JP2004025760A - Laminated product of metal and resin and its manufacturing method - Google Patents

Laminated product of metal and resin and its manufacturing method Download PDF

Info

Publication number
JP2004025760A
JP2004025760A JP2002188859A JP2002188859A JP2004025760A JP 2004025760 A JP2004025760 A JP 2004025760A JP 2002188859 A JP2002188859 A JP 2002188859A JP 2002188859 A JP2002188859 A JP 2002188859A JP 2004025760 A JP2004025760 A JP 2004025760A
Authority
JP
Japan
Prior art keywords
resin
metal
alloy
melting point
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002188859A
Other languages
Japanese (ja)
Inventor
Masanori Hirai
平井 正典
Shigehiko Hayashi
林 茂彦
Masanori Kakehi
筧 雅典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2002188859A priority Critical patent/JP2004025760A/en
Publication of JP2004025760A publication Critical patent/JP2004025760A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated product of a metal and a resin whose joint part is not adversely affected by environmental characteristics such as temperature, and a method of manufacturing the laminated product of a metal and a resin through simple processes. <P>SOLUTION: The laminated product of a metal and a resin is composed of a mixed layer 2 comprising the resin and a low-melting point alloy having a lower melting temperature than that of the resin and a resin layer 3 laminated in that order on a metallic substrate 1. The method for manufacturing the laminated product of the metal and the resin is characterized in that a mixture of resin powder and a low-melting point alloy powder having a lower melting temperature than that of the resin and the resin powder are compression-molded on the metallic substrate 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金属と樹脂の積層体に係り、詳しくは、例えば摺動部材として用いられる金属と樹脂の積層体及びその製造方法に関わる。
【0002】
【従来の技術】
軸受けや歯車等、低摩擦係数、低摩耗性の表面が求められる部品として、金属の基材に樹脂層を被覆した金属と樹脂の積層体が用いられている。この積層体は、複雑形状を容易に成形可能で自己潤滑性を有する樹脂を、機械的強度に優れた金属に接合することによって形成される、樹脂と金属それぞれの特徴を活かした複合材料であって、自動車、産業機器、事務機器、AV機器等、あらゆる分野で使用されている。
【0003】
ここで、金属と樹脂を接合する簡便な方法として、金属と樹脂を単純に接着剤で接着する方法がある。接着剤は種類も多く、安価ではあるが、被接着物である金属及び樹脂ともに成形加工されたものを接着処理加工するために、接着処理工程が増え、製造コストが上昇する問題がある。また接着剤には、その性能が温度等の環境特性に影響されることがあり、このことが経時に伴う接合強度の劣化につながる問題もある。
【0004】
接着剤を使用しない方法としては、例えば特開平4−85398号公報に開示されているように、金属基板に金属微粒子を一体的に焼結し、得られた焼結層に樹脂を含浸被覆して摺動部材を得る方法があるが、金属微粒子を高温で焼結する工程と、樹脂を含浸被覆する工程の二工程を必要とすることからなるコスト上昇の問題がある。
【0005】
接着剤を使用しない別の方法として、金属表面に樹脂を射出成形あるいは圧縮成形する方法がある。この方法においては、樹脂の成形体を接合することなく、粉末状の樹脂を金属表面に一体成形することから、接着剤を用いた場合以上の接合力が得られるが、十分な接合強度を得るためには、金属表面と樹脂がいわゆるアンカー効果を示すようにするために接合前の金属表面を十分に粗化する工程を必要とし、同じくコスト上昇の問題がある。
【0006】
【発明が解決しようとする課題】
本発明は上記のような問題点に注目してなされたものであり、接合部が温度等の環境特性に影響されない金属と樹脂の積層体、及び工程が簡易な金属と樹脂の積層体の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
すなわち本願発明請求項1記載の発明は、金属基板上に、樹脂と前記樹脂の溶融温度以下の溶融温度を有する低融点合金からなる混合層、樹脂層が順に積層されたことを特徴とする金属と樹脂の積層体である。
【0008】
請求項2記載の発明は、前記低融点合金が、Bi−Sn合金及びPb−Sn合金から選ばれた少なくとも一種の合金である請求項1記載の金属と樹脂の積層体である。
【0009】
請求項3記載の発明は、金属基板上に、樹脂粉末と前記樹脂の溶融温度以下の溶融温度を有する低融点合金粉末からなる混合物と、樹脂粉末を圧縮成形することを特徴とする金属と樹脂の積層体の製造方法である。
【0010】
請求項4記載の発明は、前記低融点合金が、Bi−Sn合金及びPb−Sn合金から選ばれた少なくとも一種の合金である請求項3記載の金属と樹脂の積層体の製造方法である。
【0011】
【発明の実施の形態】
以下、本発明の金属と樹脂の積層体について詳細に説明する。
金属と樹脂の積層体を形成する金属層は、樹脂の摺動部材を形成するための強度と加工性を有した金属板であればよく、例えば鉄板、銅板等が好適に用いられる。
【0012】
金属と樹脂の積層体は、樹脂粉末と前記樹脂の溶融温度以下の溶融温度を有する低融点合金粉末との混合物を前記金属板上に圧縮成形することによって形成される。ここで樹脂の種類は、例えば、耐薬品性、耐摩耗特性、反発弾性に優れたポリアセタール樹脂、耐油性、耐熱性、耐摩耗性に優れたポリアミド樹脂、成形収縮率が小さい特徴を有するABS樹脂、耐熱性、耐薬品性、電気絶縁性に優れたフッ素樹脂等があり、目的に応じて選択される。
【0013】
樹脂粉末は、樹脂ペレットを液体窒素で冷却し、粉砕機で粉砕する冷凍粉砕を用いて作製される。粒径は100μm〜500μmが好ましい。100μm未満では、樹脂の粉砕後の収率が低下し、粉砕コストの上昇につながる。500μmを越えると、低融点合金粉末に比べて樹脂粉末の粒径が大きくなるため、低融点合金粉末が均一に混ざらない。
【0014】
低融点合金とは一般に、Bi、Sn、Zn、Pb、Cd、In等からなる合金であって、例えばBi−Sn合金、Pb−Sn合金、Sn−Zn合金、Bi−In合金、Cd−Zn合金等がある。各低融点合金の溶融温度は、各組成分の濃度により調整することができる。
【0015】
ここで、樹脂及び低融点合金は、低融点合金の溶融温度が、樹脂の溶融温度よりも低くなるように選択される。低融点合金及び樹脂の具体例としては、60質量%Bi−40質量%Sn合金(溶融温度(以下同)139〜145℃)、70質量%Pb−30質量%Sn合金(183〜255℃)、ポリアセタール樹脂(164℃)、ポリアミド樹脂(225℃)等が挙げられる。
【0016】
低融点合金粉末は、簡便な方法として、低融点合金のインゴットをやすりで削り出して作製する方法があるが、粒径を制御するためにより好ましくはアトマイズ法、遠心噴霧法等の方法で作製される。アトマイズ法は、溶融した低融点合金を細いノズルから噴霧して粉末を作る方法である。遠心噴霧法は、回転体の表面に薄く形成した融液を回転体の遠心力により液滴として飛散させ、それを冷却凝固させる方法である。
【0017】
低融点合金粉末の粒径は、50μmから300μmが好ましい。50μm未満では、粉砕コストが上昇し、300μmを越えると樹脂粉末と均一に混合できなくなる。
【0018】
低融点合金粉末の樹脂粉末に対する配合量は、30体積%〜70体積%の範囲にあることが好ましい。30体積%未満では、金属板に対する低融点合金の合金化面積が低下するため樹脂の強度が大きく低下する。一方70体積%を上回ると、樹脂と低融点合金が十分に混合されない。
【0019】
厚さ数mmの金属板を圧縮成形用装置にセットし、低融点合金粉末と樹脂粉末との混合物を金属板上全面にほぼ均一に、厚さ1.5mm〜3mmとなるように堆積させる、さらにその上に前記樹脂粉末と同種の樹脂粉末を同様に厚さ1.5mm〜3mmとなるように堆積させる。
【0020】
圧縮成型用装置によって前記材料を圧縮し、圧縮成形を行う。圧縮成形用装置とは、一般に図2に示されるものであって、被圧縮成形材料21を上金型11と下金型12とで圧縮するものである。
【0021】
ここで、圧縮成形は予備成形と本成形の二段階にわたって行われることが好ましく、金型温度は、予備成形では樹脂の溶融温度以下に設定され、本成形で樹脂の溶融温度以上に設定されることが好ましい。圧力は、予備成形では10〜30MPa、本成形では予備成形より小さく、1〜5MPaが好ましい。圧縮成形により、図1に示すように、共に厚さ0.5mm〜1mmの樹脂と低融点合金と混合層2と樹脂層3が金属板1上に形成される。
【0022】
前記条件で圧縮成形を行うことによって、金属板と低融点合金が合金化し、一方低融点合金は樹脂中でネットワーク構造を構築して樹脂に対して良好な接合状態を保つことにより、金属板と樹脂が接合される。
【0023】
【実施例】
以下本発明の金属と樹脂の積層体に関して、実施例を示しながら詳細に説明する。
実施例1〜3
長さ100mm、幅20mm、厚さ0.5mmの銅板上に、平均粒径100μmの低融点合金50体積%と平均粒径200μmの樹脂粉末の混合層を厚さ約2mmとなるように重ね、さらにその上に樹脂粉末を厚さ約2mmとなるように重ねて圧縮成形を行い、銅と樹脂の積層板を得た。各実施例において用いた低融点合金と樹脂の種類を表1に示す。また、表2には圧縮成形の圧力と金型温度条件を示す。
【0024】
【表1】

Figure 2004025760
【0025】
【表2】
Figure 2004025760
【0026】
得られた各実施例の積層板から銅板と樹脂の一部を除去し、図3に示す引張せん断試験片を用意した。この試験片について、室温(23℃)及び100℃(実施例1のみ)にて引張試験を実施し、引張せん断応力を求めた。各実施例の引張せん断力を表3に示す。
【0027】
【表3】
Figure 2004025760
【0028】
比較例1〜3
それぞれ実施例1〜3と同種の樹脂材料を用いて圧縮成形で作製した樹脂板と銅板をエポキシ系接着剤を用いて接合して積層板を作製し、この積層板から実施例と同形の引張せん断試験片を作製した。この試験片に対して、室温(23℃)及び100℃(比較例1のみ)にて引張試験を実施し、引張せん断力を求めた。各比較例の引張せん断力を表4に示す。
【0029】
【表4】
Figure 2004025760
【0030】
室温では実施例、比較例の引張せん断力は変わらない。100℃では、実施例1が室温時と比較して温度の影響を受けていないのに対して、比較例1は、室温時と比較して引張せん断力は半分以下の値となり、温度の影響を著しく受けることが明らかとなった。各実施例においては、銅板と樹脂の接合面において、Bi−Sn合金あるいはPb−Sn合金が樹脂中にネットワークを構築し、銅板と樹脂との良好な接合を確立している。
【0031】
【発明の効果】
以上説明したように、本願各請求項記載の発明によれば、接合部が温度等の環境特性に影響されない金属と樹脂の積層体、及び工程が簡易な金属と樹脂の積層体の製造方法が提供される。
【図面の簡単な説明】
【図1】金属と樹脂の積層体の断面図である。
【図2】圧縮成形用装置の断面図である。
【図3】金属と樹脂の積層体の引張せん断試験片の断面図である。
【符号の説明】
1 金属基板
2 樹脂と低融点合金との混合層
3 樹脂層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal-resin laminate, and more particularly, to a metal-resin laminate used as, for example, a sliding member, and a method of manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art As a component requiring a low friction coefficient and low wear surface such as a bearing and a gear, a metal / resin laminate in which a metal substrate is coated with a resin layer is used. This laminate is a composite material that is formed by joining a resin having a self-lubricating property that can easily form a complex shape to a metal having excellent mechanical strength and that utilizes the characteristics of the resin and the metal. It is used in all fields, such as automobiles, industrial equipment, office equipment, and AV equipment.
[0003]
Here, as a simple method of joining the metal and the resin, there is a method of simply bonding the metal and the resin with an adhesive. Although there are many types of adhesives and they are inexpensive, there is a problem that the bonding process is increased because the metal and resin to be bonded are molded and bonded, so that the number of bonding processes is increased and the manufacturing cost is increased. Further, the performance of the adhesive may be affected by environmental characteristics such as temperature, and this may cause a problem that the bonding strength is deteriorated with time.
[0004]
As a method without using an adhesive, for example, as disclosed in JP-A-4-85398, a metal substrate is sintered integrally with metal fine particles, and the obtained sintered layer is impregnated and coated with a resin. Although there is a method of obtaining a sliding member by the above method, there is a problem of an increase in cost, which requires two steps of a step of sintering the metal fine particles at a high temperature and a step of impregnating and coating a resin.
[0005]
As another method not using an adhesive, there is a method of injection molding or compression molding a resin on a metal surface. In this method, since the powdered resin is integrally formed on the metal surface without bonding the resin molded body, a bonding force greater than that obtained when an adhesive is used is obtained, but sufficient bonding strength is obtained. For this purpose, a step of sufficiently roughening the metal surface before joining is required in order for the metal surface and the resin to exhibit the so-called anchor effect, which also raises the problem of cost increase.
[0006]
[Problems to be solved by the invention]
The present invention has been made by paying attention to the above-mentioned problems, and is a method for manufacturing a metal-resin laminate in which a joint portion is not affected by environmental characteristics such as temperature, and a metal-resin laminate having a simple process. The aim is to provide a method.
[0007]
[Means for Solving the Problems]
That is, the invention according to claim 1 of the present invention is characterized in that a mixed layer of a resin and a low melting point alloy having a melting temperature lower than the melting temperature of the resin and a resin layer are sequentially laminated on a metal substrate. And a resin laminate.
[0008]
The invention according to claim 2 is the metal-resin laminate according to claim 1, wherein the low melting point alloy is at least one alloy selected from a Bi-Sn alloy and a Pb-Sn alloy.
[0009]
The invention according to claim 3 is characterized in that a mixture of a resin powder and a low melting point alloy powder having a melting temperature equal to or lower than the melting temperature of the resin is formed on a metal substrate by compression molding the resin powder. This is a method for producing a laminate.
[0010]
The invention according to claim 4 is the method according to claim 3, wherein the low-melting point alloy is at least one alloy selected from a Bi-Sn alloy and a Pb-Sn alloy.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the laminate of the metal and the resin of the present invention will be described in detail.
The metal layer forming the laminate of metal and resin may be a metal plate having strength and workability for forming a resin sliding member, and for example, an iron plate, a copper plate, or the like is preferably used.
[0012]
The laminate of metal and resin is formed by compression molding a mixture of a resin powder and a low melting point alloy powder having a melting temperature equal to or lower than the melting temperature of the resin on the metal plate. Here, the type of the resin is, for example, a polyacetal resin excellent in chemical resistance, abrasion resistance, and rebound resilience, a polyamide resin excellent in oil resistance, heat resistance, and abrasion resistance, and an ABS resin having a characteristic of a small molding shrinkage. There are fluororesins and the like excellent in heat resistance, chemical resistance and electrical insulation, and are selected according to the purpose.
[0013]
The resin powder is produced by using freeze pulverization in which resin pellets are cooled with liquid nitrogen and pulverized by a pulverizer. The particle size is preferably 100 μm to 500 μm. If the thickness is less than 100 μm, the yield of the resin after grinding decreases, leading to an increase in grinding cost. When it exceeds 500 μm, the particle diameter of the resin powder becomes larger than that of the low melting point alloy powder, so that the low melting point alloy powder is not uniformly mixed.
[0014]
The low melting point alloy is generally an alloy composed of Bi, Sn, Zn, Pb, Cd, In and the like, for example, Bi-Sn alloy, Pb-Sn alloy, Sn-Zn alloy, Bi-In alloy, Cd-Zn Alloys and the like. The melting temperature of each low melting point alloy can be adjusted by the concentration of each component.
[0015]
Here, the resin and the low melting point alloy are selected such that the melting temperature of the low melting point alloy is lower than the melting temperature of the resin. As specific examples of the low melting point alloy and the resin, 60 mass% Bi-40 mass% Sn alloy (melting temperature (hereinafter the same) 139 to 145 ° C.), 70 mass% Pb-30 mass% Sn alloy (183 to 255 ° C.) , Polyacetal resin (164 ° C), polyamide resin (225 ° C) and the like.
[0016]
As a simple method, there is a method of shaving out an ingot of a low melting point alloy with a file, and a low melting point alloy powder is more preferably manufactured by a method such as an atomizing method or a centrifugal spraying method for controlling the particle size. You. The atomization method is a method in which a molten low melting point alloy is sprayed from a fine nozzle to produce powder. The centrifugal spray method is a method in which a melt formed thinly on the surface of a rotating body is scattered as droplets by the centrifugal force of the rotating body, and cooled and solidified.
[0017]
The particle size of the low melting point alloy powder is preferably from 50 μm to 300 μm. If it is less than 50 μm, the pulverization cost increases, and if it exceeds 300 μm, it cannot be uniformly mixed with the resin powder.
[0018]
The blending amount of the low melting point alloy powder with respect to the resin powder is preferably in the range of 30% by volume to 70% by volume. If it is less than 30% by volume, the area of alloying of the low melting point alloy with the metal plate is reduced, so that the strength of the resin is greatly reduced. On the other hand, if it exceeds 70% by volume, the resin and the low melting point alloy are not sufficiently mixed.
[0019]
A metal plate having a thickness of several mm is set in an apparatus for compression molding, and a mixture of a low melting point alloy powder and a resin powder is deposited almost uniformly on the entire surface of the metal plate so as to have a thickness of 1.5 mm to 3 mm. Further, a resin powder of the same type as the above-mentioned resin powder is similarly deposited thereon to a thickness of 1.5 mm to 3 mm.
[0020]
The material is compressed by a compression molding device to perform compression molding. The compression molding apparatus is generally the one shown in FIG. 2 and compresses the material 21 to be compressed by the upper mold 11 and the lower mold 12.
[0021]
Here, the compression molding is preferably performed in two stages of preforming and main molding, and the mold temperature is set to be equal to or lower than the melting temperature of the resin in the preliminary molding and set to be equal to or higher than the melting temperature of the resin in the main molding. Is preferred. The pressure is 10 to 30 MPa in the preforming, and smaller than the preforming in the main molding, and is preferably 1 to 5 MPa. As shown in FIG. 1, a resin, a low-melting alloy, a mixed layer 2 and a resin layer 3 each having a thickness of 0.5 mm to 1 mm are formed on the metal plate 1 by compression molding.
[0022]
By performing compression molding under the above conditions, the metal plate and the low-melting alloy are alloyed, while the low-melting alloy forms a network structure in the resin and maintains a good bonding state with the resin, thereby forming a metal plate and a low-melting alloy. The resin is joined.
[0023]
【Example】
Hereinafter, a laminate of a metal and a resin of the present invention will be described in detail with reference to examples.
Examples 1-3
On a copper plate having a length of 100 mm, a width of 20 mm, and a thickness of 0.5 mm, a mixed layer of a low melting point alloy having an average particle diameter of 100 μm and a resin powder having an average particle diameter of 200 μm is layered to a thickness of about 2 mm. Further, a resin powder was superposed thereon so as to have a thickness of about 2 mm and compression-molded to obtain a laminate of copper and resin. Table 1 shows the types of low melting point alloys and resins used in each example. Table 2 shows compression molding pressure and mold temperature conditions.
[0024]
[Table 1]
Figure 2004025760
[0025]
[Table 2]
Figure 2004025760
[0026]
A copper plate and a part of the resin were removed from the obtained laminates of the respective examples, and tensile shear test pieces shown in FIG. 3 were prepared. For this test piece, a tensile test was performed at room temperature (23 ° C.) and 100 ° C. (Example 1 only) to determine a tensile shear stress. Table 3 shows the tensile shear force of each example.
[0027]
[Table 3]
Figure 2004025760
[0028]
Comparative Examples 1-3
A resin plate and a copper plate produced by compression molding using the same type of resin material as in Examples 1 to 3 were respectively joined by using an epoxy-based adhesive to produce a laminated plate, and from this laminated plate, a tensile plate having the same shape as that of the embodiment was produced. A shear test piece was prepared. A tensile test was performed on the test piece at room temperature (23 ° C.) and 100 ° C. (only Comparative Example 1) to determine a tensile shear force. Table 4 shows the tensile shear force of each comparative example.
[0029]
[Table 4]
Figure 2004025760
[0030]
At room temperature, the tensile shear force of the examples and comparative examples does not change. At 100 ° C., Example 1 was not affected by the temperature as compared with that at room temperature, whereas Comparative Example 1 had a tensile shear force of less than half the value at room temperature, It became clear that I received remarkably. In each of the embodiments, the Bi-Sn alloy or the Pb-Sn alloy forms a network in the resin at the joint surface between the copper plate and the resin, thereby establishing good bonding between the copper plate and the resin.
[0031]
【The invention's effect】
As described above, according to the invention described in the claims of the present application, a method for manufacturing a metal-resin laminate in which a joint is not affected by environmental characteristics such as temperature, and a metal-resin laminate in which steps are simple. Provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a laminate of a metal and a resin.
FIG. 2 is a sectional view of an apparatus for compression molding.
FIG. 3 is a cross-sectional view of a tensile shear test piece of a laminate of a metal and a resin.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Metal substrate 2 Mixed layer of resin and low melting point alloy 3 Resin layer

Claims (4)

金属基板上に、樹脂と前記樹脂の溶融温度以下の溶融温度を有する低融点合金からなる混合層、樹脂層が順に積層されたことを特徴とする金属と樹脂の積層体。A laminated body of a metal and a resin, wherein a mixed layer of a resin and a low melting point alloy having a melting temperature equal to or lower than the melting temperature of the resin and a resin layer are sequentially laminated on a metal substrate. 前記低融点合金が、Bi−Sn合金及びPb−Sn合金から選ばれた少なくとも一種の合金である請求項1記載の金属と樹脂の積層体。2. The metal-resin laminate according to claim 1, wherein the low melting point alloy is at least one alloy selected from a Bi—Sn alloy and a Pb—Sn alloy. 3. 金属基板上に、樹脂粉末と前記樹脂の溶融温度以下の溶融温度を有する低融点合金粉末からなる混合物と、樹脂粉末を圧縮成形することを特徴とする金属と樹脂の積層体の製造方法。A method for producing a laminate of a metal and a resin, wherein a mixture of a resin powder and a low melting point alloy powder having a melting temperature equal to or lower than the melting temperature of the resin is compression-molded on a metal substrate. 前記低融点合金が、Bi−Sn合金及びPb−Sn合金から選ばれた少なくとも一種の合金である請求項3記載の金属と樹脂の積層体の製造方法。The method for producing a metal-resin laminate according to claim 3, wherein the low melting point alloy is at least one alloy selected from a Bi-Sn alloy and a Pb-Sn alloy.
JP2002188859A 2002-06-28 2002-06-28 Laminated product of metal and resin and its manufacturing method Pending JP2004025760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002188859A JP2004025760A (en) 2002-06-28 2002-06-28 Laminated product of metal and resin and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002188859A JP2004025760A (en) 2002-06-28 2002-06-28 Laminated product of metal and resin and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004025760A true JP2004025760A (en) 2004-01-29

Family

ID=31183430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002188859A Pending JP2004025760A (en) 2002-06-28 2002-06-28 Laminated product of metal and resin and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004025760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011127509A1 (en) * 2010-04-14 2011-10-20 Miba Gleitlager Gmbh Gear train for a wind turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011127509A1 (en) * 2010-04-14 2011-10-20 Miba Gleitlager Gmbh Gear train for a wind turbine
US8840521B2 (en) 2010-04-14 2014-09-23 Miba Gleitlager Gmbh Gear train for a wind turbine

Similar Documents

Publication Publication Date Title
EP1580770B1 (en) Soft magnetic powder and a method of manufacturing a soft magnetic powder compact
DE112008001037B4 (en) Method for forming a metallic coating, heat-conducting element and its use as a power module
TWI472389B (en) Metallurgical composition of particulate materials, self-lubricating sintered product and process for obtaining self-lubricating sintered products
JP2000096203A (en) Method for thermally spraying polymer material
JPH01225749A (en) Sintered material for oilless bearing and production thereof
JP2004197212A (en) Soft magnetic molding, method of producing soft magnetic molding, and soft magnetic powder material
EP0719184B1 (en) Improved composite powders for thermal spray coatings
JPS641523B2 (en)
EP1118768B1 (en) Swash plate of swash plate type compressor
WO2001004373A1 (en) Sprayed copper-aluminum composite material and method for producing the same
CN101605621B (en) Method for producing two bonded-together layers and functional component that can be produced by the method
JP5043389B2 (en) Iron-based soft magnetic powder for dust core, dust core and method for producing dust core
JP2004025760A (en) Laminated product of metal and resin and its manufacturing method
US6355207B1 (en) Enhanced flow in agglomerated and bound materials and process therefor
JPH0280813A (en) Bearing material made of double-layered iron-copper-lead system sintered alloy
JPH02118002A (en) Sintered laminating body for copper alloy powder sheet
JPS6149375B2 (en)
JP2733684B2 (en) Joined sintered friction material
JP2647523B2 (en) Thermal spraying Cr lower 3 C lower 2-NiCr composite powder manufacturing method
JP6682366B2 (en) Method for manufacturing sliding member
JPH0456702A (en) Raw material powder for powder metallurgy and manufacture thereof
JPH03274237A (en) Copper base plain bearing material and its manufacture
JP2001131660A (en) Alloy powder for copper series high strength sintered parts
JP2013194304A (en) Electric power condudting sliding member, pantograph using the same, and manufacturing method and repairing method for the electric power condudting sliding member
CN107675025A (en) Low pressure cold air power spraying and coating nickel base powder and preparation method