動子の各々に対応して設けられ、それら振動子の駆動及びそれら振動子から信号を受信する複数の送受信回路とから成る超音波診断装置であって、
前記送受信回路は、1次側巻線に前記送受信回路の駆動回路出力が接続され、第1の2次側巻線に前記振動子が接続され、第2の2次側巻線に前記送受信回路の受信回路の入力が接続された、昇圧トランスを有して成ることを特徴とする超音波診断装置。
An ultrasonic diagnostic apparatus comprising: a probe including a plurality of transducers; and a plurality of transmission / reception circuits provided for each of the plurality of transducers, for driving the transducers and receiving signals from the transducers. And
In the transmitting / receiving circuit, a driving circuit output of the transmitting / receiving circuit is connected to a primary winding, the vibrator is connected to a first secondary winding, and the transmitting / receiving circuit is connected to a second secondary winding. An ultrasonic diagnostic apparatus comprising a step-up transformer to which an input of the receiving circuit is connected.
前記第1の2次側巻線は、一端が接地された2次側巻線の接地端子とタップ端子間に接続され、前記第2の2次側巻線は、前記タップから延長された2次側巻線の他端端子と前記接地端子間に接続されており、
駆動信号が前記1次側巻線と前記第1の2次側巻線の巻線比により昇圧され、受信信号が前記第1の2次側巻線と前記第2の2次側巻線の巻線比により昇圧されることを特徴とする請求項1又は2記載の超音波診断装置。
The first secondary winding is connected between a ground terminal and a tap terminal of the secondary winding having one end grounded, and the second secondary winding is connected to a ground terminal extending from the tap. It is connected between the other terminal of the secondary winding and the ground terminal,
A drive signal is boosted by a winding ratio of the primary winding and the first secondary winding, and a reception signal is generated between the first secondary winding and the second secondary winding. 3. The ultrasonic diagnostic apparatus according to claim 1, wherein the voltage is increased by a winding ratio.
前記第1の2次側巻線は、バイアス電流を流してオン状態に設定され接地したダイオードブリッジが接続される2次側巻線の一端端子とタップ端子間に接続され、前記第2の2次側巻線は、前記タップ端子とこれから延長された2次側巻線の他端端子間に接続され、
駆動信号が前記1次側巻線と前記第2の2次側巻線の巻線比により昇圧され、受信信号が前記第1の2次側巻線と前記第1及び第2の2次側巻線の和の巻線比により昇圧されることを特徴とする請求項1又は2記載の超音波診断装置。
The first secondary winding is connected between one end terminal and a tap terminal of a secondary winding to which a bias current flows and which is set to an on state and is connected to a grounded diode bridge; The secondary winding is connected between the tap terminal and the other terminal of the secondary winding extended therefrom,
A drive signal is boosted by a winding ratio of the primary winding and the second secondary winding, and a reception signal is generated by the first secondary winding and the first and second secondary windings. The ultrasonic diagnostic apparatus according to claim 1, wherein the voltage is boosted by a winding ratio of a sum of windings.
前記第1の2次側巻線は、タップ端子が接地された2次側巻線の一端端子とこの接地されたタップ端子間に接続され、前記第2の2次側巻線は、前記接地されたタップ端子とこのタップから延長された2次側巻線の他端端子間に接続され、
駆動信号が前記1次側巻線と前記第1の2次側巻線の巻線比により昇圧され、受信信号が前記第1の2次側巻線と前記第2の2次側巻線の巻線比により昇圧されることを特徴とする請求項1又は2記載の超音波診断装置。
The first secondary winding is connected between one terminal of the secondary winding whose tap terminal is grounded and the grounded tap terminal, and the second secondary winding is connected to the ground. Connected between the tap terminal and the other terminal of the secondary winding extending from the tap,
A drive signal is boosted by a winding ratio of the primary winding and the first secondary winding, and a reception signal is generated between the first secondary winding and the second secondary winding. 3. The ultrasonic diagnostic apparatus according to claim 1, wherein the voltage is increased by a winding ratio.
JP2002219806A 2002-07-29 2002-07-29 Ultrasonic diagnostic instrument Pending JP2004057477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219806A JP2004057477A (en) 2002-07-29 2002-07-29 Ultrasonic diagnostic instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219806A JP2004057477A (en) 2002-07-29 2002-07-29 Ultrasonic diagnostic instrument

Publications (1)

Publication Number Publication Date
JP2004057477A true JP2004057477A (en) 2004-02-26

Family

ID=31940618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219806A Pending JP2004057477A (en) 2002-07-29 2002-07-29 Ultrasonic diagnostic instrument

Country Status (1)

Country Link
JP (1) JP2004057477A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278665A (en) * 2004-03-26 2005-10-13 Toshiba Corp Ultrasonic diagnostic device and ultrasonic probe
JP2006087602A (en) * 2004-09-22 2006-04-06 Toshiba Corp Ultrasonic diagnostic equipment
JP2008073137A (en) * 2006-09-20 2008-04-03 Aloka Co Ltd Ultrasonic diagnostic equipment and ultrasonic probe
JP2008104629A (en) * 2006-10-25 2008-05-08 Toshiba Corp Ultrasonograph
JP2016000163A (en) * 2014-06-12 2016-01-07 株式会社東芝 Ultrasonic diagnostic device
CN110169786A (en) * 2019-05-21 2019-08-27 广州畅呼医疗器械有限公司 A kind of ultrasonic drive circuit, driving method and ultrasonic lung function instrument

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278665A (en) * 2004-03-26 2005-10-13 Toshiba Corp Ultrasonic diagnostic device and ultrasonic probe
JP4557579B2 (en) * 2004-03-26 2010-10-06 株式会社東芝 Ultrasonic diagnostic equipment
JP2006087602A (en) * 2004-09-22 2006-04-06 Toshiba Corp Ultrasonic diagnostic equipment
JP2008073137A (en) * 2006-09-20 2008-04-03 Aloka Co Ltd Ultrasonic diagnostic equipment and ultrasonic probe
JP2008104629A (en) * 2006-10-25 2008-05-08 Toshiba Corp Ultrasonograph
JP2016000163A (en) * 2014-06-12 2016-01-07 株式会社東芝 Ultrasonic diagnostic device
CN110169786A (en) * 2019-05-21 2019-08-27 广州畅呼医疗器械有限公司 A kind of ultrasonic drive circuit, driving method and ultrasonic lung function instrument

Similar Documents

Publication Publication Date Title
JP5384491B2 (en) Ultrasonic diagnostic equipment
JP2004236869A (en) Ultrasonographic apparatus
JP4216647B2 (en) Ultrasonic transmitter, ultrasonic transmitter / receiver, and detector
JPS6384531A (en) Ultrasonic diagnostic apparatus
JP2735203B2 (en) Ultrasound diagnostic equipment
JP2004057477A (en) Ultrasonic diagnostic instrument
JP5377498B2 (en) Ultrasonic diagnostic equipment
JP6342227B2 (en) Ultrasonic diagnostic equipment
JP5231921B2 (en) Ultrasonic diagnostic equipment
JP3897991B2 (en) Transmission circuit for ultrasonic diagnostic equipment
JP3571587B2 (en) Ultrasound diagnostic apparatus having a pulse generation circuit
JP2006524531A (en) Two-dimensional (2D) array capable of generating harmonics for ultrasound imaging
JP2000147095A (en) Ultrasonic transducer and ultrasonic locating method
JP5002363B2 (en) Ultrasonic diagnostic apparatus and transformer circuit
JP5718152B2 (en) Ultrasonic probe, ultrasonic diagnostic equipment
JP2002210408A (en) Device for driving ultrasonic vibrator transducer and underwater detecting device
JP4024914B2 (en) Ultrasonic diagnostic equipment
JPH074007Y2 (en) Ultrasonic diagnostic equipment
JP3286311B2 (en) Ultrasound diagnostic equipment
JPH04247268A (en) Ultrasonic vibrating device
CN220175140U (en) Pulse transmitting circuit system
JPH0116060Y2 (en)
JP2838812B2 (en) Ultrasonic transducer drive system
JP2008073137A (en) Ultrasonic diagnostic equipment and ultrasonic probe
JP2002065672A (en) Ultrasonic diagnostic device