JP2004053466A - Shielding material for electromagnetic wave, and its manufacturing method - Google Patents

Shielding material for electromagnetic wave, and its manufacturing method Download PDF

Info

Publication number
JP2004053466A
JP2004053466A JP2002212574A JP2002212574A JP2004053466A JP 2004053466 A JP2004053466 A JP 2004053466A JP 2002212574 A JP2002212574 A JP 2002212574A JP 2002212574 A JP2002212574 A JP 2002212574A JP 2004053466 A JP2004053466 A JP 2004053466A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave shielding
shielding material
conductor layer
transparent conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002212574A
Other languages
Japanese (ja)
Inventor
Masato Tadokoro
田所 眞人
▲広▼瀬 英治
Eiji Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2002212574A priority Critical patent/JP2004053466A/en
Publication of JP2004053466A publication Critical patent/JP2004053466A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Special Wing (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To hold transparency capable of transmitting visible radiation, to transmit only an electromagnetic wave of a specified frequency, and to easily execute electromagnetic shield for window glass or the like. <P>SOLUTION: This electromagnetic wave shielding material 1 is constituted by arranging through holes 20 having a prescribed shape and a prescribed dimension on a face of a transparent conductor layer 10 transmitting visible light, and is made to transmit only electromagnetic waves of prescribed frequency corresponding to the shape and the dimension of the through holes 20. An electromagnetic wave shielding material 1A is also arranged with a plurality of kinds of through holes 20A and 20B wherein at least one of the shape and the dimension is different, and is made to transmit the electromagnetic waves of plurality of frequencies corresponding to the plurality of kinds of through holes 20A and 20B. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電磁波遮蔽材に関し、更に詳しくは、窓ガラス等の透明性を損なうことなく施工可能で、選択可能な所定の周波数帯の電磁波のみを透過し、それ以外の周波数の電磁波を遮蔽できる透明な電磁波遮蔽材に関するものである。
【0002】
【従来の技術】
近年の無線通信利用の普及には著しいものがあり、従来は有線が当たり前であったLAN(local area network)においても、無線LAN(ワイヤレスLAN)が広く普及し始めており、現在では無線LAN用の電磁波の周波数として、2.4GHzに加えて5.2GHzが利用可能となっている。
【0003】
しかしながら、無線LANの使用に際しては、無線LANで使用している電磁波が無線LAN使用区域以外に漏洩し、この漏洩電磁波から情報が漏れてしまう危険性や、外部からの無線LANの侵入電磁波の通信混線によってノイズ混入や誤動作発生の危険性があるために、情報の管理に厳しいセキュリティ感度の高い部署、部門、会社、官庁等の組織においては、無線LANの導入に消極的である。
【0004】
そのため、無線LANの普及に際して、無線LANを運用する区域の電磁波を遮蔽し、無線LANによる情報の漏洩の防止や外部からの電磁波による影響の排除が必要となるが、これらの無線LANの運用区域内では、通常携帯電話やPHS等の公共的な無線電話通信も行われており、これらの無線電話通信手段の利便性を損なうことは、業務効率を低下させる要因となり好ましくない。
【0005】
従って、携帯電話やPHS等の公共的な無線電話通信の電磁波(周波数:800MHz,1.5GHz,1.9GHz等)は透過させて、その利便性を損なうことなく利用できるが、無線LANの電磁波(周波数:2.4GHz,5.2GHz等)を遮蔽することができるような電磁波遮蔽材が要求されるようになってきている。
【0006】
また、オフィス等を電磁波シールド区域とする場合に、この電磁波シールド区域を全て不透明な電磁波遮蔽材で覆ってしまうと、閉塞感が強まり、オフィス環境として不適当となるため、窓ガラス等の透明性を損なうことなく、しかも、張り付け等の簡単な作業で電磁波シールドを行うことができる電磁波遮蔽材が必要となっている。
【0007】
これらの要求を満たすために開発されている従来技術の周波数選択性電磁波シールドとして、透光性に優れたポリイミドフィルムやポリエステルフィルム、ポリエチレンフィルム等の合成樹脂フィルムやガラス等に、遮蔽しようとする特定の電磁波に対応した線状アンテナ素子や導電性双極性素子パターン等の電磁遮蔽素子を形成し、電磁波を共振や散乱等により減衰させたり、反射したりして、特定の一つ乃至複数の周波数の電磁波を遮蔽する電磁波シールド材がある。
【0008】
【発明が解決しようとする課題】
しかしながら、このような電磁波シールド材では、単一の周波数や幾つかの周波数しか遮蔽することができないという問題があり、また、無線LANの周波数が増加するような場合には、その周波数も反射する新たな電磁波シールド材が必要になるという問題がある。
【0009】
また、これらの製造において、導電性薄膜の模様は、合成樹脂フィルム上に形成されるが、導電性金属箔のラミネート方法や、金属薄膜の蒸着やスパッタリングまたは無電界メッキ方法や、金属薄膜の真空蒸着方法で行われ、金属薄膜をパターン化する方法には、リソグラフィ法が用いられており、エッチングレジストをグラビア印刷、平板印刷、スクリーン印刷等により金属薄膜上に印刷した後、エッチングして、パターンを形成している。
【0010】
この製造プロセスでは、レジスト塗布、パターン露光、現像、エッチング、洗浄と乾燥等の数多くのプロセスを要する上に、これらのプロセスに一定の時間を必要とするため、工数及び手間がかかり低コスト化が困難であるという問題がある。
【0011】
本発明の目的は、可視光を透過する透明性を保持すると共に、特定の周波数の電磁波のみを透過し、しかも、窓ガラス等に対しても簡単に電磁波シールドを施すことができる電磁波遮蔽材とその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するための本発明の電磁波遮蔽材は、可視光を透過する透明な導体層の面に、所定の形状及び所定の寸法の貫通孔を配列し、この貫通孔の形状及び寸法に対応した所定の周波数の電磁波のみを透過可能として構成される。
【0013】
なお、ここでいう周波数とは、無線通信で使用される周波数と同じ意味であり、完全に単一の周波数だけでなく、実用的な幅を有する周波数帯域のことも含み、また、ここでいう透明は可視光の減衰が殆ど無い略完全な透明だけではなく、外部が透かして見える程度の半透明の場合も含む。
【0014】
この電磁波遮蔽材は、導体層で形成される電磁波遮蔽材に、特定な形状及び寸法の貫通孔〔スロット)を配列することにより、この貫通孔の形状及び寸法に対応する特定の周波数の電磁波のみが透過可能となることを利用した、透過する電磁波の周波数に対して選択性を有する電磁波遮蔽材であり、従来の遮蔽する電磁波の周波数に対して選択性を有する電磁波遮蔽材と大きく異なる。
【0015】
そして、形状又は寸法の少なくとも一方が異なる複数の種類の貫通孔を配置し、この複数の種類の貫通孔に対応した複数の周波数の電磁波を透過可能とすることにより、電磁波遮蔽材を透過可能な電磁波の周波数に、携帯電話の電磁波の周波数のみならず、PHSの電磁波の周波数も含ませることができる。
【0016】
また、貫通孔の形状を、複数の線状スリットを放射状に接続した形状にすることにより、狭い帯域の所定の周波数のみを透過可能にできる。
【0017】
この複数の線状スリットを放射状に接続した形状としては、ダイポール、Y字、十字等、複数の線端部を有する形状がある。
【0018】
そして、この貫通孔の配列は、単一種類の貫通孔の場合には一定間隔で規則的に配列されることが好ましく、複数種類の貫通孔の場合には、この貫通孔で形成される模様が、周期的に繰り返されるような配列が好ましい。
【0019】
また、本発明の電磁波遮蔽材においては、透明な導体層を、金属、金属酸化物、金属窒化物の内の一つ又はこれらの混合物を材料とした、格子、織物、箔、多孔膜、真空蒸着膜、スパッタリング膜、CVD膜の内の一つ又はこれらの積層体で形成することが好ましく、特に、金属の導体メッシュ、織物に金属を蒸着する等して得られる導体化したメッシュ、金属蒸着等により導体化したプラスチックフィルム、金属箔等がより好ましい。
【0020】
そして、透明な導体層を透明なフィルムに積層することにより、より取り扱いが容易となり、更に、透明な導体層若しくは透明なフィルムに、接着剤若しくは粘着材を塗布し、又は、透明な導体層若しくは透明なフィルムに、粘着フィルムを積層することにより、張り付けるだけの簡単な作業で容易にオフィスの窓ガラスや透明な仕切り等に電磁波シールド機能を付与できるようになる。
【0021】
また、無線電話通信で使用する電磁波の周波数の少なくとも一つの周波数の電磁波を透過可能とすることにより、電話通信の利便性を生かしたまま、無線LAN等の電磁波をシールドできる。なお、この無線電話通信とは、携帯電話やPHS等の無線で電話通信を行うための通信のことをいう。
【0022】
そして、本発明の電磁波遮蔽材の製造方法は、電磁波遮蔽材の製造にあたり、透明な導体層に、貫通孔を開口する刃を配列したプレス若しくはローラを押圧することにより、透明な導体層に前記貫通孔を打ち抜いて開口する製造方法である。
【0023】
つまり、電磁波遮蔽材に形成する開口パターンに対応させて、クリッカープレスに貫通孔開口用の刃を列状に配列し、このクリッカープレスにより導体層の面に周期的な貫通孔を設ける。若しくは、プレスローラの円筒上に、開口パターンに対応させて、刃を列状に配置して、これを輪転させて送り出しながら、導体層の面に周期的な貫通孔を設ける。
【0024】
又は、電磁波遮蔽材の製造にあたり、透明な導体層に、貫通孔に対応する凸状の型を配列したプレス若しくはローラを加熱して当接し、凸状の型が当接した部分を熱で融解することにより、透明な導体層に貫通孔を開口する製造方法である。
【0025】
これらの製造方法によれば、開口パターンの型刃で電磁波遮蔽層を機械的に打ち抜いて開口したり、開口パターンの熱コテで電磁波遮蔽層を溶融して開口するプロセスを採用することにより、工程数を著しく減少できるので、大幅なコストダウンが可能となる。
【0026】
【発明の実施の形態】
以下、本発明に係る実施の形態の電磁波遮蔽材について、図面を参照しながら説明する。
【0027】
図1に示す本発明の第1の実施の形態の電磁波遮蔽材1は、可視光を透過する透明な導体層10の面に、透過させる所定の周波数の電磁波に対応した所定の形状及び所定の寸法の貫通孔(スロット)20を配列して形成される。この貫通孔20は、一定間隔で規則的に配列される。
【0028】
この可視光を透過する透明な導体層10は、アルミニウムや銀等の金属、酸化錫や酸化錫ドープ酸化インジウムや酸化亜鉛等の金属酸化物、窒化チタン等の金属窒化物の内の一つ又はこれらの混合物を材料として形成し、これらの材料を格子(メッシュ)、織物、箔、多孔膜、真空蒸着膜、スパッタリング膜、CVD(化学的気相成長)膜の内の一つ又はこれらの積層体で形成することができるが、好ましくは、金属の導体メッシュ、織物に金属を蒸着する等して得られる導体化したメッシュ、金属蒸着等により導体化したプラスチックフィルム、金属箔等で形成する。また、アルミニウムを真空蒸着したポリエチレンテレフタレートフィルム(アルミ蒸着フィルム)を用いることもできる。
【0029】
いずれにしても、この透明な導体層10は、電磁波を遮蔽する機能を有することが重要であり、厚さも要求される電磁波シールド能力によって決まる。
【0030】
そして、電磁波を遮蔽する導体層10に、特定な形状及び寸法の貫通孔20を配列することにより、この貫通孔20の形状及び寸法に対応する特定の周波数の電磁波のみが透過可能となり、可視光を透過する透明な周波数選択性電磁波遮蔽材が得られる。
【0031】
この貫通孔20の形状及び寸法は、透過させる電磁波の周波数によって、決定され、一般的には、同じ形状であれば周波数が低い程寸法は大きくなる。また、貫通孔20の数が多い程、透過性は増大し、透過する電磁波の量が増加する。
【0032】
この貫通孔20の形状の代表的なものとしては、図1に示すような十字形状があり、スリット幅と長さと幅によってこの十字の形状と寸法が決まるが、これらの形状と寸法により、透過可能となる電磁波の周波数や透過量が決まる。この十字形状の長さ(幅)により、透過させる電磁波の周波数が決まり、十字形状の長さ(幅)が透過させる電磁波の波長の1/2となる。また、スリットの幅により、透過させる電磁波の帯域と透過率が変わるが、遮蔽したい周波数の電磁波の透過率も変わるため、最適値を選択する必要がある。また、貫通孔20の配列については、間隔が短い程透過率が良くなるが、貫通孔20が近すぎると透過周波数のピークや透過量等に影響が出てくる。
【0033】
そして、この貫通孔20の形状を複数の線状スリットを放射状に接続した形状にすることにより、狭い帯域の所定の周波数のみを透過可能にでき、このような形状としては、図2に例示するような、ダイポール、Y字、十字等、複数の線端部を有する形状や、矩形形状や丸形状等に周囲を抜いた形状がある。
【0034】
図3に示す本発明の第2の実施の形態の電磁波遮蔽材1Aは、可視光を透過する透明な導体層10の面に、貫通孔20を配列して形成されるが、寸法が異なる複数の種類の貫通孔20A,20Bを配置し、これらの貫通孔20A,20Bで形成される模様が、周期的に繰り返されるように配列する。
【0035】
この電磁波遮蔽材1Aでは、これらの複数の種類の貫通孔20A,20Bに対応した複数の周波数の電磁波が透過可能となる。
【0036】
この構成により、電磁波遮蔽材1Aを透過可能な電磁波の周波数は、複数の周波数となる。そして、図4に示すような、800MHzの携帯電話の電磁波の周波数と1.9GHzのPHSの電磁波の周波数が透過可能で、外部に漏洩すると問題を生じる無線LAN(2.4GHz)の電磁波を反射したり、大きく減衰させたりして遮蔽することができる電磁波透過特性を持つ電磁波遮蔽材1Aが得られる。
【0037】
なお、対象領域を分割して、透過周波数が異なる、別々の単一の周波数を透過する電磁波遮蔽材1を複数種類組み合わせることにより、複数の周波数の電磁波を透過させることができる。
【0038】
そして、図5(a)に示すように、より取り扱いが容易となるように、この透明な導体層10を透明なフィルム11に積層する。なお、寸法の一例を上げると、透明な導体層10の厚さが50μm〜100μmで、透明なフィルム11の厚さが50μm〜100μmである。
【0039】
また、図5(b)に示すように、透明なフィルム11に、接着剤(若しくは粘着材)12を塗布する。なお、透明な導体層10が丈夫に形成されている場合には、図5(c)に示すように、透明な導体層10に接着剤12を直接塗布してもよい。
【0040】
又は、図6(a)に示すように、透明な導体層10に粘着フィルム13を積層したり、図6(b)に示すように、透明な導体層10を積層した透明なフィルム11に粘着フィルム13を積層したりする。
【0041】
この透明なフィルム11としては、透明な合成樹脂が好ましく、例えば、ポリエチレンテレフタレート(PET)、アクリル、ABS樹脂、ポリカーボネート、テフロン(登録商標)等の有機高分子を使用することができる。この透明なフィルム11には、ガラスの飛散防止機能、紫外線遮蔽機能等の機能を具備させてもよい。
【0042】
これらの構成により、電磁波遮蔽材1,1Aの片面側に接着剤12が塗布されているので、カッターナイフで裁断して離型紙をはがしたりして、容易にオフィスの窓ガラスや透明な仕切り等に張り付けることができ、張り付けるだけの簡単な作業でこれらの部材に電磁波シールド機能を付与できるようになる。
【0043】
次に、本発明の電磁波遮蔽材の製造方法について説明する。
【0044】
第1の実施の形態の製造方法は、図7に示すような、貫通孔20を開口する刃31aを配列した打ち抜き型31を使用する方法であり、透明な導体層10を巻き出しロール32にセットし、巻き上げ側ロール32に巻き込み、開口パターン打ち抜き型31をセットしたプレス30を、透明な導体層10に押圧することにより、透明な導体層10に貫通孔20を打ち抜き、打ち抜きが終了したら、透明な導体層10を巻き上げ側ロール32で巻き上げて規定の長さ(例えば、打ち抜き型31の長さ)分だけ移動し、移動した後にプレス30を透明な導体層10に押圧して貫通孔20を打ち抜き、これ繰り返して導体層10の面に周期的な貫通孔20を設けた電磁波遮蔽材1,1Aを製造する。
【0045】
第2の実施の形態の製造方法は、円筒上に貫通孔20を開口する刃41aを配列したローラ40を使用する方法であり、透明な導体層10を巻き出しロール32にセットし、巻き上げ側ロール32に巻き込んだ後に、打ち抜き型ローラ40を下げ、透明な導体層10に加圧し、このローラ40を巻き上げロール32と同期させて押圧しつつ回転させて、透明な導体層10を送り出しながら、連続的に貫通孔20の開口を行い、導体層10の面に周期的な貫通孔20を設けた電磁波遮蔽材1,1Aを製造する。
【0046】
第3の実施の形態の製造方法は、貫通孔20を開口する凸部51aを配列した開口パターン融解型51を使用する方法であり、透明な導体層10を巻き出しロール32にセットし、巻き上げ側ロール32に巻き込み、開口パターン融解型51をセットした熱プレス50を、透明な導体層10に押圧し熱で融解することにより、透明な導体層10に貫通孔20を開口し、開口が終了したら透明な導体層10を規定の長さ(例えば、開口パターン融解型51の長さ)分だけ移動し、移動した後に熱プレス50を透明な導体層10に押圧して貫通孔20を開口し、これ繰り返して導体層10の面に周期的な貫通孔20を設けた電磁波遮蔽材1,1Aを製造する。
【0047】
第4の実施の形態の製造方法は、円筒上に貫通孔20を開口する凸部51aを配列したを配列した熱ローラ60を使用する方法であり、透明な導体層10を巻き出しロール32にセットし、巻き上げ側ロール32に巻き込んだ後に、凸状パターンを設けた熱ローラ60を下げ、透明な導体層10に加圧し、この熱ローラ40を巻き上げロール32と同期させて加圧しつつ回転させて、透明な導体層10を送り出しながら、連続的に凸状の型61の熱により融解して貫通孔20の開口を行い、導体層10の面に周期的な貫通孔20を設けた電磁波遮蔽材1,1Aを製造する。
【0048】
これらの製造方法によれば、開口パターンの刃31、41で電磁波遮蔽層である透明な導体層10を機械的に打ち抜いて貫通孔20を開口したり、開口パターンの熱コテである凸状の型51、61により導体層10を溶融して貫通孔20を開口したりするプロセスを採用することにより、少ない工程数で、低コストで製造することができる。
【0049】
次に、本発明の電磁波遮蔽材の運用方法について説明する。
【0050】
本発明の電磁波遮蔽材を、携帯電話やPHSで使用している周波数の電磁波に対しては透過材として働き、その他の電磁波、即ち、無線LANで使用している周波数の電磁波に対しては遮蔽材として働くように、所定の形状及び寸法の貫通孔20を設けて構成する。
【0051】
この電磁波遮蔽材を、電磁波シールの対象区域の窓ガラスに張り付ける。この対象区域では、窓ガラス以外の壁等は、不透明な電磁波遮蔽材で電磁波を遮断する。
【0052】
この構成により、単数のみならず、複数の無線LANの電磁波を遮蔽して外部への漏洩を防止できるので、無線LANにおける情報の漏洩を防止してセキユリティ性を確保できる。それと共に、携帯電話やPHSの電磁波は透過できるので、これらの無線電話通信は可能となり、利便性を損なうことがない。
【0053】
特に本発明の電磁波遮蔽材は、透過する周波数を選択でき、他の周波数の電磁波を遮蔽できるので、電磁波シールの対象区域で使用する無線LANの周波数の増加や変更の影響を受けない。
【0054】
なお、図11に示すように、携帯電話等は受信感度が高く受信レベルが一般に30dB程度減衰しても、通信可能であるのに対して、無線LANは受信レベルが20dB減衰すると通信が困難となるという性質があるので、携帯電話等の電磁波に対しては30dB以内の減衰で透過可能とし、無線LANの電磁波は20dB以上減衰させるような、本発明の電磁波遮蔽材を使用することにより、この性質を生かした電磁波シールが可能となる。
【0055】
図12に設計例を示す。図12は、誘電率6.5で厚さ3mmのガラスで形成された1層目に完全導体を積層し、この完全導体に十字形状で長さ(幅)を125mmに固定し、スリット幅を6.25mm(A線),12.9mm(B線),19.4mm(C線)のパターンを形成した場合の計算結果を示す。
【0056】
【発明の効果】
以上に説明したように、本発明の電磁波遮蔽材によれば、次のような効果を奏することができる。
【0057】
貫通孔の形状及び寸法に対応した特定の周波数の電磁波のみを透過させることができるので、この透過する周波数を携帯電話及びPHS等の無線電話通信で使用する周波数にすることにより、これらの無線電話通信の電磁波は通過して使用可能となり、無線LANで使用する周波数の電磁波を遮蔽できるので、無線電話通信の利便性を損なうことなく、無線LANの電磁波の漏洩を阻止でき、無線LANによる情報の漏洩を防止できる。
【0058】
また、透過可能な電磁波の周波数を選択し、その他の周波数の電磁波は反射等により遮蔽できるという、透過させる電磁波を選択する周波数選択性を有しているので、電磁波シールドを施工した後に、遮蔽対象となる無線LANで使用する電磁波の周波数が増加しても、遮蔽効果をそのまま維持できる。
【0059】
また、貫通孔の形状と寸法を携帯電話やPHS等の複数の周波数にそれぞれ対応させて混在させることにより、携帯電話やPHS等の複数の無線電話通信の運用を可能にできる。
【0060】
また、本発明の電磁波遮蔽材の製造方法によれば、従来技術では、リソグラフィプロセス等の高コストの製造プロセスを要していたが、これに替えて開口パターンの刃型等で電磁波遮蔽層における貫通孔を機械的に打ち抜いて開口したり、開口パターンの熱コテで電磁波遮蔽層における貫通孔を溶融して開口するプロセスを採用することにより、工程数を著しく減少でき、大幅なコストダウンが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の電磁波遮蔽材の平面図である。
【図2】貫通孔の形状を示す図であり、(a)はダイポールを、(b)はY字形状を、(c)は十字形状を、(d)は矩形形状を、(e)は丸形状を、それぞれ示す図である。
【図3】本発明の第2の実施の形態の電磁波遮蔽材の平面図である。
【図4】第2の実施の形態の電磁波遮蔽材の電磁波透過特性を示す図である。
【図5】電磁波遮蔽材の積層構造を例示する図で、(a)は透明な導体層を透明なフィルムの積層した図で、(b)は(a)の透明なフィルムに接着剤を塗布した図で、(c)は透明な導体層に接着剤を塗布した図である。
【図6】電磁波遮蔽材の積層構造を例示する図で、(a)は透明な導体層に粘着フィルムを積層した図で、(b)は透明な導体層を積層した透明なフィルムに粘着フィルムを積層した図である。
【図7】第1の実施の形態の電磁波遮蔽材の製造方法を示す図である。
【図8】第2の実施の形態の電磁波遮蔽材の製造方法を示す図である。
【図9】第3の実施の形態の電磁波遮蔽材の製造方法を示す図である。
【図10】第4の実施の形態の電磁波遮蔽材の製造方法を示す図である。
【図11】携帯電話とPHSと無線LANの運用可能な範囲を示す図である。
【図12】本発明に関する電磁波遮蔽材の試設計における周波数透過特性の計算結果の一例を示す図である。
【符号の説明】
1,1A 電磁波遮蔽材
10 透明な導体層
11 透明なフィルム
12 接着剤(若しくは粘着材)
13 粘着フィルム
20,20A,20B 貫通孔
30 プレス
31 打ち抜き型
31a 刃
32 巻き出しロール
40 ローラ
41a 刃
50 熱プレス
51a 凸部
60 熱ローラ
61a 凸部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic wave shielding material, and more specifically, can be installed without impairing the transparency of a window glass or the like, transmits only electromagnetic waves in a selectable predetermined frequency band, and can shield electromagnetic waves of other frequencies. The present invention relates to a transparent electromagnetic wave shielding material.
[0002]
[Prior art]
2. Description of the Related Art In recent years, the use of wireless communication has been remarkably widespread. Even in a LAN (local area network), which has conventionally been wired, a wireless LAN (wireless LAN) has begun to be widely used. As a frequency of the electromagnetic wave, 5.2 GHz can be used in addition to 2.4 GHz.
[0003]
However, when using a wireless LAN, there is a risk that electromagnetic waves used in the wireless LAN leak out of the area where the wireless LAN is used, and that information leaks from the leaked electromagnetic waves, and that communication of electromagnetic waves entering the wireless LAN from outside may occur. Since there is a danger of noise contamination or malfunction due to crosstalk, organizations such as departments, departments, companies, government agencies, and the like that have high security sensitivity for information management are reluctant to introduce wireless LAN.
[0004]
Therefore, when the wireless LAN is spread, it is necessary to shield the electromagnetic waves in the area where the wireless LAN operates, to prevent information leakage by the wireless LAN and to eliminate the influence of external electromagnetic waves. Public wireless telephone communication such as mobile telephones and PHSs is also usually performed in the inside, and losing the convenience of these wireless telephone communication means is a factor that lowers business efficiency, which is not preferable.
[0005]
Therefore, electromagnetic waves (frequency: 800 MHz, 1.5 GHz, 1.9 GHz, etc.) of public wireless telephone communication such as mobile phones and PHSs can be transmitted and used without impairing the convenience, but the electromagnetic waves of wireless LAN can be used. Electromagnetic wave shielding materials capable of shielding (frequency: 2.4 GHz, 5.2 GHz, etc.) have been required.
[0006]
In addition, when an office or the like is used as an electromagnetic wave shielding area, if the entire electromagnetic wave shielding area is covered with an opaque electromagnetic wave shielding material, the feeling of obstruction becomes stronger and the environment becomes unsuitable as an office environment. Therefore, there is a need for an electromagnetic wave shielding material that can perform electromagnetic wave shielding without impairing the electromagnetic wave and with a simple operation such as attaching.
[0007]
As a frequency-selective electromagnetic wave shield of the prior art that has been developed to meet these demands, it is necessary to use a highly transparent polyimide film, polyester film, synthetic resin film such as polyethylene film, glass, etc. Form an electromagnetic shielding element such as a linear antenna element or a conductive bipolar element pattern corresponding to the electromagnetic wave, attenuate or reflect the electromagnetic wave by resonance or scattering, etc., and reflect one or more specific frequencies. There is an electromagnetic wave shielding material for shielding electromagnetic waves.
[0008]
[Problems to be solved by the invention]
However, such an electromagnetic wave shielding material has a problem that only a single frequency or several frequencies can be shielded, and when the frequency of the wireless LAN increases, the frequency is also reflected. There is a problem that a new electromagnetic shielding material is required.
[0009]
In these productions, the pattern of the conductive thin film is formed on a synthetic resin film. However, a method of laminating a conductive metal foil, a method of depositing or sputtering a metal thin film or a method of electroless plating, and a method of vacuuming a metal thin film. The method of patterning a metal thin film is performed by a vapor deposition method, and a lithography method is used. An etching resist is printed on the metal thin film by gravure printing, flat plate printing, screen printing, and the like, and then etched to form a pattern. Is formed.
[0010]
This manufacturing process requires a number of processes such as resist coating, pattern exposure, development, etching, cleaning and drying.In addition, these processes require a certain amount of time. There is a problem that it is difficult.
[0011]
An object of the present invention is to provide an electromagnetic wave shielding material that retains transparency for transmitting visible light, transmits only electromagnetic waves of a specific frequency, and can easily apply an electromagnetic wave shield to window glass and the like. It is to provide a manufacturing method thereof.
[0012]
[Means for Solving the Problems]
The electromagnetic wave shielding material of the present invention for achieving the above object has a through hole of a predetermined shape and a predetermined size arranged on a surface of a transparent conductor layer that transmits visible light. It is configured such that only electromagnetic waves of a corresponding predetermined frequency can be transmitted.
[0013]
Note that the frequency here has the same meaning as the frequency used in wireless communication, and includes not only a completely single frequency but also a frequency band having a practical width, and Transparency includes not only almost complete transparency with little attenuation of visible light, but also translucent such that the outside can be seen through.
[0014]
By arranging through-holes (slots) of a specific shape and size in the electromagnetic-wave shielding material formed of the conductor layer, the electromagnetic wave shielding material can be used only for electromagnetic waves of a specific frequency corresponding to the shape and size of the through-hole. Is an electromagnetic wave shielding material having selectivity with respect to the frequency of an electromagnetic wave to be transmitted, utilizing the fact that the electromagnetic wave can be transmitted, and is significantly different from a conventional electromagnetic wave shielding material having selectivity with respect to the frequency of an electromagnetic wave to be shielded.
[0015]
A plurality of types of through-holes having at least one of different shapes or dimensions are arranged, and electromagnetic waves of a plurality of frequencies corresponding to the plurality of types of through-holes can be transmitted, so that the electromagnetic wave shielding material can be transmitted. The frequency of the electromagnetic wave can include not only the frequency of the electromagnetic wave of the mobile phone but also the frequency of the electromagnetic wave of the PHS.
[0016]
Further, by making the shape of the through hole a shape in which a plurality of linear slits are radially connected, only a predetermined frequency in a narrow band can be transmitted.
[0017]
Examples of a shape in which the plurality of linear slits are radially connected include a shape having a plurality of line ends, such as a dipole, a Y-shape, and a cross.
[0018]
In the case of a single type of through-hole, it is preferable that the through-holes are regularly arranged at regular intervals, and in the case of a plurality of types of through-holes, a pattern formed by this through-hole is preferable. However, it is preferable that the sequence be repeated periodically.
[0019]
Further, in the electromagnetic wave shielding material of the present invention, the transparent conductor layer is made of one of a metal, a metal oxide, and a metal nitride or a mixture thereof, and is a lattice, a woven fabric, a foil, a porous film, and a vacuum. It is preferable to form one of a vapor-deposited film, a sputtered film, a CVD film or a laminate thereof, particularly, a metal conductive mesh, a conductive mesh obtained by evaporating a metal on a woven fabric, or a metal deposition. Plastic films, metal foils, and the like that have been made conductive by the above method are more preferable.
[0020]
And, by laminating the transparent conductor layer on the transparent film, handling becomes easier, and further, an adhesive or an adhesive is applied to the transparent conductor layer or the transparent film, or the transparent conductor layer or By laminating an adhesive film on a transparent film, an electromagnetic wave shielding function can be easily provided to an office window glass, a transparent partition, or the like with a simple operation of merely attaching the adhesive film.
[0021]
In addition, by making it possible to transmit electromagnetic waves of at least one of the frequencies of electromagnetic waves used in wireless telephone communication, it is possible to shield electromagnetic waves such as wireless LAN while utilizing the convenience of telephone communication. Note that the wireless telephone communication refers to communication for performing wireless telephone communication such as a mobile phone or a PHS.
[0022]
Then, the method for producing an electromagnetic wave shielding material of the present invention is characterized in that, in producing the electromagnetic wave shielding material, the transparent conductor layer is pressed with a press or a roller in which blades each having a through-hole are arranged. This is a manufacturing method in which a through hole is punched and opened.
[0023]
That is, the blades for opening the through holes are arranged in a row in the clicker press in correspondence with the opening pattern formed in the electromagnetic wave shielding member, and the clicker press forms periodic through holes on the surface of the conductor layer. Alternatively, the blades are arranged in a row on the cylinder of the press roller in correspondence with the opening pattern, and while the blades are rolled out, the periodic through holes are provided in the surface of the conductor layer.
[0024]
Alternatively, in manufacturing an electromagnetic wave shielding material, a transparent conductive layer is brought into contact with a press or roller in which a convex mold corresponding to a through-hole is heated and brought into contact with the transparent conductive layer, and the portion where the convex mold comes into contact is melted by heat. This is a manufacturing method of opening a through hole in the transparent conductor layer.
[0025]
According to these manufacturing methods, the process is performed by mechanically punching and opening the electromagnetic wave shielding layer with a mold blade having an opening pattern, or by employing a process of melting and opening the electromagnetic wave shielding layer with a heat iron having an opening pattern. Since the number can be significantly reduced, the cost can be significantly reduced.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an electromagnetic wave shielding material according to an embodiment of the present invention will be described with reference to the drawings.
[0027]
The electromagnetic wave shielding material 1 according to the first embodiment of the present invention shown in FIG. 1 has a predetermined shape and a predetermined shape corresponding to an electromagnetic wave of a predetermined frequency to be transmitted on a surface of a transparent conductor layer 10 that transmits visible light. It is formed by arranging through holes (slots) 20 having dimensions. The through holes 20 are regularly arranged at regular intervals.
[0028]
The transparent conductor layer 10 that transmits this visible light is formed of one of a metal such as aluminum or silver, a metal oxide such as tin oxide or tin oxide-doped indium oxide or zinc oxide, or a metal nitride such as titanium nitride. These mixtures are formed as materials, and these materials are formed into one of a lattice (mesh), a woven fabric, a foil, a porous film, a vacuum deposited film, a sputtered film, a CVD (chemical vapor deposition) film, or a laminate thereof. Although it can be formed of a body, it is preferably formed of a conductive mesh of metal, a conductive mesh obtained by evaporating a metal on a woven fabric, a plastic film or a metal foil made conductive by metal deposition or the like. Alternatively, a polyethylene terephthalate film (aluminum-deposited film) obtained by vacuum-depositing aluminum can be used.
[0029]
In any case, it is important that the transparent conductor layer 10 has a function of shielding electromagnetic waves, and its thickness is also determined by the required electromagnetic wave shielding ability.
[0030]
By arranging the through-holes 20 having a specific shape and size in the conductor layer 10 for shielding electromagnetic waves, only electromagnetic waves having a specific frequency corresponding to the shape and size of the through-holes 20 can be transmitted, and visible light can be transmitted. And a transparent frequency-selective electromagnetic wave shielding material that transmits light.
[0031]
The shape and size of the through-hole 20 are determined by the frequency of the electromagnetic wave to be transmitted. Generally, as the shape is the same, the size increases as the frequency decreases. Further, as the number of the through holes 20 increases, the transmittance increases, and the amount of transmitted electromagnetic waves increases.
[0032]
As a typical shape of the through hole 20, there is a cross shape as shown in FIG. 1, and the shape and size of the cross are determined by the slit width, length and width. The frequency and transmission amount of the electromagnetic wave that can be determined are determined. The length (width) of the cross shape determines the frequency of the transmitted electromagnetic wave, and the length (width) of the cross shape is の of the wavelength of the transmitted electromagnetic wave. In addition, although the band and transmittance of the electromagnetic wave to be transmitted vary depending on the width of the slit, the transmittance of the electromagnetic wave having a frequency to be shielded also varies. Therefore, it is necessary to select an optimum value. As for the arrangement of the through-holes 20, the shorter the interval, the better the transmittance. However, if the through-holes 20 are too close, the peak of the transmission frequency and the amount of transmission will be affected.
[0033]
By forming the shape of the through hole 20 into a shape in which a plurality of linear slits are radially connected, only a predetermined frequency in a narrow band can be transmitted, and such a shape is illustrated in FIG. Such shapes include a dipole, a Y-shape, a cross, etc., having a plurality of line ends, and a rectangular shape, a round shape, or the like, with a rounded shape.
[0034]
The electromagnetic wave shielding material 1A according to the second embodiment of the present invention shown in FIG. 3 is formed by arranging through holes 20 on the surface of a transparent conductor layer 10 that transmits visible light. Are arranged so that the pattern formed by the through holes 20A and 20B is periodically repeated.
[0035]
In the electromagnetic wave shielding material 1A, electromagnetic waves of a plurality of frequencies corresponding to the plurality of types of through holes 20A and 20B can be transmitted.
[0036]
With this configuration, the frequency of the electromagnetic wave that can pass through the electromagnetic wave shielding member 1A is a plurality of frequencies. As shown in FIG. 4, the frequency of the electromagnetic wave of the mobile phone of 800 MHz and the frequency of the electromagnetic wave of the PHS of 1.9 GHz can be transmitted, and the electromagnetic wave of the wireless LAN (2.4 GHz) which causes a problem when leaked to the outside is reflected. An electromagnetic wave shielding material 1A having an electromagnetic wave transmission characteristic that can be shielded by being attenuated or greatly attenuated is obtained.
[0037]
In addition, by dividing the target region and combining a plurality of types of electromagnetic wave shielding members 1 that transmit different single frequencies with different transmission frequencies, electromagnetic waves of a plurality of frequencies can be transmitted.
[0038]
Then, as shown in FIG. 5A, the transparent conductor layer 10 is laminated on the transparent film 11 so that the handling is easier. In addition, as an example of the dimensions, the thickness of the transparent conductor layer 10 is 50 μm to 100 μm, and the thickness of the transparent film 11 is 50 μm to 100 μm.
[0039]
Further, as shown in FIG. 5B, an adhesive (or an adhesive) 12 is applied to the transparent film 11. When the transparent conductor layer 10 is formed to be strong, the adhesive 12 may be directly applied to the transparent conductor layer 10 as shown in FIG.
[0040]
Alternatively, as shown in FIG. 6A, an adhesive film 13 is laminated on the transparent conductor layer 10, and as shown in FIG. 6B, an adhesive film 13 is laminated on the transparent film 11 on which the transparent conductor layer 10 is laminated. The film 13 is laminated.
[0041]
As the transparent film 11, a transparent synthetic resin is preferable. For example, an organic polymer such as polyethylene terephthalate (PET), acrylic, ABS resin, polycarbonate, and Teflon (registered trademark) can be used. The transparent film 11 may have functions such as a glass scattering prevention function and an ultraviolet shielding function.
[0042]
With such a configuration, the adhesive 12 is applied to one side of the electromagnetic wave shielding materials 1 and 1A, so that it is cut off with a cutter knife and the release paper is peeled off, so that an office window glass, a transparent partition, or the like can be easily obtained. These members can be provided with an electromagnetic wave shielding function by a simple operation of merely attaching them.
[0043]
Next, a method for producing the electromagnetic wave shielding material of the present invention will be described.
[0044]
The manufacturing method according to the first embodiment is a method using a punching die 31 in which blades 31a for opening the through holes 20 are arranged as shown in FIG. The transparent conductive layer 10 is pressed by pressing the press 30 on which the set and roll-up side rolls 32 are set and the opening pattern punching die 31 is set, thereby punching the through hole 20 in the transparent conductive layer 10. The transparent conductor layer 10 is wound up by the winding-up roll 32 and moved by a predetermined length (for example, the length of the punching die 31). After the movement, the press 30 is pressed against the transparent conductor layer 10 to move the through-hole 20. Are repeatedly formed to manufacture the electromagnetic wave shielding materials 1 and 1A in which the periodic through holes 20 are provided on the surface of the conductor layer 10.
[0045]
The manufacturing method according to the second embodiment is a method using a roller 40 in which blades 41a for opening the through holes 20 are arranged on a cylinder. The transparent conductor layer 10 is set on an unwinding roll 32, and the winding side is set. After being wound around the roll 32, the punching roller 40 is lowered and pressed against the transparent conductor layer 10, and the roller 40 is rotated while being pressed in synchronization with the winding roll 32, while sending out the transparent conductor layer 10. The electromagnetic wave shielding materials 1 and 1A in which the through holes 20 are continuously opened and the periodic through holes 20 are provided on the surface of the conductor layer 10 are manufactured.
[0046]
The manufacturing method according to the third embodiment is a method using an opening pattern melting mold 51 in which convex portions 51a for opening the through holes 20 are arranged. The transparent conductor layer 10 is set on an unwinding roll 32, and is wound up. The through-hole 20 is opened in the transparent conductor layer 10 by being wound around the side roll 32 and pressing the hot press 50 in which the opening pattern melting mold 51 is set against the transparent conductor layer 10 and melting by heat. Then, the transparent conductor layer 10 is moved by a predetermined length (for example, the length of the opening pattern melting mold 51), and after the movement, the hot press 50 is pressed against the transparent conductor layer 10 to open the through hole 20. By repeating this, the electromagnetic wave shielding members 1 and 1A in which the periodic through holes 20 are provided on the surface of the conductor layer 10 are manufactured.
[0047]
The manufacturing method according to the fourth embodiment is a method using a heat roller 60 in which convex portions 51a that open the through holes 20 are arranged on a cylinder, and the transparent conductive layer 10 is unwound onto the unwind roll 32. After being set and wound on the winding roll 32, the heat roller 60 provided with the convex pattern is lowered and pressed against the transparent conductor layer 10, and the heat roller 40 is rotated while being pressed in synchronization with the winding roll 32. Then, while sending out the transparent conductor layer 10, the through hole 20 is opened by melting continuously by the heat of the convex mold 61, and the electromagnetic wave shielding provided with the periodic through hole 20 on the surface of the conductor layer 10. Material 1, 1A is manufactured.
[0048]
According to these manufacturing methods, the transparent conductor layer 10 which is an electromagnetic wave shielding layer is mechanically punched by the blades 31 and 41 of the opening pattern to open the through hole 20 or the convex shape which is a thermal iron of the opening pattern. By adopting a process in which the conductor layer 10 is melted by the molds 51 and 61 to open the through-holes 20, the manufacturing can be performed with a small number of steps and at low cost.
[0049]
Next, a method for operating the electromagnetic wave shielding material of the present invention will be described.
[0050]
The electromagnetic wave shielding material of the present invention acts as a transmitting material for electromagnetic waves of frequencies used in mobile phones and PHS, and shields other electromagnetic waves, that is, electromagnetic waves of frequencies used in wireless LANs. A through hole 20 having a predetermined shape and dimensions is provided so as to function as a material.
[0051]
This electromagnetic wave shielding material is attached to a window glass in a target area of the electromagnetic wave seal. In this target area, walls other than the window glass block electromagnetic waves with an opaque electromagnetic wave shielding material.
[0052]
With this configuration, it is possible to shield electromagnetic waves of not only a single wireless LAN but also a plurality of wireless LANs to prevent leakage to the outside. Therefore, it is possible to prevent information leakage in the wireless LAN and secure security. At the same time, since electromagnetic waves of mobile phones and PHS can be transmitted, these wireless telephone communications can be performed, and convenience is not impaired.
[0053]
In particular, the electromagnetic wave shielding material of the present invention can select a frequency to be transmitted and can shield electromagnetic waves of other frequencies, so that it is not affected by an increase or change in the frequency of the wireless LAN used in the target area of the electromagnetic wave seal.
[0054]
As shown in FIG. 11, a mobile phone or the like has high reception sensitivity and can communicate even if the reception level is generally attenuated by about 30 dB, whereas a wireless LAN is difficult to communicate when the reception level is attenuated by 20 dB. By using the electromagnetic wave shielding material of the present invention, the electromagnetic wave of a mobile phone can be transmitted with attenuation within 30 dB and the electromagnetic wave of wireless LAN is attenuated by 20 dB or more. Electromagnetic wave sealing that makes use of the properties can be achieved.
[0055]
FIG. 12 shows a design example. FIG. 12 shows that a perfect conductor is laminated on the first layer made of glass having a dielectric constant of 6.5 and a thickness of 3 mm, a length (width) of the perfect conductor is fixed in a cross shape to 125 mm, and a slit width is set. The calculation results in the case where patterns of 6.25 mm (A line), 12.9 mm (B line), and 19.4 mm (C line) are formed are shown.
[0056]
【The invention's effect】
As described above, according to the electromagnetic wave shielding material of the present invention, the following effects can be obtained.
[0057]
Since only electromagnetic waves of a specific frequency corresponding to the shape and size of the through-hole can be transmitted, by setting the transmitted frequency to a frequency used for wireless telephone communication such as mobile phones and PHSs, these wireless telephones can be used. Since the electromagnetic waves of communication can be passed and used and the electromagnetic waves of the frequency used in the wireless LAN can be shielded, the leakage of the electromagnetic waves of the wireless LAN can be prevented without impairing the convenience of the wireless telephone communication, and the information of the wireless LAN can be protected. Leakage can be prevented.
[0058]
In addition, since it has the frequency selectivity of selecting electromagnetic waves that can be transmitted and selecting electromagnetic waves to be transmitted, electromagnetic waves of other frequencies can be shielded by reflection, etc. Even if the frequency of the electromagnetic wave used in the wireless LAN increases, the shielding effect can be maintained as it is.
[0059]
Further, by mixing the shape and size of the through-hole in correspondence with a plurality of frequencies such as a mobile phone and a PHS, a plurality of wireless telephone communications such as a mobile phone and a PHS can be operated.
[0060]
Further, according to the method for manufacturing an electromagnetic wave shielding material of the present invention, in the related art, a high-cost manufacturing process such as a lithography process was required. The number of steps can be significantly reduced and the cost can be significantly reduced by adopting a process in which the through hole is mechanically punched and opened, or a process in which the through hole in the electromagnetic wave shielding layer is melted and opened using a thermal iron with an opening pattern. It becomes.
[Brief description of the drawings]
FIG. 1 is a plan view of an electromagnetic wave shielding member according to a first embodiment of the present invention.
2A and 2B are diagrams showing the shape of a through hole, wherein FIG. 2A shows a dipole, FIG. 2B shows a Y shape, FIG. 2C shows a cross shape, FIG. 2D shows a rectangular shape, and FIG. It is a figure which shows a round shape, respectively.
FIG. 3 is a plan view of an electromagnetic wave shielding member according to a second embodiment of the present invention.
FIG. 4 is a diagram illustrating an electromagnetic wave transmission characteristic of an electromagnetic wave shielding material according to a second embodiment.
5A and 5B are diagrams illustrating a laminated structure of an electromagnetic wave shielding material, wherein FIG. 5A is a diagram in which a transparent conductor layer is laminated with a transparent film, and FIG. 5B is a diagram in which an adhesive is applied to the transparent film of FIG. (C) is a diagram in which an adhesive is applied to a transparent conductor layer.
6A and 6B are diagrams illustrating a laminated structure of an electromagnetic wave shielding material, in which FIG. 6A is a diagram in which an adhesive film is laminated on a transparent conductor layer, and FIG. 6B is a diagram in which an adhesive film is laminated on a transparent film in which a transparent conductor layer is laminated. FIG.
FIG. 7 is a diagram illustrating a method of manufacturing the electromagnetic wave shielding material according to the first embodiment.
FIG. 8 is a diagram illustrating a method of manufacturing the electromagnetic wave shielding material according to the second embodiment.
FIG. 9 is a diagram illustrating a method of manufacturing an electromagnetic wave shielding material according to a third embodiment.
FIG. 10 is a diagram illustrating a method of manufacturing an electromagnetic wave shielding material according to a fourth embodiment.
FIG. 11 is a diagram showing a operable range of a mobile phone, a PHS, and a wireless LAN.
FIG. 12 is a diagram showing an example of a calculation result of a frequency transmission characteristic in a trial design of an electromagnetic wave shielding material according to the present invention.
[Explanation of symbols]
1,1A Electromagnetic wave shielding material 10 Transparent conductor layer 11 Transparent film 12 Adhesive (or adhesive)
13 adhesive film 20, 20A, 20B through hole 30 press 31 punching die 31a blade 32 unwinding roll 40 roller 41a blade 50 hot press 51a convex portion 60 heat roller 61a convex portion

Claims (9)

可視光を透過する透明な導体層の面に、所定の形状及び所定の寸法の貫通孔を配列し、該貫通孔の形状及び寸法に対応した所定の周波数の電磁波のみを透過可能とした電磁波遮蔽材。An electromagnetic wave shield in which through holes of a predetermined shape and predetermined dimensions are arranged on the surface of a transparent conductor layer that transmits visible light, and only electromagnetic waves of a predetermined frequency corresponding to the shape and dimensions of the through holes can be transmitted. Wood. 形状又は寸法の少なくとも一方が異なる複数の種類の前記貫通孔を配置し、該複数の種類の貫通孔に対応した複数の周波数の電磁波を透過可能とした請求項1記載の電磁波遮蔽材。The electromagnetic wave shielding material according to claim 1, wherein a plurality of types of through holes having at least one of different shapes or dimensions are arranged, and electromagnetic waves of a plurality of frequencies corresponding to the plurality of types of through holes can be transmitted. 前記貫通孔の形状を、複数の線状スリットを放射状に接続した形状にした請求項1又は2に記載の電磁波遮蔽材。The electromagnetic wave shielding material according to claim 1, wherein the through hole has a shape in which a plurality of linear slits are radially connected. 前記透明な導体層を、金属、金属酸化物、金属窒化物の内の一つ又はこれらの混合物を材料とした、格子、織物、箔、多孔膜、真空蒸着膜、スパッタリング膜、CVD膜の内の一つ又はこれらの積層体で形成した請求項1〜3のいずれか1項に記載の電磁波遮蔽材。The transparent conductor layer may be made of one of a metal, a metal oxide, a metal nitride or a mixture thereof, and may be any of a lattice, a woven fabric, a foil, a porous film, a vacuum deposited film, a sputtering film, and a CVD film. The electromagnetic wave shielding material according to any one of claims 1 to 3, wherein the electromagnetic wave shielding material is formed of one of the following or a laminate of these. 前記透明な導体層を透明なフィルムに積層した請求項1〜4のいずれか1項に記載の電磁波遮蔽材。The electromagnetic wave shielding material according to any one of claims 1 to 4, wherein the transparent conductor layer is laminated on a transparent film. 前記透明な導体層若しくは透明なフィルムに、接着剤若しくは粘着材を塗布し、又は、前記透明な導体層若しくは透明なフィルムに、粘着フィルムを積層した請求項5記載の電磁波遮蔽材。The electromagnetic wave shielding material according to claim 5, wherein an adhesive or an adhesive is applied to the transparent conductor layer or the transparent film, or an adhesive film is laminated on the transparent conductor layer or the transparent film. 無線電話通信で使用する電磁波の周波数の少なくとも一つの周波数の電磁波を透過可能とした請求項1〜6のいずれか1項に記載の電磁波遮蔽材。The electromagnetic wave shielding material according to any one of claims 1 to 6, wherein an electromagnetic wave of at least one of frequencies of an electromagnetic wave used in wireless telephone communication can be transmitted. 請求項1〜7のいずれか1項に記載の電磁波遮蔽材の製造にあたり、前記透明な導体層に、前記貫通孔を開口する刃を配列したプレス若しくはローラを押圧することにより、前記透明な導体層に前記貫通孔を打ち抜いて開口する電磁波遮蔽材の製造方法。8. The method of manufacturing the electromagnetic wave shielding material according to claim 1, wherein the transparent conductor layer is pressed with a press or a roller on which a blade that opens the through hole is arranged. A method for producing an electromagnetic wave shielding material which is formed by punching out the through hole in a layer and opening the layer. 請求項1〜7のいずれか1項に記載の電磁波遮蔽材の製造にあたり、前記透明な導体層に、前記貫通孔に対応する凸状の型を配列したプレス若しくはローラを加熱して当接し、前記凸状の型が当接した部分を熱で融解することにより、前記透明な導体層に前記貫通孔を開口する電磁波遮蔽材の製造方法。In manufacturing the electromagnetic wave shielding material according to any one of claims 1 to 7, the transparent conductor layer is heated and abutted with a press or roller in which a convex mold corresponding to the through hole is arranged, A method for manufacturing an electromagnetic wave shielding material that opens the through hole in the transparent conductor layer by melting a portion where the convex mold abuts with heat.
JP2002212574A 2002-07-22 2002-07-22 Shielding material for electromagnetic wave, and its manufacturing method Pending JP2004053466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002212574A JP2004053466A (en) 2002-07-22 2002-07-22 Shielding material for electromagnetic wave, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002212574A JP2004053466A (en) 2002-07-22 2002-07-22 Shielding material for electromagnetic wave, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004053466A true JP2004053466A (en) 2004-02-19

Family

ID=31935472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212574A Pending JP2004053466A (en) 2002-07-22 2002-07-22 Shielding material for electromagnetic wave, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004053466A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096228A (en) * 2005-09-30 2007-04-12 Mitsubishi Cable Ind Ltd Radio wave shielding body
JP2007180113A (en) * 2005-12-27 2007-07-12 Fujimori Kogyo Co Ltd Frequency selective transmission type electromagnetic wave shielding material and its manufacturing method
WO2007119725A1 (en) * 2006-04-12 2007-10-25 Orient Instrument Computer Co., Ltd. Electromagnetic wave blocking sheet, electromagnetic wave blocking sheet manufacturing method, electromagnetic wave blocking sheet manufacturing device, electromagnetic wave shielding bag, and electromagnetic wave blocking clothing
JP2007336415A (en) * 2006-06-19 2007-12-27 Mitsubishi Cable Ind Ltd Frequency selection film, its manufacturing method, and radio wave shield material
JP2008103849A (en) * 2006-10-17 2008-05-01 Mitsubishi Cable Ind Ltd Frequency selective surface
JP2008159770A (en) * 2006-12-22 2008-07-10 Fujimori Kogyo Co Ltd Electromagnetic wave shielding material of frequency selective transmission type and its production process
US7898499B2 (en) 2005-02-18 2011-03-01 Mitsubishi Cable Industries, Ltd. Electromagnetic wave shielding body
JPWO2011099083A1 (en) * 2010-02-15 2013-06-13 株式会社東芝 Wireless device
WO2013121103A1 (en) * 2012-02-13 2013-08-22 Lammin Ikkuna Oy Selective glass
WO2016009589A1 (en) * 2014-07-17 2016-01-21 パナソニックIpマネジメント株式会社 Planar optical element, illumination device, and construction material
JP2018173270A (en) * 2013-06-25 2018-11-08 東芝ライフスタイル株式会社 refrigerator
WO2021093719A1 (en) 2019-11-15 2021-05-20 符仙琼 Dielectric structure for building components to increase transmittance of radio frequency signal and configuration method therefor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7898499B2 (en) 2005-02-18 2011-03-01 Mitsubishi Cable Industries, Ltd. Electromagnetic wave shielding body
JP2007096228A (en) * 2005-09-30 2007-04-12 Mitsubishi Cable Ind Ltd Radio wave shielding body
JP2007180113A (en) * 2005-12-27 2007-07-12 Fujimori Kogyo Co Ltd Frequency selective transmission type electromagnetic wave shielding material and its manufacturing method
WO2007119725A1 (en) * 2006-04-12 2007-10-25 Orient Instrument Computer Co., Ltd. Electromagnetic wave blocking sheet, electromagnetic wave blocking sheet manufacturing method, electromagnetic wave blocking sheet manufacturing device, electromagnetic wave shielding bag, and electromagnetic wave blocking clothing
JP2007287752A (en) * 2006-04-12 2007-11-01 Orient Sokki Computer Kk Electromagnetic wave shielding sheet manufacturing method and electromagnetic wave shielding sheet
JP2007336415A (en) * 2006-06-19 2007-12-27 Mitsubishi Cable Ind Ltd Frequency selection film, its manufacturing method, and radio wave shield material
JP2008103849A (en) * 2006-10-17 2008-05-01 Mitsubishi Cable Ind Ltd Frequency selective surface
JP2008159770A (en) * 2006-12-22 2008-07-10 Fujimori Kogyo Co Ltd Electromagnetic wave shielding material of frequency selective transmission type and its production process
JPWO2011099083A1 (en) * 2010-02-15 2013-06-13 株式会社東芝 Wireless device
WO2013121103A1 (en) * 2012-02-13 2013-08-22 Lammin Ikkuna Oy Selective glass
JP2018173270A (en) * 2013-06-25 2018-11-08 東芝ライフスタイル株式会社 refrigerator
WO2016009589A1 (en) * 2014-07-17 2016-01-21 パナソニックIpマネジメント株式会社 Planar optical element, illumination device, and construction material
JPWO2016009589A1 (en) * 2014-07-17 2017-04-27 パナソニックIpマネジメント株式会社 Planar optical element, lighting device and building material
WO2021093719A1 (en) 2019-11-15 2021-05-20 符仙琼 Dielectric structure for building components to increase transmittance of radio frequency signal and configuration method therefor
US11349221B2 (en) 2019-11-15 2022-05-31 Hsien-Chiung Fu Dielectric structure applied to building components for increasing transmittance of RF signal and disposing method thereof

Similar Documents

Publication Publication Date Title
US6147302A (en) Frequency selective electromagnetic wave shielding material and a method for using the same
US5855988A (en) Electromagnetic wave absorbing shielding material
JP2004053466A (en) Shielding material for electromagnetic wave, and its manufacturing method
US4656487A (en) Electromagnetic energy passive filter structure
JP5308782B2 (en) Method for producing frequency selective electromagnetic shielding material, and electromagnetic wave absorber using the same
JP5190088B2 (en) Electromagnetic band gap pattern, manufacturing method thereof, and security product using electromagnetic band pattern
EP2081423A2 (en) Wave absorber
GB2452665A (en) Radio wave shielding partitioning plane material and method for manufacturing
CN112928486B (en) Three-band frequency selection surface
CA3218961A1 (en) &#34;device for interacting with electromagnetic radiation&#34;
CN114013149B (en) Microwave and infrared double-stealth composite material
CN117178433A (en) Optically transparent reflective array
JP2005244043A (en) Radio wave absorber
JPH11195890A (en) New conductive bipolar element pattern which reflects electromagnetic wave of frequency in specific range, and frequency selective electromagnetic wave shielding material comprising it
JPH09148782A (en) Transparent electromagnetic wave absorbing/shielding material
JPH09147639A (en) Transparent electrode material
JPH11330773A (en) Electromagnetic shielding body and window member thereof
CN111148418A (en) Shielding film and manufacturing method thereof
Sanz-Izquierdo et al. Wideband EM architecture of buildings: Six-to-one dual-passband filter for indoor wireless environments
JP2001156491A (en) Shielding member and portable wireless device using it, electronic equipment
JP2003124673A (en) Film having electromagnetic wave shielding properties
CN118063105A (en) Energy-saving window coating film capable of penetrating wireless communication signals and manufacturing method thereof
Sharma et al. EMI shielding using flexible optically transparent screens for smart electromagnetic environments
JP2002317280A (en) Metallized plastic film
GB2451389A (en) Radio wave shielding body and method of producing the same