JP2004039895A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2004039895A
JP2004039895A JP2002195676A JP2002195676A JP2004039895A JP 2004039895 A JP2004039895 A JP 2004039895A JP 2002195676 A JP2002195676 A JP 2002195676A JP 2002195676 A JP2002195676 A JP 2002195676A JP 2004039895 A JP2004039895 A JP 2004039895A
Authority
JP
Japan
Prior art keywords
insulating film
polysilicon
resistor
semiconductor device
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002195676A
Other languages
Japanese (ja)
Inventor
Keisuke Kamimura
上村 啓介
Toshihiko Omi
近江 俊彦
Tadao Akamine
赤嶺 忠男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2002195676A priority Critical patent/JP2004039895A/en
Publication of JP2004039895A publication Critical patent/JP2004039895A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that a resistance value of a polysilicon significantly becomes different from an intended value when impurities that are introduced at high density during ion implantation for the formation of source and drain are taken in, especially in a case when a phosphorus (P+) is used as an impurity. <P>SOLUTION: In the manufacturing method for the semiconductor device, an insulation film for preventing outward diffusion is formed through CVD before forming a resistor by using a polysilicon. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、 MOSFETとポリシリコンによる抵抗体を混載した半導体装置及びその製造方法に関するものである。
【0002】
【従来の技術】
MOSFETとポリシリコンによる抵抗体を混載する事によって、さまざまなアプリケーションを実現する事が可能となる。通常、このような混載LSIを形成する製造プロセスにおいては、MOSトランジスタを形成し、その後にポリシリコンの抵抗体を形成するといった手順が取られる。この製造方法を図1に基づいて説明する。
【0003】
半導体基板101上に、素子分離用のフィールド酸化膜(LOCOS)102を、窒化膜を酸化のマスクにして形成する。高集積化を目的としてSTI(シャロートレンチ分離)を用いる事もあるが、ここではLOCOSを用いた図を示す。図示しないゲート酸化膜の形成後、ポリシリコンによってゲート電極103を形成する。ゲート電極103とフォトレジストをマスクとしてソース104、ドレイン105領域に高濃度の不純物イオン注入を行う。例えば、リン(P+)を5×1015 cm−2程度注入する。これら一連の工程の後に、ポリシリコンによって抵抗体106を形成する。一般に、ポリシリコンの抵抗体106はフィールド酸化膜102上に形成する。これらの素子が形成されたのちに層間絶縁膜107を形成し、コンタクトホールをエッチングにて開け、メタル配線層108を形成、最終保護膜109をつける。
【0004】
【発明が解決しようとする課題】
しかし、上記のような工程を経て作成したLSIにおいて、抵抗体106であるポリシリコンの抵抗値が意図した抵抗値と大きく変わってしまう場合がある。この変動は、ソース104、ドレイン105形成用に行なった高濃度のイオン注入時に導入された不純物がポリシリコンに取り込まれる事によって発生する。特に、不純物にリン(P+)を用いた時に顕著である。これは、不純物がポリシリコンのデポ中やエッチング、その他の熱工程によってポリシリコン中に取り込まれてしまうために発生するからである。例えばリンがポリシリコン中に混入した場合、P型ポリ抵抗体では抵抗値が増大し、N型ポリ抵抗体では抵抗値が減少する。このように、当初狙いとしていた抵抗値と実際のでき上がった抵抗値に差異が生じてしまう。
【0005】
この抵抗値の変動はまた、ウエハー面内の抵抗値ばらつきを大きくし、LSIの精度を悪化させてしまう原因となる。これは、デポ中や熱処理中のウエハー内の熱分布や気流によって不純物の取り込まれ方が変わるためである。例えば、リンの取り込まれ方が、ウエハー周辺において中心部よりも多くなれば、ウエハー周辺部の抵抗値が中心部よりも大きくなる。このようなばらつきは特性のばらつきを大きくする事につながり、不良率を大きくしてしまう危険性がある。
【0006】
【課題を解決するための手段】
上記課題は本発明によれば、基板の上にゲート絶縁膜を介して設けられたゲート電極を有するn型MOSFET及びp型MOSFETと、基板の上に絶縁膜を介して設けられたポリシリコン抵抗体を備えた半導体装置の製造方法において、MOSFETを形成した後、ポリシリコンによって抵抗体を形成する前に、CVDによって外方拡散防止用の絶縁膜を形成する事を特徴とする半導体装置及びその製造方法によって解決できる。
【0007】
【実施例】
本発明の実施例を図2に基づいて説明する。半導体基板201上に、素子分離用のフィールド酸化膜(LOCOS)202を、図示しない窒化膜をマスクにして形成する。図示しないゲート酸化膜の形成後、ポリシリコンによってゲート電極203を形成する。ゲート電極203形成後、ゲート電極203と図示しないフォトレジストをマスクとしてソース204、ドレイン205領域に高濃度のイオン注入を行う。例えば、リン(P+)を5×10^15 cm−2程度注入する。ポリシリコンの抵抗体を形成する前に、これらの高濃度不純物の拡散を防ぐためにCVDによって酸化膜若しくは窒化膜若しくは酸窒化膜210を形成する。
【0008】
次に、ポリシリコンによって抵抗体206を形成する。一般に、ポリシリコンの抵抗体206はフィールド酸化膜202上に形成する。抵抗体206は、ポリシリコンをCVD(化学的気相成長法)によって全面に生成した後に、所望の抵抗値をとる様に不純物を注入し、そしてエッチングにより所望の形状を得て、製造される。
【0009】
特に図示しないが、従来例のように、これらの素子が形成されたのちに層間絶縁膜を形成し、コンタクトホールをエッチングにて開け、メタル配線層を形成、最終保護膜をつける。従来の製造工程と異なる点はポリシリコンの抵抗体を形成する前に、拡散防止のCVDによる絶縁膜を形成しておくという点である。
【0010】
以上の方法によれば、抵抗体206となるポリシリコンのデポ中やエッチング中に発生するソース204、ドレイン領域中205の不純物の取り込みを防ぐ事ができ、抵抗値を安定化する事ができる。ソース204、ドレイン領域205中の不純物はポリシリコンのCVD中やその他の熱処理中に拡散し、酸化膜中に蓄積される。拡散防止用絶縁膜のCVDはプラズマCVDなど、400℃程度の低温で行う事ができるので、外方拡散が格段に抑えられる。また、不純物の拡散速度が基板シリコンと比較して絶縁膜中の方が低ければ低いほど、外方拡散は抑えられる。従って、用いる絶縁膜はその中での不純物の拡散速度が遅いほど有効となる。用いている不純物の種類によって、その不純物の拡散速度が遅い絶縁膜を選択する事で、より大きな効果を得る事ができる。
【0011】
拡散防止の絶縁膜はコンタクト部分では除去する必要があるので、抵抗体形成後に除去するか又はコンタクトエッチ時に同時にコンタクト部のみ除去する。
【0012】
この方法を用いれば、ポリシリコンのCVD中に生じる不純物の抵抗体下部への蓄積が無くなるために抵抗値の変動が抑えられる。
【0013】
【発明の効果】
本発明を用いる事によってポリシリコンの抵抗値のばらつきを抑える事が可能となり、特性の安定化や歩留りの向上を期待する事ができる。ウエハー内の抵抗値ばらつきが一桁向上する。
【図面の簡単な説明】
【図1】従来のCMOS、ポリシリコン混載の製造工程を説明する断面図である。
【図2】本発明の実施例の製造工程を説明するための断面図である。
【符号の説明】
101  半導体基板
102  素子分離用酸化膜
103  ゲート電極
104  ソース
105  ドレイン
106  抵抗体
107  層間絶縁膜
108  メタル配線
109  最終保護膜
201  半導体基板
202  素子分離用酸化膜
203  ゲート電極
206  抵抗体
210  拡散防止用絶縁膜
[0001]
[Industrial applications]
The present invention relates to a semiconductor device in which a MOSFET and a resistor made of polysilicon are mounted together, and a method of manufacturing the same.
[0002]
[Prior art]
Various applications can be realized by mounting a MOSFET and a resistor made of polysilicon. Usually, in a manufacturing process for forming such an embedded LSI, a procedure of forming a MOS transistor and thereafter forming a polysilicon resistor is employed. This manufacturing method will be described with reference to FIG.
[0003]
A field oxide film (LOCOS) 102 for element isolation is formed on a semiconductor substrate 101 using a nitride film as an oxidation mask. In some cases, STI (Shallow Trench Isolation) is used for the purpose of high integration. Here, a diagram using LOCOS is shown. After forming a gate oxide film (not shown), a gate electrode 103 is formed of polysilicon. Using the gate electrode 103 and the photoresist as a mask, high-concentration impurity ions are implanted into the source 104 and the drain 105 regions. For example, phosphorus (P +) is implanted at about 5 × 10 15 cm −2. After these series of steps, the resistor 106 is formed of polysilicon. Generally, the polysilicon resistor 106 is formed on the field oxide film 102. After these elements are formed, an interlayer insulating film 107 is formed, a contact hole is opened by etching, a metal wiring layer 108 is formed, and a final protective film 109 is provided.
[0004]
[Problems to be solved by the invention]
However, in the LSI fabricated through the above-described steps, the resistance value of the polysilicon serving as the resistor 106 may be significantly different from the intended resistance value. This variation is caused by the fact that impurities introduced during high-concentration ion implantation for forming the source 104 and the drain 105 are taken into polysilicon. This is particularly noticeable when phosphorus (P +) is used as the impurity. This is because impurities are taken into the polysilicon by deposition in the polysilicon, etching, or other thermal processes. For example, when phosphorus is mixed into polysilicon, the resistance value of a P-type poly resistor increases, and the resistance value of an N-type poly resistor decreases. In this way, a difference occurs between the initially aimed resistance value and the actually completed resistance value.
[0005]
This variation in the resistance value also causes a large variation in the resistance value within the wafer surface, which causes the accuracy of the LSI to deteriorate. This is because the manner in which impurities are taken in varies depending on the heat distribution and airflow in the wafer during the deposition and the heat treatment. For example, if phosphorus is taken in more at the periphery of the wafer than at the center, the resistance value at the periphery of the wafer becomes larger than at the center. Such a variation leads to an increase in the variation in the characteristics, and there is a risk of increasing the defect rate.
[0006]
[Means for Solving the Problems]
According to the present invention, there is provided an n-type MOSFET and a p-type MOSFET having a gate electrode provided on a substrate via a gate insulating film, and a polysilicon resistor provided on the substrate via an insulating film. In a method of manufacturing a semiconductor device having a body, after forming a MOSFET and before forming a resistor with polysilicon, an insulating film for preventing out-diffusion is formed by CVD and the semiconductor device and the semiconductor device. It can be solved by a manufacturing method.
[0007]
【Example】
An embodiment of the present invention will be described with reference to FIG. A field oxide film (LOCOS) 202 for element isolation is formed on a semiconductor substrate 201 using a nitride film (not shown) as a mask. After forming a gate oxide film (not shown), a gate electrode 203 is formed of polysilicon. After the gate electrode 203 is formed, high-concentration ion implantation is performed on the source 204 and the drain 205 using the gate electrode 203 and a photoresist (not shown) as a mask. For example, phosphorus (P +) is implanted at about 5 × 10 15 cm −2. Before forming a polysilicon resistor, an oxide film, a nitride film, or an oxynitride film 210 is formed by CVD in order to prevent diffusion of these high-concentration impurities.
[0008]
Next, the resistor 206 is formed of polysilicon. Generally, the polysilicon resistor 206 is formed on the field oxide film 202. The resistor 206 is manufactured by forming polysilicon over the entire surface by CVD (Chemical Vapor Deposition), implanting impurities to obtain a desired resistance value, and obtaining a desired shape by etching. .
[0009]
Although not particularly shown, as in the conventional example, after these elements are formed, an interlayer insulating film is formed, a contact hole is opened by etching, a metal wiring layer is formed, and a final protective film is provided. The difference from the conventional manufacturing process is that an insulating film is formed by CVD for preventing diffusion before forming a polysilicon resistor.
[0010]
According to the above-described method, it is possible to prevent impurities from being taken in the source 204 and the drain region 205 during the deposition or etching of the polysilicon serving as the resistor 206 and to stabilize the resistance value. The impurities in the source 204 and the drain region 205 diffuse during the CVD of polysilicon and other heat treatments, and are accumulated in the oxide film. Since CVD of the diffusion preventing insulating film can be performed at a low temperature of about 400 ° C., such as plasma CVD, outward diffusion is significantly suppressed. Further, the lower the diffusion rate of the impurity is in the insulating film as compared with the silicon substrate, the more the outward diffusion is suppressed. Therefore, the used insulating film becomes more effective as the diffusion rate of the impurity therein is lower. A greater effect can be obtained by selecting an insulating film having a low diffusion rate of the impurity depending on the kind of the impurity used.
[0011]
Since the diffusion preventing insulating film needs to be removed at the contact portion, it is removed after the resistor is formed, or only the contact portion is removed at the same time as the contact etching.
[0012]
If this method is used, the fluctuation of the resistance value is suppressed because the impurity generated during the CVD of the polysilicon is not accumulated in the lower portion of the resistor.
[0013]
【The invention's effect】
By using the present invention, it is possible to suppress the variation in the resistance value of polysilicon, and it can be expected that the characteristics are stabilized and the yield is improved. The resistance value variation in the wafer is improved by one digit.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for explaining a conventional manufacturing process in which CMOS and polysilicon are mixed.
FIG. 2 is a cross-sectional view for explaining a manufacturing process according to the embodiment of the present invention.
[Explanation of symbols]
Reference Signs List 101 semiconductor substrate 102 isolation oxide film 103 gate electrode 104 source 105 drain 106 resistor 107 interlayer insulating film 108 metal wiring 109 final protective film 201 semiconductor substrate 202 isolation oxide film 203 gate electrode 206 resistor 210 diffusion preventing insulation film

Claims (8)

基板の上にゲート絶縁膜を介して設けられたゲート電極を有するn型MOSFET及びp型MOSFETと、基板の上に絶縁膜を介して設けられたポリシリコン抵抗体を備えた半導体装置の製造方法において、MOSFETを形成した後、ポリシリコンによって抵抗体を形成する前に、CVDによって外方拡散防止用の絶縁膜を形成する事を特徴とする半導体装置。Manufacturing method of a semiconductor device including an n-type MOSFET and a p-type MOSFET having a gate electrode provided on a substrate via a gate insulating film, and a polysilicon resistor provided on the substrate via an insulating film 2. A semiconductor device according to claim 1, wherein an insulating film for preventing outward diffusion is formed by CVD after the MOSFET is formed and before the resistor is formed by polysilicon. 前記外方拡散防止用の絶縁膜が酸化シリコン膜である事を特徴とする請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein the insulating film for preventing outward diffusion is a silicon oxide film. 前記外方拡散防止用の絶縁膜が窒化シリコン膜である事を特徴とする請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein the insulating film for preventing outward diffusion is a silicon nitride film. 前記外方拡散防止用の絶縁膜が酸窒化シリコン膜である事を特徴とする請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein the insulating film for preventing outward diffusion is a silicon oxynitride film. 基板の上にゲート絶縁膜を介して設けられたゲート電極を有するn型MOSFET及びp型MOSFETと、基板の上に絶縁膜を介して設けられたポリシリコン抵抗体を備えた半導体装置の製造方法において、MOSFETを形成した後、ポリシリコンによって抵抗体を形成する前に、CVDによって外方拡散防止用の絶縁膜を形成する事を特徴とする半導体装置の製造方法。Manufacturing method of a semiconductor device including an n-type MOSFET and a p-type MOSFET having a gate electrode provided on a substrate via a gate insulating film, and a polysilicon resistor provided on the substrate via an insulating film And forming an insulating film for preventing outward diffusion by CVD after forming the MOSFET and before forming a resistor by polysilicon. 前記外方拡散防止用の絶縁膜が酸化シリコン膜である事を特徴とする請求項1記載の半導体装置の製造方法。2. The method according to claim 1, wherein the insulating film for preventing outward diffusion is a silicon oxide film. 前記外方拡散防止用の絶縁膜が窒化シリコン膜である事を特徴とする請求項1記載の半導体装置の製造方法。2. The method according to claim 1, wherein the insulating film for preventing outward diffusion is a silicon nitride film. 前記外方拡散防止用の絶縁膜が酸窒化シリコン膜である事を特徴とする請求項1記載の半導体装置の製造方法。2. The method according to claim 1, wherein the insulating film for preventing outward diffusion is a silicon oxynitride film.
JP2002195676A 2002-07-04 2002-07-04 Semiconductor device and its manufacturing method Pending JP2004039895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195676A JP2004039895A (en) 2002-07-04 2002-07-04 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195676A JP2004039895A (en) 2002-07-04 2002-07-04 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004039895A true JP2004039895A (en) 2004-02-05

Family

ID=31703981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195676A Pending JP2004039895A (en) 2002-07-04 2002-07-04 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004039895A (en)

Similar Documents

Publication Publication Date Title
KR100400323B1 (en) CMOS of semiconductor device and method for manufacturing the same
US20060105518A1 (en) Ultra-shallow arsenic junction formation in silicon germanium
JP2002314077A (en) High-voltage mos transistor
KR100271265B1 (en) Self-aligned pocl3 process flow for submicron microelectronics applications using amorphized polysilicon
JP4505349B2 (en) Manufacturing method of semiconductor device
JP2007529891A (en) Field effect transistor and method of manufacturing field effect transistor
JP3356629B2 (en) Method of manufacturing lateral MOS transistor
JPH09190983A (en) Manufacture of semiconductor device
JP2002543609A (en) Method of manufacturing shallow junction semiconductor device
JP2004039895A (en) Semiconductor device and its manufacturing method
KR100770499B1 (en) Manufacturing method of gate oxidation films
JP2004253778A (en) Semiconductor device and its manufacturing method
KR100465056B1 (en) Method of manufacturing semiconductor device
JP2006100579A (en) Semiconductor device manufacturing method
JP2008010627A (en) Semiconductor device, and manufacturing method thereof
US6949438B2 (en) Method of fabricating a bipolar junction transistor
JP2011100857A (en) Semiconductor device and method of manufacturing the same
JP2006191104A (en) Manufacturing method for high-voltage transistor
JP2000049334A (en) Semiconductor device and fabrication thereof
US20090023273A1 (en) Method of fabricating semiconductor device
JP3920173B2 (en) Manufacturing method of semiconductor device
JP3965476B2 (en) Manufacturing method of semiconductor device
KR100565755B1 (en) Method for manufacturing of semiconductor device
KR100622812B1 (en) Method for fabricating the gate structure of semiconductor device
JPH0927562A (en) Manufacture of integrated circuit

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304