JP2004033468A - Bioelectrode - Google Patents

Bioelectrode Download PDF

Info

Publication number
JP2004033468A
JP2004033468A JP2002194534A JP2002194534A JP2004033468A JP 2004033468 A JP2004033468 A JP 2004033468A JP 2002194534 A JP2002194534 A JP 2002194534A JP 2002194534 A JP2002194534 A JP 2002194534A JP 2004033468 A JP2004033468 A JP 2004033468A
Authority
JP
Japan
Prior art keywords
electrode
conductive pattern
wiring
bioelectrode
meandering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002194534A
Other languages
Japanese (ja)
Other versions
JP3923861B2 (en
Inventor
Koichi Saito
斎藤 浩一
Shinichi Kawamura
川村 真一
Akira Mizawa
見沢 明
Masayoshi Ishida
石田 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Denshi Co Ltd
Original Assignee
Fukuda Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Denshi Co Ltd filed Critical Fukuda Denshi Co Ltd
Priority to JP2002194534A priority Critical patent/JP3923861B2/en
Publication of JP2004033468A publication Critical patent/JP2004033468A/en
Application granted granted Critical
Publication of JP3923861B2 publication Critical patent/JP3923861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make a bioelectrode for obtaining biogenic signals disposable including a cable part. <P>SOLUTION: The bioelectrode has a resin film on which a conductive pattern is formed and a base disposed on the surface opposite to the conductive pattern of the resin film. The conductive pattern consists of an electrode part for detecting biogenic signals and a wiring part connected to the electrode part. At least a part of the wiring part and the corresponding resin film are formed in the meandering shape, and the base disposed on the meandering-shaped wiring part is elastic. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は生体信号取得用の電極(生体電極)に関し、特に、ケーブルが不要で、使い捨ての可能な生体電極に関する。
【0002】
【従来の技術】
従来、心電計を代表とする生体信号取得装置においては、被検者の皮膚表面の電位を検出するための生体電極が用いられている。このような生体電極には様々な構成のものが存在するが、大きく分けて、被検者の皮膚に取り付ける電極部分と、電極部分と生体信号取得装置との間を接続するケーブル(リードとも言う)とが一体化したもの(一体型)と、電極部分とケーブル部分を着脱可能な構成とし、電極部分を使い捨て可能にしたもの(分離型)が存在する。
【0003】
【発明が解決しようとする課題】
しかし、いずれの構成にしてもケーブル部分は複数の被検者に対して繰り返し用いられる。ケーブルは通常十分な耐久性を持つように設計されてはいるものの、断線の可能性を無くすことはできない。また、例えばホルタ心電計等を用いた心電信号の取得のように、日常生活における長時間の取得を行う場合、ケーブルを装着した状態で日常生活を送らねばならないため、装着感を改善するために細いケーブルを使用する場合が多い。ケーブルが細い上、日常生活において被検者は様々な体位を取るため、断線の可能性は安静時の信号取得に用いられるケーブルよりも高くならざるを得ない。しかも、万一断線に気づかずに生体信号の取得を行ってしまった場合、再度取得をやり直さねばならなくなることもあり、被検者の負担が増すという問題もある。
【0004】
さらに、従来の分離型生体電極では、電極部分をそれぞれケーブルに接続する必要があり、接続操作が煩雑であった。
また、従来の生体電極においては、被検者の体格差をカバーするため、ケーブル部分が長めになるよう設計されており、着脱時にケーブルが絡まったり、着替えを行う場合などに煩わしいという問題もあった。
また、特に一体型生体電極では、同一電極を複数の被検者に繰り返し用いるため、被検者が変わる毎にケーブルの清掃等のメンテナンスが必要であった。
【0005】
【課題を解決するための手段】
このような従来技術の問題点を解決するため、本発明による生体電極は以下の構成を備える。
すなわち、被検者の体表面に装着し、被検者の生体信号を取得するための生体電極であって、導電パターンが設けられた樹脂フィルムと、導電パターンの樹脂フィルムに対向する面に設けられたベースとを有し、導電パターンが、生体信号を検出するための電極部と、当電極部に接続された配線部とから形成され、少なくとも配線部の一部と、対応する樹脂フィルムが蛇行形状を有し、かつ当蛇行形状を有する配線部に設けられるベースが伸縮性を有することを特徴とする。
【0006】
【発明の実施の形態】
以下、図面を参照して本発明をその好適な実施形態に基づき詳細に説明する。なお、以下、ホルタ心電計に用いる生体電極に本発明を適用した場合を例に説明するが、本発明は他の心電計はもとより、心電信号以外の生体信号の取得に用いられる生体電極に対しても適用可能である。
【0007】
■(第1の実施形態)
図1は、本発明の第1の実施形態に係る生体電極を被検者への装着面側から見た構成例を示す平面図である。図1に示す生体電極は、1chの誘導信号を取得するための生体電極であり、中心電極部30と、中心電極部30から延びる2つの周辺電極部10を有している。なお、詳細は後述するが、各電極部に設けられた電極は電気的には接続されていない。すなわち、周辺電極部10の配線は中心電極部30上を通ってはいるが、各配線は互いに絶縁されている。各電極部からの配線は末端部40に集められ、直接、あるいは他のケーブルを介して心電計のコネクタに接続される。
【0008】
各周辺電極部10は中心電極部30と伸縮配線部20によって接続されている。なお、図1において、伸縮配線部20の導電パターンは、実際にはベース11の裏側(非装着面側)に貼りつけられているため、ベース11を透して見えるものである。
【0009】
図2は図1における周辺電極部10と、伸縮配線部20の詳細な構成例を示す平面図、図3は図2のA−A断面図である。図2は、図1とは反対に、被検者の非装着面側から見た平面図となっている。
【0010】
本実施形態において、周辺電極部10と伸縮配線部20は、共通のベース11に設けられている。ベース11は薄く、伸縮性を有し、かつ肌に触れた場合刺激が少ない柔らかな素材であることが好まく、例えばPET、レーヨン、ウレタン等を用いた不織布を用いることが可能である。ベース11には導電パターン23が印刷された保護フィルム12が接着剤(図示せず)により貼り付けられている。導電パターンは例えば銀と塩化銀の合金であり、また保護フィルムは例えば厚さ100μm程度の樹脂フィルム、例えばPETフィルムを用いることができる。
【0011】
導電パターン23の先端は電極13を形成し、電極13は周辺電極部10の略中央に位置するように構成されている。ベース11の、電極13とその近傍に対応する領域は略円形に切り抜かれており、電極13が露出するようになっている。また、電極13上には導電性のゲル14が設けられている。従って、電極の装着時にはゲル14が被検者の皮膚に密着し、装着部位の生体信号はゲル14を介して電極13へ伝導し、さらに導電パターン23を通じて伝達される。ベース11の装着面側、ゲル14の周囲には、装着をより確実にするための粘着剤15が塗布されている。粘着剤15は例えばシリコン系粘着剤である。
【0012】
導電パターン23の、伸縮配線部20に対応する部分は、図示するように蛇行形状を有しており、保護フィルム12も導電パターン23に対応した蛇行形状を有している。ベース11が伸縮性を有し、導電パターン23及びその保護フィルム12が蛇行形状を有することにより、伸縮配線部20は導電パターン23が破断することなく、ベース11の伸縮に合わせて伸縮可能である。
【0013】
伸縮配線部20に設ける導電パターン23とその保護フィルム12の形状は導電パターン23が判断することなく伸縮可能であれば任意の形状であってよく、例えば図4に示すようにより緩やかな蛇行形状であっても良い。蛇行の程度は対応すべき配線長(中心電極部30に対し、周辺電極部10が到達可能であるべき距離の範囲)によって適宜定めることができる。すなわち、広い範囲の配線長に対応すべき場合には、導電パターン23が長くなるよう、大きく蛇行させたり、また蛇行の頻度を高くすればよい。また、逆に狭い範囲の配線長に対応すればよい場合には、より直線に近い、緩やかに蛇行した導電パターン23を採用することができる。
【0014】
また、図5に示すように、導電パターン23の蛇行部分に対応してベース11に切れ込み24を設けることにより、ベース11の素材が有する伸縮性を超える配線長に対応することも可能である。なお、切れ込み24を蛇行部分毎に設けるのではなく、所定数毎に設けたり、切れ込みを設ける範囲と設けない範囲を設けるなどの変更も任意に行うことができる。
【0015】
さらに、伸縮配線部20に設けられる導電パターン23全部が蛇行している必要は必ずしも無く、図6に示すように、部分的に蛇行させても良い。ただし、蛇行していない部分の導電パターン23が、ベース11の伸張時に加わる張力によって破断しないよう、ベース11を伸縮性のあまり高くない素材で構成する等の考慮を行うことが望ましい。
【0016】
また、図7に示すように、蛇行部分に対応する保護フィルム12において、特に外側に位置する曲がり角Aの形状は丸みを持たせることが好ましい。鋭角な形状を有する保護フィルム12を用いた場合、被検者の肌に刺激を与え、装着感を悪化させる虞がある。内側に位置する曲がり角Bについては、丸みを持たせても持たせなくてもよい。
【0017】
次に、中央電極部30及び末端部40の構成を、図8を参照して説明する。図8(a)は中央電極部30の装着面側から見た拡大平面図、図8(b)は中央電極部30から末端部40へ至る部分の断面図である。
【0018】
中央電極部30の構成は基本的に図3を用いて説明した周辺電極部10と同一であるが、保護フィルム12に印刷される配線パターンが中央電極部30の電極13だけでなく、周辺電極部10へ延びる導電パターン23を含んでいる点が大きく異なる。周辺電極部10へ延びる導電パターン23は、電極13を露出させるために中央電極部30の中央に設けられた、ベース11の開口部周囲に沿って末端部40へ引き回される。導電パターン23が印刷される保護フィルム12は絶縁体であるため、同一保護フィルム上に印刷される、末端部から各電極部へ延びる3本の導電パターンは互いに絶縁されている。
【0019】
中央電極部30から末端部40に至る部分にはベース11が存在しないため、導電パターン23の露出を防止するために絶縁層32が例えばコーティングにより設けられている。絶縁層32は末端部40の、心電計又は心電計接続用のコネクタ変換ケーブルと電気的に接続されるコネクタ部分には設けられない。また、コネクタ部分を補強するため、裏面には補強部材41が貼り付けられる。挿入面マーク42は、絶縁層32表面に印刷されるマークであり、心電計又は心電計接続用コネクタ変換ケーブルへの挿入方向を明示している。
【0020】
このような生体電極は、例えば次のような工程で製造することが可能である。すなわち、保護フィルム12に生体電極全体の導電パターンを印刷し、型抜きする。一方、各電極部とこれらを接続する伸縮配線部20に対応する形状のベース11を作成する。電極用の開口部も設けておく。そして、保護フィルム12の導電パターン23形成面に接着剤を塗布し、ベース11と接着する。ゲル14や粘着剤15、絶縁層32、補強部材41は適切なタイミングで設ければよい。そして、最後に、ゲル14と粘着剤15を覆う剥離フィルムを取り付ける。
【0021】
あるいは、中央電極部30と末端部40を1つの部品(中央電極部品)、伸縮配線部20と対応する周辺電極部10を1つの部品(周辺電極部品)として作成し、例えば図1に示すL字形の生体電極とする場合には中央電極部品に2つの周辺電極部品を取り付けることによっても製造が可能である。中央電極部品と周辺電極部品とは、導電パターンが導通するように保護フィルム相互を融着することにより接着することが可能である。
【0022】
次に、本実施形態に係る生体電極の使用方法について図9を用いて説明する。本実施形態に係る生体電極は、例えば図9(a)に示すように、中央電極部30から横方向に延びる周辺電極部10を中央電極部30上に折り畳んだ状態で提供される。
【0023】
まず、上部に位置する周辺電極部10の剥離フィルムを剥がし、胸骨上端部に貼り付ける。そして、中央電極部30を自然に垂れ下がった位置に貼り付ける(図9(b))。次に、もう一方の周辺電極部10の剥離フィルムを剥がし、左胸側面に貼り付ける(図9(c))。この場合、中央電極部30は不関電極として機能する。
【0024】
このように生体電極を装着した後、末端部40を心電計のコネクタ又は、心電計のコネクタに一端を接続されたコネクタ変換ケーブルの他端に挿入する。コネクタ変換ケーブルは、本実施形態に係る生体電極のコネクタ部形状を、任意形状及びピン配置のコネクタに変換するケーブルであり、この変換ケーブルを用いることにより、従来の生体電極に適合した心電計に本実施形態に係る生体電極を使用することが可能になる。
【0025】
このように、本実施形態に係る生体電極は、簡便な構成で使い捨てすることが可能である。そのため、従来の一体型生体電極のようなケーブル清掃等のメンテナンスが不要であり、手間が掛からない上、衛生面においても改善される。また、電極部分とケーブル部分が一体となっているため、分離型生体電極のように電極とケーブルを個々に接続する手間が不要となる。
さらに、従来のケーブルに相当する伸縮配線部が伸縮性を有するため、様々な体型の被検者が用いてもケーブルが余ったりすることが無く、装着感が良い。また、電極相互の位置が予め大まかに決められているため、従来の生体電極に比べて電極の取り付け位置の目安がつけやすく、被検者の装着が容易である。
【0026】
■(第2の実施形態)
第1の実施形態では、伸縮配線部20を構成するベース11が、蛇行する導電パターン23の形状とは無関係な、帯形状を有していた。これに対し、本実施形態に係る生体電極は、伸縮配線部20を構成するベース11が、実質的に導電パターン23の保護フィルム12と同一の形状を有する点を特徴とする。
【0027】
図10は、本実施形態に係る生体電極の、周辺電極部10及び伸縮配線部20部分の拡大平面図である。第1の実施形態における同様の図面である図2との比較から明らかなように、本実施形態に係る生体電極のベース11は、保護フィルム12と実質的に同一形状を有している。
【0028】
このように構成することにより、例えば上述の周辺電極部品を製造する場合に、導電パターン23を印刷した保護フィルム12と、ベース11とを接着してから一度に型抜きすることが可能になり、製造がより容易になる。また、伸縮配線部20の伸縮性が増すという利点がある。また、図6で説明したように、電極部を接続する導電パターン23全部が蛇行している必要は必ずしも無く、部分的に蛇行させても良い。例えば導電パターン23の中央部のみを蛇行させた場合の構成例を図11に示す。
【0029】
■(第3の実施形態)
図12は本発明の第3の実施形態に係る生体電極の構成例を示す平面図である。本実施形態に係る生体電極は、周辺電極部10(及び対応する伸縮配線部20)が3つに増えている点以外は第1の実施形態に係る生体電極と同一の構成を有する。
【0030】
すなわち、本発明に係る生体電極は、取得する生体信号の種類やチャネル数に応じて、周辺電極部10の数と取り付け位置を任意に設定可能である。図12に示す例では、2chの心電信号を取得することが可能である。図13に、他の構成例を電極の配置として示す。図13(d)の電極配置を用いた場合の具体例を図14に示す。
【0031】
なお、図12に示す構成において、第2の実施形態に示したような形状の伸縮配線部20を用いることももちろん可能である。この場合の構成例を図15に示す。
【0032】
【他の実施形態】
上述の実施形態においては、ベース11を同一の素材で構成した場合のみを説明したが、伸縮性が必要とされるのは原則的に伸縮配線部20部分のみであるため、周辺電極部10や中央電極部30で用いられるベースは伸縮配線部20部分のベースとは異なる材質であってもよい。
【0033】
また、上述の実施形態においては、中央電極部30に各周辺電極部10が接続される構成を示したが、中央電極部30には必ずしも電極を設ける必要はない。すなわち、各周辺電極部10を接続する機能と、各周辺電極部10からの導電パターン23を末端部40へ集める機能のみを有していても良い。
【0034】
さらに、各電極部の外形は円形に限定されるものではなく、任意の形状を採用することが可能である。
【0035】
【発明の効果】
以上説明したように、本発明によれば、電極部分とケーブル部分を簡便な構成で一体化したことにより、従来必要であったケーブルを不要とし、ケーブル部分を含めて使い捨てすることが可能になり、繰り返し使用による断線を解消することができる。また、ケーブル部分に伸縮性を持たせることにより、装着感を向上することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る生体電極の全体構成例を示す平面図である。
【図2】図1における周辺電極部10と伸縮配線部20の構成例を示す平面図である。
【図3】図2におけるA−A断面図である。
【図4】伸縮配線部20に設ける導電パターン23の別の形状例を示す図である。
【図5】伸縮配線部20の別の構成例を示す図である。
【図6】伸縮配線部20に設ける導電パターン23のさらに別の形状例を示す図である。
【図7】伸縮配線部20に設ける導電パターン23の形状を説明する図である。
【図8】図1における中央電極部30と末端部40の構成例を示す図である。
【図9】図1に示す生体電極の取り付け手順を説明する図である。
【図10】本発明の第2の実施形態に係る生体電極における周辺電極部10と伸縮配線部20の構成例を示す平面図である。
【図11】本発明の第2の実施形態に係る生体電極の別の構成例を示す平面図である。
【図12】本発明の第3の実施形態に係る生体電極の全体構成例を示す平面図である。
【図13】本発明の第3の実施形態に係る生体電極の他の電極配置例を示す平面図である。
【図14】図13(d)に示す電極配置を有する生体電極の構成例を示す平面図である。
【図15】本発明の第3の実施形態に係る生体電極に第2の実施形態における伸縮配線部の構成を適用した例を示す平面図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode for acquiring a biological signal (biological electrode), and more particularly to a disposable biological electrode that does not require a cable.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a biological signal acquisition device represented by an electrocardiograph, a biological electrode for detecting a potential on a skin surface of a subject is used. There are various configurations of such bioelectrodes, and they are roughly divided into an electrode portion to be attached to the skin of a subject and a cable (also referred to as a lead) connecting between the electrode portion and the biosignal acquisition device. ) Are integrated (integrated type), and those in which the electrode portion and the cable portion are detachable so that the electrode portion is disposable (separable type).
[0003]
[Problems to be solved by the invention]
However, in any configuration, the cable portion is repeatedly used for a plurality of subjects. Although cables are usually designed to be durable enough, the possibility of breaking is not eliminated. In addition, when performing long-term acquisition in daily life, such as acquisition of an electrocardiographic signal using a Holter monitor or the like, it is necessary to spend daily life with the cable attached, so that the feeling of wearing is improved. In many cases, a thin cable is used. Since the cable is thin and the subject takes various positions in daily life, the possibility of disconnection must be higher than the cable used for signal acquisition at rest. Moreover, if the biosignal is acquired without noticing the disconnection, it may be necessary to perform the acquisition again, and there is a problem that the burden on the subject increases.
[0004]
Furthermore, in the conventional separation-type bioelectrode, it is necessary to connect each electrode portion to a cable, and the connection operation is complicated.
In addition, in the conventional bioelectrode, the cable portion is designed to be long in order to cover the physique difference of the subject, and there is also a problem that the cable is tangled at the time of attachment / detachment and troublesome when changing clothes. Was.
In particular, in the case of an integrated bioelectrode, since the same electrode is repeatedly used for a plurality of subjects, maintenance such as cleaning of a cable is required every time the subject changes.
[0005]
[Means for Solving the Problems]
In order to solve the problems of the related art, the bioelectrode according to the present invention has the following configuration.
That is, a bioelectrode to be attached to the body surface of the subject and acquire a biosignal of the subject, and a resin film provided with a conductive pattern, and a bioelectrode provided on a surface facing the resin film of the conductive pattern. Having a base, and a conductive pattern is formed from an electrode portion for detecting a biological signal, and a wiring portion connected to the electrode portion, and at least a part of the wiring portion and a corresponding resin film are formed. It has a meandering shape, and a base provided on the wiring portion having the meandering shape has elasticity.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on preferred embodiments with reference to the drawings. Hereinafter, a case where the present invention is applied to a bioelectrode used for a Holter electrocardiograph will be described as an example. However, the present invention is not limited to other electrocardiographs, and a biomedical signal used to acquire a biosignal other than an electrocardiographic signal. It is also applicable to electrodes.
[0007]
■ (First embodiment)
FIG. 1 is a plan view showing a configuration example of the bioelectrode according to the first embodiment of the present invention as viewed from a mounting surface side on a subject. The bioelectrode shown in FIG. 1 is a bioelectrode for acquiring an induction signal of one channel, and has a center electrode unit 30 and two peripheral electrode units 10 extending from the center electrode unit 30. Although details will be described later, the electrodes provided in the respective electrode portions are not electrically connected. That is, the wires of the peripheral electrode portion 10 pass over the center electrode portion 30, but the wires are insulated from each other. The wiring from each electrode is collected at the distal end 40 and connected directly or via another cable to the connector of the electrocardiograph.
[0008]
Each of the peripheral electrode portions 10 is connected to the center electrode portion 30 by a telescopic wiring portion 20. In FIG. 1, the conductive pattern of the extendable wiring portion 20 is actually pasted on the back side (non-mounting surface side) of the base 11, and thus can be seen through the base 11.
[0009]
FIG. 2 is a plan view showing a detailed configuration example of the peripheral electrode section 10 and the expansion / contraction wiring section 20 in FIG. 1, and FIG. 3 is a sectional view taken along line AA of FIG. FIG. 2 is a plan view viewed from the non-wearing side of the subject, contrary to FIG.
[0010]
In the present embodiment, the peripheral electrode section 10 and the extendable wiring section 20 are provided on a common base 11. The base 11 is preferably a soft material that is thin, has elasticity, and is less irritating when touching the skin. For example, a nonwoven fabric using PET, rayon, urethane, or the like can be used. The protective film 12 on which the conductive pattern 23 is printed is attached to the base 11 with an adhesive (not shown). The conductive pattern is, for example, an alloy of silver and silver chloride, and the protective film is, for example, a resin film having a thickness of about 100 μm, for example, a PET film.
[0011]
The tip of the conductive pattern 23 forms the electrode 13, and the electrode 13 is configured to be located substantially at the center of the peripheral electrode unit 10. A region of the base 11 corresponding to the electrode 13 and its vicinity is cut out in a substantially circular shape so that the electrode 13 is exposed. In addition, a conductive gel 14 is provided on the electrode 13. Therefore, when the electrode is attached, the gel 14 is in close contact with the skin of the subject, and the biological signal at the attachment site is transmitted to the electrode 13 via the gel 14 and further transmitted through the conductive pattern 23. An adhesive 15 is applied to the mounting surface side of the base 11 and the periphery of the gel 14 to make mounting more reliable. The adhesive 15 is, for example, a silicon-based adhesive.
[0012]
The portion of the conductive pattern 23 corresponding to the stretchable wiring portion 20 has a meandering shape as shown in the drawing, and the protective film 12 also has a meandering shape corresponding to the conductive pattern 23. Since the base 11 has elasticity and the conductive pattern 23 and the protective film 12 have a meandering shape, the elastic wiring portion 20 can expand and contract with the expansion and contraction of the base 11 without breaking the conductive pattern 23. .
[0013]
The shape of the conductive pattern 23 and the protective film 12 provided on the stretchable wiring portion 20 may be any shape as long as the conductive pattern 23 can expand and contract without being judged. For example, as shown in FIG. There may be. The degree of meandering can be determined as appropriate according to the corresponding wiring length (the range of distance that the peripheral electrode unit 10 can reach the center electrode unit 30). In other words, when a wide range of wiring lengths is to be handled, the conductive pattern 23 may be meandered so as to be long, or the meandering frequency may be increased. On the other hand, if it is sufficient to correspond to a narrow range of wiring length, a gently meandering conductive pattern 23 closer to a straight line can be employed.
[0014]
Further, as shown in FIG. 5, by providing the cuts 24 in the base 11 corresponding to the meandering portions of the conductive patterns 23, it is possible to cope with a wiring length exceeding the elasticity of the material of the base 11. It is to be noted that, instead of providing the cuts 24 for each meandering portion, it is also possible to arbitrarily make changes such as providing a predetermined number of cuts, and providing a range where cuts are provided and a range where cuts are not provided.
[0015]
Further, it is not always necessary that the entirety of the conductive pattern 23 provided on the expansion / contraction wiring portion 20 meander, and the conductive pattern 23 may partially meander as shown in FIG. However, it is desirable to consider that the base 11 is made of a material that is not very high in elasticity so that the conductive pattern 23 in the non-snaked portion is not broken by the tension applied when the base 11 is extended.
[0016]
Further, as shown in FIG. 7, in the protective film 12 corresponding to the meandering portion, it is preferable that the shape of the bend A located particularly on the outside is rounded. When the protective film 12 having an acute angle is used, the skin of the subject may be stimulated and the feeling of wearing may be deteriorated. The corner B located inside may or may not be rounded.
[0017]
Next, the configuration of the center electrode portion 30 and the terminal portion 40 will be described with reference to FIG. FIG. 8A is an enlarged plan view of the central electrode section 30 as viewed from the mounting surface side, and FIG. 8B is a cross-sectional view of a portion from the central electrode section 30 to the end section 40.
[0018]
The configuration of the central electrode unit 30 is basically the same as that of the peripheral electrode unit 10 described with reference to FIG. 3, but the wiring pattern printed on the protective film 12 is not only the electrode 13 of the central electrode unit 30 but also the peripheral electrode. The difference is that a conductive pattern 23 extending to the portion 10 is included. The conductive pattern 23 extending to the peripheral electrode portion 10 is routed to the terminal portion 40 along the periphery of the opening of the base 11 provided at the center of the central electrode portion 30 to expose the electrode 13. Since the protective film 12 on which the conductive pattern 23 is printed is an insulator, the three conductive patterns that are printed on the same protective film and extend from the end to each electrode are insulated from each other.
[0019]
Since the base 11 does not exist in the portion from the central electrode portion 30 to the terminal portion 40, the insulating layer 32 is provided by, for example, a coating to prevent the conductive pattern 23 from being exposed. The insulating layer 32 is not provided on the connector portion of the terminal portion 40 that is electrically connected to the electrocardiograph or the connector conversion cable for connecting the electrocardiograph. Further, a reinforcing member 41 is attached to the back surface to reinforce the connector portion. The insertion surface mark 42 is a mark printed on the surface of the insulating layer 32, and specifies the direction of insertion into the electrocardiograph or the electrocardiograph connection connector conversion cable.
[0020]
Such a biological electrode can be manufactured, for example, by the following steps. That is, the conductive pattern of the entire bioelectrode is printed on the protective film 12 and the die is cut out. On the other hand, a base 11 having a shape corresponding to each of the electrode portions and the expansion / contraction wiring portion 20 connecting them is created. An opening for an electrode is also provided. Then, an adhesive is applied to the surface of the protective film 12 on which the conductive patterns 23 are formed, and is adhered to the base 11. The gel 14, the adhesive 15, the insulating layer 32, and the reinforcing member 41 may be provided at appropriate timing. Finally, a release film covering the gel 14 and the adhesive 15 is attached.
[0021]
Alternatively, the central electrode part 30 and the terminal part 40 are created as one part (central electrode part), and the peripheral electrode part 10 corresponding to the expansion / contraction wiring part 20 is created as one part (peripheral electrode part). In the case where the bioelectrode is shaped like a letter, it can also be manufactured by attaching two peripheral electrode parts to the central electrode part. The central electrode component and the peripheral electrode component can be bonded by fusing the protective films to each other so that the conductive patterns are conducted.
[0022]
Next, a method of using the bioelectrode according to the present embodiment will be described with reference to FIG. The biological electrode according to the present embodiment is provided, for example, in a state where a peripheral electrode unit 10 extending in a lateral direction from a central electrode unit 30 is folded on the central electrode unit 30 as shown in FIG.
[0023]
First, the release film of the peripheral electrode portion 10 located at the upper portion is peeled off and attached to the upper end of the sternum. Then, the central electrode portion 30 is attached to the position where it naturally hangs down (FIG. 9B). Next, the release film of the other peripheral electrode portion 10 is peeled off and attached to the left chest side surface (FIG. 9C). In this case, the center electrode section 30 functions as an indifferent electrode.
[0024]
After attaching the bioelectrode in this manner, the terminal portion 40 is inserted into the other end of the connector of the electrocardiograph or the connector conversion cable having one end connected to the connector of the electrocardiograph. The connector conversion cable is a cable for converting the shape of the connector portion of the bioelectrode according to the present embodiment into a connector having an arbitrary shape and a pin arrangement. By using this conversion cable, an electrocardiograph adapted to a conventional bioelectrode is used. Thus, the biological electrode according to the present embodiment can be used.
[0025]
Thus, the bioelectrode according to the present embodiment can be disposable with a simple configuration. This eliminates the need for maintenance such as cleaning the cable as in the case of the conventional integrated bioelectrode, which saves labor and improves hygiene. In addition, since the electrode portion and the cable portion are integrated, there is no need to separately connect the electrode and the cable as in the case of the separated biological electrode.
Further, since the stretchable wiring portion corresponding to the conventional cable has stretchability, even when used by subjects of various body types, there is no excess cable, and the wearing feeling is good. In addition, since the mutual positions of the electrodes are roughly determined in advance, it is easier to estimate the mounting position of the electrodes as compared with the conventional biological electrodes, and the subject can be easily mounted.
[0026]
■ (Second embodiment)
In the first embodiment, the base 11 forming the expansion / contraction wiring portion 20 has a band shape that is irrelevant to the shape of the meandering conductive pattern 23. On the other hand, the bioelectrode according to the present embodiment is characterized in that the base 11 forming the elastic wiring portion 20 has substantially the same shape as the protective film 12 of the conductive pattern 23.
[0027]
FIG. 10 is an enlarged plan view of the peripheral electrode portion 10 and the stretchable wiring portion 20 of the biological electrode according to the present embodiment. As is clear from comparison with FIG. 2 which is a similar drawing in the first embodiment, the base 11 of the bioelectrode according to the present embodiment has substantially the same shape as the protective film 12.
[0028]
With this configuration, for example, in the case of manufacturing the above-described peripheral electrode component, it is possible to remove the die at a time after bonding the protective film 12 on which the conductive pattern 23 is printed and the base 11 to each other, Manufacturing is easier. In addition, there is an advantage that the stretchability of the stretchable wiring portion 20 increases. Further, as described with reference to FIG. 6, the entire conductive pattern 23 connecting the electrode portions does not necessarily have to meander, but may partially meander. For example, FIG. 11 shows a configuration example in which only the central portion of the conductive pattern 23 is meandered.
[0029]
■ (Third embodiment)
FIG. 12 is a plan view showing a configuration example of the bioelectrode according to the third embodiment of the present invention. The bioelectrode according to the present embodiment has the same configuration as the bioelectrode according to the first embodiment except that the number of the peripheral electrode portions 10 (and the corresponding elastic wiring portions 20) is increased to three.
[0030]
That is, in the bioelectrode according to the present invention, the number and the mounting position of the peripheral electrode units 10 can be arbitrarily set according to the type of the biosignal to be obtained and the number of channels. In the example shown in FIG. 12, it is possible to acquire a 2-channel electrocardiographic signal. FIG. 13 shows another configuration example as an electrode arrangement. FIG. 14 shows a specific example when the electrode arrangement shown in FIG. 13D is used.
[0031]
In the configuration shown in FIG. 12, it is of course possible to use the extendable wiring portion 20 having the shape as shown in the second embodiment. FIG. 15 shows a configuration example in this case.
[0032]
[Other embodiments]
In the above-described embodiment, only the case where the base 11 is made of the same material has been described. However, since the elasticity is basically required only in the elastic wiring portion 20, the peripheral electrode portion 10 and the The base used in the central electrode section 30 may be made of a different material from the base of the elastic wiring section 20.
[0033]
In the above-described embodiment, the configuration in which each peripheral electrode unit 10 is connected to the central electrode unit 30 has been described. However, the central electrode unit 30 does not necessarily need to be provided with an electrode. That is, it may have only the function of connecting the peripheral electrode units 10 and the function of collecting the conductive patterns 23 from the peripheral electrode units 10 to the end 40.
[0034]
Further, the outer shape of each electrode portion is not limited to a circle, but may be any shape.
[0035]
【The invention's effect】
As described above, according to the present invention, by integrating the electrode portion and the cable portion with a simple configuration, the conventionally required cable becomes unnecessary and the disposable portion including the cable portion can be disposed. In addition, disconnection due to repeated use can be eliminated. Also, by giving the cable portion elasticity, it is possible to improve the wearing feeling.
[Brief description of the drawings]
FIG. 1 is a plan view showing an overall configuration example of a bioelectrode according to a first embodiment of the present invention.
FIG. 2 is a plan view showing a configuration example of a peripheral electrode section 10 and a stretchable wiring section 20 in FIG.
FIG. 3 is a sectional view taken along line AA in FIG. 2;
FIG. 4 is a diagram showing another example of the shape of a conductive pattern 23 provided on a stretchable wiring section 20.
FIG. 5 is a diagram showing another configuration example of the expansion / contraction wiring unit 20.
FIG. 6 is a view showing still another example of the shape of a conductive pattern 23 provided on a telescopic wiring portion 20.
FIG. 7 is a view for explaining the shape of a conductive pattern 23 provided on a stretchable wiring section 20;
FIG. 8 is a diagram showing a configuration example of a center electrode portion 30 and a terminal portion 40 in FIG.
FIG. 9 is a diagram illustrating a procedure for attaching the biological electrode shown in FIG. 1;
FIG. 10 is a plan view showing a configuration example of a peripheral electrode section 10 and a stretchable wiring section 20 in a biological electrode according to a second embodiment of the present invention.
FIG. 11 is a plan view showing another configuration example of the bioelectrode according to the second embodiment of the present invention.
FIG. 12 is a plan view showing an overall configuration example of a bioelectrode according to a third embodiment of the present invention.
FIG. 13 is a plan view showing another example of the electrode arrangement of the biological electrode according to the third embodiment of the present invention.
FIG. 14 is a plan view showing a configuration example of a biological electrode having the electrode arrangement shown in FIG.
FIG. 15 is a plan view showing an example in which the configuration of the extendable wiring section according to the second embodiment is applied to the biological electrode according to the third embodiment of the present invention.

Claims (6)

被検者の体表面に装着し、前記被検者の生体信号を取得するための生体電極であって、
導電パターンが設けられた樹脂フィルムと、
前記導電パターンの前記樹脂フィルムに対向する面に設けられたベースとを有し、
前記導電パターンが、前記生体信号を検出するための電極部と、当該電極部に接続された配線部とから形成され、少なくとも前記配線部の一部と、対応する前記樹脂フィルムが蛇行形状を有し、かつ当該蛇行形状を有する配線部に設けられる前記ベースが伸縮性を有することを特徴とする生体電極。
A biological electrode to be attached to the body surface of the subject, and to acquire a biological signal of the subject,
A resin film provided with a conductive pattern,
A base provided on a surface of the conductive pattern facing the resin film,
The conductive pattern is formed of an electrode part for detecting the biological signal and a wiring part connected to the electrode part, and at least a part of the wiring part and the corresponding resin film have a meandering shape. And the base provided on the meandering wiring portion has elasticity.
前記電極部及び配線部を複数有することを特徴とする請求項1記載の生体電極。The bioelectrode according to claim 1, wherein the bioelectrode has a plurality of the electrode portions and the wiring portions. 前記電極部が、複数の周辺電極部と1つの中央電極部とからなり、前記複数の周辺電極部に対応する前記配線部が、前記中央電極部近傍を通るように配置されることを特徴とする請求項2記載の生体電極。The electrode portion includes a plurality of peripheral electrode portions and one central electrode portion, and the wiring portion corresponding to the plurality of peripheral electrode portions is arranged so as to pass near the central electrode portion. The bioelectrode according to claim 2, wherein 前記蛇行形状を有する配線部に設けられる前記ベースが、当該蛇行形状を有する配線部を包含する短冊形状を有することを特徴とする請求項1乃至請求項3のいずれか1項に記載の生体電極。The bioelectrode according to any one of claims 1 to 3, wherein the base provided on the wiring portion having the meandering shape has a rectangular shape including the wiring portion having the meandering shape. . 前記蛇行形状を有する配線部に設けられる前記ベースが切り込みを有することを特徴とする請求項4記載の生体電極。The bioelectrode according to claim 4, wherein the base provided in the meandering wiring portion has a cut. 前記蛇行形状を有する配線部に設けられる前記ベースが、当該蛇行形状を有する配線部に対応する前記樹脂フィルムと略同形状を有することを特徴とする請求項1乃至請求項3のいずれか1項に記載の生体電極。The said base provided in the wiring part which has the said meandering shape has substantially the same shape as the said resin film corresponding to the wiring part which has the said meandering shape, The claim 1 characterized by the above-mentioned. The bioelectrode according to item 1.
JP2002194534A 2002-07-03 2002-07-03 Biological electrode Expired - Fee Related JP3923861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002194534A JP3923861B2 (en) 2002-07-03 2002-07-03 Biological electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002194534A JP3923861B2 (en) 2002-07-03 2002-07-03 Biological electrode

Publications (2)

Publication Number Publication Date
JP2004033468A true JP2004033468A (en) 2004-02-05
JP3923861B2 JP3923861B2 (en) 2007-06-06

Family

ID=31703209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194534A Expired - Fee Related JP3923861B2 (en) 2002-07-03 2002-07-03 Biological electrode

Country Status (1)

Country Link
JP (1) JP3923861B2 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041768A1 (en) * 2003-11-04 2005-05-12 Suzuken Co., Ltd. Body wearable electrode device
GB2487758A (en) * 2011-02-03 2012-08-08 Isansys Lifecare Ltd Health monitoring electrode assembly
JP2016520342A (en) * 2013-03-15 2016-07-14 ピアブリッジ ヘルス インコーポレイテッド Method and system for monitoring and diagnosing patient condition based on wireless sensor monitoring data
WO2017043595A1 (en) * 2015-09-11 2017-03-16 フクダ電子株式会社 Sensor sheet
JP2017206626A (en) * 2016-05-19 2017-11-24 信越化学工業株式会社 Stretchable film, method for forming the same, method for manufacturing wiring coated substrate, stretchable wiring film, and method for manufacturing the same
EP3354670A1 (en) 2017-01-30 2018-08-01 Shin-Etsu Chemical Co., Ltd. Stretchable film and method for forming the stretchable film
EP3358572A1 (en) 2017-02-06 2018-08-08 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer compound
EP3360472A1 (en) 2017-02-14 2018-08-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer
EP3360473A1 (en) 2017-02-14 2018-08-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the bio-electrode
JP2019033809A (en) * 2017-08-10 2019-03-07 日本電信電話株式会社 Elastic electrode, manufacturing method for the same, and wearable electrode
EP3470447A1 (en) 2017-10-10 2019-04-17 Shin-Etsu Chemical Co., Ltd. Silicon-containing compound, urethane resin, stretchable film, and method for forming the same
EP3470448A1 (en) 2017-10-13 2019-04-17 Shin-Etsu Chemical Co., Ltd. Silicon-containing compound, urethane resin, stretchable film, and method for forming the same
KR20190093153A (en) 2018-01-31 2019-08-08 신에쓰 가가꾸 고교 가부시끼가이샤 Stretchable film and method for forming the same
KR20190096293A (en) 2018-02-08 2019-08-19 신에쓰 가가꾸 고교 가부시끼가이샤 Stretchable film composition, stretchable film, and method for forming the same
EP3530682A1 (en) 2018-02-26 2019-08-28 Shin-Etsu Chemical Co., Ltd. Silicon-containing compound, urethane resin, stretchable film and method for forming the same
KR20190123240A (en) 2018-04-23 2019-10-31 신에쓰 가가꾸 고교 가부시끼가이샤 Adhesive film, method for forming an adhesive film, and urethane polymer
EP3587473A1 (en) 2018-06-25 2020-01-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3587474A1 (en) 2018-06-26 2020-01-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
WO2020003694A1 (en) * 2018-06-29 2020-01-02 株式会社村田製作所 Electrode to be attached to living body, and method for manufacturing electrode to be attached to living body
EP3594262A1 (en) 2018-07-12 2020-01-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3604373A1 (en) 2018-08-02 2020-02-05 Shin-Etsu Chemical Co., Ltd. Stretchable film and method for forming the same
US10584221B2 (en) 2016-11-17 2020-03-10 Shin-Etsu Chemical Co., Ltd. Stretchable film, method for forming the same, stretchable wiring film, and method for manufacturing the same
EP3628478A1 (en) 2018-09-27 2020-04-01 Shin-Etsu Chemical Co., Ltd. Stretchable film and method for forming stretchable film
US10610116B2 (en) 2016-09-29 2020-04-07 Shin-Etsu Chemical Co., Ltd. Adhesive composition, bio-electrode, and method for manufacturing a bio-electrode
EP3670185A1 (en) 2018-12-18 2020-06-24 Shin-Etsu Chemical Co., Ltd. Composite stretchable film and method for forming same
EP3674337A1 (en) 2018-12-26 2020-07-01 Shin-Etsu Chemical Co., Ltd. Stretchable film and method for forming the same
EP3674338A1 (en) 2018-12-26 2020-07-01 Shin-Etsu Chemical Co., Ltd. Stretchable wiring film and method for forming the same
US10743788B2 (en) 2017-10-19 2020-08-18 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US10759938B2 (en) 2017-10-26 2020-09-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3718471A1 (en) 2019-04-03 2020-10-07 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
US10808148B2 (en) 2016-09-29 2020-10-20 Shin-Etsu Chemical Co., Ltd. Adhesive composition, bio-electrode, method for manufacturing a bio-electrode, and salt
US10844257B2 (en) 2016-09-13 2020-11-24 Shin-Etsu Chemical Co., Ltd. Adhesive composition, bio-electrode, and method for manufacturing a bio-electrode
US10864366B2 (en) 2017-11-21 2020-12-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP3760681A1 (en) 2019-07-01 2021-01-06 Shin-Etsu Chemical Co., Ltd. Conductive wiring material composition, conductive wiring substrate and method for producing conductive wiring substrate
US10950364B2 (en) 2016-05-09 2021-03-16 Shin-Etsu Chemical Co., Ltd. Bio-electrode and method for manufacturing the same
US11071485B2 (en) 2016-12-21 2021-07-27 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP3854303A1 (en) 2020-01-22 2021-07-28 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP3881766A1 (en) 2020-03-19 2021-09-22 Shin-Etsu Chemical Co., Ltd. Bio-electrode, method for manufacturing bio-electrode, and method for measuring biological signal
US11160480B2 (en) 2018-06-25 2021-11-02 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11193003B2 (en) 2016-11-02 2021-12-07 Shin-Etsu Chemical Co., Ltd. Stretchable film, method for forming the same, stretchable wiring film, and method for manufacturing the same
US11234606B2 (en) 2018-07-05 2022-02-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3968343A2 (en) 2020-09-15 2022-03-16 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and silicon material particle
EP3984456A1 (en) 2020-10-13 2022-04-20 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, polymer compound, and composite
EP3995544A1 (en) 2020-11-05 2022-05-11 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP3995548A1 (en) 2020-11-05 2022-05-11 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bioelectrode, and reaction composite
EP4006921A2 (en) 2020-11-26 2022-06-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and reaction composite
US11357970B2 (en) 2017-01-06 2022-06-14 Shin-Etsu Chemical Co., Ltd. Biomedical electrode composition, biomedical electrode and method for manufacturing the biomedical electrode
US11369299B2 (en) 2019-04-03 2022-06-28 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP4026860A1 (en) 2021-01-06 2022-07-13 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
TWI774974B (en) * 2019-07-30 2022-08-21 美商宇心生醫股份有限公司 Scalable electrode patch
EP4053183A1 (en) 2021-03-02 2022-09-07 Shin-Etsu Chemical Co., Ltd. Silicone polyurethane, stretchable film, and method for forming the stretchable film
WO2022190575A1 (en) 2021-03-12 2022-09-15 信越化学工業株式会社 Bioelectrode, production method for bioelectrode, and measurement method for biosignals
EP4074754A1 (en) 2021-04-16 2022-10-19 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
US11547354B2 (en) 2018-08-23 2023-01-10 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
WO2023084971A1 (en) * 2021-11-11 2023-05-19 株式会社村田製作所 Stetchable device
US11786160B2 (en) 2018-02-22 2023-10-17 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
US11801333B2 (en) 2018-04-02 2023-10-31 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11839476B2 (en) 2018-08-27 2023-12-12 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11839700B2 (en) 2018-01-09 2023-12-12 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP4309582A1 (en) 2022-07-21 2024-01-24 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the same
US11911161B2 (en) 2016-03-03 2024-02-27 Shin-Etsu Chemical Co., Ltd. Biological electrode and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022078861A (en) 2020-11-13 2022-05-25 信越化学工業株式会社 Polyurethane, polyurethane production method, conductive paste composition, conductive wire, and method for producing conductive wire
JP7150962B1 (en) 2021-10-15 2022-10-11 信越化学工業株式会社 Polyurethane, method for producing polyurethane, conductive paste composition, conductive wiring, and method for producing conductive wiring

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041768A1 (en) * 2003-11-04 2005-05-12 Suzuken Co., Ltd. Body wearable electrode device
US10327660B2 (en) 2011-02-03 2019-06-25 Isansys Lifecare Limited Health monitoring
GB2487758A (en) * 2011-02-03 2012-08-08 Isansys Lifecare Ltd Health monitoring electrode assembly
JP2016520342A (en) * 2013-03-15 2016-07-14 ピアブリッジ ヘルス インコーポレイテッド Method and system for monitoring and diagnosing patient condition based on wireless sensor monitoring data
KR102366714B1 (en) 2015-09-11 2022-02-23 후쿠다 덴시 가부시키가이샤 sensor sheet
KR20180039696A (en) * 2015-09-11 2018-04-18 후쿠다 덴시 가부시키가이샤 Sensor Sheet
CN107949324A (en) * 2015-09-11 2018-04-20 福田电子株式会社 Sensor chip
JPWO2017043595A1 (en) * 2015-09-11 2018-04-26 フクダ電子株式会社 Sensor sheet
WO2017043595A1 (en) * 2015-09-11 2017-03-16 フクダ電子株式会社 Sensor sheet
KR20200121913A (en) * 2015-09-11 2020-10-26 후쿠다 덴시 가부시키가이샤 Sensor sheet
KR102369837B1 (en) 2015-09-11 2022-03-03 후쿠다 덴시 가부시키가이샤 Sensor sheet
US11911161B2 (en) 2016-03-03 2024-02-27 Shin-Etsu Chemical Co., Ltd. Biological electrode and manufacturing method thereof
US10950364B2 (en) 2016-05-09 2021-03-16 Shin-Etsu Chemical Co., Ltd. Bio-electrode and method for manufacturing the same
US10544272B2 (en) 2016-05-19 2020-01-28 Shin-Etsu Chemical Co., Ltd. Stretchable film and method for forming the same, method for manufacturing coated wiring substrate, and stretchable wiring film and method for manufacturing the same
KR20170131248A (en) 2016-05-19 2017-11-29 신에쓰 가가꾸 고교 가부시끼가이샤 Stretchable film and method for forming the same, method for manufacturing coated wiring substrate, and stretchable wiring film and method for manufacturing the same
JP2017206626A (en) * 2016-05-19 2017-11-24 信越化学工業株式会社 Stretchable film, method for forming the same, method for manufacturing wiring coated substrate, stretchable wiring film, and method for manufacturing the same
US10844257B2 (en) 2016-09-13 2020-11-24 Shin-Etsu Chemical Co., Ltd. Adhesive composition, bio-electrode, and method for manufacturing a bio-electrode
US10610116B2 (en) 2016-09-29 2020-04-07 Shin-Etsu Chemical Co., Ltd. Adhesive composition, bio-electrode, and method for manufacturing a bio-electrode
US10808148B2 (en) 2016-09-29 2020-10-20 Shin-Etsu Chemical Co., Ltd. Adhesive composition, bio-electrode, method for manufacturing a bio-electrode, and salt
US11193003B2 (en) 2016-11-02 2021-12-07 Shin-Etsu Chemical Co., Ltd. Stretchable film, method for forming the same, stretchable wiring film, and method for manufacturing the same
US10584221B2 (en) 2016-11-17 2020-03-10 Shin-Etsu Chemical Co., Ltd. Stretchable film, method for forming the same, stretchable wiring film, and method for manufacturing the same
US11071485B2 (en) 2016-12-21 2021-07-27 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
US11357970B2 (en) 2017-01-06 2022-06-14 Shin-Etsu Chemical Co., Ltd. Biomedical electrode composition, biomedical electrode and method for manufacturing the biomedical electrode
KR20180134278A (en) 2017-01-30 2018-12-18 신에쓰 가가꾸 고교 가부시끼가이샤 Stretchable film and method for forming the stretchable film
EP3354670A1 (en) 2017-01-30 2018-08-01 Shin-Etsu Chemical Co., Ltd. Stretchable film and method for forming the stretchable film
US10501585B2 (en) 2017-01-30 2019-12-10 Shin-Etsu Chemical Co., Ltd. Stretchable film and method for forming the stretchable film
US10734132B2 (en) 2017-02-06 2020-08-04 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer compound
EP3358572A1 (en) 2017-02-06 2018-08-08 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer compound
US11135422B2 (en) 2017-02-14 2021-10-05 Shin-Etsu Chemical Co., Ltd. Bio-electrode and methods for manufacturing the bio-electrode
US10695554B2 (en) 2017-02-14 2020-06-30 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer
EP3360472A1 (en) 2017-02-14 2018-08-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer
EP3360473A1 (en) 2017-02-14 2018-08-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the bio-electrode
US10792489B2 (en) 2017-02-14 2020-10-06 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the bio-electrode
JP2019033809A (en) * 2017-08-10 2019-03-07 日本電信電話株式会社 Elastic electrode, manufacturing method for the same, and wearable electrode
US10717804B2 (en) 2017-10-10 2020-07-21 Shin-Etsu Chemical Co., Ltd. Silicon-containing compound, urethane resin, stretchable film, and method for forming the same
EP3470447A1 (en) 2017-10-10 2019-04-17 Shin-Etsu Chemical Co., Ltd. Silicon-containing compound, urethane resin, stretchable film, and method for forming the same
KR20190040469A (en) 2017-10-10 2019-04-18 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon-containing compound, urethane resin, stretchable film, and method for forming the same
US10696779B2 (en) 2017-10-13 2020-06-30 Shin-Etsu Chemical Co., Ltd. Silicon-containing compound, urethane resin, stretchable film, and method for forming the same
EP3470448A1 (en) 2017-10-13 2019-04-17 Shin-Etsu Chemical Co., Ltd. Silicon-containing compound, urethane resin, stretchable film, and method for forming the same
KR20190041913A (en) 2017-10-13 2019-04-23 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon-containing compound, urethane resin, stretchable film, and method for forming the same
US10743788B2 (en) 2017-10-19 2020-08-18 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US10759938B2 (en) 2017-10-26 2020-09-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US10864366B2 (en) 2017-11-21 2020-12-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
US11839700B2 (en) 2018-01-09 2023-12-12 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
JP2019130899A (en) * 2018-01-31 2019-08-08 信越化学工業株式会社 Stretchable membrane and method for forming same
US11078317B2 (en) 2018-01-31 2021-08-03 Shin-Etsu Chemical Co., Ltd. Stretchable film and method for forming the same
JP7045767B2 (en) 2018-01-31 2022-04-01 信越化学工業株式会社 Elastic membrane and its formation method
KR20190093153A (en) 2018-01-31 2019-08-08 신에쓰 가가꾸 고교 가부시끼가이샤 Stretchable film and method for forming the same
KR20190096293A (en) 2018-02-08 2019-08-19 신에쓰 가가꾸 고교 가부시끼가이샤 Stretchable film composition, stretchable film, and method for forming the same
US10800916B2 (en) 2018-02-08 2020-10-13 Shin-Etsu Chemical Co., Ltd. Stretchable film composition, stretchable film, and method for forming the same
US11786160B2 (en) 2018-02-22 2023-10-17 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP3530682A1 (en) 2018-02-26 2019-08-28 Shin-Etsu Chemical Co., Ltd. Silicon-containing compound, urethane resin, stretchable film and method for forming the same
CN110194827A (en) * 2018-02-26 2019-09-03 信越化学工业株式会社 Silicon-containing compound, carbamate resins, retractility film and forming method thereof
KR20190103031A (en) 2018-02-26 2019-09-04 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon-containing compound, urethane resin, stretchable film and method for forming the same
US11142640B2 (en) 2018-02-26 2021-10-12 Shin-Etsu Chemical Co., Ltd. Silicon-containing compound, urethane resin, stretchable film and method for forming the same
US11801333B2 (en) 2018-04-02 2023-10-31 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
KR20190123240A (en) 2018-04-23 2019-10-31 신에쓰 가가꾸 고교 가부시끼가이샤 Adhesive film, method for forming an adhesive film, and urethane polymer
US10934463B2 (en) 2018-04-23 2021-03-02 Shin-Etsu Chemical Co., Ltd. Adhesive film, method for forming an adhesive film, and urethane polymer
US11612347B2 (en) 2018-06-25 2023-03-28 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3587473A1 (en) 2018-06-25 2020-01-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11896377B2 (en) 2018-06-25 2024-02-13 Shin-Etsu Chemical Co., Ltd. Bio-electrode
US11160480B2 (en) 2018-06-25 2021-11-02 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3587474A1 (en) 2018-06-26 2020-01-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11607162B2 (en) 2018-06-26 2023-03-21 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
WO2020003694A1 (en) * 2018-06-29 2020-01-02 株式会社村田製作所 Electrode to be attached to living body, and method for manufacturing electrode to be attached to living body
US11234606B2 (en) 2018-07-05 2022-02-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3594262A1 (en) 2018-07-12 2020-01-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11517236B2 (en) 2018-07-12 2022-12-06 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11453741B2 (en) 2018-08-02 2022-09-27 Shin-Etsu Chemical Co., Ltd. Stretchable film and method for forming the same
KR20200015413A (en) 2018-08-02 2020-02-12 신에쓰 가가꾸 고교 가부시끼가이샤 Stretchable film and method for forming the same
EP3604373A1 (en) 2018-08-02 2020-02-05 Shin-Etsu Chemical Co., Ltd. Stretchable film and method for forming the same
US11547354B2 (en) 2018-08-23 2023-01-10 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11839476B2 (en) 2018-08-27 2023-12-12 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11261285B2 (en) 2018-09-27 2022-03-01 Shin-Etsu Chemical Co., Ltd. Stretchable film and method for forming stretchable film
EP3628478A1 (en) 2018-09-27 2020-04-01 Shin-Etsu Chemical Co., Ltd. Stretchable film and method for forming stretchable film
KR20200035903A (en) 2018-09-27 2020-04-06 신에쓰 가가꾸 고교 가부시끼가이샤 Stretchable film and method for forming stretchable film
EP3670185A1 (en) 2018-12-18 2020-06-24 Shin-Etsu Chemical Co., Ltd. Composite stretchable film and method for forming same
KR20200075740A (en) 2018-12-18 2020-06-26 신에쓰 가가꾸 고교 가부시끼가이샤 Composite strechable film and method of forming same
US11377529B2 (en) 2018-12-18 2022-07-05 Shin-Etsu Chemical Co., Ltd. Composite stretchable film and method for forming same
US11530307B2 (en) 2018-12-26 2022-12-20 Shin-Etsu Chemical Co., Ltd. Stretchable film and method for forming the same
EP3674338A1 (en) 2018-12-26 2020-07-01 Shin-Etsu Chemical Co., Ltd. Stretchable wiring film and method for forming the same
US11530312B2 (en) 2018-12-26 2022-12-20 Shin-Etsu Chemical Co., Ltd. Stretchable wiring film and method for forming the same
EP3674337A1 (en) 2018-12-26 2020-07-01 Shin-Etsu Chemical Co., Ltd. Stretchable film and method for forming the same
KR20200080175A (en) 2018-12-26 2020-07-06 신에쓰 가가꾸 고교 가부시끼가이샤 Stretchable wiring film and method for forming the same
KR20200080176A (en) 2018-12-26 2020-07-06 신에쓰 가가꾸 고교 가부시끼가이샤 Stretchable film and method for forming the same
US11369299B2 (en) 2019-04-03 2022-06-28 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP3718471A1 (en) 2019-04-03 2020-10-07 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
US11643492B2 (en) 2019-04-03 2023-05-09 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
KR20210003056A (en) 2019-07-01 2021-01-11 신에쓰 가가꾸 고교 가부시끼가이샤 Conductive wiring material composition, conductive wiring substrate and method for producing conductive wiring substrate
KR102390315B1 (en) * 2019-07-01 2022-04-22 신에쓰 가가꾸 고교 가부시끼가이샤 Conductive wiring material composition, conductive wiring substrate and method for producing conductive wiring substrate
US11783958B2 (en) 2019-07-01 2023-10-10 Shin-Etsu Chemical Co., Ltd. Conductive wiring material composition, conductive wiring substrate and method for producing conductive wiring substrate
EP3760681A1 (en) 2019-07-01 2021-01-06 Shin-Etsu Chemical Co., Ltd. Conductive wiring material composition, conductive wiring substrate and method for producing conductive wiring substrate
TWI774974B (en) * 2019-07-30 2022-08-21 美商宇心生醫股份有限公司 Scalable electrode patch
EP3854303A1 (en) 2020-01-22 2021-07-28 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP3881766A1 (en) 2020-03-19 2021-09-22 Shin-Etsu Chemical Co., Ltd. Bio-electrode, method for manufacturing bio-electrode, and method for measuring biological signal
EP3968343A2 (en) 2020-09-15 2022-03-16 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and silicon material particle
EP3984456A1 (en) 2020-10-13 2022-04-20 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, polymer compound, and composite
EP3995544A1 (en) 2020-11-05 2022-05-11 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP3995548A1 (en) 2020-11-05 2022-05-11 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bioelectrode, and reaction composite
EP4006921A2 (en) 2020-11-26 2022-06-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and reaction composite
EP4026860A1 (en) 2021-01-06 2022-07-13 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
KR20220124096A (en) 2021-03-02 2022-09-13 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone polyurethane, stretchable film, and method for forming the stretchable film
EP4053183A1 (en) 2021-03-02 2022-09-07 Shin-Etsu Chemical Co., Ltd. Silicone polyurethane, stretchable film, and method for forming the stretchable film
WO2022190575A1 (en) 2021-03-12 2022-09-15 信越化学工業株式会社 Bioelectrode, production method for bioelectrode, and measurement method for biosignals
EP4074754A1 (en) 2021-04-16 2022-10-19 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
US11926766B2 (en) 2021-04-16 2024-03-12 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
WO2023084971A1 (en) * 2021-11-11 2023-05-19 株式会社村田製作所 Stetchable device
EP4309582A1 (en) 2022-07-21 2024-01-24 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the same

Also Published As

Publication number Publication date
JP3923861B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
JP3923861B2 (en) Biological electrode
JP5165841B2 (en) Waterproof bioelectrode
US8626260B2 (en) Expandable electrode pad
EP2091424B1 (en) Handheld, repositionable ecg detector
US9826917B1 (en) Electrode harness and method of taking electrical measurements
FI126093B (en) Arrangement and method for conducting electrode measurements
JP5198839B2 (en) Electrode connector
JP5670604B2 (en) Biological electrode
EP0509689A2 (en) Multiple electrode strip
CA2062857A1 (en) Biomedical electrode having centrally-positioned tab construction
JP6507254B2 (en) Biological information measuring device
WO2002022010A1 (en) Disposable vital signs monitoring sensor band with removable alignment sheet
US20150201856A1 (en) Electrode and measuring device for acquiring biomedical vital parameters
JP5767434B2 (en) Electrode set for patient monitoring device
CN103462601A (en) Medical electrode plaster and preparation method thereof
JP4855734B2 (en) Electrocardiogram measurement electrode and electrocardiogram measurement device
US7277743B2 (en) Patient monitoring system
GB2418364A (en) Disposable medical skin electrode with multiple connection points
JP7446757B2 (en) Bioelectrode unit
JPS6349134A (en) Heart rate meter
US11278243B2 (en) Repositionable surface electrodes
US7079884B1 (en) Biomedical electrode having a mating configuration and its associated method of application to the body
JP5952170B2 (en) Waterproof bioelectrode
JP2004215964A (en) Bioelectrode
JP6158263B2 (en) Waterproof bioelectrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070222

R150 Certificate of patent or registration of utility model

Ref document number: 3923861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160302

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees