JP2004035333A - Method of processing vitreous material - Google Patents

Method of processing vitreous material Download PDF

Info

Publication number
JP2004035333A
JP2004035333A JP2002195355A JP2002195355A JP2004035333A JP 2004035333 A JP2004035333 A JP 2004035333A JP 2002195355 A JP2002195355 A JP 2002195355A JP 2002195355 A JP2002195355 A JP 2002195355A JP 2004035333 A JP2004035333 A JP 2004035333A
Authority
JP
Japan
Prior art keywords
glass material
shape
laser light
glass
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002195355A
Other languages
Japanese (ja)
Inventor
Naoyuki Kitamura
北村 直之
Kohei Fukumi
福味 幸平
Junji Nishii
西井 準治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002195355A priority Critical patent/JP2004035333A/en
Priority to US10/223,636 priority patent/US6922534B2/en
Publication of JP2004035333A publication Critical patent/JP2004035333A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which can easily cause a local change in shape on the surface of a vitreous material and can easily form even a bump or depression with a nonspherical cross section. <P>SOLUTION: In this method, a vitreous material of which the volume is changed by heating is irradiated with a laser beam having an intensity distribution therein and thus the shape of the irradiated part of the surface of the vitreous material is changed. When the irradiation intensity of the laser beam at an arbitrary position in the laser beam irradiated range on the vitreous material surface is set at 100, the irradiation intensity of the laser beam to be used is 80 or lower or 120 or higher at a position which is apart from the above arbitrary position with a distance the same as the wavelength of the laser beam in the diameter direction of the concentric circle of the irradiated part. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス材料表面に部分的な形状変化を生じさせることのできるガラス材料の加工方法、及び該方法によって加工されたガラス材料に関する。
【0002】
【従来の技術】
従来、ガラス表面に陥没部や隆起部などの部分的な形状変化を生じさせる方法としては、予め軟化させたガラス表面に金型を押し付けて成形する方法、マスクによるパターンニングの後化学的なエッチング処理を施す方法、ガラス表面に直接レーザーを照射することで蒸発・溶融させる方法などが知られている。このような方法によって、形状変化を生じさせたガラスの内で、特に、隆起部、陥没部等の断面形状が非球面形状のガラスは、光学レンズとして有用性が高く、通常の球面ガラスレンズに比べて収差が少なく、高いレンズ性能を示すことが知られている。また、これとは別用途として、表面が凹凸部によってパターニングされたガラス板は記録媒体等の特殊基板としても利用されている。
【0003】
しかしながら、金型による成形方法は、融点が高く高粘性のガラスに対して適用することは難しく、微細な形状を形成することも困難である。また、エッチングやレーザー光照射による微細加工方法は、窪んだ形状を形成する方法としては適した方法であるが、隆起構造を形成するためには隆起部分以外を除去する必要があり、その制御は複雑で難しくなる。近年の半導体製造で利用されている微細加工技術を利用すれば任意形状の作製は可能であるが、これに関る時間とコストは膨大になる。
【0004】
【発明が解決しようとする課題】
本発明は、上記した如き従来技術に鑑みてなされたものであり、その主な目的は、ガラス材料表面に部分的な形状変化を簡便に生じさせることが可能な方法であって、断面が非球面形状を有する隆起部、陥没部などであっても、簡単に形成できる方法を提供することである。
【0005】
【課題を解決するための手段】
本発明者は、上記した目的を達成すべく鋭意研究を重ねた結果、加熱によって体積変化が生じるガラス材料表面にレーザー光を照射することによって、ガラス材料表面の照射部分に形状変化を生じさせることが可能であり、レーザー光が特定の条件を満足する照射強度分布を有する場合には、その強度分布に応じて変化部分の形状を制御することができ、断面が非球面形状を有する隆起部、陥没部などであっても容易に形成できることを見出し、ここに本発明を完成するに至った。
【0006】
即ち、本発明は、下記のガラス材料の加工方法、及び該方法によって加工されたガラス材料を提供するものである。
1. 加熱により体積変化を生じるガラス材料に、ビーム内に強度分布を有するレーザー光を照射して、該ガラス材料表面の照射部分の形状を変化させる方法であって、ガラス材料表面におけるレーザー光照射範囲内の任意位置のレーザー光の照射強度を100とした場合に、この位置から照射部の同心円の直径方向にレーザー光の波長に相当する長さ離れた位置におけるレーザー光の照射強度が80以下又は120以上のレーザー光を用いることを特徴とする、ガラス材料の加工方法。
2. 強度分布を有するレーザー光が、炭酸ガスレーザーによるレーザー光である上記項1に記載の方法。
3. レーザー光照射によって形成されるガラス材料表面の形状変化が、レーザー光照射部分のガラス材料表面に形成される隆起又は陥没である上記項1又は2に記載の方法。
4. ガラス材料表面に形成された隆起又は陥没部分の断面形状が、非球面形状である上記項3に記載の方法。
5. 上記項1〜4のいずれかの方法によって加工された、表面に形状変化部分を有するガラス材料。
6. 上記項5のガラス材料からなる光学素子。
7. 上記項5のガラス材料からなるガラス基板。
【0007】
【発明の実施の形態】
本発明のガラス材料の加工方法では、出発材料としては、加熱によって体積変化を生じるガラス材料を用いる。
【0008】
この様なガラス材料は、加熱によって体積増加又は体積減少を生じるガラスであり、例えば、溶融した原料を大気圧下で徐冷することによって得られる同一組成のガラス材料(以下、「通常のガラス」ということがある)と比べると、低密度又は高密度のガラス材料を用いることができる。この様な低密度又は高密度のガラス材料は、ガラスの種類に応じて決まる一定温度以上に加熱すると、密度が変化して、通常のガラスの密度に近づくことによって体積変化を生じる性質を有するものである。
【0009】
上記した低密度又は高密度のガラス材料としては、特に限定的ではないが、例えば、通常のガラスを高温中で加圧して得られる高密度のガラス材料、溶融した原料を高温から急激に冷却することによって得られる高密度のガラス材料、液相法によって合成される低密度のガラス材料(乾燥ガラスゲル)等を挙げることができる。
【0010】
本発明方法で用いるガラス材料の密度自体は特に限定的ではないが、本発明方法によって適度な形状変化を生じさせるためには、一般的には、通常のガラスと1%程度以上の密度差があるガラス材料、即ち、通常のガラスよりも1%程度以上密度が高いガラス材料又は通常のガラスよりも1%程度以上密度が低いガラス材料が好ましい。尚、前述した通り、通常のガラスとは、溶融した原料を大気圧下で徐冷することによって得られるものであり、加熱によっては体積変化を生じないガラス材料である。
【0011】
本発明方法では、出発材料とするガラス材料の材質については、特に限定はないが、二酸化珪素(SiO)を20モル%以上含有する珪酸塩ガラス、Bを20モル%以上含有するホウ酸塩ガラス、Pを20モル%以上含有するリン酸塩ガラス等のガラス網目構造を形成する成分(ガラスネットワークフォーマー)を20モル%程度以上含有するガラスが、密度変化が大きい点で好ましい。
【0012】
本発明方法は、上記したガラス材料に、ビーム内に強度分布を有するレーザー光を照射して、該ガラス材料表面の照射部分の形状を変化させる方法である。この様な強度分布を有するレーザー光を照射する場合には、ガラス材料表面におけるレーザー光の照射部分に形状変化を生じさせることができる。この場合、加熱によって体積膨張を生じるガラス材料を用いた場合にはレーザー光の照射部分に隆起が生じ、加熱によって体積減少を生じるガラス材料を用いた場合にはレーザー光の照射部分に陥没が生じる。
【0013】
ビーム内に強度分布を有するレーザー光としては、ガラス材料表面におけるレーザー光照射範囲内の任意の位置のレーザー光の照射強度を100とした場合に、この位置から照射部の同心円の直径方向にレーザー光の波長に相当する長さ離れた位置におけるレーザー光の照射強度が80以下又は120以上のレーザー光を用いることが必要である。この様な強度分布が大きいレーザー光を用いる場合には、レーザー光の強度分布の状態を適宜設定することによって、ガラス材料表面に生じる隆起、陥没などの形状を制御することができ、目的に応じた形状の隆起部、陥没部などを形成することが可能となる。その結果、断面が、非球面形状の形状変化であっても容易に形成することができ、更に、レーザー光の強度分布を適宜調節することによって、球面状の断面形状を有する形状変化部分も形成することが可能である。
【0014】
これに対して、レーザー光照射範囲の任意部分における照射強度を100とした場合に、レーザー光の波長に相当する長さ離れた部分におけるレーザー光の照射強度が80より大きく、120を下回る場合には、レーザー光の強度分布が小さいために、レーザー光の照射によって生じる隆起又は陥没部の形状を任意に制御することができない。
【0015】
尚、上記した強度分布の条件は、レーザー光照射範囲内の全ての部分において満足する必要はなく、形状変化を制御することが必要な部分において上記条件を満たせばよい。
【0016】
レーザー光としては、上記した強度分布を有するものであれば特に限定なく使用でき、例えば、炭酸ガスレーザー、Nd:YAGレーザー、Ho:YAGレーザーなどによるレーザー光を用いることができる。
【0017】
レーザー光のビーム内に所定の強度分布を生じさせる方法についても、特に限定はなく、例えば、レンズを適宜組み合わせて用いる方法、ミラーを適宜組み合わせて用いる方法、濃淡を有する光学フィルターを用いる方法などを適宜適用すればよい。
【0018】
レーザー光を照射する時間、回数等については、特に限定はなく、所定の形状変化が生じる温度にガラス材料が加熱されるように、照射時間、照射回数などを適宜決めればよい。また、ガラス材料を、体積変化が生じる温度を下回る温度まで予め加熱し、この様な予熱されたガラス材料にレーザー光を照射することによって、照射時間、照射回数を減少させることもできる。
【0019】
本発明方法によって得られるガラス材料は、加熱によって密度が高くなる場合には、レーザー光を照射された部分が陥没した形状となり、加熱によって密度が低くなる場合には、レーザー光を照射された部分が隆起した形状となる。
【0020】
陥没、隆起などの形状変化部分の形状については、レーザー光の照射強度の分布を、上記した条件を満足する範囲内で適宜設定することによって、制御することができる。この場合、具体的な変位部分の形状については、ガラス材料の材質、レーザー光の種類、照射の方式などによって異なるので、具体的な条件に応じて、レーザー光の照射強度分布を適宜設定すればよい。この様な方法でビーム内に強度分布を有するレーザー光を照射することによって、ガラス材料表面に形成される形状変化部分について、その断面形状を任意の非曲面形状とすることができ、また、照射強度分布を適宜設定すれば、形状変化部分の断面形状を曲面形状とすることも可能である。
【0021】
本発明によれば、例えば、ガラス材料表面に、直径40〜2000μm程度の大きさで、隆起又は陥没の高さが、0.5〜10μm程度の形状変化部分を形成することが可能である。
【0022】
本発明方法によって得られるガラス材料は、透明性のあるガラス材料を用いる場合には、例えば、複雑な特性を持つ微小光学レンズとして実用が可能である。また、本発明方法によれば、ガラス表面に幾何学的な凹凸を形成できるので、基板の光反射を抑制する表面処理方法としても有効に利用できる。また、得られたガラス材料は、磁気ディスク基板等としても有用である。
【0023】
【発明の効果】
本発明方法によれば、ガラス材料表面に部分的な形状変化を簡便に生じさせることができる。しかも、形状変化部分の形状を容易に制御できるので、複雑な形状変化部分を有するガラス材料であっても比較的簡単に製造することができる。
【0024】
【実施例】
以下に実施例を示し、本発明の特徴とするところをより一層明確にする。
【0025】
実施例1
あらかじめ高圧発生装置によって密度を3.6%上昇させたシリカガラス(0.5mm厚さ)基板を用い、その表面の直径約100μmの微小領域に炭酸ガスレーザーからのレーザー光(波長10.6μm)を照射した。照射条件は下記の通りである。また、ガラス表面におけるレーザー光照射部分の強度分布を図1に示す。
【0026】
照射条件
レーザー光サイズ      直径100μm
照射パルスエネルギー    30mJ
照射回数          500回
この様にしてレーザー光を照射して部分的な形状変化を生じさせたガラス基板について、形状変化部分の基板平面からの変位を表面粗さ計で測定した。この測定結果についても図1に示す。
【0027】
図1から明らかな通り、ガラス材料の表面に、レーザービームの中心軸に対して回転対象の隆起した形状の最大で0.6μmの変位が形成され、その断面は、球面ではなく、円錐に近い形状であることが判る。
【0028】
実施例2
あらかじめ高圧発生装置によって密度を3.6%上昇させたシリカガラス(0.5mm厚さ)基板を用い、この表面の直径約100μmの微小領域に、炭酸ガスレーザーからのレーザー光(波長10.6μm)を照射した。照射条件は下記の通りである。また、ガラス表面におけるレーザー光照射部分の強度分布を図2に示す。
【0029】
照射条件
レーザー光サイズ        直径100μm
照射パルスエネルギー   30mJ
照射回数         2000回
この様にしてレーザー光を照射して部分的な形状変化を生じさせたガラス基板について、形状変化部分の基板平面からの変位を表面粗さ計で測定した。この測定結果についても図2に示す。
【0030】
図2から明らかな通り、ガラス材料の表面に、レーザービームの中心軸に対して回転対象の隆起した形状の最大で1.6μmの変位が形成され、その断面は、球面ではなく、鋭い中心の隆起部とそのまわりに緩やかな裾が広がる形状であることが判る。
【0031】
実施例3
液相法によって得られた密度を6.7%減少させた仮焼ゲルシリカガラス(2mm厚さ)基板を用い、その表面の直径約100μmの微小領域に炭酸ガスレーザーからのレーザー光(波長10.6μm)を照射した。照射条件は下記の通りである。また、ガラス表面におけるレーザー光照射部分の強度分布を図3に示す。
【0032】
照射条件
レーザー光サイズ      直径100μm
照射パルスエネルギー    500mJ
照射回数           2回
この様にしてレーザー光を照射して部分的な形状変化を生じさせたガラス基板について、形状変化部分の基板平面からの変位を表面粗さ計で測定した。この測定結果についても図3に示す。
【0033】
図3から明らかな通り、ガラス材料の表面に、レーザービームの中心軸に対して回転対象の陥没した形状の最大で2.8μmの変位が形成され、その断面は、球面ではなく、ガウス関数に近い形状であることが判る。
【図面の簡単な説明】
【図1】実施例1におけるレーザー光照射面の強度分布とガラス材料表面の変位を示すグラフ。
【図2】実施例2におけるレーザー光照射面の強度分布とガラス材料表面の変位を示すグラフ。
【図3】実施例3におけるレーザー光照射面の強度分布とガラス材料表面の変位を示すグラフ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for processing a glass material capable of causing a partial shape change on the surface of the glass material, and a glass material processed by the method.
[0002]
[Prior art]
Conventionally, as a method of causing a partial shape change such as a depressed portion or a raised portion on a glass surface, a method of pressing a mold on a previously softened glass surface and molding, a method of patterning with a mask and then a chemical etching There are known a method of performing a treatment, a method of evaporating and melting by directly irradiating a glass surface with a laser, and the like. Among the glasses that have undergone a shape change by such a method, in particular, a glass having a non-spherical cross-sectional shape such as a raised portion and a depressed portion has high utility as an optical lens, and is used as a normal spherical glass lens. It is known that the lens has less aberration and high lens performance. Further, as another application, a glass plate whose surface is patterned by uneven portions is also used as a special substrate such as a recording medium.
[0003]
However, it is difficult to apply a molding method using a mold to glass having a high melting point and high viscosity, and it is also difficult to form a fine shape. In addition, the microfabrication method by etching or laser beam irradiation is a method suitable for forming a concave shape, but it is necessary to remove a portion other than the raised portion in order to form a raised structure, and the control is performed. It's complicated and difficult. The use of microfabrication technology used in semiconductor manufacturing in recent years makes it possible to produce an arbitrary shape, but the time and cost involved are enormous.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the prior art as described above, and a main object thereof is a method capable of easily causing a partial shape change on the surface of a glass material, and having a non-cross-sectional shape. An object of the present invention is to provide a method that can easily form a bulge or a depression having a spherical shape.
[0005]
[Means for Solving the Problems]
The present inventor has conducted intensive studies to achieve the above-mentioned object, and as a result, by irradiating a laser beam to a glass material surface where a volume change is caused by heating, a shape change is caused in an irradiated portion of the glass material surface. It is possible, when the laser light has an irradiation intensity distribution that satisfies a specific condition, it is possible to control the shape of the changing portion according to the intensity distribution, a raised portion having a non-spherical cross section, It has been found that even a depression or the like can be easily formed, and the present invention has been completed here.
[0006]
That is, the present invention provides the following glass material processing method and a glass material processed by the method.
1. A method of irradiating a glass material that undergoes a volume change by heating with laser light having an intensity distribution in a beam to change the shape of an irradiated portion on the surface of the glass material. When the irradiation intensity of the laser light at an arbitrary position is 100, the irradiation intensity of the laser light at a position away from this position by a distance corresponding to the wavelength of the laser light in the diameter direction of the concentric circle of the irradiation part is 80 or less or 120 or less. A method for processing a glass material, comprising using the above laser beam.
2. Item 2. The method according to Item 1, wherein the laser light having an intensity distribution is a laser light generated by a carbon dioxide gas laser.
3. Item 3. The method according to Item 1 or 2, wherein the shape change of the glass material surface formed by the laser light irradiation is a protrusion or a depression formed on the glass material surface of the laser light irradiated portion.
4. Item 4. The method according to Item 3, wherein the cross-sectional shape of the raised or depressed portion formed on the surface of the glass material is an aspherical shape.
5. A glass material processed by any one of the above items 1 to 4, having a shape-changed portion on the surface.
6. Item 6. An optical element comprising the glass material of Item 5.
7. Item 6. A glass substrate comprising the glass material according to item 5.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for processing a glass material of the present invention, a glass material that changes in volume by heating is used as a starting material.
[0008]
Such a glass material is a glass whose volume is increased or decreased by heating. For example, a glass material having the same composition obtained by gradually cooling a molten raw material under atmospheric pressure (hereinafter, “normal glass”) Can be used, a low-density or high-density glass material can be used. Such low-density or high-density glass materials have the property that when heated above a certain temperature determined according to the type of glass, the density changes and the volume changes when approaching the density of ordinary glass. It is.
[0009]
The low-density or high-density glass material described above is not particularly limited. For example, a high-density glass material obtained by pressing ordinary glass at a high temperature, rapidly cooling a molten material from a high temperature. And a low-density glass material (dry glass gel) synthesized by a liquid phase method.
[0010]
Although the density itself of the glass material used in the method of the present invention is not particularly limited, in order to cause an appropriate shape change by the method of the present invention, generally, a density difference of about 1% or more from ordinary glass is required. A glass material, that is, a glass material having a density higher than that of ordinary glass by about 1% or more or a glass material having density of about 1% or more lower than that of ordinary glass is preferable. As described above, ordinary glass is a glass material that is obtained by gradually cooling a molten raw material under atmospheric pressure and that does not change in volume by heating.
[0011]
In the method of the present invention, the material of the glass material as a starting material is not particularly limited, but silicate glass containing silicon dioxide (SiO 2 ) of 20 mol% or more, and B 2 O 3 of 20 mol% or more. A glass containing about 20 mol% or more of a component (glass network former) that forms a glass network structure such as borate glass or a phosphate glass containing 20 mol% or more of P 2 O 5 has a large change in density. It is preferred in that respect.
[0012]
The method of the present invention is a method of irradiating the above-mentioned glass material with a laser beam having an intensity distribution in a beam to change the shape of an irradiated portion on the surface of the glass material. When a laser beam having such an intensity distribution is irradiated, a shape change can be caused in a portion of the glass material surface irradiated with the laser beam. In this case, when a glass material that expands in volume by heating is used, a projection is generated in a portion irradiated with laser light, and when a glass material that is reduced in volume by heating is used, a depression is generated in a portion irradiated with laser light. .
[0013]
As the laser light having an intensity distribution in the beam, assuming that the irradiation intensity of the laser light at an arbitrary position within the laser light irradiation range on the glass material surface is 100, the laser is emitted from this position in the diameter direction of the concentric circle of the irradiation part. It is necessary to use laser light having an irradiation intensity of 80 or less or 120 or more at a position separated by a distance corresponding to the wavelength of light. When using laser light having such a large intensity distribution, by appropriately setting the state of the intensity distribution of the laser light, it is possible to control the shape of a bulge, depression, or the like generated on the surface of the glass material, and according to the purpose. It is possible to form a raised portion, a depressed portion, and the like having a bent shape. As a result, the cross section can be easily formed even if the shape changes in an aspherical shape. Further, by appropriately adjusting the intensity distribution of the laser beam, a shape change portion having a spherical cross section can also be formed. It is possible to do.
[0014]
On the other hand, when the irradiation intensity in an arbitrary part of the laser light irradiation range is set to 100, the irradiation intensity of the laser light in a part separated by a length corresponding to the wavelength of the laser light is larger than 80 and less than 120. However, since the intensity distribution of the laser light is small, it is not possible to arbitrarily control the shape of the raised or depressed portion caused by the irradiation of the laser light.
[0015]
Note that the above-described conditions of the intensity distribution need not be satisfied in all portions within the laser beam irradiation range, but may be satisfied in portions where shape change needs to be controlled.
[0016]
As the laser beam, any laser beam having the above-described intensity distribution can be used without particular limitation. For example, a laser beam generated by a carbon dioxide laser, a Nd: YAG laser, a Ho: YAG laser, or the like can be used.
[0017]
There is also no particular limitation on the method of generating a predetermined intensity distribution in the laser beam, and examples thereof include a method using an appropriate combination of lenses, a method using an appropriate combination of mirrors, and a method using an optical filter having shading. What is necessary is just to apply suitably.
[0018]
There is no particular limitation on the time and the number of times of laser light irradiation, and the irradiation time and the number of times of irradiation may be appropriately determined so that the glass material is heated to a temperature at which a predetermined shape change occurs. In addition, the glass material is preheated to a temperature lower than the temperature at which the volume change occurs, and the laser light is irradiated on such a preheated glass material, whereby the irradiation time and the number of irradiations can be reduced.
[0019]
The glass material obtained by the method of the present invention has a shape in which a portion irradiated with laser light is depressed when the density is increased by heating, and a portion irradiated with the laser light when the density is reduced by heating. Has a raised shape.
[0020]
The shape of the shape-changed portion such as a depression or a protrusion can be controlled by appropriately setting the distribution of the irradiation intensity of the laser beam within a range satisfying the above-described conditions. In this case, the specific shape of the displaced portion differs depending on the material of the glass material, the type of the laser light, the irradiation method, and the like, so that the irradiation intensity distribution of the laser light may be appropriately set according to the specific conditions. Good. By irradiating a laser beam having an intensity distribution in the beam in such a manner, the cross-sectional shape of the shape-changed portion formed on the surface of the glass material can be changed to an arbitrary non-curved surface. By appropriately setting the intensity distribution, it is possible to make the cross-sectional shape of the shape-changed portion a curved shape.
[0021]
According to the present invention, for example, it is possible to form a shape-change portion having a diameter of about 40 to 2000 μm and a height of a bulge or depression of about 0.5 to 10 μm on a glass material surface.
[0022]
When a glass material having transparency is used as the glass material obtained by the method of the present invention, it can be practically used, for example, as a micro optical lens having complicated characteristics. Further, according to the method of the present invention, since geometrical unevenness can be formed on the glass surface, it can be effectively used as a surface treatment method for suppressing light reflection of the substrate. Further, the obtained glass material is also useful as a magnetic disk substrate or the like.
[0023]
【The invention's effect】
According to the method of the present invention, it is possible to easily cause a partial shape change on the surface of a glass material. Moreover, since the shape of the shape-changing portion can be easily controlled, even a glass material having a complicated shape-changing portion can be manufactured relatively easily.
[0024]
【Example】
Examples are shown below to further clarify features of the present invention.
[0025]
Example 1
A silica glass (0.5 mm thick) substrate whose density has been increased by 3.6% in advance by a high-pressure generator is used, and a laser beam (wavelength: 10.6 μm) from a carbon dioxide laser is applied to a small area of about 100 μm in diameter on the surface. Was irradiated. The irradiation conditions are as follows. FIG. 1 shows the intensity distribution of the laser light irradiated portion on the glass surface.
[0026]
Irradiation conditions Laser beam size 100 μm in diameter
Irradiation pulse energy 30mJ
The number of irradiations was 500 times. With respect to the glass substrate which had been partially irradiated with the laser light in this manner, the displacement of the shape-changed portion from the substrate plane was measured with a surface roughness meter. FIG. 1 also shows the measurement results.
[0027]
As is clear from FIG. 1, a maximum displacement of 0.6 μm of the raised shape to be rotated with respect to the center axis of the laser beam is formed on the surface of the glass material, and its cross section is not a spherical surface but a conical shape. It turns out that it is a shape.
[0028]
Example 2
Using a silica glass (0.5 mm thick) substrate whose density has been increased by 3.6% by a high-pressure generator in advance, a laser beam (wavelength: 10.6 μm ) Was irradiated. The irradiation conditions are as follows. FIG. 2 shows the intensity distribution of the laser light irradiated portion on the glass surface.
[0029]
Irradiation conditions Laser beam size 100 μm in diameter
Irradiation pulse energy 30mJ
The number of times of irradiation was 2,000 times. With respect to the glass substrate which was partially irradiated with the laser beam in this manner, the displacement of the shape-changed portion from the substrate plane was measured by a surface roughness meter. FIG. 2 also shows the measurement results.
[0030]
As is apparent from FIG. 2, a maximum of 1.6 μm displacement of the raised shape to be rotated with respect to the center axis of the laser beam is formed on the surface of the glass material, and its cross section is not a spherical surface but a sharp center. It can be seen that the shape is such that a bulge and a gentle hem spread around it.
[0031]
Example 3
Using a calcined gel silica glass (2 mm thick) substrate with a density reduced by 6.7% obtained by a liquid phase method, a laser beam (wavelength of 10 .6 μm). The irradiation conditions are as follows. FIG. 3 shows the intensity distribution of the laser light irradiated portion on the glass surface.
[0032]
Irradiation conditions Laser beam size 100 μm in diameter
Irradiation pulse energy 500mJ
Irradiation twice Twenty times with respect to the glass substrate which had been partially irradiated with the laser beam in such a manner as described above, the displacement of the shape-changed portion from the substrate plane was measured with a surface roughness meter. FIG. 3 also shows the measurement results.
[0033]
As is apparent from FIG. 3, a maximum displacement of 2.8 μm of the depressed shape to be rotated with respect to the center axis of the laser beam is formed on the surface of the glass material, and its cross section is not a spherical surface but a Gaussian function. It turns out that it is a close shape.
[Brief description of the drawings]
FIG. 1 is a graph showing the intensity distribution of a laser beam irradiation surface and the displacement of a glass material surface in Example 1.
FIG. 2 is a graph showing an intensity distribution on a laser beam irradiation surface and a displacement of a glass material surface in Example 2.
FIG. 3 is a graph showing the intensity distribution of the laser beam irradiation surface and the displacement of the glass material surface in Example 3.

Claims (7)

加熱により体積変化を生じるガラス材料に、ビーム内に強度分布を有するレーザー光を照射して、該ガラス材料表面の照射部分の形状を変化させる方法であって、ガラス材料表面におけるレーザー光照射範囲内の任意位置のレーザー光の照射強度を100とした場合に、この位置から照射部の同心円の直径方向にレーザー光の波長に相当する長さ離れた位置におけるレーザー光の照射強度が80以下又は120以上のレーザー光を用いることを特徴とする、ガラス材料の加工方法。A method of irradiating a glass material that undergoes a volume change by heating with laser light having an intensity distribution in a beam to change the shape of an irradiated portion on the surface of the glass material. When the irradiation intensity of the laser light at an arbitrary position is 100, the irradiation intensity of the laser light at a position away from this position by a distance corresponding to the wavelength of the laser light in the diameter direction of the concentric circle of the irradiation part is 80 or less or 120 or less. A method for processing a glass material, comprising using the above laser beam. 強度分布を有するレーザー光が、炭酸ガスレーザーによるレーザー光である請求項1に記載の方法。The method according to claim 1, wherein the laser light having an intensity distribution is a laser light generated by a carbon dioxide gas laser. レーザー光照射によって形成されるガラス材料表面の形状変化が、レーザー光照射部分のガラス材料表面に形成される隆起又は陥没である請求項1又は2に記載の方法。The method according to claim 1, wherein the shape change of the surface of the glass material formed by the irradiation of the laser light is a protrusion or a depression formed on the surface of the glass material at a portion irradiated with the laser light. ガラス材料表面に形成された隆起又は陥没部分の断面形状が、非球面形状である請求項3に記載の方法。The method according to claim 3, wherein the cross-sectional shape of the raised or depressed portion formed on the surface of the glass material is an aspherical shape. 請求項1〜4のいずれかの方法によって加工された、表面に形状変化部分を有するガラス材料。A glass material processed by the method according to any one of claims 1 to 4, having a shape-change portion on a surface. 請求項5のガラス材料からなる光学素子。An optical element comprising the glass material according to claim 5. 請求項5のガラス材料からなるガラス基板。A glass substrate comprising the glass material according to claim 5.
JP2002195355A 2001-12-28 2002-07-04 Method of processing vitreous material Pending JP2004035333A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002195355A JP2004035333A (en) 2002-07-04 2002-07-04 Method of processing vitreous material
US10/223,636 US6922534B2 (en) 2001-12-28 2002-08-20 Process cartridge and electrophotographic image forming apparatus having electrical connection for memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195355A JP2004035333A (en) 2002-07-04 2002-07-04 Method of processing vitreous material

Publications (1)

Publication Number Publication Date
JP2004035333A true JP2004035333A (en) 2004-02-05

Family

ID=31703752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195355A Pending JP2004035333A (en) 2001-12-28 2002-07-04 Method of processing vitreous material

Country Status (1)

Country Link
JP (1) JP2004035333A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112415A1 (en) * 2005-04-15 2006-10-26 Asahi Glass Company, Limited Method for reducing diameter of bubble existing inside of glass plate
WO2007061018A1 (en) * 2005-11-22 2007-05-31 Olympus Corporation Method of glass substrate working and glass part
WO2009060875A1 (en) * 2007-11-08 2009-05-14 Asahi Glass Co., Ltd. Glass plate manufacturing method
WO2022114060A1 (en) * 2020-11-25 2022-06-02 Hoya株式会社 Method for manufacturing glass plate, method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and annular glass plate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112415A1 (en) * 2005-04-15 2006-10-26 Asahi Glass Company, Limited Method for reducing diameter of bubble existing inside of glass plate
KR100910952B1 (en) 2005-04-15 2009-08-05 아사히 가라스 가부시키가이샤 Method for reducing diameter of bubble existing inside of glass plate
US8225627B2 (en) 2005-04-15 2012-07-24 Asahi Glass Company, Limited Method for reducing diameter of bubble existing in a glass plate
JP4998265B2 (en) * 2005-04-15 2012-08-15 旭硝子株式会社 Method of reducing the diameter of bubbles existing inside a glass plate
WO2007061018A1 (en) * 2005-11-22 2007-05-31 Olympus Corporation Method of glass substrate working and glass part
JPWO2007061018A1 (en) * 2005-11-22 2009-05-07 オリンパス株式会社 Glass substrate processing method and glass part
JP4708428B2 (en) * 2005-11-22 2011-06-22 オリンパス株式会社 Processing method of glass substrate
US8307672B2 (en) 2005-11-22 2012-11-13 Olympus Corporation Glass substrate processing method and glass component
WO2009060875A1 (en) * 2007-11-08 2009-05-14 Asahi Glass Co., Ltd. Glass plate manufacturing method
KR101271292B1 (en) 2007-11-08 2013-06-04 아사히 가라스 가부시키가이샤 Glass plate manufacturing method
JP5347969B2 (en) * 2007-11-08 2013-11-20 旭硝子株式会社 Manufacturing method of glass plate
WO2022114060A1 (en) * 2020-11-25 2022-06-02 Hoya株式会社 Method for manufacturing glass plate, method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and annular glass plate

Similar Documents

Publication Publication Date Title
US11667062B2 (en) Nanostructures from laser-ablated nanohole templates
Liu et al. Optical nanofabrication of concave microlens arrays
US5919607A (en) Photo-encoded selective etching for glass based microtechnology applications
US6949215B2 (en) Method for processing a three-dimensional structure by laser
CN111060996B (en) Local hollow focusing super lens and preparation method and application thereof
JP7259845B2 (en) Processing method of diffusion element, lighting module and aspherical lens
TWI331945B (en) Method and system pf controlled optical beam for mold fabrication by ultra-fast laser technique
JP2018521950A (en) Glass protrusions and laser-induced growth on glass articles
JP6784487B2 (en) Optical body and display device
JP2004035333A (en) Method of processing vitreous material
CN109132998A (en) The method of pulse nanosecond laser induction transparent dielectric material surface periodic structure
Su et al. Direct Microtip Focused Electrohydrodynamic Jet Printing of Tailored Microlens Arrays on PDMS Nanofilm‐Modified Substrate
Lim et al. Sub-micron surface patterning by laser irradiation through microlens arrays
JP2008026437A (en) Method for producing glass microlens array and glass microlens array
JP2008216610A (en) Method of manufacturing optical component for laser beam machining
US7531104B1 (en) Micro-optic elements and method for making the same
JP3951020B2 (en) Glass material processing method and glass material processed by the method
Sugimura et al. Selective area deposition of silicon‐nitride and silicon‐oxide by laser chemical vapor deposition and fabrication of microlenses
Liu et al. Etching-assisted femtosecond laser microfabrication
US20210206693A1 (en) Methods and apparatus for forming and polishing glass, glass-ceramic and ceramic preforms to form shaped plates for liquid lenses
JP4257411B2 (en) Glass material having refractive index distribution and manufacturing method thereof
WO2016194032A1 (en) Optical device and optical device manufacturing method
Yin et al. Fabrication of nanostructures on curved surfaces
JPH0235815Y2 (en)
JPH02168206A (en) Refractive index distribution coupler

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060216

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060413

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

A02 Decision of refusal

Effective date: 20070206

Free format text: JAPANESE INTERMEDIATE CODE: A02