JP2004029373A - カラー顕微鏡 - Google Patents

カラー顕微鏡 Download PDF

Info

Publication number
JP2004029373A
JP2004029373A JP2002185468A JP2002185468A JP2004029373A JP 2004029373 A JP2004029373 A JP 2004029373A JP 2002185468 A JP2002185468 A JP 2002185468A JP 2002185468 A JP2002185468 A JP 2002185468A JP 2004029373 A JP2004029373 A JP 2004029373A
Authority
JP
Japan
Prior art keywords
optical system
color
light source
imaging lens
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002185468A
Other languages
English (en)
Inventor
Yoichi Okamoto
岡本 陽一
Takashi Nakamu
中務 貴司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keyence Corp filed Critical Keyence Corp
Priority to JP2002185468A priority Critical patent/JP2004029373A/ja
Publication of JP2004029373A publication Critical patent/JP2004029373A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

【課題】複数の光源を具備し、これらの光源の波長の異なる光を共通の対物レンズを通して試料に集光させることによりカラー画像を得るカラー顕微鏡において、対物レンズでの色収差の影響を低減する。
【解決手段】レーザカラー顕微鏡)100は、レーザ光光学系(第1光学系)1と白色光光学系(第2光学系)2とを含み、これらは共通の対物レンズ17を有する。第1光学系1の第1結像レンズ16と、第2光学系2の第3結像レンズ24には、夫々、駆動機構D−1、D−2が付設されて光軸方向位置が調整可能であり、これにより、第1光学系1で輝度情報を得るときの対物レンズの焦点距離と、第2光学系2で色情報を得るときの対物レンズの焦点距離とが同じになるように第1、第3結像レンズ16、24の位置調整が行われる。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明はカラー顕微鏡に関する。本発明は、好適にはコンフォーカル走査顕微鏡に適用される。
【0002】
【従来の技術】
従来より、共焦点原理を利用したコンフォーカル顕微鏡が知られている。このコンフォーカル顕微鏡は、対物レンズとピンホールを有し、対物レンズの焦点位置に試料がある場合、該ピンホールを通過したレーザ光(応答光)を第1受光素子で受光するので、観察したい高さの部分についての画像(コンフォーカル(共焦点)画像)だけが、鮮明に映し出される(解像度が高くなる)。かかる共焦点画像は白黒(無彩色)の映像となる。
【0003】
しかし、かかる白黒の映像では情報が少なく、つまり、試料の色彩に関する情報が得られず、傷や付着物の種類の判別など詳細な観察が困難となる場合がある。そのため、特許第3205530号公報や特開平11−14907号公報に見られるようなカラー(有彩色)顕微鏡が開発されており、この種のカラー顕微鏡は、一般的には、可視領域の波長の光源が使用されている。
【0004】
【発明が解決しようとする課題】
しかしながら、例えば、例えば解像度を高めるために、輝度情報を得るための光源(典型的にはレーザ光源)として紫外線領域又は可視光線領域中で短波長領域(400〜420nm程度)に属する波長の単色光を用いた場合、色情報を得るための光源(典型的には白色光源)の波長とは大きく異なることから、色収差の問題が発生する。
【0005】
この色収差には、横の色収差(倍率色収差)と、縦の色収差(軸上色収差)とが知られているが、異なる光源からの光によって対物レンズに軸上色収差が発生したときには、使用する光源によって焦点距離が大きく異なり、また、例えば短波長の単色光は被写界深度が小さいため、焦点ボケによって十分なる輝度情報が得られないという問題が発生する。
【0006】
例えば、カラーコンフォーカル顕微鏡において、非コンフォーカルモードの画面、すなわち、白色光源からの光(白色光)を試料に照射したときに得られる画面(例えば、金属顕微鏡にCCDカメラを取り付けたときの画面)と、コンフォーカルモード、すなわち、白色光源に多く含まれる波長とは大きくことなる波長を持つ光源からの光を試料に照射したときに得られる画面(例えば、紫外線レーザ顕微鏡の画面)とは、軸上色収差のために、二つの画面はどちらか一方の画面が焦点外になってしまうので、高い解像度と良好な色再現性とを両立することのできるカラー画面を得ることができない。
【0007】
そこで、本発明の目的は、複数の光源を具備し、これらの光源の波長の異なる光を共通の対物レンズを通して試料に集光させることによりカラー画像を得るカラー顕微鏡において、対物レンズでの色収差の影響を低減することのできるカラー顕微鏡を提供することにある。
【0008】
本発明の他の目的は、輝度情報を得るための光源と、色情報を得るための光源とを備えたカラー顕微鏡において、これら複数の光源から発せられる光によって対物レンズの焦点距離に差が発生するのを防止することのできるカラー顕微鏡を提供することにある。
【0009】
本発明の別の目的は、波長が大きく異なる複数の光源を用いたとしても良好なカラー画面又は像を得ることのできるカラー顕微鏡を提供することにある。
【0010】
本発明の他の目的は、輝度情報を得るために可視領域以外の領域の波長の光を発する光源を用いた場合に発生し易い色収差の問題を解消することのできるカラー顕微鏡を提供することにある。
【0011】
輝度情報を得るための光の波長と色情報を得るための光の波長とが大きく異なっていたとしても、良好な解像度と良好な色再現性とを両立することのできるコンフォーカルカラー走査顕微鏡を提供することにある。
【0012】
【課題を解決するための手段】
かかる技術的課題は、本発明の第1の観点によれば、
輝度情報を得るための第1の光源を備えた第1光学系と、色情報を得るための第2の光源を備えた第2光学系並びに、これら第1、第2の光学系が共通の対物レンズを含み、試料からの応答光に基づいて各々前記第1光学系により獲得した前記輝度情報と前記第2光学系により獲得した前記色情報とを合成することによりカラー映像用の信号を生成するカラー顕微鏡において、
前記第1光学系での前記対物レンズの焦点距離と、前記第2光学系での前記対物レンズの焦点距離とを実質的に同じにする対物レンズ焦点距離調整手段を少なくともいずれか一方の光学系が有していることを特徴とするカラー顕微鏡を提供することにより達成される。
【0013】
上述した技術的課題は、本発明の第2の観点によれば、
輝度情報を得るための第1の光源を備えた第1光学系と、色情報を得るための第2の光源を備えた第2光学系並びに、これら第1、第2の光学系が共通の対物レンズを含み、試料からの応答光に基づいて各々前記第1光学系により獲得した前記輝度情報と前記第2光学系により獲得した前記色情報とを合成することによりカラー映像用の信号を生成するカラー顕微鏡において、
前記第1の光学系に含まれる結像レンズに付設され、該結像レンズを光軸方向に移動させるための第1の結像レンズ移動手段を有し、
該結像レンズ移動手段により、前記第1光学系での前記対物レンズの焦点距離が前記第2光学系での前記対物レンズの焦点距離と同じになるように前記第1光学系に含まれる結像レンズの光軸方向の位置を調整することができることを特徴とするカラー顕微鏡を提供することにより達成される。
【0014】
上述した技術的課題は、本発明の第2の観点によれば、
輝度情報を得るための第1の光源を備えた第1光学系と、色情報を得るための第2の光源を備えた第2光学系並びに、これら第1、第2の光学系が共通の対物レンズを含み、試料からの応答光に基づいて各々前記第1光学系により獲得した前記輝度情報と前記第2光学系により獲得した前記色情報とを合成することによりカラー映像用の信号を生成するカラー顕微鏡において、
前記第2光学系に含まれる結像レンズに付設され、該結像レンズを光軸方向に移動させるための第2の結像レンズ移動手段を有し、
該第2の結像レンズ移動手段により、前記第2光学系での前記対物レンズの焦点距離が前記第1光学系での前記対物レンズの焦点距離と同じになるように前記第2光学系に含まれる結像レンズの光軸方向の位置を調整することができることを特徴とするカラー顕微鏡を提供することにより達成される。
【0015】
本発明は、第1光学系と第2光学系とで用いられる共通の対物レンズの色収差補正が十分になされていない波長領域の光を発する光源を使用するときに効果的である。本発明は、最も典型的には、前記第1光学系により前記輝度情報を得る又は前記第2光学系により前記色情報を得るときに、これに先だって、結像レンズの位置を調整することにより共通の対物レンズの焦点距離が第1光学系及び第2光学系とで同じになるように設定することができることから、第1又は第2の光学系で輝度情報又は色情報を得るときに、対物レンズの軸上色収差の影響を受けることなく輝度情報又は色情報を獲得することができる。したがって、第1光学系で使用する光源と第2光学系で使用する光源との間で大きく波長の異なっていたとしても良好なカラー画面を得ることができる。
【0016】
本発明は、前記第1光学系が単色光の光源を含む共焦点光学系で構成されたコンフォーカルカラー顕微鏡に好適に適用される。このコンフォーカルカラー顕微鏡において、輝度情報を得るための第1光学系の光源として、紫外線領域又は赤外線領域の波長の光源を用いることができ、特に、解像度の高い画像を得るために紫外線領域又は可視光線領域中ので短波長領域(400〜420nm程度)に属する短波長の単色光を発する光源を採用しても、軸上色収差を影響を受けることなく良好なカラー画面を得ることができる。
【0017】
【発明の実施の形態】
以下、本発明の実施形態を図面にしたがって説明する。
【0018】
第1の実施形態(図1〜図5)
 図1において、コンフォーカル走査顕微鏡(レーザ顕微鏡)100は、レーザ光光学系(第1光学系)1と、白色光光学系(第2光学系)2とを備えている。
【0019】
レーザ光光学系1
 レーザ光光学系1は、試料wの深度に関する情報を検出できる共焦点光学系で、可視領域の波長のレーザ光であってもよいが、赤外線領域又は紫外線領域のレーザ光、好ましくは紫外線領域又は可視光線領域中で短波長領域(400〜420nm程度)に属する短波長のレーザ光L1を出射するレーザ光源10を有する。なお、レーザ光源10に代えて、赤外線領域又は紫外線領域の波長の単色光を放射する光源、例えば高輝度ランプであってもよく、また、レーザ光光学系1は単一であってもよいが、複数であってもよい。複数のレーザ光光学系1を具備している場合、各レーザ光光学系1は、異なる波長の単色光源を備えることなる。
【0020】
レーザ光源10の光軸上には、レーザ光源10側から、順に、第1のコリメートレンズ11、偏光ビームスプリッタ12、1/4波長板13、二次元走査装置14、第1リレーレンズ15、第1の結像レンズ16、対物レンズ17が配設されており、この対物レンズ17は特性の異なるレンズが複数用意され、操作者は任意の対物レンズを選択して使用することが可能である。また、第1の結像レンズ16には第1駆動機構D−1が付設され、この第1駆動機構D−1によって、第1結像レンズ16の配置位置を光軸に沿って(図面で上下方向に)調整することができる。
【0021】
対物レンズ17の焦点位置の付近には、試料ステージ30が配設されており、試料ステージ30は、ステージ制御回路40によりZ方向(上下方向)に駆動制御され、X、Y方向については手動ハンドルで移動可能となっており、この試料ステージ30の上下方向位置を調整することにより、対物レンズ17はレーザ光L1を試料wの表面に集光させる。前述の二次元走査装置14は、例えば2枚のガルバノミラーから構成され、レーザ光L1を偏向させることで、試料wへの集光位置を試料wの表面に沿って二次元的(X方向及び/又はY方向)に走査させる。
【0022】
試料wで反射されたレーザ光(応答光)L1は、レーザ入射光と同じ経路をたどって、対物レンズ17、第1の結像レンズ16、第1リレーレンズ15を通り、再び、二次元走査装置14を介して1/4波長板13および偏光ビームスプリッタ12を透過し、第2の結像レンズ18に向かう。応答光つまり反射光であるレーザ光L1は、第2の結像レンズ18を通り、この第2の結像レンズ18で集光されてピンホールを有する光絞り部19aを通り、光絞り部19aを通過したレーザ光L1は第1受光素子19bに入射する。第1受光素子19bは、たとえばフォトマルチプライヤまたはフォトダイオードなどで構成され、入射したレーザ光L1を光電変換して、アナログ光量信号を、出力アンプおよびゲイン制御回路(図示せず)を介して第1A/Dコンバータ41に出力する。
【0023】
つぎに、レーザ光光学系1によって得られる輝度情報について説明する。
【0024】
前述の光絞り部19aは、第2の結像レンズ18の焦点位置に配設されており、一方、光絞り部19aのピンホールは極めて微小であるから、レーザ光L1が試料w上で焦点を結ぶと、その反射光L1が、第2の結像レンズ18によって光絞り部19aのピンホールで結像し、第1受光素子19bに入射する受光光量が著しく大きくなり、逆に、レーザ光L1が試料w上で焦点を結んでいないと、その反射光L1は、光絞り部19aのピンホールを殆ど通過しないので、第1受光素子19bの受光光量が著しく小さくなる。したがって、レーザ光光学系1による撮像領域(走査領域)のうち、焦点の合った部分(合焦点の撮像単位)について明るい映像が得られ、一方、それ以外の高さの部分については暗い映像が得られる。なお、レーザ光光学系1は、単色光としてレーザ光L1を用いた共焦点光学系であり、特に、短波長である紫外線領域のレーザ光を用いたときには、分解能に優れた輝度情報を得ることができる。
【0025】
白色光光学系2
 白色光光学系2は、白色光(色情報用の照明光)L2を出射する白色光源20を光源としている。白色光源20の光軸上には、第2のコリメートレンズ21、第1のハーフミラー22、第2のハーフミラー23及び前記対物レンズ17が配設されており、前記第1のハーフミラー22において2つの光学系1、2の光軸が合致するように白色光光学系2が配設されている。したがって、白色光L2は、共通の対物レンズ17を通ってレーザ光L1の走査領域と同一の箇所に集光される。
【0026】
また、試料wで反射された白色光(応答光)L2は、白色入射光と同じ経路をたどって、先ず、共通の対物レンズ17を通り、次いで第1のハーフミラー22で反射され、更に、第2のハーフミラー23で反射され、そして、第3の結像レンズ24を通り、この第3の結像レンズ24によってカラーCCD(第2受光素子)25の表面で結像する。すなわち、カラーCCD25は、光絞り部19aと共役ないし共役に近い位置に配設されている。なお、カラーCCD25で撮像された画像は、アナログのカラー撮像情報として、CCD駆動回路43に読み出されて第2A/Dコンバータ42に出力される。
【0027】
この白色光光学系2の第3の結像レンズ24には第2の駆動機構D−2が付設され、この第2の駆動機構D−2によって第3の結像レンズ24の配置位置を光軸に沿って(図面で上下方向に)調整することができる。
【0028】
ここに、カラー撮像情報とは、光の三原色(赤、緑、青)についての強度からなる映像情報や、輝度情報および色差情報や、水平同期信号およびカラーバースト信号を含んだ複合カラー映像情報など、そのまま、または、加工した後、カラーの映像を映し出すことのできる情報をいう。
【0029】
つぎに、後述するカラー共焦点画像(カラースライス画像)モードにおいて作動する図2のカラー映像信号作成手段5について説明する。
【0030】
カラー映像信号作成手段5は、第1受光素子19bからの輝度情報と、カラーCCD25からの色情報とを組み合わせて、カラー映像用のデジタル信号ro、go、boを作成するものである。前記カラー映像信号作成手段5は、第1および第2領域回路51、52と、輝度変換回路53などを備えている。ここに、輝度情報とは、色彩を含まない輝度に関する情報をいい、「色情報」とは、たとえば色差信号のように、色の強度のバランスに関する情報をいう。
【0031】
前記第1および第2領域回路51、52は、図3に示すように、それぞれ、レーザ光光学系1および白色光光学系2の撮像領域A1、A2の所定の共通部分を映像領域AOとして選択し、選択した部分についてデジタル信号を出力する。すなわち、図2の第1領域回路51は、前記映像領域AOについて、カラーCCD25の各画素に対応した分解能で輝度信号iを輝度用メモリMiに記憶させる。一方、前記第2領域回路52は、前記映像領域AOについて、各画素ごとに赤、緑、青の色強度信号rm、gm、bmを第1色強度メモリMr1、Mg1、Mb1に記憶させる。なお、色強度信号とは、三原色についての輝度(強度)を含む信号をいう。
【0032】
前記輝度変換回路53は、下記の演算式(1)、(2)、(3)にしたがって、各画素についての前記色強度信号rm、gm、bmの輝度情報を、輝度信号iの輝度情報に置換して、変換色強度信号ro、go、boを求め、該信号を第2色強度メモリMr2、Mg2、Mb2に記憶させるものである。
【0033】
Ro=I・Rm/(Rm+Gm+Bm) ・・・(1)
Go=I・Gm/(Rm+Gm+Bm) ・・・(2)
Bo=I・Bm/(Rm+Gm+Bm) ・・・(3)
【0034】
ここに、Iは輝度信号iの輝度であり;
Rm、gm、bmは色強度信号rm、gm、bmの輝度(強度)であり;
Ro、Go、Boは変換色強度信号ro、go、boの輝度(強度)である。
【0035】
なお、第1および第2色強度メモリMr1〜Mb1、Mr2〜Mb2は、カラーCCD25のうち前述の映像領域Aoの部分の画素に対応した記憶部を有している。
【0036】
このようにして得られた変換色強度信号ro、go、boは、カラーCCD25からのカラー撮像情報のうちの輝度情報を、第1受光素子19bからの輝度情報に置換した信号となる。前記変換色強度信号ro、go、boは、前記第2色強度メモリMr2、Mg2、Mb2から読み出されて、D/Aコンバータ60に出力され、更に、加算器61において同期信号aが付加されて、アナログの複合カラー映像信号cとなる。該複合カラー映像信号cはモニタ62に出力されて、試料wの映像が映し出される。
【0037】
走査顕微鏡100の使用方法
 走査顕微鏡100は、領域探索モード、白黒(無彩色)共焦点画像モードおよびカラー共焦点画像(カラースライス画像)モードの3つのモードのうち1つを選択して用いる。これらのモードの設定は、操作部63を操作して設定する。
【0038】
モードの設定に先立ち、走査顕微鏡100の初期操作として、図4のステップS10に示すように、走査顕微鏡100で選択可能な複数の特性の異なる対物レンズの各々について、レーザ光光学系1により輝度情報を得るときの対物レンズの焦点距離と、白色光光学系2による色情報を得るときの対物レンズの焦点距離とが同じになるように、レーザ光光学系1の第1結像レンズ16の位置と白色光光学系2の第3結像レンズ24の位置を、第1、第2の駆動手段D−1、D−2により調整して、その位置を予め測定し、その結果をメモリに記憶させる。
【0039】
次いで、選択可能な複数の対物レンズの中から操作者が一つの対物レンズを選択したときには(ステップS11)、この選択された対物レンズ17に対応する記憶値つまりステップS10で測定した位置となるように、第1、第2の駆動手段D−1、D−2により第1、第3の結像レンズ16、24を光軸に沿って移動させる(ステップS12)。これにより、走査顕微鏡100は、セットされた対物レンズ17に関し、レーザ光光学系1による輝度情報を得るときの対物レンズ17の焦点距離と、白色光光学系2による色情報を得るときの対物レンズ17の焦点距離とは同じになる。
【0040】
したがって、操作者が任意の対物レンズ17を選択して、レーザ光光学系1及び白色光光学系2を用いて輝度情報及び色情報を得るときに対物レンズ17の色収差の影響を防止することができ、特に、レーザ光光学系1で紫外線又は可視光線領域中で短波長領域(400〜420nm程度)に属する波長の単色光を用いたときに効果的である。
【0041】
操作者が、上述した操作部63を操作することにより領域探索モードが選択されると、カラー映像信号作成手段5は図1のレーザ駆動回路44を停止させると共に、CCD駆動回路43を作動させてカラーCCD25により撮像させる。この領域探索モードでは、図2の第2領域回路52から第1色強度メモリMr1、Mg1、Mb1に記憶された色強度信号rm、gm、bmが、そのまま、D/Aコンバータ60に出力されて、被写界深度の深い通常の拡大画像がモニタ62に映し出される。したがって、図1の試料ステージ30をX方向及び/又はY方向に移動させることにより、撮像したい領域を探し出すことができる。
【0042】
白黒共焦点画像モードが選択されると、カラー映像信号作成手段5(図2)は、レーザ光光学系1のレーザ駆動回路44および二次元走査装置14などを作動させ、レーザ光光学系1により撮像させる。この白黒共焦点画像モードでは、図2の第1領域回路51から輝度用メモリMiに記憶された輝度信号iが、そのまま、D/Aコンバータ60に出力されて、解像度の高い白黒(無彩色)の拡大画像がモニタ62に映し出される。
【0043】
カラー共焦点画像(カラースライス画像)モードが選択されると、以下に説明するように、レーザ駆動回路44とCCD駆動回路43とが交互に駆動される。
【0044】
カラースライス画像モード(図5)
 すなわち、図5のステップS20で、この第1カラースライス画像モードが選択されると、ステップS21に進み、レーザ光L1による1画面分の走査がなされた後、ステップS22に進む。ステップS22では図1のレーザ駆動回路44が停止し、レーザ10からレーザ光L1が出射されなくなる。この状態で図5のステップS23に進み、カラーCCD25に電荷を蓄積する。このステップS23で得た図2の色強度信号rm、gm、bmは、該信号に含まれている輝度情報が前記ステップS21で得た輝度信号iの輝度情報に置換され、変換色強度信号ro、go、boとなる。該変換色強度信号ro、go、boは、それぞれ、第2色強度メモリMr2、Mg2、Mb2 に記憶された後、D/Aコンバータ60に出力されてカラーの拡大画像がモニタ62に映し出される。
【0045】
なお、図5のステップS23の後にステップS24に進み、このモードがOFFされるまで、前記レーザ光L1の走査と、CCD駆動回路43による電荷の蓄積および読み出しが繰り返される。このようにして得られるカラー共焦点画像が得られる。
【0046】
本実施形態の場合、図1のカラーCCD25によって撮像する(カラーCCD25に電荷を蓄積する)際には、レーザ駆動回路44を停止してレーザ光L1がカラーCCD25に入射しないようにしている。したがって、レーザ光L1の色を帯びた映像になることもなく、試料wの実際の色に近い色彩の映像が得られる。
【0047】
なお、レーザ光L1がカラーCCD25に入射しないようにする手段としては、レーザ光L1を遮光するシャッタを用いたり、あるいは、レーザ光L1の走査範囲をカラーCCD25の撮像領域外に設定するなど種々の方法を採用することができる。また、レーザ光L1がカラーCCD25に入射して、レーザ光L1の色を帯びても、カラーの映像が得られるので、本発明の範囲に含まれる。
【0048】
以上、第1の実施形態として、対物レンズ17として複数のレンズを用意して操作者が任意の対物レンズ17を選択する形式の顕微鏡100を説明したが、可視領域の波長に適合した対物レンズ17が固定的にセットされた顕微鏡であれば、白色光光学系2の第3結像レンズ24に付設した第2駆動機構D−2を省いてもよい。このような顕微鏡であれば、レーザ光光学系1の第1結像レンズ16に付設した第1駆動機構D−1によって、レーザ光光学系1により輝度情報を得るときの対物レンズの焦点距離と、白色光光学系2による色情報を得るときの対物レンズの焦点距離とが同じになるように第1結像レンズ16の位置を調整するようにしてもよい。
【0049】
第2の実施形態(図6)
 前記第1の実施形態では、試料wの表面および第1受光素子19bにおいて点状に集光するレーザ光L1を用いたが、試料wの表面および第1受光素子19bにおいて線状に集光するラインレーザ光L1を用いてもよい。すなわち、図6に示す第2の実施形態のレーザ顕微鏡200のように、レーザ光L1に代えてY方向に長いラインレーザ光L1を用いると共に、点状の第1受光素子19bに代えてY方向に長い一次元CCD19Aを用い、更に、二次元走査装置14に代えて一次元走査装置14Aを用いる。この場合、図6(b)のように、ラインレーザ光L1が試料wの表面で集光した際の長手方向に直交する方向に、ラインレーザ光L1を走査する。なお、光絞り部19aはスリット状(溝状)にする。
【0050】
また、第1の実施形態では、試料wで反射された白色光(応答光)L2が、対物レンズ17と第1結像レンズ16との間に配置した第1のハーフミラー22で反射されるようになっていたが、この第2の実施形態の顕微鏡200では、第1結像レンズ16を兼用することにより第3の結像レンズ24(図1)を省略している。それに伴い、第2のハーフミラー23が第2のリレーレンズ16と第1のリレーレンズ15との間に設けられる。
【0051】
したがって、試料wで反射された白色光(応答光)L2は、対物レンズ17、第1結像レンズ16を通り、次いで、第2のハーフミラー23で反射され、カラーCCD(第2受光素子)25の表面で結像するようになっている。なお、この第2実施形態の顕微鏡200にあっても、対物レンズ17として複数種類の凸レンズが用意され、操作者の選択により一つの対物レンズ17がセットされるようになっている。
【0052】
この第2の実施形態のレーザ顕微鏡200では、先に説明した顕微鏡100(図1)と同様の動作モード、つまり領域探索モード、白黒(無彩色)共焦点画像モードおよびカラー共焦点画像(カラースライス画像)モードの3つのモードのうち1つを選択して用いるのがよい。これらのモードの設定は、操作部63を操作して設定することが可能である。
【0053】
カラースライス画像モードを選択したときには、図7に示すステップで動作するのが好ましい。
【0054】
すなわち、図7のステップS40でカラースライス画像モードが選択されると、ステップS41に進み、白色光光学系2で色情報を得るときと、レーザ光光学系1で輝度情報を得るときの対物レンズ17の焦点距離が同じになるように白色光光学系2を動作させたときの第1結像レンズ16の位置αと、レーザ光光学系1を動作させたときの第1結像レンズ16の位置βとを各対物レンズ17毎に測定し、各対物レンズ17毎に位置αとβとをメモリに記憶させる。この位置α及びβを測定するときには第1結像レンズ16に付設されている第1駆動手段D−1を動作させることにより第1結像レンズ16を上下に移動させることにより行われる。
【0055】
次いで、ステップS42に進み、操作者により選択された対物レンズ17に対応する位置βとなるように第1結像レンズ16を移動させた後に、ステップS43に進んで、レーザ光L1による1画面分の走査がなされた後、ステップS44に進む。このステップS44では図6のレーザ駆動回路44が停止し、レーザ10からレーザ光L1が出射されなくなる。
【0056】
次いでステップS45に進み、選択されている対物レンズ17に対応する位置αとなるように第1結像レンズ16を移動させた後に、ステップS46に進んで、白色光源20を点灯させてこれを試料wに照射し、この試料wで反射した白色光はカラーCCD25に電荷を蓄積する。
【0057】
このステップS46で得た図2の色強度信号rm、gm、bmは、該信号に含まれている輝度情報が前記ステップS43のレーザ光走査で得た輝度信号iの輝度情報に置換され、変換色強度信号ro、go、boとなる。該変換色強度信号ro、go、boは、それぞれ、第2色強度メモリMr2、Mg2、Mb2に記憶された後、D/Aコンバータ60に出力されてカラーの拡大画像がモニタ62に映し出される(ステップS47)。
【0058】
次いで、ステップS48で、再び、選択されている対物レンズ17に対応する位置βとなるように第1結像レンズ16を移動させた後に、次のレーザ光走査(ステップS43)に備える。すなわち、このカラースライス画像モードがオフされるまで、ステップS49から上記ステップS43に戻り、ステップS43〜48の動作を反復して、前記レーザ光L1の走査と、CCD駆動回路43による電荷の蓄積および読み出しが繰り返される。
【0059】
前記第2の実施形態では、図6のレーザ光学系1の第1受光素子19Aの前方に光絞り部19aを設けたが、該光絞り部19aは必ずしも設ける必要はない。
【0060】
第3の実施形態(図8)
 図8に示す第3の実施形態のレーザ顕微鏡300のように、第2の結像レンズ18の焦点の位置に白黒用の一次元CCD19Aを設け、第1の一次元走査装置14Aを第1のコリメートレンズ11と偏光ビームスプリッタ12の間に設け、第2の一次元走査装置14Bと1/4波長板13と第1リレーレンズ15との間に設けてもよい。
【0061】
この第3の実施形態のレーザ顕微鏡300では、第2のハーフミラー23を図1の位置に配置してもよく、或いは、図6に図示のように、第1の結像レンズ16と第1リレーレンズ15との間に配置してもよい。
【0062】
この第3の実施形態の顕微鏡300でカラースライス画像モードを選択したときには、図7で説明した手順で動作する。
【0063】
第4の実施形態(図9)
 図9に示す第4の実施の形態のレーザ顕微鏡400は、図1の第1の実施の形態のレーザ顕微鏡100と図8の第3の実施の形態のレーザ顕微鏡300とを組み合わせたものである。すなわち、レーザ光源10から第1リレーレンズ15までの光路構成と第1リレーレンズ15から第1受光素子19bまでの光路構成は第1実施の形態のレーザ顕微鏡100と同一であり、また、第1リレーレンズ15と対物レンズ17間の光路構成は第3の実施の形態のレーザ顕微鏡300と同一である。
【0064】
以上、本発明の好ましい実施の形態を説明したが、例えば、図1、図6、図7及び図8及び図9の第2光学系2において、第2受光素子として、カラーCCDの他に、前方に回転RGBフィルタを用いた二次白黒面受光素子(例えばCCD)であってもよいし、ダイクロックミラー群と各々がRGB用の3つの二次白黒面受光素子であってもよく、また、MOS型などの他の固体撮像素子や複数の撮像管を組み合わせたテレビカメラなどを用いることもできる。
【0065】
なお、レーザ光L1を走査する走査装置を白色応答光に対して兼用する場合は、次のような例が考えられる。図9の場合は、二次元走査装置14がX方向走査部とY方向走査部とより構成(Y方向走査部が第1リレーレンズ15側、言い換えれば、白色応答光を最初にY方向に走査する)されている場合、Y方向走査部とX方向走査部との間に第2のハーフミラー23を配置してもよい。この場合、第2受光素子としては一次元カラー受光素子や、前方に回転RGBフィルタを設けた一次元白黒受光素子や、ダイクロックミラー群と3つの一次元白黒受光素子を用いる。
【0066】
また、図6と図8の場合は、1/4波長板13と一次元走査装置14A(図8においては14B)の間に第2のハーフミラー23を配置してもよい。この場合、第2受光素子としてはダイクロックミラー群と3つの一次元白黒受光素子を用いる。なお、第2受光素子として一次元カラー受光素子や、前方に回転RGBフィルタを設けた一次元白黒受光素子も用いることができるが、この場合は、第2受光素子を第1受光素子としても使用できる。但し、回転RGBフィルタは、RGB以外に白色応答光を直接一次元白黒受光素子に導く部分(開口部など)が必要となる。
【0067】
同様に、図9においても、二次元走査装置14と1/4波長板13との間に第2ハーフミラー23を配置してもよい。この場合、第2受光素子としては、前方に回転RGBフィルタを設けた二次元受光素子や、ダイクロックミラー群と3つの二次元受光素子を用いる。
【0068】
なお、前述した各々の第2のハーフミラー23の配置の変形例において、第2のハーフミラー23の配置が変更されたことに伴い、第2受光素子25、CCD駆動回路43及び第2A/D42の配置も変更されることは言うまでもない。
【0069】
上述した実施形態では、色彩を光の三原色に分解したが、補色系(黄、シアン、緑)に分解してもよい。また、色情報として色差信号を用いてもよい。
【0070】
また、コンフォーカルカラー顕微鏡は、図1に例示したように共焦点(コンフォーカル)光学系1が単一であってもよいが、この共焦点光学系1を複数備えていてもよい。複数のコンフォーカル光学系を備えた顕微鏡にあっては、全ての光源に関連して個々に独立した結像レンズを備えていもてよいが、複数のコンフォーカル光学系が共用する結像レンズを備えていてもよい。
【図面の簡単な説明】
【図1】第1実施形態のカラー走査顕微鏡の概略構成図である。
【図2】ブロック図である。
【図3】撮像領域を示す平面図である。
【図4】第1実施形態のカラー走査顕微鏡での初期操作を説明するためのフローチャートである。
【図5】カラースライス画像モードでの操作手順を説明するためのフローチャートである。
【図6】第2実施形態の走査顕微鏡の概略構成図である。
【図7】第2実施形態でのカラースライス画像モードでの操作手順を説明するためのフローチャートである。
【図8】第3実施形態の走査顕微鏡の概略構成図である。
【図9】第4実施形態の走査顕微鏡の概略構成図である。
【符号の説明】
1:第1光学系(レーザ光光学系)
16:第1結像レンズ(共通の結像レンズ)
17:共通対物レンズ
18:第2結像レンズ
19b:第1受光素子
2:第2光学系(白色光光学系)
24:第3結像レンズ
25:第2受光素子
L1:レーザ光又は高輝度ランプ
L2:白色光
D−1:第1結像レンズの駆動機構
D−2:第3結像レンズの駆動機構

Claims (13)

  1. 輝度情報を得るための第1の光源を備えた第1光学系と、色情報を得るための第2の光源を備えた第2光学系並びに、これら第1、第2の光学系が共通の対物レンズを含み、試料からの応答光に基づいて各々前記第1光学系により獲得した前記輝度情報と前記第2光学系により獲得した前記色情報とを合成することによりカラー映像用の信号を生成するカラー顕微鏡において、
    前記第1光学系での前記対物レンズの焦点距離と、前記第2光学系での前記対物レンズの焦点距離とを実質的に同じにする対物レンズ焦点距離調整手段を少なくともいずれか一方の光学系が有していることを特徴とするカラー顕微鏡。
  2. 輝度情報を得るための第1の光源を備えた第1光学系と、色情報を得るための第2の光源を備えた第2光学系並びに、これら第1、第2の光学系が共通の対物レンズを含み、試料からの応答光に基づいて各々前記第1光学系により獲得した前記輝度情報と前記第2光学系により獲得した前記色情報とを合成することによりカラー映像用の信号を生成するカラー顕微鏡において、
    前記第1の光学系に含まれる結像レンズに付設され、該結像レンズを光軸方向に移動させるための第1の結像レンズ移動手段を有し、
    該結像レンズ移動手段により、前記第1光学系での前記対物レンズの焦点距離が前記第2光学系での前記対物レンズの焦点距離と同じになるように前記第1光学系に含まれる結像レンズの光軸方向の位置を調整することができることを特徴とするカラー顕微鏡。
  3. 輝度情報を得るための第1の光源を備えた第1光学系と、色情報を得るための第2の光源を備えた第2光学系並びに、これら第1、第2の光学系が共通の対物レンズを含み、試料からの応答光に基づいて各々前記第1光学系により獲得した前記輝度情報と前記第2光学系により獲得した前記色情報とを合成することによりカラー映像用の信号を生成するカラー顕微鏡において、
    前記第2光学系に含まれる結像レンズに付設され、該結像レンズを光軸方向に移動させるための第2の結像レンズ移動手段を有し、
    該第2の結像レンズ移動手段により、前記第2光学系での前記対物レンズの焦点距離が前記第1光学系での前記対物レンズの焦点距離と同じになるように前記第2光学系に含まれる結像レンズの光軸方向の位置を調整することができることを特徴とするカラー顕微鏡。
  4. 前記第2光学系に含まれる結像レンズに付設され、該結像レンズを光軸方向に移動させるための第2の結像レンズ移動手段を更に有し、
    該第1及び第2の結像レンズ移動手段により、前記第1光学系での前記対物レンズの焦点距離が前記第2光学系での前記対物レンズの焦点距離と同じになるように、前記第1及び第2光学系に含まれる結像レンズの光軸方向の位置を調整することができることを特徴とする請求項2に記載のカラー顕微鏡。
  5. 輝度情報を得るための第1の光源を備えた第1光学系と、
    色情報を得るための第2の光源を備えた第2光学系とを含み、
    これら第1、第2の光学系が、共通の対物レンズと共通の結像レンズとを有し、
    該共通の結像レンズには、該結像レンズの光軸方向の位置を調整することのできる結像レンズ移動手段が付設され、
    該結像レンズ移動手段により、前記第1光学系での前記対物レンズの焦点距離が前記第2光学系での前記対物レンズの焦点距離と同じになるように、前記共通の結像レンズの光軸方向の位置を調整することができることを特徴とするカラー顕微鏡。
  6. 前記第1光学系が単色光の光源を含む共焦点光学系で構成されていることを特徴とする請求項1〜5のいずれか一項に記載のカラー顕微鏡。
  7. 前記第2の光源が可視光の光を出射し、前記第1の光源が、前記第2の光源とは波長の異なる単色光を出射することを特徴とする請求項1〜6のいずれか一項に記載のカラー顕微鏡。
  8. 前記第1の光源が、紫外線領域又は可視光線領域中で約400〜420nmの短波長の光を出射する光源からなり、前記第2の光源が白色光源からなることを特徴とする請求項6に記載のカラー顕微鏡。
  9. 前記共通の対物レンズが、特性の異なる複数の対物レンズから任意に選択可能であることを特徴とする請求項1〜8のいずれか一項に記載のカラー顕微鏡。
  10. 輝度情報を得るための第1の光源を備えた第1光学系と、色情報を得るための第2の光源を備えた第2光学系並びに、これら第1、第2の光学系が、特性の異なる複数の対物レンズから任意に選択された共通の対物レンズを含み、試料からの応答光に基づいて各々前記第1光学系により獲得した前記輝度情報と前記第2光学系により獲得した前記色情報とを合成することによりカラー映像用の信号を生成するカラー顕微鏡において、
    前記第1光学系に含まれる結像レンズに付設され、該結像レンズを光軸方向に移動させるための第1の結像レンズ移動手段と、
    前記第2光学系に含まれる結像レンズに付設され、該結像レンズを光軸方向に移動させるための第2の結像レンズ移動手段と、
    前記選択可能な複数の対物レンズの各々の焦点距離が前記第1光学系と前記第2光学系とで同じになる前記第1、第2の光学系に含まれる結像レンズの光軸方向の位置を記憶する記憶手段と、
    前記選択可能な複数の対物レンズの中から任意の対物レンズを選択したときに、この選択された対物レンズに対応する前記結像レンズの光軸方向の位置を前記記憶手段から読み出して前記第1、第2の結像レンズ移動手段により、前記第1、第2の光学系に含まれる結像レンズの光軸方向の位置を調整することを特徴とするカラー顕微鏡。
  11. 前記第1光学系が単色光の光源を含む共焦点光学系で構成されていることを特徴とする請求項10に記載のカラー顕微鏡。
  12. 前記第2の光源が可視光の光を出射し、前記第1の光源が、前記第2の光源とは波長の異なる単色光を出射することを特徴とする請求項10又は11に記載のカラー顕微鏡。
  13. 前記第1の光源が、紫外線領域又は可視光線領域中で約400〜420nmの短波長の光を出射する光源からなり、前記第2の光源が白色光源からなることを特徴とする請求項10〜12のいずれか一項に記載のカラー顕微鏡。
JP2002185468A 2002-06-26 2002-06-26 カラー顕微鏡 Pending JP2004029373A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002185468A JP2004029373A (ja) 2002-06-26 2002-06-26 カラー顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002185468A JP2004029373A (ja) 2002-06-26 2002-06-26 カラー顕微鏡

Publications (1)

Publication Number Publication Date
JP2004029373A true JP2004029373A (ja) 2004-01-29

Family

ID=31181085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002185468A Pending JP2004029373A (ja) 2002-06-26 2002-06-26 カラー顕微鏡

Country Status (1)

Country Link
JP (1) JP2004029373A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326494A (ja) * 2004-05-12 2005-11-24 Olympus Corp 画像顕微鏡
JP2010224231A (ja) * 2009-03-24 2010-10-07 Olympus Corp 微弱光および高強度光の画像を撮像可能な顕微鏡撮像装置
KR101742389B1 (ko) 2015-10-30 2017-06-01 한국과학기술원 현미경 장치
US9962244B2 (en) 2013-02-13 2018-05-08 3Shape A/S Focus scanning apparatus recording color
CN112748560A (zh) * 2019-10-30 2021-05-04 卡尔蔡司显微镜有限责任公司 具有微机电光学系统的图像转换模块及应用其的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326494A (ja) * 2004-05-12 2005-11-24 Olympus Corp 画像顕微鏡
JP4727165B2 (ja) * 2004-05-12 2011-07-20 オリンパス株式会社 画像顕微鏡
JP2010224231A (ja) * 2009-03-24 2010-10-07 Olympus Corp 微弱光および高強度光の画像を撮像可能な顕微鏡撮像装置
US9962244B2 (en) 2013-02-13 2018-05-08 3Shape A/S Focus scanning apparatus recording color
US10383711B2 (en) 2013-02-13 2019-08-20 3Shape A/S Focus scanning apparatus recording color
US10736718B2 (en) 2013-02-13 2020-08-11 3Shape A/S Focus scanning apparatus recording color
KR101742389B1 (ko) 2015-10-30 2017-06-01 한국과학기술원 현미경 장치
CN112748560A (zh) * 2019-10-30 2021-05-04 卡尔蔡司显微镜有限责任公司 具有微机电光学系统的图像转换模块及应用其的方法

Similar Documents

Publication Publication Date Title
JP3874893B2 (ja) 走査顕微鏡
Jonkman et al. Any way you slice it—a comparison of confocal microscopy techniques
JP3324780B2 (ja) 紫外線顕微鏡
US5751417A (en) Arrangement for confocal fluorescence microscopy
US10317664B2 (en) Microscope device
EP1586931A2 (en) Slit confocal microscope and method
JP3616999B2 (ja) コンフォーカル顕微鏡
JP4996304B2 (ja) 走査型顕微鏡とその調節方法
JP4185711B2 (ja) 複数の光源を備えた顕微鏡
JP2004029373A (ja) カラー顕微鏡
JP4185712B2 (ja) カラー顕微鏡
JP3655677B2 (ja) 共焦点走査型光学顕微鏡
JP5019279B2 (ja) 共焦点顕微鏡及び合焦カラー画像の生成方法
JP4050039B2 (ja) 走査型共焦点顕微鏡及びその画像構築方法
JP4044914B2 (ja) 走査顕微鏡
JP4197898B2 (ja) 顕微鏡、三次元画像生成方法、三次元画像を生成する制御をコンピュータに行わせるプログラム、及びそのプログラムを記録した記録媒体
Awamura et al. Color laser microscope
JP4044915B2 (ja) 走査顕微鏡
JP3486754B2 (ja) 走査型光学顕微鏡
JPH09297269A (ja) 走査型画像入力装置及び走査型プローブ顕微鏡
JP3205530B2 (ja) カラー顕微鏡撮像装置
JP2006350363A (ja) 走査顕微鏡
JP2004145153A (ja) 光量飽和表示機能付共焦点顕微鏡
JPH09131322A (ja) 眼底検査装置
JP2004177732A (ja) 光学測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118